当前位置:文档之家› 直线电机历史

直线电机历史

直线电机历史
直线电机历史

直线电机的发展历史

作者: 来源:

直线电机的历史,据有关文献最早可追溯到1840年惠斯登

(Wheatstone)开始提出和制作了略具雏形但并不成功的直线电

机,从那时至今,已有160多年的历史了,在这不算短的历史过程

当中,直线电机经历了探索实验、开发应用和实用商品化三个时代

直线电机的历史,据有关文献最早可追溯到1840年惠斯登(Wheatstone)开始提出和制作了略具形但并不成功的直线电机,从那时至今,已有160多年的历史了,在这不算短的历史过程当中,直线电机经历了探索实验、开发应用和实用商品化三个时代:

1840~1955年为探索实验时期:

从1840年到1955年的116年期间,直线电机从设想到实验到部分实验性应用,经历了一个不断探索,屡遭失败的过程。自从Wheatsone提出和试制了直线电机以后,最早明确地提到直线电机文章的是1890年美国匹兹堡市的市长,在他所写的一篇文章中,首先明确地提到了直线电机以及的专利。然而,由于当时的制造技术、工程材料以及控制技术的水平,在经过断断续续20多年的强努力后,最终却未能获得成功。

至1905年,曾有两人分别建议将直线电动机作为火车的推进机构,一种建议是将初级放在轨上,另一种建议是将初级放在车辆底部。这些建议无疑是给当时直线电机研究领域的科研人员的一剂兴奋剂,以致许多国家的科研人员都投入了这些研究工作。1917年出现了第一台圆筒形直线电机,事实上那是一种具有换接初级线圈的直流磁阻电动机,人们试图把它作为导弹发射装置,但其发展并没有超出模型阶段。

至此,从1930~1940年期间,直线电机进入了实验研究阶段,在这个阶段中,科研人员获驭了大量的实验数据,从而对已有理论有了更深一层的认识,奠定了直线电机在今后的应用基础。

从1940~1955年期间世界一些发达国家科研人员,在实验的基础上,又进行了一些实验应用作。1945年,美国西屋电气公司首先研制成功的电力牵引飞机弹射器,它以7400kW的直线电动机为动力,成功地用4.1s的时间将一架重4535kg,的喷气式飞机在165m的行程内由静止加速的188km/h的速度,它的试验成功,使直线电动机可靠性好等优点受到了应有的重视,随后,美国利用直线电机制成的、用作抽汲钾、钠等液态金属的电磁泵,为的是核动力中的需要。1954年,英皇家飞机制造公司利用双边扁平型直流直线电机制成了发射导弹的装置,其速度可达1600km/h。这个阶段中,尤需值得一提的是,直线电机作为高速列车的驱动装置得到了各国的高度重视并计划

予以实施。

在1840~1955年期间,是直线电机探索实验和部分实验应用时期,在直线电机与旋转电机的互竞争中,由于直线电机的成本和效率方面没有能够战胜旋转电机,或者说,直线电机还没能找到唯独它能解决问题的领域,以及直线电机在设计方面也没有突破性的成功,所以直线电机在这一时期始终未能得到真正的应用。

1956~1970年为开发应用时期:

自1955年以来,直线电机进入了全面的开发阶段,特别是该时期的控制技术和材料的惊人发展更加助长了这种势头。在这段时期,申请直线机的专利件数也开始急速增加,该时期直线电机专利的增长率超过了所有其他技术领域的平均增长率。

到1965年以后,随着控制技术和材料性能的显著提高,应用直线电机的实用设备被逐步开发来,例如采用直线电机的MHD泵、自动绘图仪、磁头定位驱动装置、电唱机、缝纫机、空气压缩机输送装置等。

1971年至今为实用商品时期:

从1971年开始到目前的这个阶段,直线电机终于进入了独立的应用时代,在这个时代,各类线电机的应用得到了迅速的推广,制成了许多具有实用价值的装置和产品,例如直线电机驱动的钢管输送机、运煤机、起重机、空压机、冲压机、拉伸机、各种电动门、电动窗、电动纺织机等等。特别可喜的是利用直线电机驱动的磁悬浮列车,其速度已超500km/h,接近了航空的飞行速度,且试验行程累计已达数十万千米。

目前,直线电机被广泛应用于各个领域:

1.直线电机在交通与民用方面的应用

磁悬浮列车改变了传统轨道车辆靠轮轨摩擦力推进的方式,采用磁力悬浮车体、直线电机驱动技术,使列车在轨道上浮起滑行,在交通技术发展史上是一个重大的突破,被誉为21世纪一种理的交通工具,磁悬浮车与现有常规车相比,主要优点是:速度快(500km/h),安全,无翻车,无声振动,占地小,爬坡强,结构简单,节能。国内外许多国家如德国、日本、美国、法国、英国、俄罗斯、加拿大、韩国、瑞士、瑞典及中国都已投入了这方面的研制,其中尤以德国、日本最为突出,投入最大,持续时间最长。中国目前除上海的磁悬浮列车在外,还有北京、四川等地也在进行这方面的工作。

直线电机在交通方面的应用,除磁悬浮列车外,还被应用于电磁推进船的驱动,它将像喷气式飞机优于螺旋桨飞机一样优于一般螺旋桨推进的船舶,美国将其应用于军事舰艇,日本则于1992

6月完成世界上第一艘载人超导直线电磁推进船“大和一号”并在日本神户港正式试航成功。此外在交通应用方面,直线电机还被应用于驱动地铁车和高速公路车等。

直线电机在民用方面,发展较为迅速,产品较为成熟,应用面广。目前已应用的有直线电机驱动门,直线电机驱动窗和窗帘,直线电机驱动的床、柜、桌、椅,盘型直线电机驱动的洗衣机,空调、电冰箱用直线电机压缩机,用直线电机驱动的家用针织机和缝纫机、炒茶机等。特别是用直线

电机驱动的电梯,它所具有的结构简单、省材、省空间、高速、低噪声、节能等优点,引起电梯界的极大关注。世界各国一些著名电梯公司正在不断以各种方式进厅这方面的试制,并有了少量的产品问世。如日本松下公司与美国奥的斯公司合作的松下奥的斯已生产了千台直线电机电梯。1990

4月,第一台使用直线电机驱动的电梯安装在日本东京丰岛万世大楼。日本三菱公司也曾试制了一台直线电机电梯并曾在国外展出,日立以及富士公司也都在试制这类产品。日本富士、富士达、川崎重工、石川岛播磨和清水建设5家公司首先推出了一种可同时垂直、水平、曲线线路和有分支线路运行的直线同步电机运输系统。我国浙江大学也已研制了一台10m,可模拟三层运行的直线电机电梯样机。

2.直线电机在军事及其他方面的应用

直线电机在军事上也得到了一些应用,如前面所述的直线电机驱动的潜艇,还有直线电机驱动的电磁炮,美国曾在1995年宣布已完成。此外,在一些军事设施上,如军用靶场、军用仿真系统军用战斗武器和导弹的发射等等。

直线电机技术的发展,经历了不短的历史和几起几落波浪式的发展,终于选择了一条适合直线电机自身发展的独特思路,它不再与旋转电机直接对抗,不以单机的形式与旋转电机竞争,而以直线电机系统与旋转电机系统相比,从而找到适合于自己的系统与旋转电机展开竞争,在旋转电机无能为力的地方寻找自己的位置。采用直线电机驱动的新型装置与非直线电机驱动相比,它具有的结构简单、无接触、无磨损、噪声低、速度快、精度高、组合灵活等优点是明显的,但由于直线电机本身所具有的磁路开断所引起的边端效应以及安装气隙较大等问题,故在一些直线运动的装置或系统中,是否采用新型的直线电机来驱动,要权衡利弊得失,选择能充分发挥直线电机自身优势的直线运动装置或系统中发展应用,在科学技术飞速发展的今天,在一些旋转电机或其他驱动装置无能为力或勉强应付的地方,寻找直线电机能充分发挥优势的位置,在满足人类需求和完善人类美好愿意的进程中求得自身的发展,前景是广阔的,但选择是要谨慎的。

直线电机的发展历史与阶段进步

发布时间:2009-04-30 16:53:33 来源:本站原创作者:无忧备件网

直线电机的雏形出现在1840年,时至今日直线电机已伴随着人类社会发展共同进步了160多年,在这160多年里,直线电机不断创新不断完善,历经了三个不同的时期,才实现今天的形态和作用。

1、直线电机的探索期

直线电机的探索期在其发展历史中占据了最长的篇幅,从1840年直线电机设想的提出者Wheatsone试制出第一个直线电机雏形开始,到1955年的116年里,直线电机都只是在设想到实现再到应用之间不断摸索。

直线电机被提出后的40年,美国匹兹堡市的市长才第一次在其所著的一篇文章里,明确的提到了直线电机和它的专利。但由于受限于当时的制造技术、工程材料和控制技术的水平,在反复努力了20多年以后,直线电机最终没有在匹兹堡市市长的手中取得阶段性成功。

直线电机雏形的实用试验开始于1905年一直到1930年,当时的直线电机被建议作为火车的推进机构投入使用,这使得很多研究人员都看到了直线电机发展的希望,并加大了研究的力度,可最终的结果依然没让直线电机走出模型阶段。

直线电机在接下来的一段时间里,也就是1930年到1940年,直线电机走入了研究实验阶段,研究人员将重点从直线电机的实用研究转向了理论研究。直线电机在这一阶段的实验中积累了大量的数据,这个时期可以说是直线电机理论的奠定期。

直线电机的研究在理论的基础上又重新开始了实用性的探索,时间是1940年到1955年间。直线电机这次终于表现出它与生俱来的优异能力,从驱动电车到高速列车,从驱动导弹到飞机,直线电机的可靠性高、驱动能力强等优点,得到了充分的体现。

直线电机在1840年到1955年之间,经历了设想提出、探索实验和部分实验应用的过程。在这个过程中,直线电机虽然逐渐表现出了诸多的优点,但和旋转电机的相比,却在成本和效率方面逊色一筹,或者说,这个时期的直线电机,还没有能突破性的占领某个独特的领域,而真正获得人们的青睐及应用。

2、直线电机的开发应用期

直线电机的开发应用期是从1956年到1970年之间的一段时间,在1955年以后,在控制技术和材料科学有了飞速进步的背景影响下,直线电机得到了全面的发展,关于直线电机的专利件数急速增加,直线电机专利的成长率甚至超过了当时所有其他技术领域的平均增长率。

直线电机的实用设备从1965年开始有了显著的发展,这都要得益于控制技术和材料科学的进步,与直线电机有关的MHD泵、自动绘图仪、磁头定位驱动装置、电唱机、缝纫机、空气压缩机、输送装置等纷纷问世,直线电机的应用有望登上新的台阶。

3、直线电机的实用商品期

直线电机从1971年开始步入了实用商品期,进入这个时代的标志就是直线电机终于进入了独立应用领域,各类直线电机得到了普及,很多有实用价值的直线电机真正受到了生产领域的认可,例如运煤机、起重机、空压机和冲压机等等,都是直线电机驱动。

直线电机之所以能够步入目前的阶段,主要是因为直线电机找到了一条适合自己发展的道路,将直线电机与旋转电机的对抗转化为,直线电机系统与旋转电机系统的竞争,而在这一方面旋转电机尚未能找好自己的位置。

直线电机目前的研究和生产厂家遍布世界各个发达国家,包括美国、日本、英国、法国和瑞典等,其中美国的西屋、德国的西门子都是个中佼佼者,而日本也在直线电机的研究上投入了大量的人力物力并取得了被世人所关注的成就。

直线电机在中国的研究和应用是开始于20世纪的70年代,这个时间与发达国家开始直线电机研究的时间相比,无疑存在着巨大的差距,而我国目前虽然也在直线电机的研究上取得了一定的进展,但要想赶超国外水平,还有待进一步的努力。

直线电机的应用

直线电机的应用 直线电机凭借高速度、高加速、高精度及行程不受限制等特性在物流系统、工业加工与装配、信息及自动化系统、交通与民用以及军事等领域发挥着十分重要的作用。 直线电机主要应用场合:一是应用于自动控制系统,这类应用场合比较多;其次是作为长期连续运行的驱动电机;三是应用在需要短时间、短距离内提供巨大的直线运动能的装置中。 直线电机可以在几秒钟内把一架几千公斤重的直升飞机拉到每 小时几百公里的速度,它在真空中运行时,其时速可达几千上万公里。在军事上,人们利用它制成各种电磁炮,并试图将它用于导弹、火箭的发射;在工业领域,直线电机被用于生产输送线,以及各种横向或垂直运动的一些机械设备中;直线电机除具有高速、大推力的特点以外还具有低速、精细的另一特点,例如,步进直线电机,它可以做到步距为1μm的精度,因此,直线电机又被应用到许多精密的仪器设备中,例如计算机的磁头驱动装置、照相机的快门、自动绘图仪、医疗仪器、航天航空仪器、各种自动化仪器设备等。除此之外,直线电机还被用于各种各样的民用装置中,如电动门、电动窗、电动桌、椅的移动,门锁、电动窗帘的开、闭等等,尤其在交通运输业中,人们利用直线电机制成了时速达500km以上的磁浮列车。

直线电机可以认为是旋转电机在结构方面的一种变形,它可以看作是一台旋转电机沿其径向剖开,然后拉平演变而成。近年来,随着自动控制技术和微型计算机的高速发展,对各类自动控制系统的定位精度提出了更高的要求,在这种情况下,传统的旋转电机再加上一套变换机构组成的直线运动驱动装置,已经远不能满足现代控制系统的要求,为此,近年来世界许多国家都在研究、发展和应用直线电机,使得直线电机技术发展速度加快,应用领域越来越广。 直线电机的优点是:结构简单、反应速度快、灵敏度高、随动性好、密封性好、不怕污染、适应性强(由于直线电机本身结构简单,又可做到无接触运行,因此容易密封,各部件用尼龙浸渍后,采用环氧树脂加以涂封,这样它就不怕风吹雨打,或有毒气体和化学药品的侵蚀,在核辐射和液体物质中也能应用)、工作稳定可靠、寿命长(直线电机是一种直接传动的特种电机,可实现无接触传递,故障少,几乎不需要维修,又不怕振动和冲击)、额定值高(直线电机冷却条件好,特别是长次级接近常温状态,因此线负荷和电流密度可以取得很高)、有精密定位和自锁的能力(和控制系统相配合,可做到0.001mm的位移精度和自锁能力)。 直线电机能直接产生直线运动,这一点对直线运动机械设计者和使用者有很大的吸引力。不少直线运动的机械是由旋转电机传动的,必须配置由旋转运动变为直线运动的机械传动装置,使得整个装置机构庞大,成本较高和效率较低。采用直线感应电机,不但省去了机械

直线电机资料20110302

直线电机基础 编辑本段直线电机也称线性电机,线性马达,直线马达 在实际工业应用中的稳定增长,证明直线电机可以放心的使用。下面简单介绍直线电机类型和他们与旋转电机的不同. 最常用的直线电机类型是平板式和U 型槽式,和管式。线圈的典型组成是三相,有霍尔元件实现无刷换相.图示直线电机用HALL换相的相序和相电流. 该图直线电机明确显示动子(forcer, rotor)的内部绕组.磁鉄和磁轨.动子是用环氧材料把线圈压成的。而且,磁轨是把磁铁固定在钢上。 直线电机在过去的10年,经实践上引人注目的增长和工业应用的显著受益才真正成熟。 直线电机经常简单描述为旋转电机被展平,而工作原理相同。动子(forcer, rotor) 是用环氧材料把线圈压缩在一起制成的.而且,磁轨是把磁铁(通常是高能量的稀土磁铁)固定在钢上.电机的动子包括线圈绕组,霍尔元件电路板,电热调节器(温度传感器监控温度)和电子接口。在旋转电机中,动子和定子需要旋转轴承支撑动子以保证相对运动部分的气隙(air gap)。同样的,直线电机需要直线导轨来保持动子在磁轨产生的磁场中的位置。和旋转伺服电机的编码器安装在轴上反馈位置一样,直线电机需要反馈直线位置的反馈装置--直线编码器,它可以直接测量负载的位置从而提高负载的位置精度。 直线电机的控制和旋转电机一样。象无刷旋转电机,动子和定子无机械连接(无刷),不象旋转电机的方面,动子旋转和定子位置保持固定,直线电机系统可以是磁轨动或推力线圈动(大部分定位系统应用是磁轨固定,推力线圈动)。用推力线圈运动的电机,推力线圈的重量和负载比很小。然而,需要高柔性线缆及其管理系统。用磁轨运动的电机,不仅要承受负载,还要承受磁轨质量,但无需线缆管理系统。 相似的机电原理用在直线和旋转电机上。相同的电磁力在旋转电机上产生力矩在直线电机产生直线推力作用。因此,直线电机使用和旋转电机相同的控制和可编程配置。直线电机的形状可以是平板式和U 型槽式,和管式.哪种构造最适合要看实际应用的规格要求和工作环境。 编辑本段圆柱形动磁体直线电机 圆柱形动磁体直线电机动子是圆柱形结构。沿固定着磁场的圆柱体运动。这种电机是最初发现的商业应用但是不能使用于要求节省空间的平板式和U 型槽式直线电机的场合。圆柱形动磁体直线电机的磁路与动磁执行器相似。区别在于线圈可以复制以增加行程。典型的线圈绕组是三相组成

轨道交通产业发展与创新论坛相关情况汇报

◆轨道交通产业发展与创新论坛相关情况汇报 3月22日~23日,市轨道办派人参加了在江苏省常州市召开的《中国轨道交通峰会——轨道交通产业发展与创新论坛》。本届论坛是由江苏省轨道交通产业技术协会与《轨道交通》杂志社联合主办,会议邀请了国内外从事规划、设计、建设、运营等方面的专家和相关代表及设备供应商,就我国轨道交通发展的总体环境及现行发展管理政策、国内各城市轨道交通建设规模与发展趋势、以及行业管理体制、规划建设、融资渠道、运营管理、票制票价、创新技术与推广体系等展开了交流与讨论,全面分析了我国城市轨道交通发展机遇,推动产业创新与进步。 截止2006年底,国内城市轨道交通已建成运营线路的城市有十个(北京、上海、广州、天津、深圳、长春、大连、重庆、南京、武汉),近期建设规划已通过国家发改委、建设部审批(第一批)开工建设的城市有十五个(北京、上海、广州、深圳、长春、大连、重庆、南京、武汉、杭州、成都、哈尔滨、西安、苏州、青岛),近期建设规划编制完成,已上报国家发改委、建设部等待审批(第二批)的城市有六个(宁波、郑州、厦门、东莞、昆明、长沙)。正在编制建设规划的城市有十二个(无锡、常州、福州、济南、南昌、南宁、石家庄、乌鲁木齐、贵阳、佛山、温州、威海)。

目前我国城市轨道交通呈现以下发展趋势:(1)迅猛发展;我国城市轨道交通在“十一五”末期建设总里程将接近6000公里,远景总里程可能达9000公里。(2)向高效快速运输发展;为适应运量不断需求,最小行车间隔将缩短为2分钟使列车开行对数从30对/小时提到此为40对/小时。(3)车辆制式向多元化发展;除了传统轮轨系统,已出现跨座式单轨电车(重庆)、直线电机(广州)、高速磁悬浮列车(上海)。(4)市郊快速线逐渐形成。(5)实现多站多线资源共享。(6)实现地下地上空间综合开发。(7)加快提高车辆和机电设备国产化率。(8)新技术不断进步,建设造价不断降低。(9)注重节能。 1、轨道交通1、2号线可行性研究及设计工作的招标工作已顺利完成市轨道交通1、2号线可行性研究、设计总体、总体总包及单项设计的招标工作已于2007年3月7日完成,中标单位为广州市地下铁道设计研究院。目前市投资开发公司和广州市地下铁道设计研究院正在办理签定合同事宜,可行性研究及相关工作已经开始启动。 2、轨道交通项目1、2号线用地控制性规划设计编制已签订合同 2007年3月15日市投资开发公司与市城市规划设计院正式签订了市轨道交通项目1、2号线用地控制性详细规划设计编制的城市规划设计合同。按合同约定,市城市规划设计院将于2007年3月底提交用地控制规划方案的中间成果,2007年4月中旬完成最终成果。

直线电机的发展及其在电梯行业的应用

直线电机的发展及其在电梯行业的应用 直线电机可以不用借助任何中间转换结构把电能转变成直线运动,与传统的方式相比,具有噪音低、无磨损、无接触、结构简单、速度快、精度高等方面的优点。基于此本文对直线电机的发展及其在电梯行业的应用进行探讨,阐述了直线电机在电梯中驱动系统、门机系统的应用前景,为工程技术人员对直线电机的研发指明了方向。传统的电梯曳引系统和门机利用交流旋转电机进行工作,为了实现电梯门的开和关,需要借助一些比较复杂的转动机构来把旋转运动的电机转变成直线运动。就电梯的曳引驱动系统而言,无论是交流电机蜗轮蜗杆驱动系统或是交流调速系统、或是永磁马达调速系统,因为交流电机响应速度慢,控制起来比较复杂,无法满足未来对电梯性能的要求。而直线电机因为其结构的特殊性,不易被环境影响,受到了行业的广泛关注,正逐渐成为主流的电梯产品。 直线电机的发展和研究情况 1.1.直线电机的发展史 直线电机的概念是在1840年被提出来的,距今有一百多年的历史。可以将其发展史大致分成三个阶段,分别为:探索实验阶段、开发应用阶段和实用商品化阶段。其中第一个阶段指的是直线电机的探索和实验阶段,在这个阶段直线电机的设计还存在一定的问题,也没有找到直线电机合适的应用领域,因此直线电机一直没有被广泛使用。在

开发阶段科学家在直线电动机研究的基础上,取得了非常大的研究成果,发表了一些比较系统的电机类著作和文章,极大的推进了直线电机的发展,同时也引起了广大研究人员对直线电机的重视。从1971年开始对直线电机进行了独立应用,在这个阶段,研究人员选择了出了适合直线电机使用的途径,各种各样的直线电机被广泛的推广,研究出了非常多的具有使用价值的产品,比如冲压机、空压机、煤机等。 1.2.近年来国内外对直线电机的研究情况 近年来,直线电机得到了迅速的发展,很多人都开始对直线电机进行研究。国际上很多公司也逐渐开始研发直线电机类的产品,比如日本的三井精机公司、美国的Koll-morgen公司、各国的Wesitinghouse 公司等等。各种各样质量良好的直线电机产品也出现在了人们的视野中。比如Indramat公司研究出了非常完整的直线电机系列,其中包含了封闭式异步直线电机和无罩壳异步直线电机。在直线电机的控制系统中设置了非常标准的接口,可以更好的保证各种景观改型的程序控制器和数字变换器相兼容。 我国对直线电机的研究发展比较晚,大概是从70年代发展起来的。不过在国外直线电机使用潮流的影响下,我国国内也出现了很多直线电机开发使用的单位,例如浙江大学、沈阳工业大学、浙江大学、西安交通大学等。我国第一个直线电机研究所在浙江大学诞生,并且此研究取得了非常不错的研究成果。目前我国在直线电机方面的研究成

直线电机工艺的研究

直线电机装配工艺的研究与应用

摘要:为了提高企业制造技术,加快新技术的开发,促进企业技术进步,随着高速切削、超精密加工等先进制造技术的发展,要求要有很高的驱动推力、快速进给速度和极高的快速定位精度。机床进给系统形成了直线电机直接驱动为主的发展方向。本文阐述了直线电机的工作原理及其功能,并以CKS6125数控车床所采用的直线电机为例,阐述直线电机的装配工艺的关键技术,且对直线电机的主要装配工序进行分析与研究。此次直线电机试装的成功,为我厂机床更新换代,经济的发展起到了积极的推动作用。 1.引言 近年来,就如何提高企业制造技术,加快新技术的开发,以被越来越多企业所重视。随着高速切削、超精密加工等先进制造技术的发展,对机床各项性能指标提出了越来越高要求。同时也对机床进给系统的伺服性能提出了更高的要求:要有很高的驱动推力、快速进给速度和极高的快速定位精度。高速度、高加速度和高精度是现代伺服的要求及发展趋势。直线电动机高速进给单元的应用使进给传动链及其结构发生深刻的变化,机床进给系统形成了直线电机直接驱动为主的发展方向。直线电机的机械结构虽然简单,但制造工艺要求却非常严格,为加快我国高速加工技术的发展与应用,加速我厂数控机床的更新换代,组织力量对直线电机装配工艺过程进行攻关是必要的。 2.直线电机简介 直线电机是将直线位移机构的传动元件和执行元件相结合。按能量转换定理,进给机构的直线电机可分为同步电动机和异步电动机。直线电机结构紧凑、功率损耗小、快移速度高、加速度高、运动噪声低等优点,直线电机

驱动方式与旋转电机驱动方式的最大区别是,取消了从电动机到工作台之间的一切机械中间传动环节,实现了“零传动”,避免了丝杠传动中的反向间隙、惯性、摩擦力和刚性不足等缺点,使机床的性能大大提高。这项新技术国际上只有几家较大的机床公司把它应用到机床行业,而我国直线电机的设计制造技术刚刚起步,尚末形成批量生产规模,直线电机各项性能指标和国外尚有较大差距。 我厂在数控车床上应用直线电机在国内是第一家,所以说直线电机在CKS6125数控车床X轴上的应用,是我们对这项新技术的尝试,这项新技术研制的成功,为以后的机床开发和应用打下了基础。由于该项技术为我厂首次试制,直线电机的装配应处在探索中。 CKS6125数控车床X轴直线电机采用的是西门子1FN3永磁同步直线电机,是将初级部构芯(线圈)安装在滑板上,次级部构芯(磁铁)安装在床鞍上而成的一个完整内装式电机。其结构如图1: 图1 1FN3永磁同步直线电机主要有初级部分、次级部分、初级部构芯型材、精密冷却部分组成,其结构如图2:

电机的历史与未来发展

电机的历史与未来发展 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

摘要 在现代社会中,电能是现代社会最主要的能源之一。在电能的生产、输送和使用等方面,电机起着重要的作用。从19世纪30年代法拉第发明了世界上第一台真正意义上的电机—法拉第圆盘发电机开始,到现在21世纪10年代,电机的发展已经经过了近200年的历史。从最初的直流电机到现在大热的超声电机,随着科学的进步,生产力的迅猛发展,电机更新换代的速度日益加快,应用范围也越来越广,遍及生产生活的各个领域。我国在电机方面起步比西方国家晚了100年,但研究发展速度很快,很多企业和高校也都有自己新的研究技术,与国外先进国家的差距在逐渐缩短。未来,相信电机的应用和发展将会更加环保,更加智能。 关键词:电机、历史、发展、中国电机发展、未来 1、电机的简介 电机是指依据电磁感应定律实现电能转换或传递的一种电磁装置。电机主要包括发电机、变压器和电动机等类型。发电机是将其他形式的能源转换成电能的机械设备,电动机将电能转换成为机械能,用来驱动各种用途的生产机械。 在自然界各种能源中,电能具有大规模集中生产、远距离经济传输、智能化自动控制的突出特点,它不但成为人类生产和活动的主要能源,而且对近代人类文明的产生和发展起到了重要的推动作用。与此相呼应,作为电能生产、传输、使用和电能特性变化的核心装备,电机在现代社会所有行业和部门中也占据着越来越重要的地位。 纵观电机的发展,其应用范围不断扩大,使用要求不断提高,结构类型不断增多,理论研究也不断深入。特别是近30年来,随着电力电子技术和计算机技术的进步,尤其是超导技术的重大突破和新原理;新结构;新材料;新工艺;新方法的不断推动,电机发展更是呈现出勃勃生机,其前景是不可限量的。 2、电机的历史 直流电机发展史 1820年丹麦物理学家奥斯特发现了电流磁效应 随后安培通过总结电流在磁场中所受机械力的情况建立了安培定律

直线电机工作原理,特点及应用(数控大作业)

《数控技术》大作业二 1.综述 直线电机的结构可以看作是将一台旋转电机沿径向剖开,并将电机的圆周展开成直线而形成的。其中定子相当于直线电机的初级,转子相当于直线电机的次级,当初级通入电流后,在初次级线圈之间的气隙中产生行波磁场,在行波磁场与次级永磁体的作用下产生驱动力,从而实现运动部件的直线运动。 直线电机的工作原理设想把一台旋转运动的感应电动机沿着半径的方向剖开,并且展平,这就成了一台直线感应图电动机。 初级做得很长,延伸到运动所需要达到的位置,也可以把次级做得很长;既可以初级固定、次级移动,也可以次级固定、初级移动.通入交流电后在定子中产生的磁通,根据楞次定律,在动体的金属板上感应出涡流。设产生涡流的感应电压为E,金属板上有电感L和电阻R,涡流电流和磁通密度将(费来明法则)产生连续的推力F。 2.工作原理 直线电动机的初级三相绕组通入三相交流电后,就会在气隙中产生一个沿直线移动的正弦波磁场,其移动方向由三相交流电的相序决定,如图所示。显然该行波磁场的移动速度与普通电机旋转磁场在定子内圆表面的线速度相等。 行波磁场切割次级上的导体后,在导体中感应出电动势和电流,该电流与气隙磁场作用,在次级中产生电磁力,驱动次级沿着行波磁场移动的方向作直线运行,或者利用反作用力驱动初级朝相反的方向运动。如果改变直线电动机初级绕组的通电相序,即可改变电动机的运行方向。因此直线电动机可实现往返直线运动。 3.直线电机的特点 直线电机是一种将电能直接转换成直线运动机械能而不需通过中问任何转换装置的新颖电机,它具有系统结构简单、磨损少、噪声低、组合性强、维护方便等优点。旋转电机所具有的品种,直线电机几乎都有相对应的品种,其应用范围正在不断扩大,并在一些它所能独特发挥作用的地方取得了令人满意的效果。 直线感应电动机的特点是:结构简单,维护方便;散热条件好,额定值高;适宜于高速运行;能承担特殊任务,如液态金属的运输、加工等。其缺点是气隙大,功率因数低,力能指标差,低速运行时需采用低频电源,使控制装置复杂。 4.直线电机的应用

微型特种电机直线电机和音圈电机介绍

微型特种电机直线电机和音圈电机介绍 一、直线电机原理 一般电动机工作时都是转动的.但是用旋转的电机驱动的交通工具(比如电动机车和城市中的电车等)需要做直线运动,用旋转的电机驱动的机器的一些部件也要做直线运动.这就需要增加把旋转运动变为直线运动的一套装置.能不能直接运用直线运动的电机来驱动,从而省去这套装呢?几十年前人们就提出了这个问题.现在已制成了直线运动的电动机,即直线电机. 工作原理. 直线电机是一种将电能直接转换成直线运动机械能,而不需要任何中间转换机构的传动装置。它可以看成是一台旋转电机按径向剖开,并展成平面而成. 由定子演变而来的一侧称为初级,由转子演变而来的一侧称为次级。在实际应用时,将初级和次级制造成不同的长度,以保证在所需行程范围内初级与次级之间的耦合保持不变。直线电机可以是短初级长次级,也可以是长初级短次级。考虑到制造成本、运行费用,目前一般均采用短初级长次级。 直线电动机的工作原理与旋转电动机相似。以直线感应电动机为例:当初级绕组通入交流电源时,便在气隙中产生行波磁场,次级在行波磁场切割下,将感应出电动势并产生电流,该电流与气隙中的磁场相作用就产生电磁推力。如果初级固定,则次级在推力作用下做直线运动;反之,则初级做直线运动。 直线电机的原理并不复杂.设想把一台旋转运动的感应电动机沿着半径的方向剖开,并且展平,这就成了一台直线感应电动机.在直线电机中,相当于旋转电机定子的,叫初级;相当于旋转电机转子的,叫次级.初级中通以交流,次级就在电磁力的作用下沿着初级做直线运动.这时初级要做得很长,延伸到运动所需要达到的位置,而次级则不需要那么长.实际上,直线电机既可以把初级做得很长,也可以把次级做得很长;既可以初级固定、次级移动,也可以次级固定、初级移动. 二、音圈电机 所谓音圈直线电机(Voice Coil Motor)因其结构类似于喇叭的音圈而得名。具有高频响、高精度的特点。SUPT主要把此类电机分为圆柱型音圈电机和摆动型音圈电机。 市场上圆柱型音圈电机系列应用相当广泛。这种电机有很高的加速率,能够产生0.7N-1000N的强大动力,而其行程少于50mm。该款电机主要应用在医疗、半导体、航空、汽车等领域,包括阀门制动器,小型精密替换测量仪、振动平台以及主动式减振系统等众多方面。 SUPT摆动型音圈电机系列采用矩型系列产品的技术,将矩形系列产品予以弯曲,以形成一定的优先角度定位系统。其典型的扭矩达到100度,

直线电机的结构及工作原理

直线电机的结构及工作原理 来源:本站整理作者:佚名2010年02月25日 17:43 分享 订阅 [导读]直线电机的结构直线电机的结构可以看作是将一台旋转电机沿径向剖开,并将电机的圆周展开成直线而形成的。其中定子相 关键词:直线电机 直线电机的结构 直线电机的结构可以看作是将一台旋转电机沿径向剖开,并将电机的圆周展开成直线而形成的。其中定子相当于直线电机的初级,转子相当于直线电机的次级,当初级通入电流后,在初次级之间的气隙中产生行波磁场,在行波磁场与次级永磁体的作用下产生驱动力,从而实现运动部件的直线运动。 直线电机的工作原理 设想把一台旋转运动的感应电动机沿着半径的方向剖开,并且展平,这就成了一台直线感应图电动机。 初级做得很长,延伸到运动所需要达到的位置,也可以把次级做得很长;既可以初级固定、次级移动,也可以次级固定、初级移动. 通入交流电后在定子中产生的磁通,根据楞次定律,在动体的金属板上感应出涡流。设引起涡流的感应电压为E,金属板上有电感L和电阻R,涡流电流和磁通密度将按费来明法则产生连续的推力F。 直线电机的特点 高速响应由于系统中直接取消了一些响应时间常数较大的如丝杠等机械传动件,使整个闭环控制系统动态响应性能大大提高,反应异常灵敏快捷。 位精度高线驱动系统取消了由于丝杠等机械机构引起的传动误差减少了插补时因传动系统滞后带来跟踪误差。通过直线位置检测反馈控制,即可大大提高机床的定位精度。传动环节的弹性变形、摩擦磨损和反向间隙造成的运动滞后现象,同时提高了其传动刚度。 速度快、加减速过程短 行程长度不受限制在导轨上通过串联直线电机,就可以无限延长其行程长度。 动安静、噪音低由于取消了传动丝杠等部件的机械摩擦,且导轨又可采用滚动导轨或磁垫悬浮导轨(无机械接触),其运动时噪音将大大降低。 效率高由于无中间传动环节,消除了机械摩擦时的能量损耗。 直线电机的应用 直线电机主要应用于三个方面: 应用于自动控制系统,这类应用场合比较多; 作为长期连续运行的驱动电机; 应用在需要短时间、短距离内提供巨大的直线运动能的装置中。 U槽无刷直线电机可以直接驱动,无需将转动转为线性运动,机械结构简单可靠。电机运行超平稳,无齿槽效应,动态响应速度极快,惯量小,加速度可达20G,速度达到10-30m/s,低速1μm/s时运动平滑,刚性高,结构紧凑,可选配直线编码器做高精度位置控制,其位置精度取决于所选编码器。

直线电机的工作原理

直线电机的工作原理 直线电机是一种将电能直接转换成直线运动机械能,而不需要任何中间转换机构的传动装置。它可以看成是一台旋转电机按径向剖开,并展成平面而成,如图1所示。 由定子演变而来的一侧称为初级,由转子演变而来的一侧称为次级。在实际应用时,将初级和次级制造成不同的长度,以保证在所需行程范围内初级与次级之间的耦合保持不变。直线电机可以是短初级长次级,也可以是长初级短次级。考虑到制造成本、运行费用,目前一般均采用短初级长次级。 直线电动机的工作原理与旋转电动机相似。以直线感应电动机为例:当初级绕组通入交流电源时,便在气隙中产生行波磁场,次级在行波磁场切割下,将感应出电动势并产生电流,该电流与气隙中的磁场相作用就产生电磁推力。如果初级固定,则次级在推力作用下做直线运动;反之,则初级做直线运动。 直线电机的优缺点介绍

直线电机是一种将电能转化为动能的机械装置,通常应用于工业生产当中。与直线电机相对应的一种装置是旋转电机,两者的工作原理类似。但是直线电机是进行直线运动的电机,而旋转电机是进行旋转运动的电机。直线电机可以直接将电能转化为动能,而不需要中间装置。 直线电机的优点 直线电机一般有平板式、U型式、管式几种。直线电机的工作系统是通过内部直线导轨来完成工作,用环保材料将线圈压缩成电路板的动子和电热调节器连接,然后在稀土磁铁的磁轨上进行动力推动,不需要像旋转电机一样,将动子固定在旋转轴承的支撑架上来保证相

对运动部分的稳定,通过直接反馈位置的直线编码器装置,就可以直接测量负载位置,从而保证负载位置的精确度。 由上看出,直线电机因为不需要中间转换装置,所以操作简单,非常适合进行非离心力的运动。直线电机的优势主要有以下几点: 首先,结构简洁。直线电机直接产生直线运动,位置精确度高,更为节省成本、稳定可靠、操作和维护简便。 第二,运动效率高。直线电机的气垫和磁垫中间存在缝隙,在运动时,不会出现机械接触,也不会出现摩擦和噪音,对零部件的损伤较小,从而具有较高的工作效率,可以进行高速直线运动。

高性能无铁芯直线电机线圈

1.高性能无铁芯直线电机线圈 电阻小于10Ω,电感小于10mH,电气时间常数小于2ms,工作电压大于直流300V,峰值电流小于30A,连续电流小于10A,峰值推力大于700N,连续推力大于150N,线圈重量小于3kg。 2.高性能无铁芯直线电机磁轨 磁轨高度小于100mm,厚度小于55mm,有效行程大于200mm。 3.五轴超精密运动控制器 运行RT Linux实时操作系统,64位系统架构,支持标准C语言,支持32个独立坐标系,伺服更新频率大于20kHz,配有双千兆网口、光电隔离IO卡、模拟量和数字量反馈接口、手轮通道,5轴模拟量控制通道,220V独立电源供电。 4.线性放大器 要求真正的AB类放大器,零交越失真,支持串口通讯、正余弦电机换相,输出电压大于+\-50V,接收+/- 10V控制指令,峰值电流大于15A,连续电流大于5A,长度小于40cm,宽度小于25cm,高度小于15cm,重量小于10kg。 5.电器控制柜 防护等级:IP56,证书:CE、ROHS、IP56,材质:优质冷轧钢板,安装板为镀锌板,门板厚度2.0mm,安装板厚度2.5mm,柜体厚度为1.5mm,表面处理:酸洗磷化,外部粉末涂层,颜色:RAL7035/RAL7032织纹或平光,标准配置:前门、后门、背板、顶板、底板、安装板1块、密封条、门锁(平板锁)、铰链。包含电气控制柜设计、装配、电缆制作及布线、控制器与放大器调试。 6.四轴超精密运动控制器 运行RT Linux实时操作系统,64位系统架构,支持标准C语言,支持32个独立坐标系,伺服更新频率大于20kHz,配有双千兆网口、光电隔离IO卡、模拟量和数字量反馈接口、手轮通道,4轴模拟量控制通道,220V独立电源供电。 7.角度编码器 不锈钢材质,分辨率大于8000 Lines/Rev,系统精度优于+/- 5 arc sec,最大允许转速大于3000 rpm。磁性材质,分辨率大于20000 cts/Rev,最大允许转速大于10000rpm。 8.光栅尺及读数头 膨胀系数0.6 μm/m/°C,信号周期20um,精度+/- 1um,1Vpp模拟量信号输出,有效量程大于200mm。 9.五轴控制手轮 五轴控制通道,三档分辨率可调,RS422信号输出,含急停按钮。 10.密闭放松插头 不锈钢外壳,M23规格,螺纹连接,IP67防护等级,内部屏蔽位于外壳上,同轴360度连接,皇冠型电缆尾夹。 11.主轴无框力矩电机 力矩常数0.41 Nm/Arms,反电动势24.77 Vrms/krpm,电感2.145mH,电阻0.757Ω,堵转力矩3.52Nm,

一种微型直线电机及其驱动方式.

(10)授权公告号 CN 101630891 B (45)授权公告日 2011.08.17C N 101630891 B *CN101630891B* (21)申请号 200810012338.3 (22)申请日 2008.07.16 H02K 33/18(2006.01) H02K 1/34(2006.01) G05B 19/04(2006.01) (73)专利权人中国科学院沈阳自动化研究所 地址110016 辽宁省沈阳市东陵区南塔街 114号 (72)发明人苏刚 李洪谊 (74)专利代理机构沈阳科苑专利商标代理有限 公司 21002 代理人许宗富 周秀梅 US 6779982 B2,2004.08.24, CN 87200807 U,1987.11.04,CN 101051786 A,2007.10.10, CN 86204843 U,1986.12.24,(54)发明名称 一种微型直线电机及其驱动方式 (57)摘要 一种微型直线电机及其驱动方式,属于直线 电机技术领域。该电机结构包括端盖、内部铁心、 外部磁轭、线圈、线圈支架及两个磁钢,两磁钢同 极相对置于内部铁心两端,两磁钢外端分别安装 有端盖,在两端盖内,磁钢与内部铁心的外周置有 两对称的弧形磁轭,两弧型磁轭在内部铁心外周 大致成圆环型,在两弧形磁轭间形成滑道,磁轭与 内部铁心及磁轭与磁钢之间形成气隙,线圈置于 内部铁心与磁轭之间,线圈上固定有线圈支架,线 圈支架两端通过滑道穿出磁轭,线圈及线圈支架 可在磁轭间的滑道上滑动。本发明两磁钢同极相 对放置,磁路的封闭性比较好,在气隙中形成比较 均匀的磁场。本发明结构简单,适合作为微小型机 构的驱动器。 (51)Int.Cl.(56)对比文件 审查员 肖继军 (19)中华人民共和国国家知识产权局(12)发明专利 权利要求书 1 页 说明书 4 页 附图 5 页

微电机行业分析报告

微电机行业发展报告 目录 第一章:行业电机概念 1.1:电机定义 2.1:电机类别 3.1:电机结构 第二章:行业简介 1.1:行业发展简史 第3章:微电机行业界定及结论汇总 1.1:微电机行业定义及界定 2.1:报告结论汇总 第四章:微电机行业发展分析 1.1:信息处理机器(含通讯器材)用的微电机 2.1:视听设备用微电机 3.1:汽车用微电机 4.1:家用电器用微电机 5.1:各类机械设备、机器人、武器装备、保健设备等用微电机第五章:中国微电机行业发展趋势 1.1:节能高效化 2.1:永磁化、无刷化

3.1:智能化、模块化 第六章:中国微电机行业发展前景分析 1.1:中国微电机行业发展存在的问题 2.1:中国微电机行业发展趋势及前景 第七章:影响行业发展的有利和不利因素 1.1:影响行业发展的有利因素 2.1:影响行业发展的不利因素 第一章:行业电机概念 1.1:定义 微电机,全称“微型电动机”,是指直径小于160mm或额定功率小于750mW的电机。微电机常用于控制系统或传动机械负载中,用于实现机电信号或能量的检测、解析运算、放大、执行或转换等功能。 2.1:类别

微电机制造工序多,涉及精密机械、精细化工、微细加工、磁材料处理、绕组制造、绝缘处理等工艺技术,需要的工艺装备数量大、精度高,为了保证产品的质量还需一系列精密的测试仪器,是投资性较强的行业。 简而言之,微电机行业是劳动密集型和技术密集型的高新技术产业。 3.1:结构 微特电机在结构上大体可分为三类:电磁式、组合式、非电磁式 3.11:电磁式、基本组成与普通电机相似,包括定子、转子、电枢绕组、电刷等部件,但结构格外紧凑。 3.12:组合式、常见的有两种:微电机与电子线路的组合。例如直流电动机与传感器的组合,X方向与Y方向直线电动机的组合等。 3.13:非电磁式、外形结构与电磁式一样,如旋转类产品作成圆柱形,直线类产品作成方形,但内部结构因其工作原理不同而差别很大。 第二章:发展简史: 我国微电机行业创建于20世纪50年代末期,从为满足国防武器装备需要开始,经历了仿制、自行设计和研究开发的阶段,至今已有40余年的发展历史,已形成产品开发、规模化生产和关键零部件、关键材料、专用制造设备、测试仪器配套的完整的工业体系。 据统计,我国微电机生产及配套厂家在1000家以上,从业人员超过10万人,工业总产值超过100亿元。微电机行业已成为国民经济和国防现代化建设中不可缺少的一个基础产品工业。

直线电机工艺分析

直线电机简介 直线电机是将直线位移机构的传动元件和执行元件相结合。按能量转换定理,进给机构的直线电机可分为同步电动机和异步电动机。直线电机结构紧凑、功率损耗小、快移速度高、加速度高、运动噪声低等优点,直线电机驱动方式与旋转电机驱动方式的最大区别是,取消了从电动机到工作台之间的一切机械中间传动环节,实现了“零传动”,避免了丝杠传动中的反向间隙、惯性、摩擦力和刚性不足等缺点,使机床的性能大大提高。这项新技术国际上只有几家较大的机床公司把它应用到机床行业,而我国直线电机的设计制造技术刚刚起步,尚末形成批量生产规模,直线电机各项性能指标和国外尚有较大差距。 图1 永磁同步直线电机主要有初级部分、次级部分、初级部构芯型材、精密冷却部分组成,其结构如图2:

图2 图3: 图3 1.直线电机装配工艺的关键技术及工艺方案 1.1 直线电机装配工艺的关键技术 根据直线电机的结构特点,直线电机零件加工和装配的主要关键: a) 初、次级部构芯安全装配。 b) 安装直线电机所需工装选择。 c) 安装直线电机螺钉紧固扭矩选择。 端子盒 可选件:精确冷却器 (对环境温度影响< 4 K) 次级部分 初级部分 可选件:连续防护件 (保护次级部分) 动力冷却器 可选件:尾端件 (固定机盖,水流入流出) 可选件:冷却部分 (对环境温度影响< 4 K)

d)直线电机初、次级部芯装配。 e)直线电机装配后检查与运车。 1.2直线电机装配工艺方案确定 直线电机机械结构较为简单,但其装配工艺却非常严格。由于直线电机次级构芯的永磁体有一个强大的静态磁场和相当高铁铁磁极力,这对于人的健康和安全有直接的影响,因此装配过程中既要考虑如何保证直线电机的装配精度,也要重视人身安全。按照上述要求制定直线电机装配工序流程为: 装配前准备→将床鞍安装在床身、安装床鞍导轨→预装滑板调整机床精度→将次级部构芯冷却安装在床鞍上并试漏→安装次级部构芯→安装次级部构芯磁性盖板→将初级部构芯冷却器安装在滑板上→安装初级部构芯→安装滑板→检验直线电机安装情况(手动)→连接各冷却和液压管路→完善各部 1.3直线电机装配过程的分析 由于直线电机装配后,拆装非常困难,因此必须做好装配前准备工作。装配前应按目录清点零件,收集所需工装,清洗零件,按图纸对零件进行检测。按照直线电机装配工艺流程进行装配。 一、如何实现直线电机安全装配 由于直线电机次级构芯的永磁体有一个强大的静态磁场和相当高铁磁极力,因此装配过程中要求做到: a.磁性材料距次级部构芯距离必须保证>100mm。 b.手表、磁性材料(磁卡、软盘等)要远离。 c.安装、维修、维护设备时要带工作手套。 d.带心脏起搏器的人员不得在此设备上工作。

直线电机缺点

直线电机的缺点 以下专业资料由精密丝杆供应商:雷研精密传动设备有限公司提供。 很多机械制造行业的技术人员想迫切了解直线电机能否完全替代滚珠丝杠,就目前来说,只能说是一个很好的发展方向,但尚有很多技术不是很成熟,直线电机的缺点,主要有以下方面: (1)伺服控制难度大直线电机传动的控制只能是全闭环控制。这样,工作台的负荷(工件重盆、切削力等)及其变化,对一个稳定系统来说就是外界干扰,若自动调节不好会使系统失稳而展荡。而回转电机传动可采用半闭环隔离这些干扰。即使采用全闭环,由于存在着滚珠丝杆等这些弹性中间环节,它们既有刚性差而使加速度上不去的负面影响,又有吸收和抑制干扰的正面作用,而使伺服控制难度减小。此外,由于是在高速、高精度下工作,还要求反馈用位置检测元件具备调速数据采集和响应能力和较高的分辨率。 (2)应用于垂直行程部件时,由于存在着重力加速度,故要求采取复杂的平衡措施,否则会造成电机过热。由于是在高速、高精度下工作,要求快速响应,往往不是简单加平衡重锤所能解决的,而需在电机和伺服驱动电路上采取措施。断电时的自锁措施也比回转电机传动复杂。回转电机传动一般可在联轴节处装简单的超越离合器来解决自锁问题。 (3) 往往要采取冷却措施凡是电机都要发热的。回转电机一般安装在机床的周边位置,有较好的散热条件, 远离构件, 难以造成构件的热变形, 因而一般不采取冷却措施。而直线电机因安装在机床腹部,根据具体情况, 有时须采取风冷(自然风或压缩空气)或循环水冷的措施。这时, 气管或水管还必须随工作台一起作高速运动。 (4) 装配和防护难度加大回转电机的磁场是闭式的, 而直线电机的是开式的。特别是同步式, 定件上要安装一排或多排强磁的永久磁钢, 而床身等构件和装配用工具又都是磁性材料, 动不动就会被吸住,尘埃中的磁性物质, 钢铁等切屑都难抗拒强磁的吸力, 一旦尘屑堵 住了不大的气隙, 电机就不能工作. 1直线电机工作原理 直线电机是一种将电能直接转换成直线运动机械能,而不需要任何中间转换机构的传动装置。它可以看成是一台旋转电机按径向剖开,并展成平面而成。 由定子演变而来的一侧称为初级,由转子演变而来的一侧称为次级。在实际应用时,将初级和次级制造成不同的长度,以保证在所需行程范围内初级与次级之间的耦合保持不变。直线电机可以是短初级长次级,也可以是长初级短次级。考虑到制造成本、运行费用,以直线感应电动机为例:当初级绕组通入交流电源时,便在气隙中产生行波磁场,次级在行波磁场切割下,将感应出电动势并产生电流,该电流与气隙中的磁场相作用就产生电磁推力。如果初级固定,则次级在推力作用下做直线运动;反之,则初级做直线运动。直线电机的驱动控制技术一个直线电机应用系统不仅要有性能良好的直线电机,还必须具有能在安全可靠的条件

直线电机驱动技术

直线电机驱动技术 直线电动机在机床进给伺服系统中的应用,近几年来已在世界机床行业得到重视,并在西欧工业发达地区掀起“直线电动机热”。 在机床进给系统中,采用直线电动机直接驱动与原旋转电动机传动的最大区别是取消了从电动机到工作台(拖板)之间的一切机械中间传动环节,把机床进给传动链的长度缩短为零。这种传动方式被称为“零传动”。正由于这种“零传动”方式,带来了原旋转电动机驱动方式无法达到的性能指标和一定优点。 (1)高速响应由于系统中直接取消了一些响应时间常数较大的如丝杠等机械传动件,使整个闭环控制系统动态响应性能大大提高,反应异常灵敏快捷。 (2)精度直线驱动系统取消了由于丝杠等机械机构引起的传动误差减少了插补时因传动系统滞后带来的跟踪误差。通过直线位置检测反馈控制,即可大大提高机床的定位精度。 (3)动刚度高由于“直接驱动”,避免了启动、变速和换向时因中间传动环节的弹性变形、摩擦磨损和反向间隙造成的运动滞后现象,同时提高了其传动刚度。 (4)速度快、加减速过程短由于直线电动机最早主要用于磁悬浮列车(时速可达500Km/h),所以用在机床进给驱动中,要满足其超高速切削的最大进个速度(要求达60~100M/min或更高)当然是没有问题的。也由于上述零传动的高速响应性,使其加减速过程大大缩短。以实现起动时瞬间达到高速,高速运行时又能瞬间准停。可获得较高的加速度,一般可达(2~10)g(g=9.8m/s2),而滚珠丝杠传动的最大加速度只有(0.1~0.5) (5)行程长度不受限制在导轨上通过串联直线电机,就可以无限延长其行程长度。

(6)动安静、噪音低由于取消了传动丝杠等部件的机械摩擦,且导轨又可采用滚动导轨或磁垫悬浮导轨(无机械接触),其运动时噪音将大大降低。 (7)效率高由于无中间传动环节,消除了机械摩擦时的能量损耗。科尔摩根PLATINNM DDL系列直线电机和SERVOSTAR CD系列数字伺服放大器构成一种典型的直线永磁伺服系统,它能提供很高的动态响应速度和加速度、极高的刚度、高的定位精度和平滑的无差运动。

直线电机优缺点

直线电机优缺点 直线电机的特点在于直接产生直线运动,与间接产生直线运动的“旋转电动机,滚动丝杠”相比,其优点是(具体性能见下表): (1)没有机械接触,传动力是在气隙中产生的,线性模组除了直线电机导轨以外没有任何其它的摩擦; (2)结构简单,体积小,通过以最少的零部件数量来实现我们的直线驱动,而且这仅仅是只存在一个运动的部件; (3)运行的行程在理论上是不受任何限制的,而且其性能不会因为其行程的大小改变而受到影响; (4)其运转可以提供很宽的转速运行范围,其涵盖包括从每秒几微米到数米,特别是在高速状态下是其一个突出的优点; (5)加速度很大,最大可达10g; (6)运动平稳,这是因为除了起支撑作用的直线导轨或气浮轴承外,伺服电动缸没有其它机械连接或转换装置的缘故; (7)精度和重复精度高,因为消除了影响精度的中间环节,系统的精度取决于位置检测元件,有合适的反馈装置可达亚微米级; (8)维护简单,由于部件少,运动时无机械接触,从而大大降低了零部件的磨损,只需很少甚至无需维护,使用寿命更长。直线电动机与“旋转电动机,滚珠丝杠”传动性能比较表性能旋转电动机+滚珠丝杠直线电动机。 缺点:从表面看,线性马达直线电机可逐步取代滚珠丝杠成为驱动直线运动的主流。但事实是,直线电机驱动在普遍使用后,一些过去没有关注的问题开始浮现: 一是直线电机的耗电量大,尤其在进行高荷载、高加速度的运动时,机床瞬间电流对车间的供电系统带来沉重负荷; 其二是振动高,直线电机的动态刚性极低,不能起缓冲阻尼作用,在高速运动时容易引起机床其它部分共振; 其三是发热量大,微型电钢固定在工作台底部的直线电机动子是高发热部件,安装位置不利于自然散热,对机床的恒温控制造成很大挑战;

冰箱压缩机用直线电机的控制系统

冰箱压缩机用直线电机的控制系统 李志海, 郑水英 (浙江大学化工机械研究所,杭州 310027) 摘 要:提出了一种基于单片机的可控硅输入电压控制系统,包括同步脉冲电路、触发电路、隔离电路、显示电路、人机接口以及电流检测单元等。通过单片机控制可控硅的控制角,使系统的输入功率改变,从而使压缩机的起动平缓并具有连续可调的排气量。通过实验研究,表明该方案是切实可行的。 关键词:直线电机;压缩机;电压控制;单片机 中图分类号:T M301.2∶T M359.4 文献标识码:A 文章编号:100128085(2006)0120033204 Con trol Syste m of M ov i n g2Co il L i n ear M otor for Refr i gera tor Com pressor L I Zhi2hai, ZHEN G S hui2ying (I nstitute of Che m icalMachinery,Zhejiang Univ.,Hangzhou310027,China) Abstract:I n this paper,the linear comp ress or contr ol syste m is studied.The contr ol circuit is composed of syn2 chr onous pulse circuit,trigger circuit,op tical is olat or circuit and dis p lay circuit.P I C single2chi p generates trigger pulse t o contr ol the Triac,and then make it possible t o contr ol the p ist on’s dis p lace ment,mean positi on and comp res2 s or’s capacity.The experi m ent results p r ove that the method is feasible. Key words:li n ear m otor;co m pressors;volt age con trol;si n gle ch i p m i crocon troller 0 引 言 目前,发达国家已经研制开发出了一种新一代制冷压缩机———直线压缩机(L MC)。由于L MC不包括将转动转变为直线运动的曲轴、连杆等机构,因此,在效率方面优于通常的由旋转电机驱动的压缩机。L MC的一个性能特点就是可以进行容量调节,活塞的行程直接取决于驱动电压和排气压力[1]。当将L MC用于冷冻机或者空调机时,通过改变施加到LMC上的电压,以改变LMC的压缩比和活塞行程来控制系统的制冷量。 国外对L MC控制系统的研究很多,包括大量的专利和文献资料[2~4],但在国内相关研究还较少。本文提出了一种基于单片机的可控硅输入电压控制系统,并进行了相关的实验研究。 1 控制系统的设计 1.1 控制系统需求分析 有曲柄、连杆机构的传统压缩机,活塞位移的大小和位移的上止点位置由机械结构决定,不受进排气压力的影响。而LMC的活塞是自由式的,活塞位移的大小、位移的上止点位置不仅受到电机驱动力的影响,还受到压缩机进排气压力的影响。活塞位移的大小、位移的上止点位置直接决定了压缩机的行程容积和余隙容积,进而决定了压缩机排气量的大小和效率的高低。 在压缩机的起动阶段,排气压力是在不断变化的。刚开机阶段,排气压力为零,如果不调低输入功率,势必会发生连续撞缸的情况,因此在开机阶段,输入功率应由小到大逐渐增加。此外,由于制冷工艺的需要,压缩机排气压力和排气量有时也需要发生变化。这正是L MC的另外一大优点:排气量连续可调,而且不必借助于变频系统。具体方法就是降低输入功率,减小活塞的位移幅值,也就是降低行程容积。但如果只是简单地降低输入功率,那么调小排气量的同时,由于气缸余隙容积大大增加,将导致压缩机的效率大大降低了。因此控制系统的另一个任务就是在调节压缩机排气量的同时,要尽可能地维持气缸余隙容积处于 — 3 3 —

相关主题
文本预览
相关文档 最新文档