当前位置:文档之家› 高中物理专题—等效场、复合场模

高中物理专题—等效场、复合场模

高中物理专题—等效场、复合场模
高中物理专题—等效场、复合场模

高中物理——等效场/复合场模型

【模型介绍】

【模型要点】

【误区点拨】

【例题解析】

【练习巩固】

带电粒子在复合场中的运动 高中物理专题 含解析

带电粒子在复合场中的运动目标: 1. 掌握带电粒子在电场、磁场中运动的特点 2. 理解复合场、组合场对带电粒子受力的分析。 重难点: 重点:带电粒子在电场、磁场中运动的特点;带电粒子在复合场中受力分析 难点:带电粒子在复合场中运动受力与运动结合。 知识: 知识点1 带电粒子在复合场中的运动 1.复合场的分类 (1)叠加场:电场、磁场、重力场共存,或其中某两场共存.

(2)组合场:电场与磁场各位于一定的区域内,并不重叠,或相邻或在同一区域电场、磁场交替出现. 2.带电粒子在复合场中的运动形式 (1)静止或匀速直线运动:当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线 运动. (2)匀速圆周运动:当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的 作用下,在垂直于匀强磁场的平面内做匀速圆周运动. (3)较复杂的曲线运动:当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一直线 上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线. 易错判断 (1)带电粒子在复合场中不可能处于静止状态.(×) (2)带电粒子在复合场中可能做匀速圆周运动.(√) (3)带电粒子在复合场中一定能做匀变速直线运动.(×) 知识点2 带电粒子在复合场中的运动实例 1.质谱仪 (1)构造:如图所示,由粒子源、加速电场、偏转磁场和照相底片等构成. (2)原理:粒子由静止被加速电场加速,qU =1 2mv 2. 粒子在磁场中做匀速圆周运动,有qvB =m v 2 r . 由以上两式可得r =1 B 2mU q , m =qr 2B 22U , q m =2U B r . 2.回旋加速器 (1)构造:如图所示,D 1、D 2是半圆形金属盒,D 形盒的缝隙处接交流电源,D 形 盒处于匀强磁场中. (2)原理:交流电的周期和粒子做圆周运动的周期相等,粒子经电场加速,经磁 场回旋,由qvB =mv 2r ,得E km =q 2B 2r 2 2m ,可见粒子获得的最大动能由磁感应强

高中物理带电粒子在复合场中的运动真题汇编

一、带电粒子在复合场中的运动专项训练 1.如图所示,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为 d ,两侧为相同的匀强磁场,方向垂直纸面向里.一质量为m 、带电量q +、重力不计的 带电粒子,以初速度1v 垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动.已知粒子第二次在磁场中运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推.求: (1)粒子第一次经过电场的过程中电场力所做的功1W (2)粒子第n 次经过电场时电场强度的大小n E (3)粒子第n 次经过电场所用的时间n t (4)假设粒子在磁场中运动时,电场区域场强为零.请画出从粒子第一次射入磁场至第三次离开电场的过程中,电场强度随时间变化的关系图线(不要求写出推导过程,不要求标明坐标刻度值). 【来源】河北省衡水中学滁州分校2018届高三上学期全真模拟物理试题 【答案】(1)2 1132 mv W = (2)21(21)2n n mv E qd +=(3)12(21)n d t n v =+ (4)如图; 【解析】 (1)根据mv r qB =,因为212r r =,所以212v v =,所以22 1211122 W mv mv =-, (2) = , ,所以 . (3),,所以. (4)

2.如图所示,在平面直角坐标系xOy 中的第一象限内存在磁感应强度大小为B 、方向垂直于坐标平面向里的有界矩形匀强磁场区域(图中未画出);在第二象限内存在沿x 轴负方向的匀强电场。一粒子源固定在x 轴上坐标为(),0L -的A 点。粒子源沿y 轴正方向释放出速度大小为0v 的电子,电子通过y 轴上的C 点时速度方向与y 轴正方向成45α=角,电子经过磁场偏转后恰好垂直通过第一象限内与x 轴正方向成15β=角的射线OM 已知电子的质量为m ,电荷量为e ,不考虑粒子的重力和粒子之间的相互作用)。求: ()1匀强电场的电场强度E 的大小; ()2电子在电场和磁场中运动的总时间t ()3矩形磁场区域的最小面积min S 。 【来源】湖南省怀化市2019年高考物理一模物理试题 【答案】(1)20 2mv eL ;(2)0223L m v eB π+;203()mv eB 【解析】 【详解】 ()1电子从A 到C 的过程中,由动能定理得:2 20112 2 C eEL mv mv =- 0cos45C v v = 联立解得:2 2mv E eL =

高中物理二十四种模型

高中物理二十四种模型 ⒈"质心"模型:质心(多种体育运动).集中典型运动规律.力能角度. ⒉"绳件.弹簧.杆件"三件模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题. ⒊"挂件"模型:平衡问题.死结与活结问题,采用正交分解法,图解法,三角形法则和极值法. ⒋"追碰"模型:运动规律.碰撞规律.临界问题.数学法(函数极值法.图像法等)和物理方法(参照物变换法.守恒法)等. ⒌"运动关联"模型:一物体运动的同时性.独立性.等效性.多物体参与的独立性和时空联系. ⒍"皮带"模型:摩擦力.牛顿运动定律.功能及摩擦生热等问题. ⒎"斜面"模型:运动规律.三大定律.数理问题. ⒏"平抛"模型:运动的合成与分解.牛顿运动定律.动能定理(类平抛运动). ⒐"行星"模型:向心力(各种力).相关物理量.功能问题.数理问题(圆心.半径.临界问题). ⒑"全过程"模型:匀变速运动的整体性.保守力与耗散力.动量守恒定律.动能定理.全过程整体法. ⒒"人船"模型:动量守恒定律.能量守恒定律.数理问题. ⒓"子弹打木块"模型:三大定律.摩擦生热.临界问题.数理问题. ⒔"爆炸"模型:动量守恒定律.能量守恒定律. ⒕"单摆"模型:简谐运动.圆周运动中的力和能问题.对称法.图象法. ⒖"限流与分压器"模型:电路设计.串并联电路规律及闭合电路的欧姆定律.电能.电功率.实际应用. ⒗"电路的动态变化"模型:闭合电路的欧姆定律.判断方法和变压器的三个制约问题. ⒘"磁流发电机"模型:平衡与偏转.力和能问题.

⒙"回旋加速器"模型:加速模型(力能规律).回旋模型(圆周运动).数理问题. ⒚"对称"模型:简谐运动(波动).电场.磁场.光学问题中的对称性.多解性.对称性. ⒛电磁场中的单杆模型:棒与电阻.棒与电容.棒与电感.棒与弹簧组合.平面导轨.竖直导轨等,处理角度为力电角度.电学角度.力能角度. 21.电磁场中的"双电源"模型:顺接与反接.力学中的三大定律.闭合电路的欧姆定律.电磁感应定律. 22.交流电有效值相关模型:图像法.焦耳定律.闭合电路的欧姆定律.能量问题. 23."能级"模型:能级图.跃迁规律.光电效应等光的本质综合问题. 24.远距离输电升压降压的变压器模型.

高中物理复合场专题复习(有界磁场)

习题课一 带电粒子在匀强磁场中的运动 一、带电粒子在直线边界磁场中的运动 1.基本问题 【例题1】如图所示,一束电子(电量为e)以速度V 垂直射入磁感应强度为B 、宽度为d 的匀强磁场,穿透磁场时的速度与电子原来的入射方向的夹角为300 .求: (1)电子的质量m (2)电子在磁场中的运动时间t 【小结】处理带电粒子在匀强磁场中的运动的方法: 1、 找圆心、画轨迹(利用F ⊥v 或利用弦的中垂线); 2、 定半径(几何法求半径或向心力公式求半径) 3、 求时间(t= 0360θ ×T或t= v s ) 注意:带电粒子在匀强磁场中的圆周运动具有对称性。 ① 带电粒子如果从一直线边界进入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,入射速度方向、出射速度方向与边界的夹角相等; ② 在圆形磁场区域内,沿径向射入的粒子,必沿径向射出。 2.应用对称性可以快速地确定运动的轨迹。 【例题2】如图—所示,在y <0的区域内存在匀强磁场,磁场方向垂直于xy 平面并指向纸面外,磁感应强度为B.一带正电的粒子以速度υ0从O 点射入磁场,入射方向在xy 平面内,与x 轴正向的夹角为θ.若粒子射出磁场的位置与O 点的距离为l ,求该粒子的电量和质量之比 m q 。 【审题】本题为一侧有边界的匀强磁场,粒子从一侧射入,一定从边界射出,只要根据对称规律①画出轨迹,并应用弦切角等于回旋角的一半,构建直角三角形即可求解。 【解析】根据带电粒子在有界磁场的对称性作出轨迹,如图9-5所示,找出圆心A ,向x 轴作垂线,垂足为H ,由与几何关系得: R L s i n θ=1 2 ① 带电粒子在磁场中作圆周运动,由 qv B mv R 00 2 = 解得R mv qB = ② ①②联立解得 q m v LB =20sin θ 【总结】在应用一些特殊规律解题时,一定要明确规律适用的条件,准确地画出轨迹是关键。 2qBd m v = 303603d t T v π= =

高中物理答题技巧归纳大全

高中物理答题技巧归纳大全 一,考场中心态的保持 心态“安静”:心静自然“凉”,脑子自然清醒,精力自然集中,思路自然清晰。心静如水,超然物外,成为时间的主人、学习的主人。情绪稳定,效率提高。心不静,则心乱如麻,心神不定,心不在焉,如坐针毡,眼在此而心在彼,貌似用功,实则骗人。 二,高中物理选择题的答题技巧 选择题一般考查学生对基本知识和基本规律的理解及应用这些知识进行一些定性推理和定量计算。解答选择题时,要注意以下几个问题: 每一选项都要认真研究,选出最佳答案,当某一选项不敢确定时,宁可少选也不错选。 注意题干要求,让你选择的是“不正确的”、“可能的”还是“一定的”。 相信第一判断:凡已做出判断的题目,要做改动时,请十二分小心,只有当你检查时发现第一次判断肯定错了,另一个百分之百是正确答案时,才能做出改动,而当你拿不定主意时千万不要改。特别是对中等程度及偏下的同学这一点尤为重要。 做选择题的常用方法: 筛选(排除)法:根据题目中的信息和自身掌握的知识,从易到难,逐步排除不合理选项,最后逼近正确答案。

特值(特例)法:让某些物理量取特殊值,通过简单的分析、计算进行判断。它仅适用于以特殊值代入各选项后能将其余错误选项均排除的选择题。 极限分析法:将某些物理量取极限,从而得出结论的方法。 直接推断法:运用所学的物理概念和规律,抓住各因素之间的联系,进行分析、推理、判断,甚至要用到数学工具进行计算,得出结果,确定选项。 观察、凭感觉选择:面对选择题,当你感到确实无从下手时,可以通过观察选项的异同、长短、语言的肯定程度、表达式的差别、相应或相近的物理规律和物理体验等,大胆的做出猜测,当顺利的完成试卷后,可回头再分析该题,也许此时又有思路了。 物理实验题的做题技巧 实验题一般采用填空题或作图题的形式出现。作为填空题,数值、单位、方向或正负号都应填全面;作为作图题:对函数图像应注明纵、横轴表示的物理量、单位、标度及坐标原点。对电学实物图,则电表量程、正负极性,电流表内、外接法,变阻器接法,滑动触头位置都应考虑周全。对光路图不能漏箭头,要正确使用虚、实线,各种仪器、仪表的读数一定要注意有效数字和单位;实物连接图一定要先画出电路图(仪器位置要对应);各种作图及连线要先用铅笔(有利于修改),最后用黑色签字笔涂黑。 常规实验题:主要考查课本实验,几年来考查比较多的是试验器材、原理、步骤、读数、注意问题、数据处理和误差分析,解答常

高中物理解题技巧:等效替换法

高中物理中的等效替代法 物理学是研究物质运动的最基本、最普遍的规律及物质的构成、物质间相互作用的一门科学。物理学在长期的发展过程中,形成了一整套思维方法,这些方法不仅对物理学的发展起了重要的作用,而且对其他相关学科的发展以至社会思潮和社会生活也产生了一定的影响。 自然界物质的运动、构成及其相互作用是极其复杂的,但它们之间存在着各种各样的等同性,为了认识复杂的物理事物的规律,我们往往从事物的等同效果出发,将其转化为简单的、易于研究的物理事物,这种方法称为等效替代法。按等同效果形式的不同,可将其分为模型等效替代、过程等效替代、作用等效替代和本质等效替代等。 一、模型等效替代 在物理学研究问题的过程中,我们常常用简单的、易于研究的模型来代替复杂的物理原形,这种方法称为模型等效替代法。它既包括对各种理想模型的具体应用,也包括利用各种实物模型来模仿、再现原形的某些特征、状态和本质。这种方法并不是对客观存在的物理对象进行研究,而是借助于对模型的研究,达到认识原形的目的。 用模型来替代原形的方法是通过抽象、概括等思维过程形成的理想模型,如质点、重心、理想气体、点电荷等,都是在一定条件下、一定的精度范围内对实际客体的一种等效替代。下面以重心为例说明这个问题。 学生对重力似乎很熟悉,以为很简单。但仔细一想,不那么简单,物体有无数个微小的组成部分,实际上每个部分都要受到微小的重力,这些微小重力的作用点都各不相同。若是这样来研究重力,复杂得无从下手。物理学的研究方法,就是设想把无数个微小的重力用一个等效的重力来替代,重心就是这个等效重力的作用点。当然,随着条件和要求精度的变化,这些模型也要随之变化,从而用更能反映实际客体属性的模型来替代。 模型等效替代的另一种形式是用实物模型来代替实际客体,通过对实物模型的研究来认识其原形的本质属性及其规律性。在物理教学中,经常制成发电机模型、内燃机模型、电动机模型等来模拟实际发电机、内燃机、电动机的工作过程,从而使学生更好地理解其

高中物理知识点整理复合场

高中物理知识点整理:复合场 高中物理知识点整理:复合场 复合场是指重力场、电场、磁场并存,或其中两场并存。分布方式或同一区域同时存在,或分区域存在。 复合场是高中物理中力学、电磁学综合问题的高度集中。既体现了运动情况反映受力情况、受力情况决定运动情况的思想,又能考查电磁学中的重点知识,因此,近年来这类题备受青睐。 通过上表可以看出,由于复合场的综合性强,覆盖考点较多,预计在2012年高考(微博)中仍是一个热点。 复合场的出题方式: 复合场可以图文形式直接出题,也可以与各种仪器(质谱仪,回旋加速器,速度选择器等)相结合考查。 一、重力场、电场、磁场分区域存在(例如质谱仪,回旋加速器) 此种出题方式要求熟练掌握平抛运动、类平抛运动、圆周运动的基本公式及解决方式。 重力场:平抛运动 电场:1.加速场:动能定理2.偏转场:类平抛运动或动能定理磁场:圆周运动 二、重力场、电场、磁场同区域存在(例如速度选择器) 带电粒子在复合场做什么运动取决于带电粒子所受合力及初速度,因此,把带电粒子的运动情况和受力情况结合起来分析是解决此类问题的关键。 (一)若带电粒子在复合场中做匀速直线运动时应根据平衡条件解题,例如速度选择器。则有Eq=qVB (二)当带电粒子在复合场中做圆周运动时, 则有Eq=mgqVB=mv2/R (2009年天津10题)如图所示,直角坐标系xOy位于竖直平面内,在水平的x轴下方存在匀强磁场和匀强电场,磁场的磁感应为B,方向垂直xOy平面向里,电场线平行于y轴。一质量为m、电荷量为q的带正电的小球,从y轴上的A点水平向右抛出,经x轴上的M 点进入电场和磁场,恰能做匀速圆周运动,从x轴上的N点第一次离

带电粒子在复合场中的运动-高中物理专题含解析)

带电粒子在复合场中的运动 目标: 1. 掌握带电粒子在电场、磁场中运动的特点 2. 理解复合场、组合场对带电粒子受力的分析。 重难点: 重点: 带电粒子在电场、磁场中运动的特点;带电粒子在复合场中受力分析 难点: 带电粒子在复合场中运动受力与运动结合。 知识: 知识点1 带电粒子在复合场中的运动 1.复合场的分类 (1)叠加场:电场、磁场、重力场共存,或其中某两场共存. (2)组合场:电场与磁场各位于一定的区域内,并不重叠,或相邻或在同一区域电场、磁场交替出现. 2.带电粒子在复合场中的运动形式 (1)静止或匀速直线运动:当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线 运动. (2)匀速圆周运动:当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的 作用下,在垂直于匀强磁场的平面内做匀速圆周运动. (3)较复杂的曲线运动:当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一直线 上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线. 易错判断 (1)带电粒子在复合场中不可能处于静止状态.(×) (2)带电粒子在复合场中可能做匀速圆周运动.(√) (3)带电粒子在复合场中一定能做匀变速直线运动.(×) 知识点2 带电粒子在复合场中的运动实例 1.质谱仪 (1)构造:如图所示,由粒子源、加速电场、偏转磁场和照相底片等构成. (2)原理:粒子由静止被加速电场加速,qU =1 2mv 2 . 粒子在磁场中做匀速圆周运动,有qvB =m v 2 r . 由以上两式可得r m =qr 2B 22U , q m =2U B r . 2.回旋加速器

高中物理典型问题12等效重力场

等效重力场问题 一、在重力场中竖直平面问题 绳拉物体在竖直平面内做圆周运动规律 最高点 最低点(平衡位置) 临界最高点:重力提供向心力,速度最小 速度最大、拉力最大 二、在力场、电场等叠加而成的复合场问题 等效重力场:力场、电场等叠加而成的复合场。 重等效重力:重力、电场力的合力 处理思路:①受力分析,计算等效重力(重力与电场力的合力)的大小和方向 ②在复合场中找出等效最低点、最高点。过圆心做等效重力的平行线与圆相交。 ③根据圆周运动供需平衡结合动能定理列方程处理 例1.光滑绝缘的圆形轨道竖直放置,半径为R ,在其最低点A 处放一质量为m 的带电小球,整个空间存在匀强电场,使小球受到电场力的大小为mg 3 3,方向水平向右,现给小球一个水平向右的初速度0v ,使小球沿轨道向上运动,若小球刚好能做完整的圆周运动,求0v 及运动过程中的最大拉力 例2.如图所示,ABCD 为表示竖立放在场强为E=104V/m 的水平匀强电场中的绝缘光滑轨道,其中轨道的BCD 部分是半径为R 的半圆环,轨道的水平部分与半圆环相切A 为水平轨道的一点,而且 .2.0m R AB ==把一质量m=100g 、带电q=10-4C 的小球,放在水平轨道的A 点上面由静止开始被释放后, 在轨道的内侧运动。(g=10m/s 2)求: (1)它到达C 点时的速度是多大? (2)它到达C 点时对轨道压力是多大? (3)小球所能获得的最大动能是多少?

例3.在水平方向的匀强电场中,用长为 3L 的轻质绝缘细线悬挂一质量为m 的带电小球,小球静止在A 处,悬线与竖直方向成300角,现将小球拉至B 点,使悬线水平,并由静止释放,求小球运动到最低点D 时的速度大小 例4.如图所示,在沿水平方向的匀强电场中有一固定点 O ,用一根长度m L 40.0=的绝缘细绳把质量为kg m 10.0=、带有正电荷的金属小球悬挂在O 点,小球静止在B 点时细绳与竖直方向的夹角为 37=θ。现将小球拉至位置A 使细线水平后由静止释放,求: ⑴小球通过最低点C 时的速度的大小; ⑵小球通在摆动过程中细线对小球的最大拉力 (注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注!) O A B C E θ L +

高中物理高分突破复合场物理大题

08高考最新模拟试题汇编之复合场 1.如图所示,光滑绝缘、相互垂直的固定挡板PO 、OQ 竖直放置于匀强电场E 中,场强方向水平向左且垂直于挡板PO .图中A 、B 两球(可视为质点)质量相同且带同种正电荷.当A 球受竖直向下推力F 作用时,A 、B 两球均紧靠挡板处于静止状态,这时两球之间的距离为L .若使小球A 在推力F 作用下沿挡板PO 向O 点移动一小段距离后,小球A 与B 重新处于静止状态.在此过程中(AC ) A.A 球对B 球作用的静电力减小 B.A 球对B 球作用的静电力增大 C.墙壁PO 对A 球的弹力不变 D.两球之间的距离减小则F 增大 2.如图所示,一束电子以大小不同的速率沿图示方向飞入横截面一正方形的匀强磁场区,下列判断正确的是:( .B ) A.电子在磁场中运动时间越长,其轨迹线越长 B.电子在磁场中运动时间越长,其轨迹线所对应的圆心角越大 C.在磁场中运动时间相同的电子,其轨迹线一定重合 D.电子的速率不同,它们在磁场中运动时间一定不相同 3.如图所示,空间的虚线框内有匀强电场,AA / 、BB / 、CC / 是该电场的三个等势面,相邻等势面间的距离为0.5cm,其中BB / 为零势能面.一个质量为m ,带电量为+q 的粒子沿AA / 方向以初动能E k ,自图中的P 点进入电场,刚好从C / 点离开电场。已知PA / =2cm 。粒子的重力忽略不计。下列说法中正确的是:(A ) A.该粒子到达C / 点时的动能是2E k , B.该粒子通过等势面BB / 时的动能是1.25E k , C.该粒子在P 点时的电势能是E k , D.该粒子到达C / 点时的电势能是0.5E k , 4.一带电粒子射入点电荷+Q 的电场中,仅在电场力作用下, 运动轨迹如图所示,则下列说法中正确的是 CD A .运动粒子可能带正电 B .运动粒子一定是从A 运动到B C .粒子在A 、B 间运动过程中加速度先变大后变小 D .粒子在A 、B 间运动过程中电势能先变小后变大 5.不考虑重力作用,从t =0时刻开始,下列各种随时间变化的电场中哪些能使原来静止的带电粒子做单向直线运动( A 、C , ) 6.如图所示,光滑的水平桌面放在方向竖直向下的匀强磁场中,桌面上平放着一根一端开口、内壁光滑的试管,试管底部有一 P Q F A B O E A / B / C / C B A v v 0 P B F

高中物理专题:电场磁场与复合场

电场、磁场及复合场 【典型例题】 1.空间存在相互垂直的匀强电场E 和匀强磁场B ,其方向如图所示.一带电粒子+q 以初速度v 0垂直 于电场和磁场射入,则粒子在场中的运动情况可能是 ( ) A .沿初速度方向做匀速运动 B .在纸平面内沿逆时针方向做匀速圆周运动 C .在纸平面内做轨迹向下弯曲的匀变速曲线运动 D .初始一段在纸平面内做轨迹向下(向上)弯曲的非匀变速曲线运动 2.如图所示空间存在着竖直向上的匀强电场和垂直纸面向外的匀强磁场,一带电液滴从静止开始自A 沿曲线ACB 运动到B 点时,速度为零,C 是轨迹的最低点,以下说法中正确的是 ( ) A .液滴带负电 B .滴在C 点动能最大 C .若液滴所受空气阻力不计,则机械能守恒 D .液滴在C 点机械能最大 3.如图所示,一个带正电的滑环套在水平且足够长的粗糙绝缘杆上,整个装置处在与杆垂直的水平方向的匀强磁场中,现给滑环以水平向右的瞬时冲量,使滑环获得向右的初速,滑环在杆上的运动情况可能是 ( ) A .始终作匀速运动 B .先作加速运动,后作匀速运动 C .先作减速运动,后作匀速运动 D .先作减速运动,最后静止在杆上 4.如图所示,质量为m 、带电量为+q 的带电粒子,以初速度v 0垂直进入相互正交的匀强电场E 和匀 强磁场B 中,从P 点离开该区域,此时侧向位移为s (重力不计),则 ( ) A .粒子在P 点所受的磁场力可能比电场力大 B .粒子的加速度为(qE – qv 0B )/m C .粒子在P 点的速率为m qsE v 220 D .粒子在P 点的动能为mv 02 /2 – qsE 5.如图所示,质量为m ,电量为q 的正电物体,在磁感强度为B 、方向垂 直纸面向里的匀强磁场中,沿动摩擦因数为μ的水平面向左运动,物体运动初速度为v ,则 ( ) A .物体的运动由v 减小到零所用的时间等于mv /μ(mg+qvB ) B .物体的运动由v 减小到零所用的时间小于mv /μ(mg+qvB ) C .若另加一个电场强度为μ(mg+qvB )/q 、方向水平向左的匀强电场,物体做匀速运动 D .若另加一个电场强度为(mg+qvB )/q 、方向竖直向上的匀强电场,物体做匀速运动 6.如图所示,磁感强度为B 的匀强磁场,在竖直平面内匀速平移时,质量为m ,带电– q 的小球,用线悬挂着,静止在悬线与竖直方向成30°角的位置,则磁场的最小移动速度为 . 7.如图所示,质量为1g 的小环带4×10-4 C 正电,套在长直的绝缘杆上,两者间的动摩擦 因数μ = 0.2,将杆放入都是水平的互相垂直的匀强电场和匀强磁场中,杆所在的竖 直平面与磁场垂直,杆与电场夹角为37°,若E = 10N/C ,B = 0.5T ,小环从静止释放,求: ⑴ 当小环加速度最大时,环的速度和加速度; ⑵ 当小环速度最大时,环的速度和加速度. 8.如图所示,半径为R 的光滑绝缘竖直环上,套有一电量为q 的带正电的小球,在水平正交的匀强电场和匀强磁场中,已知小球所受的电场力与重力的大小相等.磁场的磁感强度为B ,求: ⑴ 在环顶端处无初速释放小球,小球运动过程中所受的最大磁场力; ⑵ 若要小球能在竖直圆环上做完整的圆周运动,在顶端释放时初速必须满足什么条件? 9.如图所示,匀强磁场沿水平方向,垂直纸面向里,磁感强度B =1T ,匀强电场方向水平向右,场强E = 103N/C .一带正电的微粒质量m = 2×10-6kg ,电量q = 2×10-6 C ,在此空间恰好作直线运动,问: ⑴ 带电微粒运动速度的大小和方向怎样? ⑵ 若微粒运动到P 点的时刻,突然将磁场撤去,那么经多少时间微粒到达Q 点?(设PQ 连线与电场方向平行) 10.如图所示,两块平行放置的金属板,上板带正电,下板带等量负电.在两板间有一垂直纸面向里 的匀强磁场.一电子从两板左侧以速度v 0沿金属板方向射入,当两板间磁场的磁感强度为B 1时,电子从a 点射出两板,射出时的速度为2v 0.当两板间磁场的磁感强度为B 2时,电子从b 点射出时的侧移量仅为从a 点射出时侧移量的1/4,求电子从b 点射出的速率. 11.如图所示,在一个同时存在匀强磁场和匀强电场的空间,有一个质量为m 的带电微粒,系于长为 l 的细丝线的一端,细丝线另一端固定于O 点.带电微粒以角速度ω在水平面内作匀速圆周运动,此时细线与竖直方向成30°角,且细线中张力为零,电场强度为E ,方向竖直向上. ⑴ 求微粒所带电荷的种类和电量; ⑵ 问空间的磁场方向和磁感强度B 的大小多大? ⑶ 如突然撤去磁场,则带电粒子将作怎样的运动?线中的张力是多大?

高中物理模型(完整资料).doc

【最新整理,下载后即可编辑】 一.行星模型 [模型概述] 所谓“行星”模型指卫星绕中心天体,或核外电子绕原子旋转。它们隶属圆周运动,但涉及到力、电、能知识,属于每年高考必考内容。 [模型要点] 人造卫星的运动属于宏观现象,氢原子中电子的运动属于微观现象,由于支配卫星和电子运动的力遵循平方反比律,即21F r ∝ ,故它们在物理模型上和运动规律的描述上有相似点。 一. 线速度与轨道半径的关系 设地球的质量为M ,卫星质量为m ,卫星在半径为r 的轨道上运行,其线速度为v ,可知22GMm v m r r =,从而v =设质量为'm 、带电量为e 的电子在第n 条可能轨道上运动,其线速度大小为v ,则有222n n ke v m r r =,从而1v v =∝即 可见,卫星或电子的线速度都与轨道半径的平方根成反比 二. 动能与轨道半径的关系 卫星运动的动能,由22GMm v m r r =得12k k GMm E E r r =∝即,氢原子核外电子运

动的动能为:21 2k k n n ke E E r r =∝即,可见,在这两类现象中,卫星与电子的动能 都与轨道半径成反比 三. 运动周期与轨道半径的关系 对卫星而言,212224m m G mr r T π=,得232234,r T T r GM π=∝即.(同理可推导V 、a 与 半径的关系。对电子仍适用) 四. 能量与轨道半径的关系 运动物体能量等于其动能与势能之和,即k p E E E =+,在变轨问题中, 从离地球较远轨道向离地球较近轨道运动,万有引力做正功,势能减少,动能增大,总能量减少。反之呢? 五. 地球同步卫星 1. 地球同步卫星的轨道平面:非同步人造地球卫星其轨道平面可与地轴有任意夹角且过地心,而同步卫星一定位于赤道的正上方 2. 地球同步卫星的周期:地球同步卫星的运转周期与地球自转周期相同。 3. 地球同步卫星的轨道半径:据牛顿第二定律 有2002,GMm m r r r ωω==得与地球自转角速度相同,所以地球同步卫星的轨道半径一定,其离地面高度也是一定的 4. 地球同步卫星的线速度:为定值,绕行方向与地球自转方向相同 [误区点拨] 天体运动问题:人造卫星的轨道半径与中心天体半径的区别;人造卫星的发射速度和运行速度;卫星的稳定运行和变轨运动;赤道上的物体与近地卫星的区别;卫星与同步卫星的区别 人造地球卫星的发射速度是指把卫星从地球上发射出去的速度,速度越大,发射得越远,发射的最小速度,混淆连续物和卫星群:连续物是指和天体连在一起的物体,其角速度和天体相同,双星系统中的向心力中的距离与圆周运动中的距离的差别 二.等效场模型 [模型概述] 复合场是高中物理中的热点问题,常见的有重力场与电场、重力场与

高中物理带电粒子在复合场中的运动的基本方法技巧及练习题及练习题

一、带电粒子在复合场中的运动专项训练 1.在xOy平面的第一象限有一匀强电磁,电场的方向平行于y轴向下,在x轴和第四象限的射线OC之间有一匀强电场,磁感应强度为B,方向垂直于纸面向里,有一质量为m,带有电荷量+q的质点由电场左侧平行于x轴射入电场,质点到达x轴上A点,速度方向与x 轴的夹角为φ,A点与原点O的距离为d,接着,质点进入磁场,并垂直与OC飞离磁场,不计重力影响,若OC与x轴的夹角为φ.求: ⑴粒子在磁场中运动速度的大小; ⑵匀强电场的场强大小. 【来源】带电粒子在复合场中的运动计算题 【答案】(1) (2) 【解析】 【分析】 【详解】 试题分析:(1)由几何关系得:R=dsinφ 由洛仑兹力公式和牛顿第二定律得 解得: (2)质点在电场中的运动为类平抛运动.设质点射入电场的速度为v0,在电场中的加速度为a,运动时间为t,则有:

v 0=vcosφ vsinφ=at d=v 0t 设电场强度的大小为E ,由牛顿第二定律得 qE=ma 解得: 2.如图所示,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为 d ,两侧为相同的匀强磁场,方向垂直纸面向里.一质量为m 、带电量q +、重力不计的 带电粒子,以初速度1v 垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动.已知粒子第二次在磁场中运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推.求: (1)粒子第一次经过电场的过程中电场力所做的功1W (2)粒子第n 次经过电场时电场强度的大小n E (3)粒子第n 次经过电场所用的时间n t (4)假设粒子在磁场中运动时,电场区域场强为零.请画出从粒子第一次射入磁场至第三次离开电场的过程中,电场强度随时间变化的关系图线(不要求写出推导过程,不要求标明坐标刻度值). 【来源】河北省衡水中学滁州分校2018届高三上学期全真模拟物理试题 【答案】(1)2 1132mv W = (2)21(21)2n n mv E qd +=(3)1 2(21)n d t n v =+ (4)如图; 【解析】 (1)根据mv r qB =,因为212r r =,所以212v v =,所以22 1211122 W mv mv =-, (2) = , ,所以

关于高级高中物理模型总结归纳

1、追及、相遇模型 火车甲正以速度v 1向前行驶,司机突然发现前方距甲d 处有火车乙正以较小速度v 2同向匀速行驶,于是他立即刹车,使火车做匀减速运动。为了使两车不相撞,加速度a 应满足什么条件? 故不相撞的条件为d v v a 2)(2 21-≥ 2、传送带问题 1.(14分)如图所示,水平传送带水平段长L =6米,两皮带轮直径均为D=0.2米,距地面高度H=5米,与传送带等高的光滑平台上有一个小物体以v 0=5m/s 的初速度滑上传送带,物块与传送带间的动摩擦因数为,g=10m/s 2,求: (1)若传送带静止,物块滑到B 端作平抛 运动 的水平距离S 0。 (2)当皮带轮匀速转动,角速度为ω,物 体平抛运动水平位移s ;以不同的角速度ω值重复 上述过程,得到一组对应的ω,s 值,设皮带轮顺时针转动时ω>0,逆时针转动时ω<0,并画出s —ω关系图象。 解:(1))(12110m g h v t v s === (2)综上s —ω关系为:?? ? ??≥≤≤≤s rad s rad s rad s /707/70101.0/101ωωω ω 2.(10分)如图所示,在工厂的流水线上安装有水平传送带,用水平传送带传送工件,可以大大提高工作效率,水平传送带以的 工 恒定的速率s m v /2=运送质量为kg m 5.0=

件,工件都是以s m v /10=的初速度从A 位置滑上传送带,工件与传送带之间的动摩擦因数2.0=μ,每当前一个工件在传送带上停止相对滑动时,后一个工件立即滑上传送带,取2/10s m g =,求: (1)工件滑上传送带后多长时间停止相对滑动 (2)在正常运行状态下传送带上相邻工件间的距离 (3)在传送带上摩擦力对每个工件做的功 (4)每个工件与传送带之间由于摩擦产生的内能 解:(1)工作停止相对滑动前的加速度2/2s m g a ==μ ① 由at v v t +=0可知:s s a v v t t 5.02 1 20=-=-= ② (2)正常运行状态下传送带上相邻工件间的距离m m vt s 15.02=?==? ③ (3)J J mv mv W 75.0)12(5.02 12121 222 02=-??=-= ④ (4)工件停止相对滑动前相对于传送带滑行的距离 )21(20at t v vt s +-=m )5.022 1 5.01(5.022??+?-?=m m 25.0)75.01(=-=⑤ J mgs fs E 25.0===μ内 ⑥ 3、汽车启动问题 匀加速启动 恒定功率启动 4、行星运动问题 [例题1] 如图6-1所示,在与一质量为M ,半径为R ,密度均匀的球体距离为R 处有一质量为m 的质点,此时M 对m 的万有引力为F 1.当从球M 中挖去一个半径为R/2的小球体时,剩下部分对m 的万有引力为F 2,则F 1与F 2的比是多少?

高中物理 磁场(三)带电粒子在复合场中的运动(二)1

带电粒子在复合场中的运动(二) 1. 是否考虑粒子重力 (1) 对于微观粒子,如电子、质子、离子等,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、尘埃等一般应当考虑其重力。 (2) 在题目中有明确说明是否要考虑重力的,按题目要求处理。 (3) 不能直接判断是否要考虑重力的,在进行受力分析与运动分析时,要结合运动状态确定是否要考虑重力。 2.分析方法 (1) 弄清复合场的组成。如磁场、电场的复合,磁场、重力场的复合,磁场、电场、重力场三者的复合等。 (2) 正确受力分析,除重力、弹力、摩擦力外要特别注意静电力和磁场力的分析。 (3) 确定带电粒子的运动状态,注意运动情况和受力情况的结合。 (4) 分析流程

一、带电粒子在复合场中做直线运动 1.带电粒子在复合场中做匀速直线运动 【方法攻略】 粒子所受合外力为零时,所处状态一定静止或匀速直线运动。 类型一:粒子运动方向与磁场平行时(洛伦兹力为零),电场力与重力平衡,做匀速直线运动。 类型二:粒子运动方向与磁场垂直时,洛伦兹力、电场力与重力平衡,做匀速直线运动。正确画出受力分析图是解题的关键。 【典例3】如图所示,匀强电场方向水平向右,匀强磁场方向垂直于纸面向里,一质量为m、带电荷量为q的粒子以速度v与磁场垂直、与电场成450射入复合场中,恰能做匀速直线运动。求电场强度E的大小、磁感应强度B的大小。

【答案】 q mg E = qv mg B 2= 根据合外力为零可得 ?=45sin qvB mg ① ?=45cos qvB qE ② 由①式得qv mg B 2= ,由①②得q mg E = 【典例4】 设在地面上方的真空中,存在的匀强电场和匀强磁场,已知电场强度和磁感应强度的方向相同,电场强度的大小E =4.0V/m ,磁感应强度的大小B =0.15T ,今有一个带负电的质点以v =20m/s 的速度在此区域内沿垂直于场强方向做匀速直线运动,求此带电质点的电量与质量之比q/m 以及磁场所有可能的方向(角度可以用角度的正切值表示)。 【解析】(1)根据带电粒子做匀速直线运动的条件,可知带电粒子所受的电场力,重力、磁场力一定在同一竖直平面内,合力为零,如图所示,质点的速度方向一定垂直于纸面向外。

2014高中物理复合场问题经典分析教学提纲

2014年高中物理复合场问题分析 复合场问题综合性强,覆盖的考点多(如牛顿定律、动能定理、能量守恒和圆周运动),是理综试题中的热点、难点。复合场一般包括重力场、电场、磁场,该专题所说的复合场指的是磁场与电场、磁场与重力场、电场与重力场,或者是三场合一。所以在解题时首先要弄清题目是一个怎样的复合场。 一、无约束 1、 匀速直线运动 如速度选择器。一般是电场力与洛伦兹力平衡。 分析方法:先受力分析,根据平衡条件列方程求解 1、 设在地面上方的真空室内,存在匀强电场和匀强磁场.已知电场强度和磁感强度的 方向是相同的,电场强度的大小E =4.0V/m ,磁感强度的大小B =0.15T .今有一个带负电的质点以=υ20m/s 的速度在此区域内沿垂直场强方向做匀速直线运动,求此带电质点的电量q 与质量之比q/m 以及磁场的所有可能方向. 1、由题意知重力、电场力和洛仑兹力的合力为零,则有22)()(Eq Bq mg +=υ=q 222E B +υ, 则2 2 2 E B g m q +=υ,代入数据得,=m q / 1.96C/ ㎏,又==E B /tan υθ0.75,可见磁场是沿着与重力方向夹角为75.0arctan =θ,且斜向下方的一切方向 2、(海淀区高三年级第一学期期末练习)15.如图28所示,水平放置的两块带电金属 板a 、b 平行正对。极板长度为l ,板间距也为l ,板间存在着方向竖直向下的匀强电场和垂直于纸面向里磁感强度为B 的匀强磁场。假设电场、磁场只存在于两板间的空间区域。一质量为m 的带电荷量为q 的粒子(不计重力及空气阻力),以水平速度v 0从两极板的左端中间射入场区,恰好做匀速直线运动。求: (1)金属板a 、b 间电压U 的大小; (2)若仅将匀强磁场的磁感应强度变为原来的2倍,粒 子将击中上极板,求粒子运动到达上极板时的动能大小; (3)若撤去电场,粒子能飞出场区,求m 、v 0、q 、B 、l 满足的关系; (4)若满足(3)中条件,粒子在场区运动的最长时间。 2、(1)U=l v 0B ;(2)E K =21m v 0221 -qB l v 0;(3) m qBl v 40≤或m qBl v 450≥; (4) qB m π 3、两块板长为L=1.4m ,间距d=0.3m 水平放置的平行板,板间加有垂直于纸面向里, 图28 b q l

高中物理复合场问题归纳.

高中物理复合场问题分类总结 高中物理复合场问题综合性强,覆盖的考点多(如牛顿定律、动能定理、能量守恒和圆周运动),是理综试题中的热点、难点。复合场一般包括重力场、电场、磁场,该专题所说的复合场指的是磁场与电场、磁场与重力场、电场与重力场,或者是三场合一。所以在解题时首先要弄清题目是一个怎样的复合场。 一、无约束 1、 匀速直线运动 如速度选择器。一般是电场力与洛伦兹力平衡。 分析方法:先受力分析,根据平衡条件列方程求解 1、 设在地面上方的真空室内,存在匀强电场和匀强磁场.已知电场强度和磁感强度的方 向是相同的,电场强度的大小E =4.0V/m ,磁感强度的大小B =0.15T .今有一个带负电的质点以=υ20m/s 的速度在此区域内沿垂直场强方向做匀速直线运动,求此带电质点的电量q 与质量之比q/m 以及磁场的所有可能方向. 解析:由题意知重力、电场力和洛仑兹力的合力为零,则有 22)()(Eq Bq mg +=υ=q 222E B +υ,则2 22E B g m q += υ,代入数据得,=m q / 1.96C/㎏, 又==E B /tan υθ0.75,可见磁场是沿着与重力方向夹角为75.0arctan =θ,且斜向下方的一切方向 2、(海淀区高三年级第一学期期末练习)15.如图28所示,水平放置的两块带电金属板a 、b 平行正对。极板长度为l ,板间距也为l ,板间存在着方向竖直向下的匀强电场和垂直于纸面向里磁感强度为B 的匀强磁场。假设电场、磁场只存在于两板间的空间区域。一质量为m 的带电荷量为q 的粒子(不计重力及空气阻力),以水平速度v 0从两极板的左端中间射入场区,恰好做匀速直线运动。求: (1)金属板a 、b 间电压U 的大小; (2)若仅将匀强磁场的磁感应强度变为原来的2倍,粒 子将击中上极板,求粒子运动到达上极板时的动能大小; (3)若撤去电场,粒子能飞出场区,求m 、v 0、q 、B 、l 满足的关系; (4)若满足(3)中条件,粒子在场区运动的最长时间。 解析:(1)U=l v 0B ;(2)E K =21m v 0221 -qB l v 0;(3)m qBl v 40≤或m qBl v 450≥ ;(4)qB m π 3、两块板长为L=1.4m ,间距d=0.3m 水平放置的平行板,板间加有垂直于纸面向里,B=1.25T 的匀强磁场,如图所示,在两极板间加上如图所示电压,当t=0时,有一质量m=2?10-15 Kg , 电量q=1?10-10 C 带正电荷的粒子,以速度Vo=4×103m/s 从两极正中央沿与板面平行的方向射入,不计重力的影响, (1)画出粒子在板间的运动轨迹 (2)求在两极板间运动的时间 图28 q l

浅谈高中物理中的等效替代法

浅谈高中物理中的等效替代法 福州高级中学林晓琦物理学是研究物质运动的最基本、最普遍的规律及物质的构成、物质间相互作用的一门科学。物理学在长期的发展过程中,形成了一整套思维方法,这些方法不仅对物理学的发展起了重要的作用,而且对其他相关学科的发展以至社会思潮和社会生活也产生了一定的影响。 自然界物质的运动、构成及其相互作用是极其复杂的,但它们之间存在着各种各样的等同性,为了认识复杂的物理事物的规律,我们往往从事物的等同效果出发,将其转化为简单的、易于研究的物理事物,这种方法称为等效替代法。按等同效果形式的不同,可将其分为模型等效替代、过程等效替代、作用等效替代和本质等效替代等。 一、模型等效替代 在物理学研究问题的过程中,我们常常用简单的、易于研究的模型来代替复杂的物理原形,这种方法称为模型等效替代法。它既包括对各种理想模型的具体应用,也包括利用各种实物模型来模仿、再现原形的某些特征、状态和本质。这种方法并不是对客观存在的物理对象进行研究,而是借助于对模型的研究,达到认识原形的目的。 用模型来替代原形的方法是通过抽象、概括等思维过程形成的理想模型,如质点、重心、理想气体、点电荷等,都是在

一定条件下、一定的精度范围内对实际客体的一种等效替代。下面以重心为例说明这个问题。 学生对重力似乎很熟悉,以为很简单。但仔细一想,不那么简单,物体有无数个微小的组成部分,实际上每个部分都要受到微小的重力,这些微小重力的作用点都各不相同。若是这样来研究重力,复杂得无从下手。物理学的研究方法,就是设想把无数个微小的重力用一个等效的重力来替代,重心就是这个等效重力的作用点。当然,随着条件和要求精度的变化,这些模型也要随之变化,从而用更能反映实际客体属性的模型来替代。 模型等效替代的另一种形式是用实物模型来代替实际客体,通过对实物模型的研究来认识其原形的本质属性及其规律性。在物理教学中,经常制成发电机模型、内燃机模型、电动机模型等来模拟实际发电机、内燃机、电动机的工作过程,从而使学生更好地理解其工作原理。 二、过程等效替代 所谓过程等效替代,就是用一种或几种简单的过程来代替一种复杂过程的方法。例如,“平均速度”概念的引入,就是把变速运动等效为匀速运动,从而把复杂的变速运动转化为简单的匀速运动来处理;“平均加速度”概念的引入,是把变加速运动等效为匀加速运动来处理;对于碰撞问题的研究,由于两物体在碰撞过程中,其相互作用力是不断变化的,为了便于对碰撞前后两物体运动规律的研究,可将这一过程等效为作用力恒定不变的过程,并引入“平均力”的概念。又如,对曲线运动的研究,我们将其分解为几个等效的直线运动,逐个研究这些

相关主题
文本预览
相关文档 最新文档