当前位置:文档之家› 测量和标定系统中的一些标准协议

测量和标定系统中的一些标准协议

测量和标定系统中的一些标准协议

1 ASAM-MCD介绍

ASAM-MCD标准是自动测量系统标准化协会定义的一个标准体系,用于标准化汽车ECU和测量(Measurement)、标定(Calibration)、故障诊断(Diagnostic)等工具的接口。最初由Audi、BMW、Mercedes-Benz、Volkswagen等欧洲汽车公司成立的标准化组织ASAP(Standardization of Application Calibration Systems Task Force)发展而来,该组织在1996 年6月首次发布了实际应用2.0版,虽历史不是很久远,但由于该系统在电控系统开发方面的强大优势,因此已逐渐为世界各大汽车公司所采用。这里要介绍的几个标准都来自这个体系。

2 测量和标定系统架构

通常,一个测量与标定系统主要由以下几个标准支撑:

ASAM-MCD-1/ASAP1

它提供与ECU通信的直接接口。它又可以分为2层:ASAM-MCD-1a 和ASAM-MCD-1b。

ASAM-MCD-1a

这个是一个系列,包括CCP,XCP,KW2000等等。它是与ECU直接的接口,在CAN线(或者其他物理层)的硬件层上通过CCP(或者其他标定协议,如XCP,KW2000等)协议与ECU进行通信。

ASAM-MCD-1b

PC机上的标定程序和标定设备硬件之间的软件驱动接口。

ASAM-MCD-2MC/ASAP2

这个是一个文件格式标准,即A2L文件格式。A2L文件描述ECU中的标定变量,测量信号和用来参数化标定接口的一些附加信息(如变量地址,转换规则等等)。可以按照ASAM-MCD-2MC标准来导入解码A2L文件。A2L 文件仅包含地址信息和数据结构,而具体的标定数据值存储在hex文件(或者s19)中。

ASAM-MCD-3MC /ASAP3

这个是标定系统远程控制通信协议,它工作在以太网或者RS-232串口通信之上,主要用于远程台架自动化测试与标定。

为了实现自动化测试与标定,台架计算机上的自动化测试系统作为客户端,与ECU直接通讯的计算机上的标定系统作为服务器端,客户端计算机通过接口发送命令消息。服务器接收命令并执行。当客户端请求一个测量信号时,服务器段将进行数据获取,然后转发给客户端。

MDF文件

在测量与标定系统中,还有一个标准asam_common_mdf,它是MDF (measure data format)测量文件的格式,定义了测量信号数据在文件中存储的数据结构,转换规则和一些附加信息。统一的测量文件格式能够方便不同的数据分析软件系统之间进行数据交换。

3 ASAM-MCD-1/ASAP1

ECU的直接接口

测量和标定系统与ECU的连接可以使并行的也可以是串行的。我们常用的ETK为并行连接,即ETK与ECU之间通过数据总线,地址总线并行连接,可想而知,其通信传输速度非常快。ECU也可通过通过标准串行接口来与测量标定系统通信,由于处理器无法直接获取存储器的数据、地址信息,所以这个通信需要按照一定的协议才能进行。比如,诊断接口K-Line 使用KWP2000或者McMess作为通讯协议;CAN接口使用CCP作为通讯协议;通过以太网或者USB通讯可使用XCP(扩展标定协议)。

如图中所示,ASAM-MCD-1a仅仅是ECU串口通信协议之一,它包含CCP,XCP等等(McMess,KWP2000主要用于诊断,有相应的ISO标准)。

这里,CCP为基于CAN的标定协议,XCP为扩展标定协议,它相对于CCP而言,其巨大的优势就是它独立于物理传输层。

XCP可在不同的传输层实现相同的协议层,独立于所使用的网络类型而工作。

4 ASAM-MCD-2MC/ASAP2

A2L文件包含描述ECU内部数据和通讯的信息。例如可调对象(标定参数)、测量对象以及ECU通讯接口信息。这些描述信息可以分为2类,一类是用来描述控制逻辑相关的,包括可标定参数和测量对象。另一部分用于描述通讯信息。

对于通讯信息,由于ECU通讯方式可以有多种类型,这些通讯方式各不一样,并且与硬件强相关,因此需要的信息也不一样。这样就可以把通讯信息分成2部分,一部分为描述通讯信息的格式,或者叫做接口描述格式;一部分为接口描述数据。其中接口描述格式用一种叫做AML的语言来定义。

A2L文件例子

以一个A2L文件为例,我们的c60741al00.a2l,从中抽取一部分:

/begin CHARACTERISTIC /*这个是一个标定参数的开头*/

VSSCD_ImpPerDist_C /*名称,此参数为车速距离因子*/ "distance factor, VSS impulses per distance" /*详细描述*/

VALUE /*参数类型,值,曲线,脉谱等*/ 0x1E7C5C /*在ECU中的存储地址*/

Kw_Wu32 /*所属模块*/

17.000000000000000 /*精度*/

VSS_DistFac /*转换规则*/

3.0000000000000000 /*合理下限,超过会警告*/

20.000000000000000 /*合理上限,超过会警告*/

FORMAT "%20.17" /*显示格式*/

EXTENDED_LIMITS 2.3469328885774439 10080000000.000000

/*浮点上下限,超过会溢出*/ /begin IF_DATA ASAP1B_CCP /*CCP通讯需要的信息*/ DP_BLOB

0x00 /*|这些信息的格式在AML |* /

0x1E7C5C /*|块中的CCP结够中已经|*/

0x4 /*|定义好|*/ /end IF_DATA

/begin IF_DATA ETK /*ETK通讯需要的信息*/ DP_BLOB

0x1E7C5C

0x4

/end IF_DATA

/begin IF_DATA ASAP1B_KWP2000 /*KWP2000通讯需要的信息*/ DP_BLOB

0x1E7C5C

0x4

/end IF_DATA

/begin IF_DATA ASAP1B_MCMESS /* McMess通讯需要的信息*/ DP_BLOB

0x1E7C5C

0x4

/end IF_DATA

/end CHARACTERISTIC /*这个是此标定参数描述的结束*/ 5 ASAM-MCD-3MC/ASAP3

这个标准主要是用来进行远程台架自动化测试与标定。在自动化测试系统AuSy(Automation System)和测量标定系统MC(Measurement Calibration)之间的通信可以是以太网,也可以是串口通信。

AuSy和MC之间消息的传递

AuSy和MC之间的命令消息模式是建立在ASAM-3MCD协议上的,此协议规定消息的一般格式为:

1 AuSy发给MC的消息格式:

2 MC发给AuSy的消息格式:

Length字段是本消息的长度,便于设计软件时网络数据的读取。

Code是命令代码,不同的代码对应着不同的命令操作要求。

比如:下表节选自ASAM-MCD3支持的命令列表

Status字段是MC系统的状态,这个字段是MC发向AuSy的消息特有的字段。MC系统在执行AuSy发过来的命令的时候,可能会出错(就像我们手工操作软件也可能出错一样),这样它就需要通过Status字段来把当前的状态发送给AuSy。

Data字段是数据,就是相应的命令操作所需要附加的信息。比如,AuSy 发送命令给MC让它从新选择hex文件,那么这个文件名就是这个操作所需的信息,它就会包含在data字段发送给MC。

Checksum是校验和,用于校验,防止网络通讯出错。有的时候(尽管概率很小)网络传输会发生错误,这时候,通过校验和就能够直到是否错误了,如果出错了就能及时报告。

消息传递例子

首先,AuSy向MC发送一个命令,比如INIT(代码为2)。

然后,MC接收到命令代码之后,发送一个收到确认给AuSy。

随后MC进行一些初始化操作,完成以后再发送一个回应给AuSy。

在INCA系统中,也提供了ASAM-MCD3的接口。图中是自制的测试程序和INCA ASAM-MCD3进行通讯的例子。

6 ASAM-COMMON-MDF

统一格式的测量数据文件MDF文件方便不同的软件系统进行数据交换。比如在INCA系统中,可以用MDA(Measure Data Analyzer)来可视化显示MDF文件,当需要对数据进行计算的时候,可能有些时候MDA并不能胜任(尽管MDA自身的数据分析能力很强),这时候可以将它导入到支持MDF 文件格式的数据分析软件中去(如Origin,Matlab等等),或者手工编程去完成计算任务。

MDF文件格式

MDF文件是按照树形结构分块进行存储的。我们可以使用Vector公司的一个免费工具MDF Validator来学习MDF格式(不过当前它仅支持到3.3版的标准,而最新标准已是4.0)。

用MDF Validator载入一个MDF文件(即我们采集的.dat数据),如图:

存储在文件首部的是一个ID块,它包含了文件的标识、版本信息、字节顺序、浮点格式等等信息。ID块的每个域的大小都在标准中有定义。紧接着ID块的是Header块,它里面存储了文件的注释,即文件创建者填写的时间、地点、项目、公司等等信息。接下来就是Data Group块,它包含一组Channel Group块,而每个Channel Group包含一组测量信号值。整个文件结构如图:

标准溶液‘配制’及‘标定’原始记录

标准溶液‘配制’及‘标定’原始记录 配制人:标定:复标:审核:

标准物质配制(标定)记录 编号: CHEC/QBG-075 名称:、配制方法: 使用天平型号编号室温℃、湿度%RH 配制:取定溶mL 标定:取份: ⑴⑵⑶⑷ 用溶液滴定,滴定消耗量(mL)V1= 、V2= 、V3= 、V4= 、V0= 。 标准溶液浓度计算公式:C= 计算结果():C1= C2= C3= C4= C = 相对偏差(%):S1= S2= S3= S4= 备注: 。 配制人:复核人: 配制日期:年月日有效期年月日

标准溶液配制记录 编号: CHEC/QBG-147 标准溶液名称:规格: 配制方法: 仪器名称: 溯源标准: 温度:℃、湿度:%RH 标准溶液拟配浓度: 配制或稀释过程: 配制日期:年月日有效期:年月日配制人:复核人:

0.1mol/L盐酸标准滴定溶液的标定 编号:JL/LJ-001-01 一、标定方法:GB/T5009.1-2003 二、使用仪器:AEL-200电子天平(仪器编号:JYB001)马弗炉(仪器编号: JYC009) 三、操作 1、量取9ml盐酸,加适量水并稀释至1000ml。混匀,待标定。 2、标定:精密称取约0.15g在270~300℃干燥至恒量的基准无水碳酸 钠,加50ml水使之溶解,加10滴溴甲酚绿-甲基红混合指示液,用本溶 液滴定至溶液由绿色转变为紫红色,煮沸2min,冷却至室温,继续滴定 至溶液由绿色变为暗紫色。 四、记录和结果 1、计算公式:c(HCl)=m/[(V1-V2)×0.0530] 0.0530……与1.00ml盐酸标准滴定溶液[c(HCl)=1mol/L]相当的基 准无水碳酸钠的质量,g 配制人:复核人: 配制日期:复核日期:

基于结构光的微小物体三维测量系统的设计及应用

基于结构光的微小物体三维测量系统的设计及应用针对微小物体的三维轮廓测量是现代三维形貌测量的一个重要分支领域。自从上世纪六十年代在国外被首次提出后,国内外研究学者经过几十年的不断研究和发展,与其相关的测量技术与测量设备也获得了高速发展,进入21世纪以后,其被广泛应用于缺陷检测、精密制造、虚拟现实(VR)、机器视觉、医疗工程、影音游戏、三维打印以及现代教育等众多领域。但与国外现有的测量技术与设备相比较,国内目前还处在相对落后的局面。因此,研制出测量精度高、测量速度快、微型化以及更加智能化的微小物体三维轮廓测量系统迫在眉睫。 根据上述情况,本文针对微小物体的三维轮廓测量从两个方向展开研究。一方面,基于正弦光栅条纹投影和光学三角法的三维测量方法进行研究。另一方面,着眼于以体视显微镜和双远心镜头为主体的硬件测量系统的设计与搭建。具体研究内容如下:(1)针对微小物体的三维轮廓测量现有方法以及研究现状系统地调研。 对常规方法存在的问题进行归纳总结,明确了微小物体测量面临的困难与挑战。本文将从硬件系统搭建以及算法实现两个方面进行研究改进。(2)设计与搭建以体视显微镜和双远心镜头为主体的硬件测量系统。因体视显微镜可实现物体的立体成像,可观察区域范围大;双远心镜头因分辨率高,低畸变,景深大,在成像时能最大限度还原物体的形状信息。 因此,测量系统采用体视显微镜和双远心镜头为主体结构设计并搭建了测量系统,结合基于光学三角原理的正弦光栅条纹投影三维测量方法,在经过系统标定后,能顺利获取被测物体的三维轮廓信息,测量系统的视场范围可达 1.8cm*1.6 cm。(3)基于正弦光栅条纹投影和光学三角法的三维测量方法进行研究。本文选用无损伤、精度高、速度快、易实现的正弦光栅条纹投影结合光学三角法对微小物体表面的三维轮廓进行测量,详细阐述了其测量原理,提出了一种基于质量图引导的相位解包裹改进算法——可靠路径跟踪算法,在满足测量精度要求下,提高了系统整体测量速度;针对系统标定,基于一般成像模型引入了摄像机标定与系统标定方法,深入阐述了摄像机标定和系统标定的方法理论,完成了测量系统的整体标定。基于C++与MATLAB实现了相关算法。 进行了大量相关实验,验证了该测量方法的稳定性和有效性,实验结果表明

面结构光三维测量系统的精度研究

华中科技大学 硕士学位论文 面结构光三维测量系统的精度研究 姓名:杜宪 申请学位级别:硕士 专业:材料加工工程 指导教师:王从军 20090522

华中科技大学硕士学位论文 摘要 结构光测量系统在工业检测、人体测量、文物保护和反求工程等众多领域具有广泛的应用前景。国外的面结构光三维测量技术已相对成熟,但设备价格昂贵。国内也有一些单位开展了相关研究,但普遍存在着精度不高、稳定性差等缺点。为此,本文在简要介绍结构光三维测量技术原理的基础上,系统分析了光栅条纹数和数字光栅投影装置的伽马非线性对测量精度的影响,以期进一步提高课题组前期开发的三维测量系统的精度。 面结构光三维测量系统,首先使用相移法和多频外差原理进行稳定高精度的相位计算;然后根据预先标定的系统参数,从得到的相位灰度图重构出被测物体的三维点云数据。 由三维重构过程可知,光栅周期数的增加可以降低立体匹配的误差,本文通过理论推导和实验研究,分析了不同光栅周期数对系统测量精度的影响,并为系统选择了一个最优的光栅周期数。当周期数为110~120时,系统的测量精度最高,滤波后可达0.037mm。 此外,三维重构的精度还与相位计算的精度有关,根据现有研究,投影仪的伽马非线性是相位误差的主要来源。本文分析了不同伽马值和不同条纹周期数的测量精度,发现条纹周期数抑制了伽马非线性,提高了相位计算的精度。 最后,通过分析不同距离的平面精度、拟合标准球直径及距离等测量实验,表明系统的测量精度稳定可靠,绝对测量精度可达0.05mm。 关键词:结构光;光栅周期数;误差;非线性

华中科技大学硕士学位论文 Abstract Structured Light Measurement System (SLMS) is widely used in many fields such as industrial inspection, human body measurement, Protection of Cultural Relics and reverse engineering etc. In abroad, SLMS is well developped, but they are always expensive. In China, lots of research work has been made on it, but they are poor in accuracy and stability. So, this paper, which is based on a brief introduction of the structured light measurement technology, analyzes the impact of the period number of fringe pattern and gamma non-linear of Digital Projector, attempt to further improve the precision of pre-development measurement system. In our SLMS, phase-shifting method and multi-frequency heterodyne principle were imployed to obtain phrase gray map, then 3D data could be reconstructed base on the pre-calibrated parameters. According to the process of 3D reconstruction, we found that the increase of the period number of fringe pattern can reduce the error. So this paper analyzed the relationship between period number of fringe pattern and accuracy through theoretical research and experiments. Then we can conclude that the optimal period number is 110~120 and the SLMS gets the highest precision which is up to 0.037mm after filtering. In addition, the calculated phase value can also affect the accuracy of 3D reconstruction. According to research, gamma non-linear of projector is the main error source of the phase error. This paper analyzes 3D date by using different gamma values and different the period numbers of fringe pattern, then found that the period number of fringe pattern can inhibit the effect of the gamma non-linear of projector and improved the accuracy of the phase calculation. Finally, a series of measurement experiment, such as analyses of the accuracy in different distance and fitting diameter and distance of the standard ball, shows that the accuracy of system is stable and repeatability and the absolute measurement accuracy is 0.05mm. Key words: Structured light; Period number of fringe pattern; Error; Non-linear

制冷期末试题

制冷期末测试题 试卷总分100分时间100分钟 班级姓名学号分数 一、选择题(每题2分,共40分) 1、电冰箱的干燥过滤器安装在() A.压缩机与蒸发器之间 B.压缩机与冷凝器之间 C.冷凝器与毛细管之间 D.蒸发器与毛细管之间 2、用万用表测量某压缩机的电动机接线柱 1、2、3 之间电阻,结果是 R12=8 欧姆, R23=22 欧姆,R13=30 欧姆,请问 2 号接线柱是() A.启动绕组接线柱 B.运行绕组接线柱 C.公共接线柱 D.无法判断 3、电冰箱型号 BCD-158W 中的 W 含义是() A.间冷式无霜电冰箱 B.直冷式电冰箱 C.家用冷藏箱 D.家用冷冻箱 4、在物质吸热或放热过程中,吸收或放出的热量为显热,下列叙述正确的是() A、物质温度不变,形态变化 B、物质温度变化,形态不变 C、物质温度不变,形态不变 D、物质温度变化,形态变化 5、检测压缩机绕组电阻时,若测得的电阻值无穷大,说明发生的故障是()。 A、短路 B、断路 C、匝间短路 D、不确定 6、兆欧表是专门用来测量工作在高压状态下材料()的仪器。 A、绝缘阻值 B、绝缘强度 C、耐压程度 D、导电能力 7、风冷式冷凝器,按空气在冷凝器盘管外侧的流动形式,可分为空气()和()两种形式。 A、自然对流、强迫对流 B、套管式、壳管式 C、冷却空气式、冷却液体式 D、满液式、干式 8、容器内的气体或液体对于容器内壁的实际压力,叫做() A、表压力 B、绝对压力 C、真空压力 D、大气压 12,吸气压力为9、某空调采用R22制冷剂,测得压缩机吸气温度C0 0.55Mpa(对应的饱和温度为C05),试问制冷剂的状态为()。

【CN109916304A】镜面类镜面物体三维测量系统标定方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910258091.1 (22)申请日 2019.04.01 (71)申请人 易思维(杭州)科技有限公司 地址 310051 浙江省杭州市滨江区滨安路 1197号3幢495室 (72)发明人 孙博 郭磊 邢威 魏志博  (51)Int.Cl. G01B 11/00(2006.01) (54)发明名称镜面/类镜面物体三维测量系统标定方法(57)摘要本发明公开了一种镜面/类镜面物体三维测量系统标定方法,首先分别确定标定图案的圆心在屏幕坐标系Oxyz LCD 下的三维坐标、标定板上图案在相机坐标系下的三维坐标;再利用摄影测量系统获取屏幕显示图案的圆心及标定板上图案的圆心在摄影测量系统坐标系Oxyz phg 下的三维坐标;求出屏幕坐标系到摄影测量坐标系的转换矩阵phg [RT]LCD 、摄影测量坐标系到标定板坐标系的转换矩阵cal [RT]phg 、标定板坐标系到相机坐标系的转换矩阵cam [RT]cal ;最后计算屏幕坐标系到相机坐标系的转换矩阵:本方法克服了传统标定方法中存在的未考虑到平面镜的平整度、采集到的标定图像变形严重的问题,实现了高精度屏幕- 相机位姿标定。权利要求书2页 说明书4页CN 109916304 A 2019.06.21 C N 109916304 A

权 利 要 求 书1/2页CN 109916304 A 1.一种镜面/类镜面物体三维测量系统标定方法,所述镜面/类镜面物体三维测量系统包括屏幕、处理器、显示装置和相机;所述相机用于获取镜面/类镜面物体表面图像;所述屏幕受控于处理器,用于向所述镜面/类镜面物体表面投射预设图像;所述处理器用于计算结果;所述显示装置与处理器连接,用于显示所述计算结果;所述屏幕与相机的相对位置固定,定义屏幕坐标系Oxyz LCD、相机坐标系Oxyz cam,其特征在于包括如下步骤: 1)所述屏幕显示有多个圆形或环形的标定图案,确定所述标定图案的圆心在屏幕坐标系Oxyz LCD下的三维坐标; 2)利用相机拍摄标定板,所述标定板上图案为圆环或圆; 3)将摄影测量系统的基准尺、编码点分别放置在屏幕、标定板周围,利用摄影测量系统获取屏幕显示图案的圆心及标定板上图案的圆心在摄影测量系统坐标系Oxyz phg下的三维坐标; 4)根据屏幕显示的标定图案的圆心在摄影测量系统下的三维坐标及其在屏幕坐标系下的坐标,求出屏幕坐标系到摄影测量坐标系的转换矩阵phg[RT]LCD; 根据标定板上图案的圆心分别在摄影测量坐标系和标定板坐标系的三维坐标,求出摄影测量坐标系到标定板坐标系的转换矩阵cal[RT]phg; 根据标定板上图案的圆心在标定板坐标系和相机坐标系下的三维坐标,或利用图像与标定板的单应性关系,求出标定板坐标系到相机坐标系的转换矩阵cam[RT]cal; 5)计算屏幕坐标系到相机坐标系的转换矩阵: cam[RT]LCD=cam[RT]cal×cal[RT]phg×phg[RT]LCD。 2.如权利要求1所述镜面/类镜面物体三维测量系统标定方法,其特征在于:所述标定板上图案、屏幕显示的标定图案、摄影测量系统内的编码点至少存在于摄影测量系统获取的两张图片中。 3.如权利要求1所述镜面/类镜面物体三维测量系统标定方法,其特征在于:所述标定板上图案与屏幕上显示的图案一样。 4.如权利要求1所述镜面/类镜面物体三维测量系统标定方法,其特征在于:步骤2)中标定板置于相机镜头正前方。 5.一种镜面/类镜面物体三维测量系统标定方法,述镜面/类镜面物体三维测量系统包括屏幕、处理器、显示装置和相机;所述相机用于获取镜面/类镜面物体表面图像;所述屏幕受控于处理器,用于向所述镜面/类镜面物体表面投射预设图像;所述处理器用于计算结果;所述显示装置与处理器连接,用于显示所述计算结果;所述屏幕与相机的相对位置固定,定义屏幕坐标系Oxyz LCD、相机坐标系Oxyz cam,其特征在于包括如下步骤: 1)所述屏幕显示有多个圆形或环形的标定图案,确定所述标定图案的圆心在屏幕坐标系Oxyz LCD下的三维坐标; 2)在双目相机有效视场内布置至少3个圆形或环形反光标志点,所述双目相机拍摄该反光标志点,获得其在相机坐标系下的三维坐标; 3)将摄影测量系统的基准尺、编码点分别放置在屏幕、上述反光标志点周围,利用摄影测量系统获取屏幕显示图案的圆心及上述反光标志点圆心在摄影测量系统坐标系Oxyz phg 下的三维坐标; 4)根据屏幕显示的标定图案的圆心在摄影测量系统下的三维坐标及其在屏幕坐标系 2

激光干涉位移测量技术

激光干涉位移测量技术 张欣(2015110034) 摘要:为了实现纳米级以上分辨力位移的测量研究,利用激光干涉位移测量技术可以达到纳米级分辨力,其具有可溯源、分辨力高、测量速度快等特点,是目前位移测量领域的主流技术。本文对目前主要的激光干涉位移测量技术进行了分类介绍,并对各种干涉仪的特点进行了分析,最后介绍了激光干涉位移测量技术的国内外发展现状和趋势。 关键词:纳米级;激光干涉;位移测量; 1 引言 干涉测量技术( interferometry ) 是基于电磁波干涉理论,通过检测相干电磁波的图样,频率、振幅、相位等属性,将其应用于各种相关的测量技术的统称。用于实现干涉测量技术的仪器被称为干涉仪。在当今多个科研领域,干涉测量技术都发挥着重要的作用,包括天文学,光纤光学,以及各种工程测量学。其中由于上个世纪60年代激光的研制成功,使得激光干涉测量技术在各种精密工程领域得到了广泛的应用。它的基本功能是将机械位移信息变成干涉条纹的电信号,再对干涉条纹进行调理和细分,进而获得所需要的测量信息。整个激光干涉测量系统中主要的组成部分有光电转换、信号调理、信号细分处理。 1.1激光干涉仪分类 激光干涉仪是以干涉测量为原理,利用激光作为长度基准,对数控设备(加工中心、三坐标测量机等)的位置精度(定位精度、重复定位精度等)、几何精度(抚养扭摆角度、直线度、垂直度)进行精密测量的精密测量技术。由于激光具有波长稳定、波长短、具有干涉性,使得激光在现代光电测量系统中占据了重要的地位,尤其是在激光干涉测量系统中。下面介绍激光干涉仪测量原理以及激光干涉仪。 光的相长干涉和相消干涉: 图1.光的相长以及相消干涉 如果两束光相位相同,光波会叠加增强,表现为亮条纹,如果两束光相位相反,光波会相互抵消,表现为暗条纹。图1.1就是光的相长以及相消干涉,而激光干涉仪主要依据的原理就是激光的干涉产生明亮

实验一 蒸汽压缩式制冷系统性能测定

实验一蒸气压缩式制冷系统的性能测定 一、实验目的 1、加深了解制冷循环系统的组成; 2、学习测定制冷压缩机性能的方法; 3、通过实际测定和制冷压缩机的运行,分析影响压缩机性能的因素。 二、实验装置 实验采用普通商业用制冷压缩机性能实验台。实验台采用封闭式制冷压缩机,蒸发器和冷凝器均为水换热器。压缩机的轴功率通过输入电功率来测算。实验台的主实验为液体载冷剂法,辅助实验为水冷冷凝器平衡法。各测点均用铜电阻温度计。实验台装置如图1所示: 图1 制冷压缩机实验台外观图片 图2 制冷系统循环原理图

三、实验步骤 1、实验前必须预习实验指导书及压缩制冷原理的有关内容。实验时,必须弄清教师对实验装置及其仪表使用方法的进一步介绍,方可进行实验。 2、实验操作步骤如下: 1)在工况稳定的情况下,开始实验测试,测定改工况下的吸气压力、排气压力、吸气温度、排气温度、过冷温度、蒸发器和冷凝器的进水出水温度以及它们的流量、压缩机的输入电功率等参数。 2)为提高测量的准确性,每隔3分钟读取一次数据,取三次数据的平均值作为测试结果(三次记录数据均在稳定工况下测试)。 3)调节截流装置的开度,重复上述操作过程,测得一组新的实验数据。 4)数据记录完毕后,慢慢减小各种调节装置的开度。 5)关闭压缩机开关,然后关闭水泵电源开关。切断总电源,清洗水箱,排掉水箱中的水。 规定工况:P 吸=0.15MPa ,P 排=0.88MPa t 吸=18.1℃,t 排=74.1℃,t 过冷=34.7℃ 未经现场指导教师同意,除上述所需开关旋钮,阀门允许操作外,实验仪上其余装置及开关均不得擅自乱动,否则后果自负。 四、实验数据处理 1. 压缩机制冷量 忽略压缩机进排气阀的压力损失,忽略由膨胀阀出口至压缩机入口,由压缩机出口至膨胀阀入口各段的压力损失及膨胀阀与周围环境的热交换,考虑到压缩机的实际压缩是一多变过程,试验中蒸发器中的绝对压力为0P (kN/m 2),冷凝器中的绝对压力为k P (kN/m 2),热力膨胀阀前制冷剂液体温度为3t (℃)、压缩机吸排气口制冷剂气体温度为1t (℃)、2t (℃),蒸发器出口制冷剂温度为1t (℃)、冷凝器出口液体温度为3t (℃),就可画出相应的制冷循环h P -lg 图,如图3所示。 图3 压缩机制冷循环h P -lg 图

各种规范标准溶液标定

实验一 0.2mol/L NaOH 标准溶液标定 一. 实验目的 1. 学习碱标准溶液浓度的标定方法。 2. 进一步练习滴定操作和减量法称量。 3. 初步掌握酸碱指示剂的选择方法。 二. 实验原理 酸碱标准溶液是采用间接法配制的,其准确浓度必须依靠基准物进行标定。标定碱溶液用的基准物很多,下面为最为常用的邻苯二甲酸氢钾方法: 邻苯二甲酸氢钾,是一种二元弱酸的共轭碱,它的酸性较弱,在标定 NaOH 溶液到达等当点时反应产物是邻苯二甲酸钾钠,在水溶液中显微碱性,化学计量点pH=9.1,pH 突跃范围在8.1~10.1, 因此可用酚酞为指示剂,反应如下: 结果计算: M=204.2g/mol 三. 仪器与试剂 仪器:电光分析天平(0.1mg ),滴定管 (碱式,50mL)。 试剂:NaOH 标准溶液 (0.2mol / L),邻苯二甲酸氢钾(基准试剂),酚酞指示剂(0.2%)。 1 .1000)( -?=L mol V M m C NaOH NaOH 邻苯二甲酸氢钾COOH COOK +NaOH COOK COONa +H 2O

四. 实验步骤 1. 按仪器洗涤的标准方法,将所要使用的锥形瓶、碱式滴定管、移液管、量筒洗干净,并检查碱式滴定管是否漏水,移液管是否完整。 2. 用减量法准确称取邻苯二甲酸氢钾1.0g(准确至0.0001g),置于250 mL 洗净的锥形瓶中。 3. 加入50 mL 蒸馏水溶解,必要时可用小火温热溶解。冷却后,加酚酞指示剂1~2 滴。 4. 用NaOH溶液洗涤碱式滴定管三次,每次使用约5-8mL,洗涤时,将NaOH溶液从滴嘴放出,洗涤结束后,加入NaOH溶液到0刻度线上方,观察是否有气泡,若有,按正确排气泡方式,赶出气泡,调节液面到0刻度。 5. 将滴定管放在裴氏夹的右边,一边摇荡,一边滴定用NaOH 溶液滴定,滴定速度不易太快,最快只能成串滴出。直至溶液呈浅红色,且摇动后在半分钟内不褪色,即为终点。 根据邻苯二甲酸氢钾的质量m 和所用NaOH 标准溶液的体积V NaOH,计算NaOH标准溶液的浓度c。 放置空气中时间长了,溶液呈现的淡红色会慢慢褪去,这是由于溶液吸收了CO2,溶液的碱性减弱,使酚酞红色褪去。 五. 实验结果 列表记录实验数据及计算结果 记录与报告示例如下: 实验数据记录表

激光干涉仪使用技巧讲解

厨 f静堂鸯溅斌技术)2007亭第弘誊第{O麓 激光干涉仪使用技巧 Precise G口洫to Vsine a Laser Interferometer 魏纯 (广州市计最检测技术研究院,广东广州510030) 瓣萎:本文讨论了激光予涉仪在使用巾的准直等技礴,用户在实际使用中增加葺芒件以及维护巾邋蓟的同舔。燕键词:激光平涉仪;准直 l引言高性能激光干涉仪具有快速、高准确测量的优点,是校准数字机床、坐标测量机及其它定位装置精度及线性指标最常用的标准仪器,弦者所在单位使用的是英国RENISHAW公闭生产的MLl0激光干涉仪,具有性能稳定,使罱方便等特点。 通过较长时闯使用,作者认为测量人员除了要考虑环境、温度、原理等影响测量的常规因素外,掌握一些激光干涉仪的使用技巧会使测量互作事半功倍。 2原理介绍

MLl0激光干涉仪是根据光学千涉基本原理设计磊成酌。从MLl0激光器射出的激光束有单一频率,其标称波长隽0.633pLIn,且其长期波长稳定健(真空状态)要高于0.1ppm。当此光束抵达偏振分光镜时,会被分为两道光束一一道反射光糯一道透射光。这两道光射向其反光镜,然后透过分光镜反射圈去,在激光头内的探测器形成一道干涉光束。若光程差没有任俺变讫,探测器会在樵长性秘楣潢性于涉的两极找到稳定的信号。若光程差确实有变化,探测器会在 每一次光程改变时,在相长性和相消性干涉的弼极找 到变动的信号。这些变化(援格)会被计算并用来测量两个光程闻的差异变化。测量的光程就是栅格数乘以光束大约一半的波长。 值褥注意的是,激光束的波长取决于所通过敖空气折射率。由于空气折射率会随着温度、压力和相对湿度而变化,用来计算测蹩值的波长值可能需要加以李}偿,以配合这魍环境参数豹改变。实际上就测量准确度而言,此类补偿在进行线性位移(定位精度)测量,特别是量程较大时,非常重要。3激光干涉仪使用技巧 3.1 Z轴激光光路快速准直方法 用激光干涉仪进行线性测量时,无论是数字机 床、还是坐标测燮枫,z轴测量酵激光光路的礁童榻对X、Y轴准直来说,要困难的多。尤其是在z轴距离较长的情况下,要保证激光光束经反射镜反射后回到激 先探测器的强度满足测量对对光强的要求,准妻激光光路往往需要很长时间。 根据作者长期使用的经验,按照“离处动尾部,低处动整体”的调整方法,将会大大缩短漆直时闻。(“尾部”是指MLl0激光器电源接口边上的倾斜度调蹩旋钮和三兔架云台上的旋转微调控制旋锂,“整体”是指三

冷柜制冷系统设计分析

1、制冷系统原理介绍 一般制冷机的制冷原理压缩机的作用是把压力较低的蒸汽压缩成压力较高的蒸汽,使蒸汽的体积减小,压力升高。压缩机吸入从蒸发器出来的较低压力的工质蒸汽,使之压力升高后送入冷凝器,在冷凝器中冷凝成压力较高的液体,经节流阀节流后,成为压力较低的液体后,送入蒸发器,在蒸发器中吸热蒸发而成为压力较低的蒸汽,再送入压缩机的入口,从而完成制冷循环。压缩制冷系统循环见下图1-1。 单级蒸汽压缩制冷系统,是由制冷压缩机、冷凝器、蒸发器和节流阀四个基本部件组成。它们之间用管道依次连接,形成一个密闭的系统,制冷剂在系统中不断地循环流动,发生状态变化,与外界进行热量交换。 液体制冷剂在蒸发器中吸收被冷却的物体热量之后,汽化成低温低压的蒸汽、被压缩机吸入、压缩成高压高温的蒸汽后排入冷凝器、在冷凝器中向冷却介质(水或空气)放热,冷凝为高压液体、经节流阀节流为低压低温的制冷剂、再次进入

蒸发器吸热汽化,达到循环制冷的目的。这样,制冷剂在系统中经过蒸发、压缩、冷凝、节流四个基本过程完成一个制冷循环。 在制冷系统中,蒸发器、冷凝器、压缩机和节流阀是制冷系统中必不可少的四大件,这当中蒸发器是输送冷量的设备。制冷剂在其中吸收被冷却物体的热量实现制冷。压缩机是心脏,起着吸入、压缩、输送制冷剂蒸汽的作用。冷凝器是放出热量的设备,将蒸发器中吸收的热量连同压缩机功所转化的热量一起传递给冷却介质带走。节流阀对制冷剂起节流降压作用、同时控制和调节流入蒸发器中制冷剂液体的数量,并将系统分为高压侧和低压侧两大部分。实际制冷系统中,除上述四大件之外,常常有一些辅助设备,如电磁阀、分配器、干燥器、集热器、易熔塞、压力控制器等部件组成,它们是为了提高运行的经济性,可靠性和安全性而设置的。 2、冷柜制冷系统设计 2.1、冷柜制冷系统设计的内容和流程 制冷系统设计的主要内容是落实一款产品的整个制冷系统,需明确压缩机、蒸发器、冷凝器等一系列制冷件,但也要考虑其它零件,如感温导管、连接管等。简单来说,就是制冷人员要将整个制冷系统考虑一遍,并在明细表中确定下来。需要考虑的大原则是零件尽量通用,产品设计零件数量少,零件规格通用化,加工设备(包括外协厂制作加工)尽量少,生产效率高。 针对冷柜系统焊点要尽可能少,简单产品不超过10个焊点,最多不超过15个。压缩机物料号需技术副总审批,通用化高的制冷件物料审批需部长级审批,

密度测定器及标准砂校验方法

密度测定器及标准砂校验方法 本方法适用于使用中和修理后的密度测定器的校验及所选用标准砂的密度标定。 1.1技术要求 1.1.1灌砂漏斗的上口水平面与坡面成60°角,上口直径15cm,高8.5cm。 1.1.2漏斗与容砂瓶两者用螺纹衔接。漏斗下口有孔径1cm的柱形阀门,阀门设有止块,以控制全开或全闭位置,容砂瓶高27cm。 1.1..3底盘直径30cm,中央开孔,孔径17.3cm。 1.1.4标准砂:保持风干状态,粒径0.25 ~ 0.5mm。 1.2校验条件 1.1.1校验温度:分别为5、10、20、25、30、35℃。 1.1.2电子天平:称量10kg,感量1g。 1.1.3温度计:刻度准确至1℃。 1.1.4砂子筛:孔径0.25、0.50mm。 1.1.5游标卡尺、直尺、盛砂桶等。 1.3校验项目及校验方法 1.3.1校验项目 (1)密度测定器校验。 (2)标准砂的密度标定及灌满漏斗所需砂的质量测定。 1.3.2密度测定器校验方法

(1)外观检查:目测法检查各组成部件守好无损,漏斗与容砂瓶螺纹接头紧固良好阀门止块转动灵活,测量各部件尺寸。 (2)容砂瓶容积校验 a.容砂瓶与漏斗经螺纹连接固定,并作以标记,以后每拆卸再衔接时都要固定在这一位置。 b.称连接成整体的测定器的质量m1。 c.将测定器漏斗口向上放置在工作平台上,打开阀门,向测定器内注纯水,当水平高出阀门时迅速关阀门,将漏斗中的水倒出,称测定器和纯水总质量m2,同时测定水温。 d.接下式计算容砂瓶的容积: V′= m3·Vw 式中V′——容砂瓶容积,cm3; m3——容砂瓶中纯水的质量,g; m3 = m2– m1 V w——不同温度下每克纯水的体积,cm3/g。(查下表) 不同温度上每克水的体积

光学三维测量系统标准

VDI/VDE准则2634 第1部分 德国工程师协会(VEREIN DEUTSCHER INGENIEURE,简称VDI ) 德国电气工程师协会(VERBAND DER ELEKTROTECHNIK ELEKTRONIK INFORMATIONSTECHNIK,简称VDE) 光学三维测量系统,逐点探测成像系统 准则内容 初步说明() 1适用范围 2符号参数 3验收检测和复检原则 4验收检测 4.1品质参数“长度测量误差”的定义 4.2检测样本 4.3测量程序 4.4结果评估 4.5等级评定 5检查 5.1测量流程 5.2评估 5.3检测间隔(时效)和报告 参考书目

初步说明(概述) 光学三维测量系统是一种通用的测量和测试设备。在所有情况下,使用者一定要确保使用中的光学三维测量系统达到所需的性能规格,特别是最大允许测量误差不能超出要求。就长远而言,这只能通过统一的验收标准和对设备的定期复检来确保。这个职责归测量设备的制造者和使用者共同所有。 使用价位合理的检测样本且快速简单的方法被各种样式、自由度、型号的光学三维测量系统的验收和复检所需要。这个目的可以通过长度标准和跟典型工件同样方式测量的检测样本实现。 本VDI/VDE准则2634的第一部分介绍了评估逐点探测式光学三维测量成像系统的准确性的实用的验收和复检方法。品质参数“长度测量误差”的定义与ISO 10360-2中的定义类似。独立的探测误差测试是不需要的,因为这个影响已经在长度测量误差的测定中考虑进去了。 VDI/VDE准则2634的第二部分介绍了用于表面探测的系统。 本准则由VDI/VDE协会测量与自动控制(GMA)的“光学三维测量”技术委员会和德国摄影测量与遥感协会的“近景摄影测量”工作组起草。在联合委员会中,知名用户的代表与来自大学的专门研究光学三维测量系统领域的成员合作。 1适用范围 本准则适用于可移动的、灵活的光学三维测量系统,该系统有一

压缩机检测方法和参数

压缩机检测方法和参数—压缩机性能测试 一、前言 制冷压缩机是制冷装置中最主要的设备,是制冷系统的动力装置和主机,相当于制冷机的心脏。它使制冷剂在系统的管路中循环,把来自蒸发器的低温低压制冷剂蒸汽压缩成高温高压的制冷剂蒸汽再排入冷凝器。 压缩机的作用可总结为: 1)从蒸发器中吸出蒸汽,以保证蒸发汽内一定的蒸发压力。 2)提高压力(压缩)以创造在较高温度下冷凝的条件。 3) 输送制冷剂,使制冷剂完成制冷循环。 压缩机性能的好坏直接影响到整机的制冷效果。而且,压缩机与制冷系统的匹配是否合理,不但涉及到整个装置的成本,而且对使用寿命和能耗均有影响,所以对压缩机的性能及有关参数的测试是非常有必要的。 对 压缩机性能的测试主要是测定压缩机运行时相关温度、压力、液位、转速、功率、振动、噪声、制冷剂流量、制冷量,其中制冷剂流量、制冷量及规定工况下的制冷 量是测试的重点。压缩机测试完后,需要对测试数据参照国家标准进行判断分析,以找出压缩机结构设计中问题,或者判断该压缩机是否运行良好。 本文将先对压缩机的测试原理、方法和相关规定做一个简单介绍,然后对测试过程进行描述,并对测试后数据进行分析、评价。以此对压缩机检测与分析的全过程进行描述和分析,不到之处,请大家批评指正。 二、压缩机测试的相关规定 为保证测试的统一性和结果的可靠性,国家规定了压缩机测试的相关标准,而该标准也即国际标准ISO 917-1974 中的《制冷压缩机的试验标准》。 2.1 一般规定 2.1.1 排除试验系统内的不凝性气体.确认没有制冷剂的泄漏. 2.1.2 系统内应有足够的符合有关标准规定的制冷剂.压缩机内保持正常运转用润滑油量. 2.1.3 循环的制冷剂液体内含油量应不超过2%(以质量计). 2.1.4 压缩机吸、排气口的压力一温度在同一部位测量,该测点应在吸、排气截止阀外(不带阀的封闭 压缩机为距机壳体)0.3m的直管段处。 2.1.5 排气管道上应设置有效的油分离器. 2.1.6试验系统装置的周围不应有异常的空气流动。 2.1.7 试验装置环境温度为30±5℃。 2.1.8 提供测量含油量而抽取制冷剂??—油混合物样品的设备。 2.2 试验规定 2.2.1 压缩机性能试验包括主要试验和校核试验,二者应同时进行测量。 2.2.2 校核试验和主要试验的试验结果之间的偏差应在±4% 以内,并以主要试验的测量结果为计算依 据。 2.2.3 压 缩机试验时,系统应建立热平衡状态,试验时间一般不少于1.5h。测量数据的记录应在试验 工况稳定半小时后,每隔20min测量一次,直至连续四次的测量 数据符合规定为止。第一次测量到第四次测量记录的时间称为试验周期,在该周期内允许对压力、温度、流量和液面作微小的调节。 2.2.4 主要试验方法 a. 第二制冷剂量热器法 b. 满液式制冷剂量热器法 c. 干式制冷剂量热器法 d. 制冷剂气体流量计法 2.2.5 校核试验方法 a. 水冷冷凝器量热器法 b. 制冷剂液体流量计法 c. 压缩机排气管道量热器法 2.3 测量仪表和精度的规定 2.3.1 一般规定 2.3.1.1 试验用仪表的类型,可采用一种或数种进行测量。 2.3.1.2 试验用仪表应在有效使用期内,并应有近期经国家计量部门或有关部门校正的合格证明。 2.3.2 温度测量仪表和精度 2.3.2.1 仪表:玻璃水银温度计、热电偶、电阻温度计、半导体温度计和温差计。 2.3.2.2 精度: a. 量热器的加热或冷却介质和制冷剂的进、出口温度:准确度±0.1℃; b. 冷凝器用于校核试验时的冷却水温度:准确度±0.1℃; c. 压缩机吸气温度、流量节流装置前温度:准确度±0.1℃; d. 其它温度:准确度±0.2℃; 2.3.2.3 温度测量的规定:

相位辅助光学三维测量系统的标定方法

相位辅助光学三维测量系统的标定方法 相位辅助光学三维测量系统的标定方法 Calibration Technique for Phase-Aided Optical 3D Measurement Systems 一级学科仪器科学与技术 学科专业仪器科学与技术 作者姓名殷永凯 指导教师彭翔教授 天津大学精密仪器与光电子工程学院 二零一二年五月 独创性声明 本人声明所呈交的学位论文是本人在导师指导下进行的研究工作和取得的研究成果,除了文中特别加以标注和致谢之处外,论文中不包含其他人已经发表 或撰写过的研究成果,也不包含为获得天津大学或其他教育机构的学位或证 书而使用过的材料。与我一同工作的同志对本研究所做的任何贡献均已在论文中 作了明确的说明并表示了谢意。学位论文作者签名: 签字日期: 年月日

学位论文版权使用授权书本学位论文作者完全了解天津大学有关保留、使用学位论文的规定。 特授权天津大学可以将学位论文的全部或部分内容编入有关数据库进行检 索,并采用影印、缩印或扫描等复制手段保存、汇编以供查阅和借阅。同意学校 向国家有关部门或机构送交论文的复印件和磁盘。 (保密的学位论文在解密后适用本授权说明) 学位论文作者签名: 导师签名: 签字日期:年月日签字日期:年月日 中文摘要 相位辅助光学三维测量技术具有测量精度高、数据密度大、测量速度快、系统结构简单、普适性和灵活性好等优点,是基于结构照明的光学三维测量中极具 代表性的一类方法,在工业制造、测绘导航、文化遗产、医学诊疗、影视娱乐等 各个领域有着日趋广泛的应用。 本论文主要针对相位辅助光学三维测量系统的标定方法及其相关技术展开研究,旨在提高测量系统的标定精度,寻找可行性更高的现场标定方法。在概括 介绍相位辅助光学三维测量的基本原理、国内外研究现状、发展趋势以及关键技

盐酸标准溶液的配制和标定

盐酸标准溶液的标定 一.仪器与试剂 仪器:全自动电光分析天平 1台 (1)称量瓶 1只 (2)试剂瓶 1000ml 1个 (3)锥形瓶 250ml 3个 (4)酸式滴定管 50ml 1支 (5)量筒 50mL 1只 试剂: (1)0.1mol/L 盐酸待标定溶液 (2)无水碳酸钠(固基准物) (3)溴甲酚绿-甲基红混合指示剂 二、步骤 0.1mol/L 盐酸标准溶液的标定 1.标定步骤 用称量瓶按递减称量法称取在270~300℃灼烧至恒重的基准无水碳酸钠0.15~0.22g(称准至0.0002g),放入250ml 锥形瓶中,以50ml 蒸馏水溶解,加溴甲酚绿-甲基红混合指示剂10滴(或以25ml 蒸馏水溶解,加甲基橙指示剂1~2滴),用0.1mol/L 盐酸溶液滴定至溶液由绿色变为暗红色(或由黄色变为橙色),加热煮沸2分钟,冷却后继续滴定志溶液呈暗红色(或橙色)为 终点。平行测定3次,同时做空白实验。以上平行测定3次的 算术平均值为测定结果。 2.计算 ()99 .52100001?-?=V V m C HCl 式中: m —基准无水碳酸钠的质量,g; V 1—盐酸溶液的用量,ml; V 0—空白试验中盐酸溶液的用量,ml; 52.99—1/2 Na 2CO 3摩尔质量,g/mol C HCL —盐酸标准溶液的浓度,mol/L.

氢氧化钠溶液的标定 1、试剂: (1)0.1000mol/L 氢氧化钠待标定溶液 (2)酚酞指示剂 2、仪器: (1)全自动电光分析天平 1台 (2)称量瓶 1只 (3)碱式滴定管 (50mL ) 1支 (4)锥形瓶 (250mL ) 3支 (5)烧杯 (250mL ) 2只 (6)洗瓶 1只 (7)量筒 (50mL ) 1只 3、测定步骤: 准确称取在110℃~120℃准确称取在110~120℃烘至恒重的基准邻苯二甲酸氢钾0.5~0.6g(称准至0.0002g),放入250ml 三角瓶中,加入250ml 的蒸馏水溶解,加酚酞指示剂2滴,用0.1mol/LNaOH 溶液滴定至由无色变为红色30秒不褪色为终点,平行测定3次,同时作空白试验。 4、计算:C (NaOH)=22 .204)(100001?-?V V m 式中:m —邻苯二甲酸氢钾的质量,g 1V —NaOH 溶液的用量,ml 0V —空白试验NaOH 溶液的用量,ml 204.22 —邻苯二甲酸氢钾的摩尔质量,g/mol NaOH C —NaOH 标准溶液的浓度,mol/L

激光干涉仪分类及应用

激光干涉仪分类及应用 激光干涉仪以激光波长为已知长度,利用迈克耳逊干涉系统测量位移的通用长度测量。激光干涉仪有单频的和双频的两种。 激光干涉仪的分类: 单频激光干涉仪 从激光器发出的光束,经扩束准直后由分光镜分为两路,并分别从固定反射镜和可动反射镜反射回来会合在分光镜上而产生干涉条纹。当可动反射镜移动时,干涉条纹的光强变化由接受器中的光电转换元件和电子线路等转换为电脉冲信号,经整形、放大后输入可逆计数器计算出总脉冲数,再由电子计算机按计算式[356-11]式中λ为激光波长(N为电脉冲总数),算出可动反射镜的位移量L。使用单频激光干涉仪时,要求周围大气处于稳定状态,各种空气湍流都会引起直流电平变化而影响测量结果。 双频激光干涉仪 在氦氖激光器上,加上一个约0.03特斯拉的轴向磁场。由于塞曼分裂效应和频率牵引效应,激光器产生1和2两个不同频率的左旋和右旋圆偏振光。经1/4波片后成为两个互相垂直的线偏振光,再经分光镜分为两路。一路经偏振片1后成为含有频率为f1-f2的参考光束。另一路经偏振分光镜后又分为两路:一路成为仅含有f1的光束,另一路成为仅含有f2的光束。当可动反射镜移动时,含有f2的光束经可动反射镜反射后成为含有f2±Δf的光束,Δf是可动反射镜移动时因多普勒效应产生的附加频率,正负号表示移动方向(多普勒效应是奥地利人C.J.多普勒提出的,即波的频率在波源或接受器运动时会产生变化)。这路光束和由固定反射镜反射回来仅含有f1的光的光束经偏振片2后会合成为f1-(f2±Δf)的测量光束。测量光束和上述参考光束经各自的光电转换元件、放大器、整形器后进入减法器相减,输出成为仅含有±Δf的电脉冲信号。经可逆计数器计数后,由电子计算机进行当量换算(乘1/2激光波长)后即可得出可动反射镜的位移量。双频激光干涉仪是应用频率变化来测量位移的,这种位移信息载于f1和f2的频差上,对由光强变化引起的直流电平变化不敏感,所以抗干扰能力强。它常用于检定测长机、三坐标测量机、光刻机和加工中心等的坐标精度,也可用作测长机、高精度三坐标测量机等的测量系统。利用相应附件,还可进行高精度直

结构光三维视觉测量

结构光三维视觉测量 1、应用简介结构光视觉方法的研究最早出现于20 世纪70 年代。在诸多的视觉方法中,结构光三维视觉以其大量程、大视场、较高精度、光条图像信息易于提取、实时性强及主动受控等特点,近年来在工业三维测量领域得到了广泛的应用。 2、系统设计原理、方框图、原理图结构光三维视觉是基于光学的三角法测量原理。如图所示,光学投射器(可以是激光器,也可以是投影仪)将一定模式的结构光投射于物体的表面,在表面形成由被测物体表面形状所调制的光条三维图像。该三维图像由处于另一位置的摄像机摄取,从而获得光条二维畸变图像。光条的畸变程度取决于取决于光学投射器与摄像机之间的相对位置和物体表面形廓(高度)。直观上,沿光条显示出的位移(或偏移)与物体的高度成比例,扭结表示了平面的变化,不连续显示了表面的物理间隙。当光学投射器与摄像机之间的相对位置一定时,由畸变的二维光条图像坐标便可重现物体表面的三维形廓。结构光三维视觉测量系统由光学投射器、摄像机、和计算机系统三部分构成。根据光学投射器所投射的光束模式的不同,结构光模式可分为点结构光模式、线结构光模式、多线结构光模式和网格结构光模式。线结构光模式复杂度低、信息量大,应用最为广泛。下图为线结构光打在标定板和被测物体的光条图像。 3、选型原则、精度分析结构光视觉传感器的测量精度受诸多因素的影响,如摄像机本身的光学物理参数、光学投射器特征参数、传感器本身的结构参数及外界干扰源等等。在摄像机、光学投射测量环境一定的情况下,测量系统的结构参数对测量精度影响很大。实验和相关理论推导表明,测量点的定位误差和系统结构相关性如下:1)摄像机光轴和光 平面垂直时,深度方向的测量误差最小。2)摄像机与光学投射器距离越远, 测量误差越小。3)摄像机镜头放大倍率越小,测量误差越小;这也表面被测

相关主题
文本预览
相关文档 最新文档