当前位置:文档之家› 二级路沥青路面结构计算书

二级路沥青路面结构计算书

二级路沥青路面结构计算书
二级路沥青路面结构计算书

二级路沥青路面结构计

算书

-CAL-FENGHAI.-(YICAI)-Company One1

织金县青山至城关公路改扩建

新建路面设计

1. 项目概况与交通荷载参数

该项目位于贵州省,属于二级公路,起点桩号为0,终点桩号为16000,设计使用年限为年,根据交通量OD调查分析,断面大型客车和货车交通量为1849辆/日, 交通量年增长率为%, 方向系数取%, 车道系数取%。根据交通历史数据,按表确定该设计公路为TTC4类,根据表得到车辆类型分布系数如表1所示。

表1. 车辆类型分布系数

根据路网相邻公路的车辆满载情况及历史数据的调查分析,得到各类车型非满载与满载比例,如表2所示。

表2. 非满载车与满载车所占比例(%)

根据表,该设计路面对应的设计指标为沥青混合料层永久变形与无机结合料层疲劳开裂。根据附表,可得到在不同设计指标下,各车型对应的非满载车和满载车当量设计轴载换算系数,如表3所示。

表3. 非满载车与满载车当量设计轴载换算系数

根据公式()计算得到对应于沥青混合料层永久变形的当量设计轴载累计作用次数为8,109,551, 对应于无机结合料层疲劳开裂的当量设计轴载累计作用次数为562,339,245。本公路设计使用年限内设计车道累计大型客车和货车交通量为4,989,710,交通等级属于中等交通。

2. 初拟路面结构方案

初拟路面结构如表4所示。

表4. 初拟路面结构

路基标准状态下回弹模量取50MPa,回弹模量湿度调整系数Ks取,干湿与冻融循环作用折减系数Kη取,则经过湿度调整和干湿与冻融循环作用折减的路基顶面回弹模量为50MPa。

3. 路面结构验算

沥青混合料层永久变形验算

根据表,基准等效温度Tξ为℃,由式()计算得到沥青混合料层永久变形等效温度为℃。可靠度系数为。

根据条规定的分层方法,将沥青混合料层分为6个分层,各分层厚度(hi)如表5所示。利用弹性层状体系理论,分别计算设计荷载作用下各分层顶部的竖向压应力(Pi)。根据式()和式(),计算得到d1=,d2=。把d1和d2的计算结果带入式(),可得到各分层的永久变形修正系数(kRi),并进而利用式()计算各分层永久变形量(Rai)。各计算结果汇总于表5中。

各层永久变形累加得到沥青混合料层总永久变形量Ra=(mm),根据表,沥青层容许永久变形为(mm),拟定的路面结构满足要求。

表5. 沥青层永久变形计算结果

无机结合料层疲劳开裂验算

根据弹性层状体系理论,计算得到无机结合料层层底拉应力为。根据气象资料,工程所在地区冻结指数F为℃日,按照表,季节性冻土地区调整系数ka 取。根据式(),现场综合修正系数为

根据工程所在地区,查表得到基准路面结构温度调整系数为,根据初拟路面结构和路面结构层材料参数,按式()计算得到温度调整系数kT2为。由表,对于无机结合料稳定粒料,疲劳开裂模型参数a=,b=。弯拉强度为。

根据以上参数,按式()计算得到无机结合料层底疲劳寿命为678,769,556。

贯入强度验算

公路所在地区月平均气温大于0℃的月份数为11个月,由此得到对应于贯入强度验算的设计车道累计设计轴载作用次数Ne5为7,433,755。所在地区月平均气温大于0℃的各月份气温平均值为℃。根据公路等级,参照表,得到沥青混合料层容许永久变形量为。路面结构系数根据式()计算为,沥青混合料层的综合贯入强度由式()确定为,根据式(),得到沥青混合料层的贯入强度要求值为,所以,拟定的路面结构和材料满足贯入强度要求。

4. 路基顶面和路表验收弯沉值

根据附录节,确定路基顶面和路表验收弯沉值时,采用落锤式弯沉仪,荷载盘半径为150mm,荷载为50kN。

路基标准状态下回弹模量取50MPa,回弹模量湿度调整系数Ks取,则平衡湿度状态下的回弹模量为50MPa,采用公式()计算得到路基顶面验收弯沉值为()。

采用拟定的路面结构以及各层结构模量值,路基顶面回弹模量采用平衡湿度状态下的回弹模型乘以模量调整系数kl(kl=,为25MPa,根据弹性层状体系理论计算得到路表验收弯沉值la为()。

5. 结果汇总

各项验算结果汇总如下表所示:

表6. 分析结果汇总

由上表可知,所选路面结构和材料能满足各项验算内容的要求。

沥青路面结构计算书

新建路面设计 1. 项目概况与交通荷载参数 该项目位于西南地区,属于二级公路,设计时速为40Km/h,12米双车道公路,设计使用年限为12.0年,根据交通量OD调查分析,断面大型客车和货车交通量为1849辆/日, 交通量年增长率为8.2%, 方向系数取55.0%, 车道系数取 70.0%。根据交通历史数据,按表A.2.6-1确定该设计公路为TTC4类,根据表 A.2.6-2得到车辆类型分布系数如表1所示。 表1. 车辆类型分布系数 根据路网相邻公路的车辆满载情况及历史数据的调查分析,得到各类车型非满载与满载比例,如表2所示。 表2. 非满载车与满载车所占比例(%) 根据表6.2.1,该设计路面对应的设计指标为沥青混合料层永久变形与无机结合料层疲劳开裂。根据附表A.3.1-3,可得到在不同设计指标下,各车型对应的非满载车和满载车当量设计轴载换算系数,如表3所示。 表3. 非满载车与满载车当量设计轴载换算系数

根据公式(A.4.2)计算得到对应于沥青混合料层永久变形的当量设计轴载累计作用次数为8,109,551, 对应于无机结合料层疲劳开裂的当量设计轴载累计作用次数为562,339,245。本公路设计使用年限内设计车道累计大型客车和货车交通量为4,989,710,交通等级属于中等交通。 2. 初拟路面结构方案 初拟路面结构如表4所示。 表4. 初拟路面结构 路基标准状态下回弹模量取50MPa,回弹模量湿度调整系数Ks取1.00,干湿与冻融循环作用折减系数Kη取1.00,则经过湿度调整和干湿与冻融循环作用折减的路基顶面回弹模量为50MPa。 3. 路面结构验算 3.1 沥青混合料层永久变形验算 根据表G.1.2,基准等效温度Tξ为20.1℃,由式(G.2.1)计算得到沥青混合料层永久变形等效温度为21.5℃。可靠度系数为1.04。 根据B.3.1条规定的分层方法,将沥青混合料层分为6个分层,各分层厚度(hi)如表5所示。利用弹性层状体系理论,分别计算设计荷载作用下各分层顶部的竖向压应力(Pi)。根据式(B.3.2-3)和式(B.3.2-4),计算得到d1=-8.23,d2=0.77。把d1和d2的计算结果带入式(B.3.2-2),可得到各分层的永久变形修正系数(kRi),并进而利用式(B.3.2-1)计算各分层永久变形量(Rai)。各计算结果汇总于表5中。 各层永久变形累加得到沥青混合料层总永久变形量Ra=19.2(mm),根据表3.0.6-1,沥青层容许永久变形为20.0(mm),拟定的路面结构满足要求。

2017沥青路面计算书

三长线 新建路面设计 1. 项目概况与交通荷载参数 该项目位于江西省,属于一级公路,起点桩号为K0+000,终点桩号为K44+086,设计使用年限为15.0年,根据交通量OD调查分析,断面大型客车和货车交通量为3855辆/日, 交通量年增长率为5.0%, 方向系数取55.0%, 车道系数取60.0%。根据交通历史数据,按表A.2.6-1确定该设计公路为TTC3类,根据表A.2.6-2得到车辆类型分布系数如表1所示。 表1. 车辆类型分布系数 根据路网相邻公路的车辆满载情况及历史数据的调查分析,得到各类车型非满载与满载比例,如表2所示。 表2. 非满载车与满载车所占比例(%) 根据表6.2.1,该设计路面对应的设计指标为沥青混合料层永久变形与无机结合料层疲劳开裂。根据附表A.3.1-3,可得到在不同设计指标下,各车型对应的非满载车和满载车当量设计轴载换算系数,如表3所示。 表3. 非满载车与满载车当量设计轴载换算系数

根据公式(A.4.2)计算得到对应于沥青混合料层永久变形的当量设计轴载累计作用次数为22,351,024, 对应于无机结合料层疲劳开裂的当量设计轴载累计作用次数为1,670,542,389。本公路设计使用年限内设计车道累计大型客车和货车交通量为10,019,677,交通等级属于重交通。 2. 初拟路面结构方案 初拟路面结构如表4所示。 表4. 初拟路面结构 路基标准状态下回弹模量取90MPa,回弹模量湿度调整系数Ks取0.80,干湿与冻融循环作用折减系数Kη取0.85,则经过湿度调整和干湿与冻融循环作用折减的路基顶面回弹模量为61MPa。 3. 路面结构验算 3.1 沥青混合料层永久变形验算 根据表G.1.2,基准等效温度Tξ为23.8℃,由式(G.2.1)计算得到沥青混合料层永久变形等效温度为25.4℃。可靠度系数为1.28。 根据B.3.1条规定的分层方法,将沥青混合料层分为6个分层,各分层厚度(hi)如表5所示。利用弹性层状体系理论,分别计算设计荷载作用下各分层顶部的竖向压应力(Pi)。根据式(B.3.2-3)和式(B.3.2-4),计算得到d1=-7.67,d2=0.76。把d1和d2的计算结果带入式(B.3.2-2),可得到各分层的永久变形修正系数(kRi),并进而利用式(B.3.2-1)计算各分层永久变形量

路基路面工程课程设计计算书

路基路面工程课程设计计算书 (第一组) 班级: 姓名: 学号:

一、沥青路面设计 1.轴载换算 (1)以弯沉值及沥青层的层底弯拉应力为设计指标时 表一 车型 )(KN P i 1C 2C i n (次) 35.421)(P P n C C i i 东风EQ140 后轴 69.20 1 1 300 60.48 黄河JN150 前轴 49.00 1 6.4 200 57.49 后轴 101.60 1 1 200 214.30 黄河JN162 前轴 59.50 1 6.4 50 33.44 后轴 115.00 1 1 50 91.83 交通141 前轴 25.55 1 6.4 250 4.23 后轴 55.10 1 1 250 18.70 长征CZ361 前轴 47.60 1 6.4 70 17.74 后轴 90.70 2.2 1 70 100.72 延安SX161 前轴 54.64 1 6.4 60 27.70 后轴 91.20 2.2 1 60 88.42 北京BJ130 后轴 27.20 1 1 50 0.17 跃进NJ130 后轴 38.30 1 1 60 0.92 注:轴载小于25KN 的轴载作用不计 ∑===k i i i P P n C C N 1 35 .42114.716)( (2)以半刚性材料结构层的层底拉应力为设计指标时 表二 车型 )(KN P i '1C '2C i n (次) 8' 2'1)( P P n C C i i 东风EQ140 后轴 69.20 1 1 300 15.78 黄河JN150 后轴 101.60 1 1 200 227.08 黄河JN162 前轴 59.5 1 18.5 50 14.53 后轴 115.00 1 1 50 91.83 交通141 后轴 55.10 1 1 250 2.12 长征CZ361 后轴 90.70 3 1 70 96.18 延安SX161 前轴 54.64 1 18.5 60 8.82 后轴 91.20 3 1 60 86.15 注:轴载小于50KN 的轴载作用不计 ∑===k i i i P P n C C N 1 35 .4/ 2'149.542)( 已知设计年限内交通量平均增长率%8=r

现行公路沥青路面设计实例计算书汇总

现行公路沥青路面设计实例计算书汇总 内容提要配合《公路沥青路面设计规范》(JTG D50-2017)和已发行的《公路水泥混凝土路面设计规范》(JTG D40-2011)的有关内容,东南大学编制了《公路路面设计程序系统》(HPDS2017),本文仅对其中公路沥青混凝土路面设计的实例计算进行详细汇总,供设计人员参考。 关键词公路沥青混凝土路面设计实例计算汇总 0 前言 《公路沥青路面设计规范》(JTG D50-2017)的设计方法与前规范有很大不同,为使设计人员较快掌握与之配套的《公路路面设计程序系统》(HPDS2017),特编本实例计算详细汇总。 表1 现行公路沥青路面设计实例计算书汇总表 1 新建二级公路计算书 (1)新建二级公路计算书: 一、交通量计算 公路等级二级公路 目标可靠指标 初始年大型客车和货车双向年平均日交通量(辆/日) 900 路面设计使用年限(年) 12 通车至首次针对车辙维修的期限(年) 12 交通量年平均增长率%

方向系数 .55 车道系数 1 整体式货车比例 45 % 半挂式货车比例 25 % 车辆类型 2类 3类 4类 5类 6类 7类 8类 9类 10类 11类 满载车比例 .1 .41 .12 0 .38 .59 .32 .47 .41 .42 初始年设计车道大型客车和货车年平均日交通量(辆/日) 495 设计使用年限内设计车道累计大型客车和货车交通量(辆) 2960466 路面设计交通荷载等级为轻交通荷载等级 当验算沥青混合料层疲劳开裂时: 设计使用年限内设计车道上的当量设计轴载累计作用次数为 7500888 当验算无机结合料稳定层疲劳开裂时: 设计使用年限内设计车道上的当量设计轴载累计作用次数为 +08 当验算沥青混合料层永久变形量时: 通车至首次针对车辙维修的期限内设计车道上的当量设计轴载累计作用次数为 7500888 当验算路基顶面竖向压应变时: 设计使用年限内设计车道上的当量设计轴载累计作用次数为 +07 二、路面结构设计与验算 路面结构的层数 : 5 设计轴载 : 100 kN 路面设计层层位 : 4 设计层起始厚度 : 200 (mm) 层位结构层材料名称厚度模量泊松比无机结合料稳定类材沥青混合料车辙试验 (mm) (MPa) 料弯拉强度( MPa) 永久变形量( mm )

沥青路面设计计算书

沥青路面结构设计与计算书 1 工程简介 本路段车站北路城市道路,采用二级标准.K0+000~K2+014.971,全线设计时速为40km/h。路基宽度为21.5m,机动车道宽度为2×7.5m,人行道宽度为2×2.5m,盲道宽度为2×0.75m。路面设计为沥青混凝土路面,设计年限为15年。路面设计以双轮组单轴载100KN为标准轴载,以BZZ-100表示;根据沿线工程地质特征及结合当地筑路材料确定路面结构为:机动车道路面的面层采用4cm厚细粒式沥青混凝土AC-13和6cm厚中粒式沥青混凝土AC-20,基层采用20cm厚水稳砂砾(5:95),底基层采用20cm天然砂砾。 2 土基回弹模量的确定 本设计路段自然区划位于Ⅵ区,当地土质为砂质土,由《公路沥青路面设计规(JTG D50-2006》表F.0.3查得,土基回弹模量在干燥状态取59Mpa. 3 设计资料 (1)交通量年增长率:6% 设计年限:15年 (2)初始年交通量如下表:

4 设计任务 4.1 沥青路面结构组合设计 4.2 沥青路面结构层厚度计算,并进行结构层层底拉应力验算 4.3 绘制沥青路面结构图 5 沥青路面结构组合设计 5.1 路面设计以双轮组单轴载100KN为标准轴载,以BZZ-100表示。标准轴载计算参数如表10-1所示。 5.1.1 以设计弯沉值为指标及验算沥青层层底拉应力中的累计当量轴次 5.1.1.1 轴载换算

轴载换算采用如下的计算公式: 35 .41 21∑=? ?? ??=k i i i P P n C C N ,()11 1.211c m =+?-=,计算结果如下表所示。 轴载换算结果表(弯沉) 注:轴载小于25KN 的轴载作用不计

(完整版)沥青路面工程课程设计计算书

沥青路面设计错误!未定义书签。 1 设计资料2 1.1 公路等级情况及周边情况2 1.2 公路2007年交通量调查情况如下表:2 1.3 沿线地理特征3 2 轴载分析3 2.1以设计弯沉值为设计指标及验算沥青层层底拉应力中的累计当量轴 次3 2.1.1 轴载换算3 2.1.2 计算累计当量轴次4 2.2 验算半刚性基层层底拉应力中的累计当量轴次4 2.2.1 轴载换算4 2.2.2 计算累计当量轴次5 3 确定路面等级和面层类型5 3.1 路面等级5 3.2 面层类型5 3.3 结构组合与材料的选取5 4 确定各结构层材料设计参数。6 4.1 各层材料的抗压模量与劈裂强度6 4.2 土基回弹模量的确定6 4.2.1 确定路基的平均稠度6 4.2.2 确定土基回弹模量7 5 设计指标的确定7 5.1 设计弯沉值7 5.2 各层材料的容许底层拉应力7 6 设计资料总结8 7 确定石灰土层的厚度8 8 计算路面结构体系的轮隙弯沉值(理论弯沉值)10 9 验算各层层底拉应力10 9.1 上层底面弯拉应力的验算10 9.1.1 第一层地面拉应力验算11 9.1.2 第二层地面拉应力验算11 9.1.3 第三层换算12 9.1.4 第四层换算12 9.2 计算中层底面弯拉应力。13 水泥路面设计13 1 设计资料13 1.1 公路等级情况及周边情况13 1.2 公路1998年交通量调查情况如下表:14 1.3 沿线地理特征14 2 交通分析14 2.1 标准轴载与轴载换算14 2.2 交通分级,设计使用年限,和累计作用次数15 2.2.1 设计年限内一个车道累计作用次数15

2.2.2 交通等级的确定及初估板厚16 3 路面结构层组合设计16 4 确定结构层材料设计参数16 4.1 基层顶面的当量回弹模量与计算回弹模量16 4.2 复合式混凝土面层的截面总刚度与相对刚度半径17 5 荷载应力计算17 5.1荷载疲劳应力计算17 5.2 温度疲劳应力计算18 6 路面接缝处理19 6.1 纵向接缝19 6.1.1 根据规范的要求纵向接缝的布设应路面宽度和施工铺筑宽 度而定。19 6.2 横向接缝20 6.3 端部处理21 6.4 接缝填封材料21 7 纵向配筋设计22 7.1 计算参数22 7.2 横向裂缝间距计算22 7.3 裂缝宽度的计算22 7.4 钢筋应力的计算23 7.5 钢筋间距或根数的计算23 8 补强钢筋的设计23 8.1 边缘钢筋设计23 8.2 角隅钢筋设计23 沥青路面设计 1设计资料 1.1 公路等级情况及周边情况 沪杭高速人民广场至枫泾段公路,共有4车道,路面宽度为2×7.50m,设计年限为20年。交通量年平均增长率为6%。沿途有大量的碎石集料,砂砾并有石灰供应。 1.2 公路2007年交通量调查情况如下表:

沥青路面设计计算书

沥青路面设计计算书

沥青混凝土路面的结构设计 一、标准轴载换算 标准轴载计算参数(BZZ-100) ()KN P 标准轴载() MPa P 轮胎接地压强100 7 .0() cm d 单轮压面当量直径() cm 两轮中心距30 .21d 5.1 根据公式(12-30) ∑== k i i i p p n c c 1 35 .421)( N i n ——各级轴载作用次数; p ——标准轴载; i p ——被换算车型的各级轴载; 1c ——轴数系数,)(1m 2.111-+=c m 为轴数;2c ——轮组系数,双轮组取为1; 将各种不同重量的汽车荷载换算成标准轴载。 车型 轴重(KN ) 次数/日 1 c 2 c 标准轴次/日 江淮AL6600 50 300 1 1 14.71095184 黄海DD680 60 200 1 1 21.67643885 北京BJ130 70 300 1 1 63.57666297 东风EQ140 80 400 1 1 151.530981 黄海JN163 90 499 1 1 315.540756 东风SP925 100 200 1 1 200 总计 865.4275468 根据公式(12-31)()111365 N t e N γηγ ??+-???=(η——车道系数,取值0.45) 推算设计年限期末一个车道上的累计当量轴次 N e ,。

得:N e= ()15 10.041365 865.430.45 0.04 ?? +-? ????=2846290=285(万次) 二、路面结构方案 方案一: cm 细粒式沥青混凝土4 cm 中粒式沥青混凝土6 cm 粗粒式沥青混凝土8 25cm 水泥稳定碎石 水泥石灰沙砾土层? 土基 方案二: cm 细粒式沥青混凝土4 cm 中粒式沥青混凝土8 cm 粗粒式沥青混凝土15 cm 密集配碎石? 水泥稳定沙砾18cm 土基 路面材料设计参数如下: 材料名称 抗压回弹模 量 劈裂强度 (MPa) 15℃ 高温时参数 20 ℃ 15 ℃ Ev(MP a) C (MPa) ? 细粒式沥青混凝土 12 00 18 00 1.2 750 0.3 34 中粒式沥青混凝土 10 00 16 00 0.9 600 粗粒式沥青混凝土80 12 00 0.6 500

沥青路面结构厚度计算

沥青路面结构厚度计算 路等级 : 一级公路新建路面的层数 :5 标准轴载 : BZZ-100 路面设计弯沉值 : 24、9 (0、01mm) 路面设计层层位 :4 设计层最小厚度 :150 (mm)层位结构层材料名称厚度20℃平均抗压标准差15℃平均抗压标准差容许应力 (mm) 模量(MPa) (MPa) 模量(MPa) (MPa) (MPa) 1 细粒式沥青混凝土401400 02000 0 、47 2 中粒式沥青混凝土601200 01800 0 、34 3 粗粒式沥青混凝土801000 01200 0 、27 4 水泥稳定碎石 ?1500 03600 0 、25 5 石灰土250550 01500 0 、1 6 新建路基36 按设计弯沉值计算设计层厚度 : LD= 24、9 (0、01mm) H(4 )=200 mm LS= 26、3 (0、01mm) H(4 )=250 mm LS= 23、4 (0、01mm)

H(4 )=224 mm(仅考虑弯沉) 按容许拉应力计算设计层厚度 : H(4 )=224 mm(第1 层底面拉应力计算满足要求) H(4 )=224 mm(第2 层底面拉应力计算满足要求) H(4 )=224 mm(第3 层底面拉应力计算满足要求) H(4 )=224 mm(第4 层底面拉应力计算满足要求) H(4 )=274 mm σ(5 )= 、101 MPa H(4 )=324 mm σ(5 )= 、087 MPa H(4 )=277 mm(第5 层底面拉应力计算满足要求) 路面设计层厚度 : H(4 )=224 mm(仅考虑弯沉) H(4 )=277 mm(同时考虑弯沉和拉应力) 验算路面防冻厚度 : 路面最小防冻厚度500 mm 验算结果表明 ,路面总厚度满足防冻要求、通过对设计层厚度取整, 最后得到路面结构设计结果如下:-------------------------------------- 细粒式沥青混凝土40 mm-------------------------------------- 中粒式沥青混凝土60 mm-------------------------------------- 粗粒式沥青混凝土80 mm-------------------------------------- 水泥稳定碎石280 mm-------------------------------------- 石灰土250 mm-------------------------------------- 新建路基

路面结构设计计算书(有计算过程的)DOC.doc

公路路面结构设计计算示例 一、刚性路面设计 交通组成表 车型 前轴重 后轴重 后轴数 后轴轮组数 后轴距 交通量 ( m ) 小客车 1800 解放 CA10B 19.40 60.85 1 双 — 300 黄河 JN150 49.00 101.60 1 双 — 540 交通 SH361 60.00 2× 110.00 2 双 130.0 120 太脱拉 138 51.40 2× 80.00 2 双 132.0 150 吉尔 130 25.75 59.50 1 双 — 240 尼桑 CK10G 39.25 76.00 1 双 — 180 1)轴载分析 路面设计双轮组单轴载 100KN ⑴ 以设计弯沉值为指标及验算面层层底拉力中的累计当量轴次。 ① 轴载换算: n 16 P i N s i N i 100 i 1 式中 : N s —— 100KN 的单轴—双轮组标准轴载的作用次数; P i —单轴—单轮、单轴—双轮组、双轴—双轮组或三轴—双轮组轴型 i 级轴载的总重 KN ; N i —各类轴型 i 级轴载的作用次数; n —轴型和轴载级位数; i —轴—轮型系数,单轴—双轮组时, i =1;单轴—单轮时,按式 i 2.22 103 P i 0.43 计算; 双轴—双轮组时,按式 i 1.07 10 5 P i 0. 22 ;三轴—双轮组时,按式 i 2.24 10 8 P i 0. 22 计算。 轴载换算结果如表所示 车型 P i N i P i 16 i i N i ( P ) 解放 CA10B 后轴 60.85 1 300 0.106 黄河 JN150 前轴 49.00 2.22 103 49 0.43 540 2.484 后轴 101.6 1 540 696.134 交通 SH361 前轴 60.00 2.22 103 60 0.43 120 12.923 后轴 2 110.00 1.07 10 5 220 0.22 120 118.031

2017沥青路面计算书

三长线新建路面设计 1. 项目概况与交通荷载参数 该项目位于江西省,属于一级公路,起点桩号为K0+000,终点桩号为 K44+086,设计使用年限为15.0年,根据交通量OD调查分析,断面大型客车和货车交通量为3855辆/日, 交通量年增长率为5.0%, 方向系数取55.0%, 车道系数取60.0%。根据交通历史数据,按表A.2.6-1确定该设计公路为TTC3类,根据表A.2.6-2得到车辆类型分布系数如表1所示。 表1. 车辆类型分布系数 根据路网相邻公路的车辆满载情况及历史数据的调查分析,得到各类车型非满载与满载比例,如表2所示。 表2. 非满载车与满载车所占比例(%) 根据表6.2.1,该设计路面对应的设计指标为沥青混合料层永久变形与无机结合料层疲劳开裂。根据附表A.3.1-3,可得到在不同设计指标下,各车型对应的非满载车和满载车当量设计轴载换算系数,如表3所示。 表3. 非满载车与满载车当量设计轴载换算系数

车辆类型非满载车满载车非满载车满载车 35.5 0.5 类 2.8 0.8 2314.2 类3 4.1 1.3 0.4 137.6 4.2 4类0.7 0.3 72.9 6.3 0.6 类5 0.6 1505.7 7.9 6类1.3 10.2 553.0 类77.8 6.0 1.4 713.5 16.4 6.7 1.4 类8.9类 1.5 5.1 0.7 204.3 426.8 7.0 10类 37.8 2.4 985.4 2.5 12.1 1.5 11类 根据公式(A.4.2)计算得到对应于沥青混合料层永久变形的当量设计轴载累计作用次数为22,351,024, 对应于无机结合料层疲劳开裂的当量设计轴载累计作用次数为1,670,542,389。本公路设计使用年限内设计车道累计大型客车和货车交通量为10,019,677,交通等级属于重交通。

沥青路面设计计算实例

沥青混凝土路面计算书 一、轴载分析 路面设计以双轮组单轴载100kN 为标准轴载。 1.以设计弯沉值为指标及验算沥青层层底拉应力中的累计当量轴次 3)轴载换算: 轴载换算的计算公式:N= 4.35121 ()k i i i P C C n P =∑ 2)累计当量轴次: 根据设计规范,二级公路沥青路面的设计年限取15年,双车道的车道系数取0.6 累计当量轴次: () '111365t e N N γηγ??+-???=()151 5.4%1365 ×885.380.65.4% ??+-???=? =(次) 3)验算半刚性基层层底拉应力中的累计当量轴次 注:轴载小于50kN 的轴载作用不计 验算半刚性基层层底拉应力的轴载换算公式: N=8121 ()k i i i P C C n P =∑ (2)累计当量轴次: ()'111365t e N N γηγ??+-???==()151 5.4%1365×505.650.65.4% ??+-????=2462767.6(次) 二、结构组合与材料选取 根据规范推荐结构,并考虑到公路沿途筑路材料较丰富,路面结构采用沥青混凝土(15cm ),基层采用二灰碎石(20cm ),基底层采用石灰土(厚度待定)。 二级公路面层采用三层式沥青面层, 表面层采用细粒式密级配沥青混凝土 (厚度3cm ), 中间层采用中粒式密级配沥青混凝土 (厚度5cm ), 下层采用粗粒式密级配沥青混凝土 (厚度7cm )。 三、各层材料的抗压模量与劈裂强度 抗压模量取20℃的模量,各值均取规范给定范围的中值,因此得到20℃的抗压模量: 细粒式密级配沥青混凝土为 1400MPa , 中粒式密级配沥青混凝土为 1200MPa , 粗粒式密级配沥青混凝土为 1000MPa , 二灰碎石为 1500MPa , 石灰土为 550MPa 。 各层材料的劈裂强度: 细粒式密级配沥青混凝土为 1.4MPa , 中粒式密级配沥青混凝土为 1.0MPa , 粗粒式密级配沥青混凝土为 0.8MPa , 二灰碎石为 0.5MPa ,

路基路面课程设计计算书沥青路面利用诺谟图计算样本

路基路面工程课程设计计算书 某新建沥青高速路面设计 ( 利用诺谟图计算) 道路与桥梁方向 指导老师: 专业年级: 班级, 学号: 学生姓名: 完成时间: 6月24日

路面结构设计的计算 基本资料: 某地区规划修建一条四车道的一级公路, 沿线筑路材料的情况: 石料: 本地区山丘均产花岗岩、 流纹岩和凝灰熔岩; 储量丰富, 岩体完整。石料强度高。砂: 海岛沿岸多处沙滩可供取砂, 运输较方便。土料: 沿线丘岗均有砖红色亚粘土和黄褐色砂砾质粘土可供路基用土。 此公路的设计年限为20年, 拟采用沥青路面结构进行设计。 一、轴载分析。 1、 设计年限内交通量的平均增长率: 1234 4 γγγγγ+++= 由主要预测年交通量表可算得: 到 的年增长率: 5112266(1)18293γ+=, 可算得: 18.3%γ= 到 的年增长率: 5218293(1)26204γ+=, 可算得: 27.5%γ= 到 的年增长率: 5326204(1)35207γ+=, 可算得: 3 6.1%γ= 到2020年的年增长率: 5435207(1)55224γ+=, 可算得: 49.4%γ= 故1234 8.3%7.5% 6.1%9.4% 7.8%4 4 γγγγγ++++++= = = 2、 设计年限内一个车道的累计当量轴次的计算。 路面设计采用双轮组单轴载100KN 为标准轴载, 以BZZ —100表示。 1) 当以设计弯沉值为设计指标时, 换算成标准轴载 P 的当量作 用次数N 的公式为: 4.35121 N=()k i i i P C C n P =∑ 预测交通组成表

对于跃进NJ130: 前轴: i P =16.20KN<25KN, 省略不算 后轴: 1C =1, 2C =1, i P =38.30KN, P=100KN, i n =702 4.35 4.35 1238.30()11702()10.8100 i i P N C C n P ==???=次/d 对于解放CA10B: 前轴: i P =19.40KN<25KN,省略不算。 后轴: 1C =1, 2C =1, i P =60.85KN, P=100KN, i n =962 4.35 4.35 1260.85()11962()110.8100 i i P N C C n P ==???=次/d 对于黄河JN150: 前轴: 1C =1, 2C =6.4, i P =49.00KN, P=100KN, i n =661 4.35 4.35 1249.00()1 6.4661( )190.0100 i i P N C C n P ==???=次/d 后轴: 1C =1, 2C =1, i P =101.60KN, P=100KN, i n =661 4.35 4.35 12101.60()11661()708.3100 i i P N C C n P ==???=次/d 最终可汇成下表: 轴载换算结果表( 弯沉)

版沥青路面结构计算书

2017版沥青路面结构 计算书 -CAL-FENGHAI.-(YICAI)-Company One1

新建路面设计 1. 项目概况与交通荷载参数 该项目位于西南地区,属于二级公路,设计时速为40Km/h,12米双车道公路,设计使用年限为年,根据交通量OD调查分析,断面大型客车和货车交通量为1849辆/日, 交通量年增长率为%, 方向系数取%, 车道系数取%。根据交通历史数据,按表确定该设计公路为TTC4类,根据表得到车辆类型分布系数如表1所示。 表1. 车辆类型分布系数 根据路网相邻公路的车辆满载情况及历史数据的调查分析,得到各类车型非满载与满载比例,如表2所示。 表2. 非满载车与满载车所占比例(%) 根据表,该设计路面对应的设计指标为沥青混合料层永久变形与无机结合料层疲劳开裂。根据附表,可得到在不同设计指标下,各车型对应的非满载车和满载车当量设计轴载换算系数,如表3所示。 表3. 非满载车与满载车当量设计轴载换算系数

根据公式()计算得到对应于沥青混合料层永久变形的当量设计轴载累计作用次数为8,109,551, 对应于无机结合料层疲劳开裂的当量设计轴载累计作用次数为562,339,245。本公路设计使用年限内设计车道累计大型客车和货车交通量为4,989,710,交通等级属于中等交通。 2. 初拟路面结构方案 初拟路面结构如表4所示。 表4. 初拟路面结构 路基标准状态下回弹模量取50MPa,回弹模量湿度调整系数Ks取,干湿与冻融循环作用折减系数Kη取,则经过湿度调整和干湿与冻融循环作用折减的路基顶面回弹模量为50MPa。 3. 路面结构验算 沥青混合料层永久变形验算 根据表,基准等效温度Tξ为℃,由式()计算得到沥青混合料层永久变形等效温度为℃。可靠度系数为。 根据条规定的分层方法,将沥青混合料层分为6个分层,各分层厚度(hi)如表5所示。利用弹性层状体系理论,分别计算设计荷载作用下各分层顶部的竖向压应力(Pi)。根据式()和式(),计算得到d1=,d2=。把d1和d2的计算结果带入式(),可得到各分层的永久变形修正系数(kRi),并进而利用式()计算各分层永久变形量(Rai)。各计算结果汇总于表5中。 各层永久变形累加得到沥青混合料层总永久变形量Ra=(mm),根据表,沥青层容许永久变形为(mm),拟定的路面结构满足要求。 表5. 沥青层永久变形计算结果

沥青路面的设计指标计算

新建路面结构设计指标与要求 一、沥青路面结构设计指标 沥青路面结构设计应满足结构整体刚度、沥青层或半刚性基层抗疲劳开裂和沥青层抗变形的要求。应根据道路等级选择路表弯沉值、沥青层层底拉应变、半刚性材料基层层底拉应力和沥青层剪应力作为沥青路面结构设计指标,并应符合下列规定: 1 快速路、主干路和次干路采用路表弯沉值、沥青层层底拉应变、半刚性材料基层层底拉应力、沥青层剪应力为设计指标。 2 支路可仅采用路表弯沉值为设计指标。 3 可靠度系数可根据当地相关研究成果选择; 当无资料时可按下表取用 可靠度系数 二、沥青路面结构设计的各项设计指标应符合下列规定: 1 轮隙中心处路表计算的弯沉值应小于或等于道路表面的设计弯沉值,应满足下式要求: γa l s≤l d 式中:γa——沥青路面可靠度系数; l s ——轮隙中心处路表计算的弯沉值(0.01mm); l d——路表的设计弯沉值(0.01mm); 2 柔性基层沥青层层底计算的最大拉应变应小于或等于材料的容许拉应变,应满 足下式要求: γaεt≤[εR ] 式中:εt——沥青层层底计算的最大拉应变;

[εR ] ——沥青层材料的容许拉应变。 3 半刚性材料基层层底计算的最大拉应力应小于或等于材料的容许抗拉强度,应满足下式要求: γa σm ≤[σR ] 式中: σm ——半刚性材料基层层底计算的最大拉应力(MPa ); [σR ]——路面结构层半刚性材料的容许抗拉强度(MPa )。 4 沥青面层计算的最大剪应力应小于或等于材料的容许抗剪强度,应满足下式要求: γa τm ≤[τR ] 式中: τm ——沥青面层计算的最大剪应力(MPa ); [τR ]——沥青面层的容许抗剪强度(MPa )。 三、 沥青路面表面设计弯沉值应根据道路等级、设计基准期内累计当量轴次、面层和基层类型按下式计算确定: l d =600 N e -0.2A c A s A b 式中 : A c ——道路等级系数,快速路、主干路为1.0,次干路为1.1,支路为1.2; A s ——面层类型系数,沥青混合料为1.0,热拌和温拌或冷拌沥青碎石、 沥青表面处治为1.1; A b ——基层类型系数,无机结合料类(半刚性)基层1.0,沥青类基层 和粒料基层1.6。 四、 沥青路面材料的容许拉应变[εR ]应按下列公式计算确定: [εR ] =0.15 E m -1/3 10M / 4N e e -1 / 4 )(69.0V V 84.4M a b b -+=V 式中: M ——沥青混合料空隙率与有效沥青含量的函数; E m ——沥青混合料20℃动态回弹模量(MPa );

沥青路面设计计算实例

沥青混凝土路面计算书 一、轴载分析 路面设计以双轮组单轴载100kN 为标准轴载。 1.以设计弯沉值为指标及验算沥青层层底拉应力中的累计当量轴次 3)轴载换算: 轴载换算的计算公式:N= 4.35121 ()k i i i P C C n P =∑ 2)累计当量轴次: 根据设计规范,二级公路沥青路面的设计年限取15年,双车道的车道系数取0.6 累计当量轴次: ()'111365t e N N γηγ??+-???=()151 5.4%1365 ×885.380.65.4% ??+-???=? =4312242(次) 3)验算半刚性基层层底拉应力中的累计当量轴次 注:轴载小于50kN 的轴载作用不计 验算半刚性基层层底拉应力的轴载换算公式: N=8121 ()k i i i P C C n P =∑ (2)累计当量轴次: ()'111365t e N N γηγ??+-???==()151 5.4%1365×505.650.65.4% ??+-????=2462767.6(次) 二、结构组合与材料选取 根据规范推荐结构,并考虑到公路沿途筑路材料较丰富,路面结构采用沥青混凝土(15cm ),基层采用二灰碎石(20cm ),基底层采用石灰土(厚度待定)。 二级公路面层采用三层式沥青面层, 表面层采用细粒式密级配沥青混凝土 (厚度3cm ), 中间层采用中粒式密级配沥青混凝土 (厚度5cm ), 下层采用粗粒式密级配沥青混凝土 (厚度7cm )。 三、各层材料的抗压模量与劈裂强度 抗压模量取20℃的模量,各值均取规范给定范围的中值,因此得到20℃的抗压模量: 细粒式密级配沥青混凝土为 1400MPa , 中粒式密级配沥青混凝土为 1200MPa , 粗粒式密级配沥青混凝土为 1000MPa , 二灰碎石为 1500MPa , 石灰土为 550MPa 。 各层材料的劈裂强度: 细粒式密级配沥青混凝土为 1.4MPa , 中粒式密级配沥青混凝土为 1.0MPa , 粗粒式密级配沥青混凝土为 0.8MPa , 二灰碎石为 0.5MPa , 石灰土为 0.225MPa 。 四、土基回弹模量的确定 该路段处于Ⅵ区,土基回弹模量为30MPa 。 五、设计指标的确定 对于二级公路,规范要求以设计弯沉值作为设计指标,并进行结构层底拉应力验算。 1.设计弯沉值。路面设计弯沉值计算:该公路为二级公路,公路等级系数取1.1,面层是沥青混凝土,面层类型系数取1.0,半刚性基层、底基层总厚度等于或大于20cm ,基层类型系数取1.0. 设计弯沉值为:

现行公路沥青路面设计实例计算书汇总151新建二级公路计算书

现行公路沥青路面设计实例计算书汇总(1/5) —1新建二级公路计算书 吴祖德 (常州市市政工程设计研究院有限公司) 内容提要配合《公路沥青路面设计规范》(JTG D50-2017)和已发行的《公路水泥混凝土路面设计规范》(JTG D40-2011)的有关内容,东南大学编制了《公路路面设计程序系统》(HPDS2017),本文仅对其中公路沥青混凝土路面设计的实例计算进行详细汇总,供设计人员参考。 关键词公路沥青混凝土路面设计实例计算汇总 0 前言 《公路沥青路面设计规范》(JTG D50-2017)的设计方法与前规范有很大不同,为使设计人员较快掌握与之配套的《公路路面设计程序系统》(HPDS2017),特编本实例计算详细汇总。 1 新建二级公路计算书 (1)新建二级公路计算书: 一、交通量计算 公路等级二级公路 目标可靠指标 1.04 初始年大型客车和货车双向年平均日交通量(辆/日)900 路面设计使用年限(年)12 通车至首次针对车辙维修的期限(年)12 交通量年平均增长率 5.5 % 方向系数 .55 车道系数 1 整体式货车比例45 % 半挂式货车比例25 % 车辆类型2类3类4类5类6类7类8类9类10类11类 满载车比例 .1 .41 .12 0 .38 .59 .32 .47 .41 .42 初始年设计车道大型客车和货车年平均日交通量(辆/日)495 设计使用年限内设计车道累计大型客车和货车交通量(辆)2960466 路面设计交通荷载等级为轻交通荷载等级 当验算沥青混合料层疲劳开裂时: 设计使用年限内设计车道上的当量设计轴载累计作用次数为7500888 当验算无机结合料稳定层疲劳开裂时: 设计使用年限内设计车道上的当量设计轴载累计作用次数为 5.4079E+08 当验算沥青混合料层永久变形量时: 通车至首次针对车辙维修的期限内设计车道上的当量设计轴载累计作用次数为7500888 当验算路基顶面竖向压应变时: 设计使用年限内设计车道上的当量设计轴载累计作用次数为 1.27154E+07

沥青路面设计计算案例及沥青路面课程设计

a沥青路面设计计算案例 一、新建路面结构设计流程 (1)根据设计要求,按弯沉或弯拉指标分别计算设计年限内一个车道的累计标准当量轴次,确定设计交通量与交通等级,拟定面层、基层类型,并计算设计弯沉值或容许拉应力。 (2)按路基土类与干湿类型及路基横断面形式,将路基划分为若干路段,确定各个路段土基回弹模量设计值。 (3)参考本地区的经验和规范拟定几种可行的路面结构组合与厚度方案,根据工程选用的材料进行配合比试验,测定各结构层材料的抗压回弹模量、劈裂强度等,确定各结构层的设计参数。 (4)根据设计指标采用多层弹性体系理论设计程序计算或验算路面厚度。如不满足要求,应调整路面结构层厚度,或变更路面结构组合,或调整材料配合比,提高材料极限抗拉强度,再重新计算。 (5)对于季节性冰冻地区应验算防冻厚度是否符合要求。 (6)进行技术经济比较,确定路面结构方案。 需要注意的是,完成结构组合设计后进行厚度计算,厚度计算应采用专业设计程序。有关公路新建及改建路面设计方法、程序及相关要求详见《沥青路面设计规范》。 二、计算示例 (一)基本资料 1.自然地理条件 新建双向四车道高速公路地处Ⅱ2区,拟采用沥青路面结构进行施工图设计,填方路基高1.8m,路基土为中液限黏性土,地下水位距路床表面2.4m,一般路基处于中湿状态。 2.土基回弹模量的确定 该设计路段路基处于中湿状态,路基土为中液限黏性土,根据室内试验法确定土基回弹模量设计值为40MPa。 3.预测交通量 预测竣工年初交通组成与交通量,见表9-11.预测交通量的年平均增长率为5.0%. (二)根据交通量计算累计标准轴次Ne,根据公路等级、面层、基层类型及Ne 计算设计弯沉值。

沥青路面设计计算书

路面设计计算书 1、路面结构设计 一、交通量计算 公路等级一级公路 目标可靠指标 1.28 初始年大型客车和货车双向年平均日交通量(辆/日) 5000 路面设计使用年限(年) 15 通车至首次针对车辙维修的期限(年) 15 交通量年平均增长率 6.5 % 方向系数 .55 车道系数 .5 整体式货车比例 15 % 半挂式货车比例 20 % 车辆类型 2类 3类 4类 5类 6类 7类 8类 9类 10类 11类 满载车比例 .08 .34 .1 .44 .31 .54 .36 .46 .39 0 初始年设计车道大型客车和货车年平均日交通量(辆/日) 1375 设计使用年限内设计车道累计大型客车和货车交通量(辆) 1.213643E+07 路面设计交通荷载等级为重交通荷载等级 当验算沥青混合料层疲劳开裂时: 设计使用年限内设计车道上的当量设计轴载累计作用次数为 3.001792E+07 当验算无机结合料稳定层疲劳开裂时: 设计使用年限内设计车道上的当量设计轴载累计作用次数为 1.966262E+09 当验算沥青混合料层永久变形量时: 通车至首次针对车辙维修的期限内设计车道上的当量设计轴载累计作用次数为3.001792E+07 当验算路基顶面竖向压应变时: 设计使用年限内设计车道上的当量设计轴载累计作用次数为 5.057364E+07 二、路面结构设计与验算 路面结构的层数 : 4 设计轴载 : 100 kN 路面设计层层位 : 4 设计层起始厚度 : 320 (mm) 层位结构层材料名称厚度模量泊松比无机结合料稳定类材沥青混合料车辙试验 (mm) (MPa) 料弯拉强度( MPa) 永久变形量( mm ) 1 细粒式沥青混凝土 40 11000 .25 1.5 2 粗粒式沥青混凝土 80 10000 .25 2.5 3 水泥稳定碎石 360 7500 .25 1.4 4 低剂量水泥稳定碎石 ? 350 .35 5 新建路基 41 .4 ------第 3 层无机结合料稳定层疲劳开裂验算------ 设计层厚度 H( 4 )= 880 mm 季节性冻土地区调整系数 KA= .8 温度调整系数 KT2= 1.452 现场综合修正系数 KC= -1.105 第 3 层层底拉应力σ= .207 MPa 第 3 层无机结合料稳定层疲劳开裂寿命 NF2= 1.971853E+09 轴次 设计使用年限内设计车道上的当量设计轴载累计作用次数 NZB2= 1.966262E+09 轴次 第 3 层无机结合料稳定层疲劳开裂验算已满足设计要求. ------沥青面层低温开裂指数验算------ 路面所在地区低温设计温度 TSJ=-29 ℃ 表面层沥青弯曲梁流变试验蠕变劲度 ST= 120 MPa 沥青结合料类材料层厚度 HA= 120 mm 路基类型参数 BLJ= 2 沥青面层低温开裂指数 CI= 3.4 条 沥青面层容许低温开裂指数 CIR= 3 条 沥青面层低温开裂指数值不满足规范要求,请改变所选用的沥青材料,重新设计. ------沥青混合料层永久变形量验算------ 沥青混合料层永久变形等效温度 TPEF= 19.9 ℃ 通车至首次针对车辙维修的期限内设计车道上的当量设计轴载累计作用次数 NZB3= 3.001792E+07 轴次 沥青混合料层永久变形验算分层数 N= 6

相关主题
文本预览
相关文档 最新文档