2014年高考文科数学真题解析分类汇编:D单元 数列(纯word可编辑)
- 格式:doc
- 大小:411.50 KB
- 文档页数:15
2014年普通高等学校招生全国统一考试(湖北卷)数学(文科)部分解析一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知全集}7,6,5,4,3,2,1{=U ,集合}6,5,3,1{=A ,则=A C U ( )A.}6,5,3,1{B. }7,3,2{C. }7,4,2{D. }7,5,2{2. i 为虚数单位,则=+-2)11(ii ( ) A. 1 B. 1- C. i D.i -3. 命题“R ∈∀x ,x x ≠2”的否定是( )A. R ∉∀x ,x x ≠2B. R ∈∀x ,x x =2C. R ∉∃x ,x x ≠2D. R ∈∃x ,x x =24.若变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥≥≤-≤+0,024y x y x y x ,则y x +2的最大值是( )A.2B.4C.7D.85.随机投掷两枚均匀的投骰子,学 科 网他们向上的点数之和不超过5的概率为1P ,点数之和大于5的概率为2P ,点数之和为偶数的概率为3P ,则( )A. 321P P P <<B. 312P P P <<C. 231P P P <<D. 213P P P <<6.根据如下样本数据:得到的回归方程为a bx y+=ˆ,则( ) A.0,0>>b a B.0,0<>b a C.0,0><b a D.0.0<<b a7.在如图所示的空间直角坐标系xyz O -中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为( )A.①和②B.③和①C. ④和③D.④和②8.设a 、b 是关于t 的方程0sin cos 2=+θθt t 的两个不等实根,则过),(2a a A ,),(2b b B 两点的直线与双曲线1sin cos 2222=-θθy x 的公共点的个数为( ) A. 0 B. 1 C. 2 D. 39.已知)(x f 是定义在R 上的奇函数,当0≥x 时,x x x f 3)(2-=,则函数3)()(+-=x x f x g 的零点的集合为( )A.{1,3}B.{3,1,1,3}--C.{2-D.{2--10.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一.该术相当于给出了有圆锥的底面周长L 与高h ,计算其体积V 的近似公式21.36v L h ≈它实际上是将圆锥体积公式中的圆周率π近似取为3.那么近似公式2275v L h ≈相当于将圆锥体积公式中的π近似取为( ) A.227 B.258 C.15750 D.355113二.填空题:本大题共7小题,每小题5分,共35分.请将答案天灾答题卡对应题号的位置上,答错位置,书写不清,模棱两可均不得分.11.甲、乙两套设备生产的同类产品共4800件,采用分层抽样的方法从中抽取一个容量为80 的样本进行检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.12.若向量)3,1(-=OA ,||||OB OA =,0=∙OB OA ,则=||AB ________.13.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,已知6π=A ,1=a ,3=b ,则=B ________.14.阅读如图所示的程序框图,运行相应的程序,若输入n 的值为9,则输出S 的值为 .15.如图所示,函数)(x f y =的图象由两条射线和三条线段组成.若R ∈∀x ,)1()(->x f x f ,则正实数a 的取值范围是 .16.某项研究表明,在考虑行车安全的情况下,某路段车流量F (单位时间内测量点的车辆数,单位:辆/小时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒)平均车长l (单位:米)的值有关,其公式为lv v vF 2018760002++=(1)如果不限定车型,05.6=l ,则最大车流量为_______辆/小时;(2)如果限定车型,5=l ,则最大车流量比(1)中的最大车流量增加 辆/小时.17. 已知圆1:22=+y x O 和点)0,2(-A ,若定点)2)(0,(-≠b b B 和常数λ满足:对圆O 上那个任意一点M ,都有||||MA MB λ=,则 (1)=b ; (2)=λ .。
2014年普通高等学校招生全国统一考试(江苏卷)解析版数学Ⅰ一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1. 已知集合A ={4,3,1,2--},}3,2,1{-=B ,则=B A I . 2. 已知复数2)i 25(+=z (i 为虚数单位),则z 的实部为 . 3. 右图是一个算法流程图,则输出的n 的值是 .4. 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是 .5. 已知函数x y cos =与)2sin(ϕ+=x y (0≤πϕ<),它们的图象有一个横坐标为3π的交点,则ϕ的值是 .6. 设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 株树木的底部周长小于100cm.7. 在各项均为正数的等比数列}{n a 中,,12=a 4682a a a +=,则6a 的值是 . 8. 设甲、乙两个圆柱的底面分别为1S ,2S ,体积分别为1V ,2V ,若它们的侧面积相等,且4921=S S ,则21V V 的值是 .100 80 90 110 120 130 底部周长/cm(第6题)(第3题)9. 在平面直角坐标系xOy 中,直线032=-+y x 被圆4)1()2(22=++-y x 截得的弦长 为 .10. 已知函数2()1f x x mx =+-,若对于任意]1,[+∈m m x ,都有0)(<x f 成立,则实数m 的取值范围是 .11. 在平面直角坐标系xOy 中,若曲线xbax y +=2(a ,b 为常数)过点)5,2(-P ,且该曲线在点P 处的切线与直线0327=++y x 平行,则b a +的值是 .12. 如图,在平行四边形ABCD 中,已知8AB =,5AD =,3CP PD =u u u r u u u r ,2AP BP ⋅=u u u r u u u r ,则AB AD ⋅u u u r u u u r的值是 .13. 已知)(x f 是定义在R 上且周期为3的函数,当)3,0[∈x 时,21()22f x x x =-+. 若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是 .14. 若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15. (本小题满分14分)已知),2(ππα∈,55sin =α.(1)求)4sin(απ+的值; (2)求)265cos(απ-的值.16. (本小题满分14分)如图,在三棱锥ABC P -中,D ,E ,F 分别为棱AB AC PC ,,的中点.已知AC PA ⊥,6PA =,8BC =,5DF =.求证:(1) 直线//PA 平面DEF ;(2) 平面⊥BDE 平面ABC .(第16题)PDCEFBA(第12题)如图,在平面直角坐标系xOy 中,21,F F 分别是椭圆22221(0)x y a b a b +=>>的左、右焦点,顶点B的坐标为),0(b ,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结C F 1.(1) 若点C 的坐标为)31,34(,且22=BF ,求椭圆的方程;(2) 若1F C AB ⊥,求椭圆离心率e 的值.18. (本小题满分16分)如图,为了保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区. 规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆. 且古桥两端O 和A 到该圆上任意一点的距离均不少于80m. 经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处(OC 为河岸),34tan =∠BCO . (1) 求新桥BC 的长;(2) 当OM 多长时,圆形保护区的面积最大?19. (本小题满分16分)已知函数x x x f -+=e e )(,其中e 是自然对数的底数. (1) 证明:)(x f 是R 上的偶函数;(2) 若关于x 的不等式)(x mf ≤1e -+-m x 在),0(+∞上恒成立,求实数m 的取值范围;(3) 已知正数a 满足:存在),1[0+∞∈x ,使得)3()(030x x a x f +-<成立. 试比较1e -a 与1e -a 的大小,并证明你的结论.设数列}{n a 的前n 项和为n S .若对任意正整数n ,总存在正整数m ,使得m n a S =,则称}{n a 是“H 数列”.(1) 若数列}{n a 的前n 项和n n S 2=(∈n N *),证明:}{n a 是“H 数列”;(2) 设}{n a 是等差数列,其首项11=a ,公差0<d . 若}{n a 是“H 数列”,求d 的值; (3) 证明:对任意的等差数列}{n a ,总存在两个“H 数列”}{n b 和}{n c ,使得n n n c b a += (∈n N *)成立.数学Ⅱ(附加题)21.[选修4—1:几何证明选讲](本小题满分10分)如图,AB 是圆O 的直径,C 、D 是圆O 上位于AB 异侧的两点. 证明:∠ OCB =∠ D .22.[选修4—2:矩阵与变换](本小题满分10分)已知矩阵A 121x -⎡⎤=⎢⎥⎣⎦,B 1121⎡⎤=⎢⎥-⎣⎦,向量2y ⎡⎤=⎢⎥⎣⎦α,x ,y 为实数.若=A αB α,求x +y 的值. 23.[选修4—4:坐标系与参数方程](本小题满分10分) 在平面直角坐标系xOy 中,已知直线l 的参数方程21,2)(2;xt t y t ⎧=-⎪⎪⎨⎪=+⎪⎩为参数,直线l 与抛物线24y x =相交于A 、B 两点,求线段AB 的长.24.[选修4—4:不等式证明选讲](本小题满分10分) 已知x >0,y >0,证明:22(1)(1)9x y x y xy ++++≥. 25. (本小题满分10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同. (1) 从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P ;(2) 从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x 1、x 2、x 3, 随机变量X 表示x 1、x 2、x 3中的最大数,求X 的概率分布和数学期望E (X ). 26. (本小题满分10分)已知函数sin ()(0)xf x x x=>,设()n f x 是1()n f x -的导数,n ∈*N . (1) 求12πππ2()()222f f +的值;(2) 证明:对于任意n ∈*N ,等式1πππ2()()444n n nf f -+=都成立.(第21—A 题)参考答案一、选择题 1.【答案】{1,3}-解析:由题意得{1,3}A B =-I 【考点】交集、并集、补集 (B). 【答案】}3,1{-【解析】根据集合的交集运算,两个集合的交集就是所有既属于集合A 又属于集合B 的元素组成的集合,从所给的两个集合的元素可知,公共的元素为-1和3,所以答案为}3,1{-【点评】本题重点考查的是集合的运算,容易出错的地方是审错题目,把交集运算看成并集运算。
2014·全国新课标卷Ⅰ(文科数学)1.[2014·全国新课标卷Ⅰ] 已知集合M ={x |-1<x <3},N ={-2<x <1},则M ∩N =( )A .(-2,1)B .(-1,1)C .(1,3)D .(-2,3)1.B [解析]利用数轴可知M ∩N ={x |-1<x <1}. 2.、[2014·全国新课标卷Ⅰ] 若tan α>0,则( ) A .sin α>0B .cos α>0 C .sin2α>0D .cos2α>0 2.C [解析]因为sin2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α>0,所以选C.3.[2014·全国新课标卷Ⅰ] 设z =11+i+i ,则|z |=( ) A.12B.22C.32D .2 3.B [解析]z =11+i+i =1-i 2+i =12+12i ,则|z |=22.4.[2014·全国新课标卷Ⅰ] 已知双曲线x 2a 2-y 23=1(a >0)的离心率为2,则a =( )A .2B.62C.52D .1 4.D [解析]因为c 2=a 2+3,所以e =ca=a 2+3a2=2,得a 2=1,所以a =1. 5.[2014·全国新课标卷Ⅰ] 设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数5.C [解析]因为f (x )是奇函数,g (x )是偶函数,所以有f (-x )=-f (x ),g (-x )=g (x ),于是f (-x )·g (-x )=-f (x )g (x ),即f (x )g (x )为奇函数,A 错;|f (-x )|g (-x )=|f (x )|g (x ),即|f (x )|g (x )为偶函数,B 错;f (-x )|g (-x )|=-f (x )|g (x )|,即f (x )|g (x )|为奇函数,C 正确; |f (-x )g (-x )|=|f (x )g (x )|,即f (x )g (x )为偶函数,所以D 也错. 6.[2014·全国新课标卷Ⅰ] 设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →=( )A.AD →B.12AD →C.12BC →D.BC → 6.A [解析] EB +FC =EC +CB +FB +BC =12AC +12AB =AD .7.[2014·全国新课标卷Ⅰ] 在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③7.A [解析]函数y =cos|2x |=cos2x ,其最小正周期为π,①正确;将函数y =cos x 的图像中位于x 轴上方的图像不变,位于x 轴下方的图像对称地翻转至x 轴上方,即可得到y =|cos x |的图像,所以其最小天正周期也为π,②正确;函数y =cos ⎝⎛⎭⎫2x +π6的最小正周期为π,③正确;函数y =tan ⎝⎛⎭⎫2x -π4的最小正周期为π2,④不正确.8.[2014·全国新课标卷Ⅰ] 如图1-1,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱8.B [解析]从俯视图为矩形可以看出,此几何体不可能是三棱锥或四棱锥,其直观图如图,是一个三棱柱.9.[2014·全国新课标卷Ⅰ] 执行如图1-1的程序框图,若输入的a ,b ,k 分别为1,2,3,则输出的M =( )图1-1A.203B.72C.165D.1589.D [解析]第一次循环后,M =32,a =2,b =32,n =2;第二次循环后,M =83,a =32,b =83,n =3;第三次循环后,M =158,a =83,b =158,n =4,此时n >k (n =4,k =3),结束循环,输出M =158.10.[2014·全国新课标卷Ⅰ] 已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=54x 0,则x 0=( )A .1B .2C .4D .810.A [解析]由抛物线方程y 2=x ,知p =12,又因为|AF |=x 0+p 2=x 0+14=54x 0,所以得x 0=1.11.[2014·全国新课标卷Ⅰ] 设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a =( )A .-5B .3C .-5或3D .5或-311.B [解析]当a <0时,作出相应的可行域,可知目标函数z =x +ay 不存在最小值.当a ≥0时,作出可行域如图,易知当-1a >-1,即a >1时,目标函数在A 点取得最小值.由A ⎝⎛⎭⎫a -12,a +12,知z min =a -12+a 2+a 2=7,解得a =3或-5(舍去).图2-2-512.[2014·全国新课标卷Ⅰ] 已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( )A .(2,+∞)B .(1,+∞)C .(-∞,-2)D .(-∞,-1)12.C [解析]显然a =0时,函数有两个不同的零点,不符合.当a ≠0时,由f ′(x )=3ax 2-6x =0,得x 1=0,x 2=2a .当a >0时,函数f (x )在(-∞,0),⎝⎛⎭⎫2a ,+∞上单调递增,在⎝⎛⎭⎫0,2a 上单调递减,又f (0)=1,所以函数f (x )存在小于0的零点,不符合题意;当a <0时,函数f (x )在⎝⎛⎭⎫-∞,2a ,(0,+∞)上单调递减,在⎝⎛⎭⎫2a ,0上单调递增,所以只需f ⎝⎛⎭⎫2a >0,解得a <-2,所以选C. 13.[2014·全国新课标卷Ⅰ] 将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.13.23 [解析]2本数学书记为数1,数2,3本书共有(数1数2语),(数1语数2),(数2数1语),(数2语数1),(语数1数2),(语数2数1)6种不同的排法,其中2本数学书相邻的排法有4种,对应的概率为P =46=23.14.[2014·全国新课标卷Ⅰ] 甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时,甲说:我去过的城市比乙多,但没去过B 城市.乙说:我没去过C 城市.丙说:我们三人去过同一城市.由此可判断乙去过的城市为________.14.A [解析]由甲没去过B 城市,乙没去过C 城市,而三人去过同一城市,可知三人去过城市A ,又由甲最多去过两个城市,且去过的城市比乙多,故乙只去过A 城市.15.、[2014·全国新课标卷Ⅰ] 设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.15.(-∞,8] [解析]当x <1时,由e x -1≤2,得x <1;当x ≥1时,由x 13≤2,解得1≤x ≤8,综合可知x 的取值范围为x ≤8.16.[2014·全国新课标卷Ⅰ] 如图1-3,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°,以及∠MAC =75°,从C 点测得∠MCA =60°.已知山高BC =100m ,则山高MN =________m.图1-316.150 [解析]在Rt △ABC 中,BC =100,∠CAB =45°,所以AC =100 2.在△MAC中,∠MAC =75°,∠MCA =60°,所以∠AMC =45°,由正弦定理有AM sin ∠MCA =ACsin ∠AMC,即AM =sin60°sin45°×1002=1003,于是在Rt △AMN 中,有MN =sin60°×1003=150.17.、[2014·全国新课标卷Ⅰ] 已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x +6=0的根.(1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和.17.解:(1)方程x 2-5x +6=0的两根为2,3. 由题意得a 2=2,a 4=3.设数列{a n }的公差为d ,则a 4-a 2=2d , 故d =12,从而得a 1=32.所以{a n }的通项公式为a n =12n +1.(2)设⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和为S n ,由(1)知a n 2n =n +22n +1,则S n =322+423+…+n +12n +n +22n +1,12S n =323+424+…+n +12n +1+n +22n +2, 两式相减得12S n =34+⎝⎛⎭⎫123+…+12n +1-n +22n +2=34+14⎝⎛⎭⎫1-12n -1-n +22n +2,所以S n =2-n +42n +1. 18.[2014·全国新课标卷Ⅰ] 从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(1)在答题卡上作出这些数据的频率分布直方图;(2)估计这种产品质量指标值的平均值及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?18.解:(1)频率分布直方图如下:(2)质量指标值的样本平均数为x =80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100. 质量指标值的样本方差为s 2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.8=0.68. 由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.19.[2014·全国新课标卷Ⅰ] 如图1-4,三棱柱ABC A 1B 1C 1中,侧面BB 1C 1C 为菱形,B 1C 的中点为O ,且AO ⊥平面BB 1C 1C .图1-4(1)证明:B 1C ⊥AB ;(2)若AC ⊥AB 1,∠CBB 1=60°,BC =1,求三棱柱ABC -A 1B 1C 1的高.19.解:(1)证明:连接BC 1,则O 为B 1C 与BC 1的交点. 因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1. 又AO ⊥平面BB 1C 1C ,所以B 1C ⊥AO , 由于BC 1∩AO =O ,故B 1C ⊥平面ABO . 由于AB ⊂平面ABO ,故B 1C ⊥AB .(2)作OD ⊥BC ,垂足为D ,连接AD .作OH ⊥AD ,垂足为H . 由于BC ⊥AO ,BC ⊥OD ,且AO ∩OD =O , 故BC ⊥平面AOD ,所以OH ⊥BC . 又OH ⊥AD ,且AD ∩BC =D , 所以OH ⊥平面ABC .因为∠CBB 1=60°,所以△CBB 1为等边三角形,又BC =1,可得OD =34. 因为AC ⊥AB 1,所以OA =12B 1C =12.由OH ·AD =OD ·OA ,且AD =OD 2+OA 2=74,得OH =2114. 又O 为B 1C 的中点,所以点B 1到平面ABC 的距离为217.故三棱柱ABC -A 1B 1C 1的高为217.20.、、[2014·全国新课标卷Ⅰ] 已知点P (2,2),圆C :x +y -8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积. 20.解:(1)圆C 的方程可化为x 2+(y -4)2=16, 所以圆心为C (0,4),半径为4.设M (x ,y ),则CM =(x ,y -4),MP =(2-x ,2-y ). 由题设知CM ·MP =0,故x (2-x )+(y -4)(2-y )=0,即(x -1)2+(y -3)2=2. 由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.(2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆.由于|OP |=|OM |,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON ⊥PM . 因为ON 的斜率为3,所以直线l 的斜率为-13,故l 的方程为y =-13x +83.又|OM |=|OP |=22,O 到直线l 的距离为4105,故|PM |=4105,所以△POM 的面积为165.21.、[2014·全国新课标卷Ⅰ] 设函数f (x )=a ln x +1-a 2x 2-bx (a ≠1),曲线y =f (x )在点(1,f (1))处的切线斜率为0. (1)求b ;(2)若存在x 0≥1,使得f (x 0)<aa -1,求a 的取值范围. 21.解:(1)f ′(x )=ax +(1-a )x -b .由题设知f ′(1)=0,解得b =1, (2)f (x )的定义域为(0,+∞), 由(1)知,f (x )=a ln x +1-a 2x 2-x ,f ′(x )=ax +(1-a )x -1=1-a x ⎝⎛⎭⎫x -a 1-a (x -1).(i)若a ≤12,则a1-a ≤1,故当x ∈(1,+∞)时,f ′(x )>0,f (x )在(1,+∞)上单调递增.所以,存在x 0≥1,使得f (x 0)<a 1-a 的充要条件为f (1)<a a -1,即1-a 2-1<aa -1,解得-2-1<a <2-1.(ii)若12<a <1,则a 1-a>1,故当x ∈⎝⎛⎭⎫1,a1-a 时,f ′(x )<0;当x ∈⎝⎛⎭⎫a1-a ,+∞时,f ′(x )>0.f (x )在⎝⎛⎭⎫1,a 1-a 上单调递减,在⎝⎛⎭⎫a1-a ,+∞上单调递增.所以,存在x 0≥1,使得f (x 0)<a a -1的充要条件为f ⎝⎛⎭⎫a 1-a <aa -1. 而f ⎝⎛⎭⎫a 1-a =a ln a 1-a +a 22(1-a )+a a -1>aa -1,所以不合题意.(iii)若a >1, 则f (1)=1-a 2-1=-a -12<a a -1,符合题意.综上,a 的取值范围是(-2-1,2-1)∪(1,+∞).22.[2014·全国新课标卷Ⅰ] 选修4-1:几何证明选讲 如图1-5,四边形ABCD 是⊙O 的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB =CE .图1-5(1)证明:∠D =∠E ;(2)设AD 不是⊙O 的直径,AD 的中点为M ,且MB =MC ,证明:△ADE 为等边三角形. 22.证明:(1)由题设知A ,B ,C ,D 四点共圆, 所以∠D =∠CBE .由已知得∠CBE =∠E ,故∠D =∠E .(2)设BC 的中点为N ,连接MN ,则由MB =MC 知MN ⊥BC ,故点O 在直线MN 上. 又AD 不是⊙O 的直径,M 为AD 的中点, 故OM ⊥AD ,即MN ⊥AD , 所以AD ∥BC ,故∠A =∠CBE . 又∠CBE =∠E ,故∠A =∠E .由(1)知,∠D =∠E ,所以△ADE 为等边三角形.23.[2014·全国新课标卷Ⅰ] 选修4-4:坐标系与参数方程已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程、直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值.23.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数),直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到直线l 的距离d =55|4cos θ+3sin θ-6|, 则|P A |=d sin30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|P A |取得最大值, 最大值为2255.当sin(θ+α)=1时,|P A |取得最小值, 最小值为255.24.[2014·全国新课标卷Ⅰ] 选修4-5:不等式选讲 若a >0,b >0,且1a +1b=ab .(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?请说明理由.24.解:(1)由ab =1a +1b ≥2ab ,得ab ≥2,当且仅当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥42,当且仅当a =b =2时等号成立. 所以a 3+b 3的最小值为4 2.(2)由(1)知,2a +3b ≥26ab ≥4 3.由于43>6,从而不存在a ,b ,使2a +3b =6.。
D 单元 数列 D1 数列的概念与简单表示法1.、、[2014·江西卷] 已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a n b n+1-a n +1b n +2b n +1b n =0.(1)令c n =a nb n,求数列{c n }的通项公式;(2)若b n =3n -1,求数列{a n }的前n 项和S n .17.解:(1)因为a n b n +1-a n +1b n +2b n +1b n =0,b n ≠0(n ∈N *),所以a n +1b n +1-a nb n=2,即c n +1-c n =2,所以数列{c n }是以c 1=1为首项,d =2为公差的等差数列,故c n =2n -1.(2)由b n =3n -1,知a n =(2n -1)3n -1,于是数列{a n }的前n 项和S n =1×30+3×31+5×32+…+(2n -1)×3n -1,3S n =1×31+3×32+…+(2n -3)×3n -1+(2n -1)×3n ,将两式相减得-2S n =1+2×(31+32+…+3n -1)-(2n -1)×3n =-2-(2n -2)×3n , 所以S n =(n -1)3n +1.2[2014·新课标全国卷Ⅰ] 已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数. (1)证明:a n +2-a n =λ.(2)是否存在λ,使得{a n }为等差数列?并说明理由.17.解:(1)证明:由题设,a n a n +1=λS n -1,a n +1a n +2=λS n +1-1,两式相减得a n +1(a n +2-a n )=λa n +1. 因为a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得 a 2=λ-1, 由(1)知,a 3=λ+1.若{a n }为等差数列,则2a 2=a 1+a 3,解得λ=4,故a n +2-a n =4. 由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1. 所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.3、[2014·新课标全国卷Ⅱ] 已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式;(2)证明1a 1+1a 2+…+1a n <32.17.解:(1)由a n +1=3a n +1得a n +1+12=3⎝⎛⎭⎪⎫a n +12.又a1+12=32,所以⎩⎨⎧⎭⎬⎫a n+12是首项为32,公比为3的等比数列,所以a n+12=3n2,因此数列{a n}的通项公式为a n=3n-1 2.(2)证明:由(1)知1a n =23n-1.因为当n≥1时,3n-1≥2×3n-1,所以13n-1≤12×3n-1,即1a n=23n-1≤13n-1.于是1a1+1a2+…+1a n≤1+13+…+13n-1=32⎝⎛⎭⎪⎫1-13n<32.所以1a1+1a2+…+1a n<32.4,,[2014·重庆卷] 设a1=1,a n+1=a2n-2a n+2+b(n∈N*).(1)若b=1,求a2,a3及数列{a n}的通项公式.(2)若b=-1,问:是否存在实数c使得a2n<c<a2n+1对所有n∈N*成立?证明你的结论.22.解:(1)方法一:a2=2,a3=2+1.再由题设条件知(a n+1-1)2=(a n-1)2+1.从而{(a n-1)2}是首项为0,公差为1的等差数列,故(a n-1)2=n-1,即a n=n-1+1(n∈N*).方法二:a 2=2,a 3=2+1.可写为a 1=1-1+1,a 2=2-1+1,a 3=3-1+1.因此猜想a n =n -1+1. 下面用数学归纳法证明上式. 当n =1时,结论显然成立.假设n =k 时结论成立,即a k =k -1+1,则a k +1=(a k -1)2+1+1=(k -1)+1+1=(k +1)-1+1,这就是说,当n =k +1时结论成立. 所以a n =n -1+1(n ∈N *).(2)方法一:设f (x )=(x -1)2+1-1,则a n +1=f (a n ). 令c =f (c ),即c =(c -1)2+1-1,解得c =14.下面用数学归纳法证明命题a 2n <c <a 2n +1<1.当n =1时,a 2=f (1)=0,a 3=f (0)=2-1,所以a 2<14<a 3<1,结论成立.假设n =k 时结论成立,即a 2k <c <a 2k +1<1. 易知f (x )在(-∞,1]上为减函数,从而c =f (c )>f (a 2k +1)>f (1)=a 2,即1>c>a2k+2>a2.再由f(x)在(-∞,1]上为减函数,得c=f(c)<f(a2k+2)<f(a2)=a3<1,故c<a2k+3<1,因此a2(k+1)<c<a2(k+1)+1<1,这就是说,当n=k+1时结论成立.综上,存在c=14使a2n<C<a2a+1对所有n∈N*成立.方法二:设f(x)=(x-1)2+1-1,则a n+1=f(a n).先证:0≤a n≤1(n∈N*).①当n=1时,结论明显成立.假设n=k时结论成立,即0≤a k≤1.易知f(x)在(-∞,1]上为减函数,从而0=f(1)≤f(a k)≤f(0)=2-1<1.即0≤a k+1≤1.这就是说,当n=k+1时结论成立.故①成立.再证:a2n<a2n+1(n∈N*).②当n=1时,a2=f(1)=0,a3=f(a2)=f(0)=2-1,所以a2<a3,即n=1时②成立.假设n=k时,结论成立,即a2k<a2k+1.由①及f(x)在(-∞,1]上为减函数,得a2k+1=f(a2k)>f(a2k+1)=a2k+2,a2(k+1)=f(a2k+1)<f(a2k+2)=a2(k+1)+1.这就是说,当n =k +1时②成立.所以②对一切n ∈N *成立. 由②得a 2n <a 22n -2a 2n +2-1, 即(a 2n +1)2<a 22n -2a 2n +2, 因此a 2n <14. ③又由①②及f (x )在(-∞,1]上为减函数,得f (a 2n )>f (a 2n +1),即a 2n +1>a 2n +2. 所以a 2n +1>a 22n +1-2a 2n +1+2-1,解得a 2n +1>14. ④ 综上,由②③④知存在c =14使a 2n <c <a 2n +1对一切n ∈N *成立.D2 等差数列及等差数列前n 项和5、[2014·安徽卷] 数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q =________. 12.16.[2014·北京卷] 若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大. 12.87.[2014·福建卷] 等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8 B .10 C .12 D .143.C8.、、[2014·湖北卷] 已知等差数列{a n}满足:a1=2,且a1,a2,a5成等比数列.(1)求数列{a n}的通项公式.(2)记S n为数列{a n}的前n项和,是否存在正整数n,使得S n>60n+800?若存在,求n的最小值;若不存在,说明理由.18.解:(1)设数列{a n}的公差为d,依题意得,2,2+d,2+4d成等比数列,故有(2+d)2=2(2+4d),化简得d2-4d=0,解得d=0或d=4.当d=0时,a n=2;当d=4时,a n=2+(n-1)·4=4n-2.从而得数列{a n}的通项公式为a n=2或a n=4n-2.(2)当a n=2时,S n=2n,显然2n<60n+800,此时不存在正整数n,使得S n>60n+800成立.当a n=4n-2时,S n=n[2+(4n-2)]2=2n2.令2n2>60n+800,即n2-30n-400>0,解得n>40或n<-10(舍去),此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的正整数n ;当a n =4n -2时,存在满足题意的正整数n ,其最小值为41.9.、[2014·湖南卷] 已知数列{a n }满足a 1=1,|a n +1-a n |=p n ,n ∈N *. (1)若{a n }是递增数列,且a 1,2a 2,3a 3成等差数列,求p 的值;(2)若p =12,且{a 2n -1}是递增数列,{a 2n }是递减数列,求数列{a n }的通项公式.20.解:(1)因为{a n }是递增数列,所以a n +1-a n =|a n +1-a n |=p n .而a 1=1,因此a 2=p +1,a 3=p 2+p +1.又a 1,2a 2,3a 3成等差数列,所以4a 2=a 1+3a 3,因而3p2-p =0,解得p =13或p =0.当p =0时,a n +1=a n ,这与{a n }是递增数列矛盾,故p =13.(2)由于{a 2n -1}是递增数列,因而a 2n +1-a 2n -1>0,于是(a 2n +1-a 2n )+(a 2n -a 2n -1)>0.① 因为122n <122n -1,所以|a 2n +1-a 2n |<|a 2n -a 2n -1|.②由①②知,a 2n -a 2n -1>0,因此a 2n -a 2n -1=⎝ ⎛⎭⎪⎫122n -1=(-1)2n22n -1.③因为{a 2n }是递减数列,同理可得,a 2n +1-a 2n <0,故a 2n +1-a 2n =-⎝ ⎛⎭⎪⎫122n =(-1)2n +122n.④由③④可知,a n +1-a n =(-1)n +12n. 于是a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+12-122+…+(-1)n2n -1=1+12·1-⎝ ⎛⎭⎪⎫-12n -11+12=43+13·(-1)n 2n -1. 故数列{a n }的通项公式为a n =43+13·(-1)n2n -1.10[2014·辽宁卷] 设等差数列{a n }的公差为d .若数列{2a 1a n }为递减数列,则( ) A .d <0 B .d >0 C .a 1d <0 D .a 1d >0 8.C11.、[2014·全国卷] 等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4.(1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .18.解:(1)由a 1=10,a 2为整数知,等差数列{a n }的公差d 为整数. 又S n ≤S 4,故a 4≥0,a 5≤0, 于是10+3d ≥0,10+4d ≤0,解得-103≤d ≤-52,因此d =-3.故数列{a n }的通项公式为a n =13-3n .(2)b n =1(13-3n )(10-3n )=13⎝⎛⎭⎪⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n =13⎝ ⎛⎭⎪⎫17-110+⎝ ⎛⎭⎪⎫14-17+…+⎝ ⎛⎭⎪⎫110-3n -113-3n =13⎝ ⎛⎭⎪⎫110-3n -110=n10(10-3n ). 12、[2014·新课标全国卷Ⅰ] 已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数. (1)证明:a n +2-a n =λ.(2)是否存在λ,使得{a n }为等差数列?并说明理由.17.解:(1)证明:由题设,a n a n +1=λS n -1,a n +1a n +2=λS n +1-1,两式相减得a n +1(a n +2-a n )=λa n +1. 因为a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得 a 2=λ-1, 由(1)知,a 3=λ+1.若{a n }为等差数列,则2a 2=a 1+a 3,解得λ=4,故a n +2-a n =4. 由此可得{a 2n -1}是首项为1,公差为4的等差数列,a2n-1=4n-3;{a2n}是首项为3,公差为4的等差数列,a2n=4n-1.所以a n=2n-1,a n+1-a n=2.因此存在λ=4,使得数列{a n}为等差数列.13.,,[2014·山东卷] 已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列.(1)求数列{a n}的通项公式;(2)令b n=(-1)n-14na n a n+1,求数列{b n}的前n项和T n.19.解: (1)因为S1=a1,S2=2a1+2×12×2=2a1+2,S4=4a1+4×32×2=4a1+12,由题意得(2a1+2)2=a1(4a1+12),解得a1=1,所以a n=2n-1.(2)由题意可知,b n=(-1)n-14n a n a n+1=(-1)n-14n(2n-1)(2n+1)=(-1)n -1⎝ ⎛⎭⎪⎫12n -1+12n +1. 当n 为偶数时,T n =⎝ ⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…+⎝⎛12n -3+⎭⎪⎫12n -1-⎝ ⎛⎭⎪⎫12n -1+12n +1 =1-12n +1=2n 2n +1. 当n 为奇数时,T n =⎝ ⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…-⎝⎛⎭⎪⎫12n -3+12n -1+⎝ ⎛⎭⎪⎫12n -1+12n +1 =1+12n +1=2n +22n +1. 所以T n=⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n2n +1,n 为偶数.⎝ ⎛⎭⎪⎫或T n=2n +1+(-1)n -12n +1 14.,,[2014·陕西卷] △ABC 的内角A ,B ,C 所对的边分别为a ,b ,c . (1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C );(2)若a ,b ,c 成等比数列,求cos B 的最小值.16.解:(1)∵a ,b ,c 成等差数列,∴a +c =2b . 由正弦定理得sin A +sin C =2sin B . ∵sin B =sin[π-(A +C )]=sin(A +C ), ∴sin A +sin C =2sin(A +C ). (2)∵a ,b ,c 成等比数列,∴b 2=ac . 由余弦定理得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac ≥2ac -ac 2ac =12,当且仅当a =c 时等号成立, ∴cos B 的最小值为12.15.、[2014·天津卷] 设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为________.11.-1216,,[2014·重庆卷] 设a 1=1,a n +1=a 2n -2a n +2+b (n ∈N *).(1)若b =1,求a 2,a 3及数列{a n }的通项公式.(2)若b =-1,问:是否存在实数c 使得a 2n <c <a 2n +1对所有n ∈N *成立?证明你的结论. 22.解:(1)方法一:a 2=2,a 3=2+1.再由题设条件知(a n +1-1)2=(a n -1)2+1.从而{(a n -1)2}是首项为0,公差为1的等差数列, 故(a n -1)2=n -1,即a n =n -1+1(n ∈N *).方法二:a 2=2,a 3=2+1.可写为a 1=1-1+1,a 2=2-1+1,a 3=3-1+1.因此猜想a n =n -1+1. 下面用数学归纳法证明上式. 当n =1时,结论显然成立.假设n =k 时结论成立,即a k =k -1+1,则a k +1=(a k -1)2+1+1=(k -1)+1+1=(k +1)-1+1,这就是说,当n =k +1时结论成立. 所以a n =n -1+1(n ∈N *).(2)方法一:设f (x )=(x -1)2+1-1,则a n +1=f (a n ). 令c =f (c ),即c =(c -1)2+1-1,解得c =14.下面用数学归纳法证明命题a 2n <c <a 2n +1<1.当n =1时,a 2=f (1)=0,a 3=f (0)=2-1,所以a 2<14<a 3<1,结论成立.假设n =k 时结论成立,即a 2k <c <a 2k +1<1. 易知f (x )在(-∞,1]上为减函数,从而c =f (c )>f (a 2k +1)>f (1)=a 2,即1>c >a 2k +2>a 2.再由f (x )在(-∞,1]上为减函数,得c =f (c )<f (a 2k +2)<f (a 2)=a 3<1, 故c <a 2k +3<1,因此a 2(k +1)<c <a 2(k +1)+1<1,这就是说,当n =k +1时结论成立. 综上,存在 c =14使a 2n <C <a 2a +1对所有n ∈N *成立.方法二:设f (x )=(x -1)2+1-1,则a n +1=f (a n ). 先证:0≤a n ≤1(n ∈N *). ① 当n =1时,结论明显成立.假设n =k 时结论成立,即0≤a k ≤1. 易知f (x )在(-∞,1]上为减函数,从而 0=f (1)≤f (a k )≤f (0)=2-1<1.即0≤a k +1≤1.这就是说,当n =k +1时结论成立.故①成立. 再证:a 2n <a 2n +1(n ∈N *). ②当n =1时,a 2=f (1)=0,a 3=f (a 2)=f (0)=2-1,所以a 2<a 3,即n =1时②成立. 假设n =k 时,结论成立,即a 2k <a 2k +1. 由①及f (x )在(-∞,1]上为减函数,得a 2k +1=f (a 2k )>f (a 2k +1)=a 2k +2, a 2(k +1)=f (a 2k +1)<f (a 2k +2)=a 2(k +1)+1.这就是说,当n =k +1时②成立.所以②对一切n ∈N *成立. 由②得a 2n <a 22n -2a 2n +2-1, 即(a 2n +1)2<a 22n -2a 2n +2, 因此a 2n <14. ③又由①②及f (x )在(-∞,1]上为减函数,得f (a 2n )>f (a 2n +1),即a 2n +1>a 2n +2.所以a 2n +1>a 22n +1-2a 2n +1+2-1,解得a 2n +1>14. ④综上,由②③④知存在c =14使a 2n <c <a 2n +1对一切n ∈N *成立.D3 等比数列及等比数列前n 项和14[2014·重庆卷] 对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列C.a2,a4,a8成等比数列D.a3,a6,a9,成等比数列2.D18、[2014·安徽卷] 数列{a n}是等差数列,若a1+1,a3+3,a5+5构成公比为q的等比数列,则q=________.12.119.、[2014·广东卷] 若等比数列{a n}的各项均为正数,且a10a11+a9a12=2e5,则ln a1+ln a2+…+ln a20=________.13.5020.[2014·全国卷] 等比数列{a n}中,a4=2,a5=5,则数列{lg a n}的前8项和等于( )A.6 B.5C.4 D.310.C18.、、[2014·湖北卷] 已知等差数列{a n}满足:a1=2,且a1,a2,a5成等比数列.(1)求数列{a n}的通项公式.(2)记S n为数列{a n}的前n项和,是否存在正整数n,使得S n>60n+800?若存在,求n的最小值;若不存在,说明理由.18.解:(1)设数列{a n}的公差为d,依题意得,2,2+d,2+4d成等比数列,故有(2+d)2=2(2+4d),化简得d2-4d=0,解得d=0或d=4.当d=0时,a n=2;当d=4时,a n=2+(n-1)·4=4n-2.从而得数列{a n}的通项公式为a n=2或a n=4n-2.(2)当a n=2时,S n=2n,显然2n<60n+800,此时不存在正整数n,使得S n>60n+800成立.当a n=4n-2时,S n=n[2+(4n-2)]2=2n2.令2n2>60n+800,即n2-30n-400>0,解得n>40或n<-10(舍去),此时存在正整数n,使得S n>60n+800成立,n的最小值为41.综上,当a n=2时,不存在满足题意的正整数n;当a n=4n-2时,存在满足题意的正整数n,其最小值为41.17.、、[2014·新课标全国卷Ⅱ] 已知数列{a n}满足a1=1,a n+1=3a n+1.(1)证明⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式;(2)证明1a 1+1a 2+…+1a n <32.17.解:(1)由a n +1=3a n +1得a n +1+12=3⎝⎛⎭⎪⎫a n +12.又a 1+12=32,所以⎩⎨⎧⎭⎬⎫a n +12是首项为32,公比为3的等比数列,所以a n +12=3n2,因此数列{a n }的通项公式为a n =3n -12.(2)证明:由(1)知1a n =23n -1.因为当n ≥1时,3n -1≥2×3n -1, 所以13n -1≤12×3n -1,即1a n =23n -1≤13n -1.于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32⎝⎛⎭⎪⎫1-13n <32.所以1a 1+1a 2+…+1a n <32.19.,,[2014·山东卷] 已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式;(2)令b n =(-1)n -14na n a n +1,求数列{b n }的前n 项和T n .19.解: (1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12,由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1, 所以a n =2n -1. (2)由题意可知,b n =(-1)n -14na n a n +1=(-1)n -14n(2n -1)(2n +1)=(-1)n -1⎝ ⎛⎭⎪⎫12n -1+12n +1. 当n 为偶数时,T n =⎝ ⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…+⎝⎛12n -3+⎭⎪⎫12n -1-⎝ ⎛⎭⎪⎫12n -1+12n +1 =1-12n +1=2n2n +1.当n 为奇数时,T n =⎝ ⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…-⎝⎛⎭⎪⎫12n -3+12n -1+⎝ ⎛⎭⎪⎫12n -1+12n +1 =1+12n +1=2n +22n +1. 所以T n=⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n2n +1,n 为偶数.⎝ ⎛⎭⎪⎫或T n=2n +1+(-1)n -12n +1 16.,,[2014·陕西卷] △ABC 的内角A ,B ,C 所对的边分别为a ,b ,c . (1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C );(2)若a ,b ,c 成等比数列,求cos B 的最小值. 16.解:(1)∵a ,b ,c 成等差数列,∴a +c =2b . 由正弦定理得sin A +sin C =2sin B . ∵sin B =sin[π-(A +C )]=sin(A +C ), ∴sin A +sin C =2sin(A +C ). (2)∵a ,b ,c 成等比数列,∴b 2=ac . 由余弦定理得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac ≥2ac -ac 2ac =12,当且仅当a =c 时等号成立, ∴cos B 的最小值为12.11.、[2014·天津卷] 设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为________.11.-1219.、、[2014·天津卷] 已知q 和n 均为给定的大于1的自然数.设集合M ={0,1,2,…,q -1},集合A ={x |x =x 1+x 2q +…+x n q n -1,x i ∈M ,i =1,2,…,n }. (1)当q =2,n =3时,用列举法表示集合A .(2)设s ,t ∈A ,s =a 1+a 2q +…+a n q n -1,t =b 1+b 2q +…+b n q n -1,其中a i ,b i ∈M ,i =1,2,…,n .证明:若a n <b n ,则s <t .19.解:(1)当q =2,n =3时,M ={0,1},A ={x |x =x 1+x 2·2+x 3·22,x i ∈M ,i =1,2,3},可得A ={0,1,2,3,4,5,6,7}.(2)证明:由s ,t ∈A ,s =a 1+a 2q +…+a n q n -1,t =b 1+b 2q +…+b n q n -1,a i ,b i ∈M ,i =1,2,…,n 及a n <b n ,可得s -t =(a 1-b 1)+(a 2-b 2)q +…+(a n -1-b n -1)q n -2+(a n -b n )q n -1≤(q -1)+(q -1)q +…+(q -1)q n -2-q n -1=(q -1)(1-q n -1)1-q -q n -1=-1<0, 所以s <t . D4 数列求和17.、、[2014·江西卷] 已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a n b n+1-a n +1b n +2b n +1b n =0.(1)令c n =a nb n,求数列{c n }的通项公式;(2)若b n =3n -1,求数列{a n }的前n 项和S n .17.解:(1)因为a n b n +1-a n +1b n +2b n +1b n =0,b n ≠0(n ∈N *),所以a n +1b n +1-a nb n=2,即c n +1-c n =2,所以数列{c n }是以c 1=1为首项,d =2为公差的等差数列,故c n =2n -1.(2)由b n =3n -1,知a n =(2n -1)3n -1,于是数列{a n }的前n 项和S n =1×30+3×31+5×32+…+(2n -1)×3n -1,3S n =1×31+3×32+…+(2n -3)×3n -1+(2n -1)×3n ,将两式相减得-2S n =1+2×(31+32+…+3n -1)-(2n -1)×3n =-2-(2n -2)×3n , 所以S n =(n -1)3n +1.18.、[2014·全国卷] 等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4.(1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .18.解:(1)由a 1=10,a 2为整数知,等差数列{a n }的公差d 为整数. 又S n ≤S 4,故a 4≥0,a 5≤0, 于是10+3d ≥0,10+4d ≤0, 解得-103≤d ≤-52,因此d =-3.故数列{a n }的通项公式为a n =13-3n .(2)b n =1(13-3n )(10-3n )=13⎝ ⎛⎭⎪⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n =13⎝ ⎛⎭⎪⎫17-110+⎝ ⎛⎭⎪⎫14-17+…+⎝ ⎛⎭⎪⎫110-3n -113-3n =13⎝ ⎛⎭⎪⎫110-3n -110=n10(10-3n ). 19.,,[2014·山东卷] 已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式;(2)令b n =(-1)n -14na n a n +1,求数列{b n }的前n 项和T n .19.解: (1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12,由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1, 所以a n =2n -1. (2)由题意可知,b n =(-1)n -14na n a n +1=(-1)n -14n(2n -1)(2n +1)=(-1)n -1⎝ ⎛⎭⎪⎫12n -1+12n +1. 当n 为偶数时,T n =⎝ ⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…+⎝⎛12n -3+⎭⎪⎫12n -1-⎝ ⎛⎭⎪⎫12n -1+12n +1 =1-12n +1=2n 2n +1. 当n 为奇数时,T n =⎝ ⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…-⎝⎛⎭⎪⎫12n -3+12n -1+⎝ ⎛⎭⎪⎫12n -1+12n +1 =1+12n +1=2n +22n +1. 所以T n=⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n2n +1,n 为偶数.⎝ ⎛⎭⎪⎫或T n=2n +1+(-1)n -12n +1 D5 单元综合20.、[2014·湖南卷] 已知数列{a n }满足a 1=1,|a n +1-a n |=p n ,n ∈N *. (1)若{a n }是递增数列,且a 1,2a 2,3a 3成等差数列,求p 的值;(2)若p =12,且{a 2n -1}是递增数列,{a 2n }是递减数列,求数列{a n }的通项公式.20.解:(1)因为{a n }是递增数列,所以a n +1-a n =|a n +1-a n |=p n .而a 1=1,因此a 2=p +1,a 3=p 2+p +1.又a 1,2a 2,3a 3成等差数列,所以4a 2=a 1+3a 3,因而3p2-p =0,解得p =13或p =0.当p =0时,a n +1=a n ,这与{a n }是递增数列矛盾,故p =13.(2)由于{a 2n -1}是递增数列,因而a 2n +1-a 2n -1>0,于是(a 2n +1-a 2n )+(a 2n -a 2n -1)>0.① 因为122n <122n -1,所以|a 2n +1-a 2n |<|a 2n -a 2n -1|.②由①②知,a 2n -a 2n -1>0,因此a 2n -a 2n -1=⎝ ⎛⎭⎪⎫122n -1=(-1)2n22n -1.③因为{a 2n }是递减数列,同理可得,a 2n +1-a 2n <0,故a 2n +1-a 2n =-⎝ ⎛⎭⎪⎫122n =(-1)2n +122n.④由③④可知,a n +1-a n =(-1)n +12n.于是a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+12-122+…+(-1)n2n -1=1+12·1-⎝ ⎛⎭⎪⎫-12n -11+12=43+13·(-1)n 2n -1. 故数列{a n }的通项公式为a n =43+13·(-1)n2n -1.21.、、[2014·安徽卷] 设实数c >0,整数p >1,n ∈N *. (1)证明:当x >-1且x ≠0时,(1+x )p >1+px ;(2)数列{a n }满足a 1>c 1p ,a n +1=p -1p a n +c p a 1-p n ,证明:a n >a n +1>c 1p.21.证明:(1)用数学归纳法证明如下.①当p =2时,(1+x )2=1+2x +x 2>1+2x ,原不等式成立. ②假设p =k (k ≥2,k ∈N *)时,不等式(1+x )k >1+kx 成立.当p =k +1时,(1+x )k +1=(1+x )(1+x )k >(1+x )(1+kx )=1+(k +1)x +kx 2>1+(k +1)x .所以当p =k +1时,原不等式也成立.综合①②可得,当x >-1,x ≠0时,对一切整数p >1,不等式(1+x )p >1+px 均成立. (2)方法一:先用数学归纳法证明a n >c 1p.①当n =1时,由题设知a 1>c 1p成立.②假设n =k (k ≥1,k ∈N *)时,不等式a k >c 1p 成立.由a n +1=p -1p a n +c pa 1-pn 易知a n >0,n ∈N *.当n =k +1时,a k +1a k =p -1p +c pa -pk = 1+1p ⎝ ⎛⎭⎪⎫ca p k -1.由a k >c 1p>0得-1<-1p <1p ⎝ ⎛⎭⎪⎫ca p k-1<0.由(1)中的结论得⎝ ⎛⎭⎪⎫a k +1a k p =⎣⎢⎡⎦⎥⎤1+1p ⎝ ⎛⎭⎪⎫c a p k -1p >1+p · 1p ⎝ ⎛⎭⎪⎫ca p k -1=c a p k .因此a p k +1>c ,即a k +1>c 1p,所以当n =k +1时,不等式a n >c 1p也成立.综合①②可得,对一切正整数n ,不等式a n >c 1p均成立.再由a n +1a n =1+1p ⎝ ⎛⎭⎪⎫c a p n -1可得a n +1a n<1,即a n +1<a n .综上所述,a n >a n +1>c 1p,n ∈N *.方法二:设f (x )=p -1p x +c p x 1-p ,x ≥c 1p ,则x p ≥c ,所以f ′(x )=p -1p +c p (1-p )x -p=p -1p ⎝ ⎛⎭⎪⎫1-c x p >0. 由此可得,f (x )在[c 1p ,+∞)上单调递增,因而,当x >c 1p 时,f (x )>f (c 1p )=c 1p.①当n =1时,由a 1>c 1p>0,即a p 1>c 可知a 2=p -1p a 1+c p a 1-p 1=a 1⎣⎢⎡⎦⎥⎤1+1p ⎝ ⎛⎭⎪⎫c a p 1-1<a 1,并且a 2=f (a 1)>c 1p ,从而可得a 1>a 2>c 1p ,故当n =1时,不等式a n >a n +1>c 1p成立.②假设n =k (k ≥1,k ∈N *)时,不等式a k >a k +1>c 1p成立,则当n =k +1时,f (a k )>f (a k+1)>f (c 1p),即有a k +1>a k +2>c 1p,所以当n =k +1时,原不等式也成立.综合①②可得,对一切正整数n ,不等式a n >a n +1>c 1p均成立.18.、、[2014·湖北卷] 已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式.(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.18.解:(1)设数列{a n }的公差为d , 依题意得,2,2+d ,2+4d 成等比数列, 故有(2+d )2=2(2+4d ),化简得d 2-4d =0,解得d =0或d =4. 当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2.从而得数列{a n }的通项公式为a n =2或a n =4n -2. (2)当a n =2时,S n =2n ,显然2n <60n +800,此时不存在正整数n ,使得S n >60n +800成立.当a n =4n -2时,S n =n [2+(4n -2)]2=2n 2.令2n 2>60n +800,即n 2-30n -400>0, 解得n >40或n <-10(舍去),此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的正整数n ;当a n =4n -2时,存在满足题意的正整数n ,其最小值为41.17.、、[2014·江西卷] 已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a n b n+1-a n +1b n +2b n +1b n =0.(1)令c n =a nb n,求数列{c n }的通项公式;(2)若b n =3n -1,求数列{a n }的前n 项和S n .17.解:(1)因为a n b n +1-a n +1b n +2b n +1b n =0,b n ≠0(n ∈N *),所以a n +1b n +1-a nb n=2,即c n +1-c n =2,所以数列{c n }是以c 1=1为首项,d =2为公差的等差数列,故c n =2n -1.(2)由b n =3n -1,知a n =(2n -1)3n -1,于是数列{a n }的前n 项和S n =1×30+3×31+5×32+…+(2n -1)×3n -1,3S n =1×31+3×32+…+(2n -3)×3n -1+(2n -1)×3n ,将两式相减得-2S n =1+2×(31+32+…+3n -1)-(2n -1)×3n =-2-(2n -2)×3n , 所以S n =(n -1)3n +1.17.、、[2014·新课标全国卷Ⅱ] 已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式;(2)证明1a 1+1a 2+…+1a n <32.17.解:(1)由a n +1=3a n +1得a n +1+12=3⎝⎛⎭⎪⎫a n +12.又a 1+12=32,所以⎩⎨⎧⎭⎬⎫a n +12是首项为32,公比为3的等比数列,所以a n +12=3n2,因此数列{a n }的通项公式为a n =3n -12.(2)证明:由(1)知1a n =23n -1.因为当n ≥1时,3n -1≥2×3n -1, 所以13n -1≤12×3n -1,即1a n =23n -1≤13n -1.于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32⎝⎛⎭⎪⎫1-13n <32.所以1a 1+1a 2+…+1a n <32.19.,[2014·四川卷] 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图像上(n ∈N *).(1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图像上,求数列{a n }的前n 项和S n ; (2)若a 1=1,函数f (x )的图像在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎨⎧⎭⎬⎫a nb n 的前n 项和T n .19.解:(1)由已知得,b 7=2a 7,b 8=2a 8=4b 7,所以2a 8=4×2a 7=2a 7+2,解得d =a 8-a 7=2,所以S n =na 1+n (n -1)2d =-2n +n (n -1)=n 2-3n .(2)函数f (x )=2x 在点(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2), 其在x 轴上的截距为a 2-1ln 2.由题意有a 2-1ln 2=2-1ln 2,解得a 2=2.所以d =a 2-a 1=1. 从而a n =n ,b n =2n ,所以数列{a n b n }的通项公式为a n b n =n2n , 所以T n =12+222+323+…+n -12n -1+n2n ,2T n =11+22+322+…+n2n -1,因此,2T n -T n =1+12+122+…+12n -1-n 2n =2-12n -1-n 2n =2n +1-n -22n .所以,T n =2n +1-n -22n.19.[2014·浙江卷] 已知数列{a n }和{b n }满足a 1a 2a 3…a n =(2)b n (n ∈N *).若{a n }为等比数列,且a 1=2,b 3=6+b 2.(1)求a n 与b n .(2)设c n =1a n -1b n(n ∈N *).记数列{c n }的前n 项和为S n .(i)求S n ;(ii)求正整数k ,使得对任意n ∈均有S k ≥S n . 19.解:(1)由题意a 1a 2a 3…a n =(2)b n ,b 3-b 2=6, 知a 3=(2)b 3-b 2=8.又由a 1=2,得公比q =2(q =-2舍去),所以数列{a n }的通项为a n =2n (n ∈N *).所以,a 1a 2a 3…a n =2n (n +1)2=(2)n (n +1).故数列{b n }的通项为b n =n (n +1)(n ∈N *).(2)(i)由(1)知c n =1a n -1b n =12n -⎝ ⎛⎭⎪⎫1n -1n +1(n ∈N *). 所以S n =1n +1-12n (n ∈N *).(ii)因为c 1=0,c 2>0,c 3>0,c 4>0,当n ≥5时,c n =1n (n +1)⎣⎢⎡⎦⎥⎤n (n +1)2n -1, 而n (n +1)2n-(n +1)(n +2)2n +1=(n +1)(n -2)2n +1>0,得n(n+1)2n≤5×(5+1)25<1,所以,当n≥5时,c n<0.综上,若对任意n∈N*恒有S k≥S n,则k=4. 2020-2-8。
2014年普通高等学校招生全国统一考试数学(文科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知集合{}{}|13,|21M x x N x x =-<<=-<<,则M N =I ( ) A. )1,2(- B. )1,1(- C. )3,1( D. )3,2(-22112||()()222z =+-=.考点:复数的运算4.已知双曲线)0(13222>=-a y a x 的离心率为2,则=a A. 2 B.26 C. 25D. 16.设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+FC EB A.AD B. 21 C. 21D. 【答案】A 【解析】试题分析:根据平面向量基本定理和向量的加减运算可得:在BEF ∆中,12EB EF FB EF AB =+=+u u u r u u u r u u u r u u u r u u u r,同理12FC FE EC FE AC =+=+u u u r u u u r u u u r u u u r u u u r,则11111()()()()22222EB FC EF AB FE AC AB AC AB AC AD+=+++=+=+=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r u u u r . 考点:向量的运算7.在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为A.①②③B. ①③④C. ②④D. ①③8.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱考点:三视图的考查9.执行右面的程序框图,若输入的,,a b k分别为1,2,3,则输出的M ( )A.203B.72C.165D.15810.已知抛物线C :x y =2的焦点为F ,()y x A 0,是C 上一点,x F A 045=,则=x 0( )A. 1B. 2C. 4D. 8考点:线性规划的应用12.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是()2,+∞ (B )()1,+∞ (C )(),2-∞- (D )(),1-∞-第Ⅱ卷(共90分)二、填空题(每题4分,满分16分,将答案填在答题纸上)13.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________. 【答案】23【解析】试题分析:根据题意显然这是一个古典概型,其基本事件有:数1,数2,语; 数1,语,数2;数2,数1,语; 数2,语,数1;语,数2,数1; 语,数1,数2共有6种,其中2本数学书相邻的有4种,则其概率为:42P 63==. 考点:古典概率的计算14.甲、乙、丙三位同学被问到是否去过A 、B 、C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一城市; 由此可判断乙去过的城市为________. 【答案】A 【解析】试题分析:根据题意可将三人可能去过哪些城市的情况列表如下:可以得出结论乙去过的城市为:A . 考点:命题的逻辑分析15.设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是________.【答案】(,8]-∞ 【解析】试题分析:由于题中所给是一个分段函数,则当1x <时,由12x e -≤,可解得:1ln 2x ≤+,则此时:1x <;当1x ≥时,由132x ≤,可解得:328x ≤=,则此时:18x ≤≤,综合上述两种情况可得:(,8]x ∈-∞考点:1.分段函数;2.解不等式16.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得 M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒.已知山高100BC m =,则山高MN =________m.【答案】150 【解析】试题分析:根据题意,在ABC ∆中,已知0045,90,100CAB ABC BC ∠=∠==,易得:1002AC =;在AMC ∆中,已知0075,60,1002MAC MCA AC ∠=∠==易得:045AMC ∠=,由正弦定理可解得:sin sin AC AM AMC ACM =∠∠,即:10023100322AM ==;在AMN ∆中,已知0060,90,1003MAN MNA AM ∠=∠==150MN m =.考点:1.空间几何体;2.仰角的理解;3.解三角形的运用三、解答题 (本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.)17.已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。
2014高考题分类-(文科)数列(含答案)1、(2014年高考重庆卷文2)在等差数列{a n}中,a i 2 , a3 a5 10,则a7 ( )A. 5B. 8 C . 10 D. 141、解:.••数列{a n}是等差,a3 a5 10 ,・°・ 5 , a? 2a4 a 8 , •••选B.2、(2014年高考天津卷文5)设a…是首项为3 ,公差为1 的等差数列,S”为其前n项和,若S,S2, S4成等比数列,则 & =( )A. 2B. - 2C. - D .222、解:• a”是首项为a,,公差为1的等差数列,S”为其前”项和,又• S” S2, S4 成等比数列,...佝a2)2= a1(a a2 a3 a«),即2(2a1 1) = a1 (4a1 6),解得a1 —2,••选D3、(2014年高考新课标2卷文5)等差数列a n的公差为2,若a2,a4,a8成等比数列,贝廿a.的前n项S.= ( )B. n n 1C.D.23、解:.•.等差数列a”的公差为2,且a2 , a4 , 成等比数列,二a42= a?a8 ,即(印6)2=⑻2)⑻14),解得a 2,则a n 2n,二选A4、(2014年高考全国卷文8).设等比数列©}的前n项和为S n,若S2 3,S4 15,则S6 ()A . 31 B. 32 C. 63 D ・644、解:••由等比数列{a n}的前n项和S,的性质得:S2 , S4 -S2, S6 —S4成等比数列,即3,12,S6—15 成等比数列,••• 122= 3(S—15), 解得:S e = 63,二选C5、(2014年高考辽宁卷文9).设等差数列{a n}的公差为d, 若数列0an}为递减数列,则()DA・d 0 B・d 0 C・a-|d 0 D . qd 06、(2014年高考江苏卷文7)在各项均为正数的等比数列,则a6的值是▲.{a n}中,a2 1, a8 a6 2a4【答累】A【解析】设公上匕为哲因为?刚由陽=令+纠得字"二『+2亍* -1?'2— 2 = 0(解得叨'二2 * 所园盹-n才=4・【着点】等比数列餉通项公式7、(2014年高考江西卷文13)在等差数列a n中,a1 7 ,公差为d ,前n 项和为S n,当且仅当n 8时&取最大值,则d 的取值范围 __________ .7、解:因为a i7 0,当且仅当n 8时Sn 取最大值,可知d 0且同时满足a 80,a 90,二a 87 If 0,解得1 d 7,・••答案1 d 1& (2014年高考广东卷 文13).等比数列a n的各项均为正数,且a ’a s4,贝Ulog 2 a 1 +log 2a 2+log 2a 3+log 2a 4+log 2 a 5= _________________.答案:5 提示: 设 Slog 2 a 1 log 2 a 2 log 2 a 3 log 2 a 4 log 2a 5,则 S log 2a 5 log 2a 4log 2 a 3 log 2 a 2 log 2 a 1,5log 2 4 10,a 9 7 8d 02S 5log 2(a i a s ) S 5.9、(2014年高考新课2卷文16)数列{a n}满足a”1[1 a na 2= 2,则a1 = ___________9、解:由已知得10、(2014年高考北京卷 已知a n是等差数列,满足 b 420,且b n a ”是等比数列.(1) 求数列a n和h 的通项公式; (2) 求数列0的前n 项和.文15) a 13,a(本小题满分13分)12,数列b n满足b i4 ,2项公式及其前n 项和T n.(15) f 共 13 分 >«t ( I )设聲筈数列扫」的分建为# +由题倉需所以 u n -Vi t i (N -1)(/ 3n)*设事比数列他-碍}的总比为「V^.1=2£zl£=g r 無% 岛一打I 4-3从丽氏=抑+ 2* 1 5工12- (11J 曲(1 ) + (fl = l31 . 1 -2*艸如伽"和吟仞0犠輸科潤鼬项和环—=r所乩数囲世」的前"顶櫛为]附小心I,11、 (I : (2014年高考重庆卷 文16)(本小题满分 小问6分,(II )小问5分)已知a n是首相为1,公差为2的等差数列,S13分. 表示an的前n 项和. (I )求aII )设 a 41 q S 40 及5 ;b n是首相为2的等比数列,公比 求S 的通q满足I )因为2」垦苗顶眄訂扭蛙"2的零養敦列[析民12、_ ・i 喊眄 *口J n(l<2rt"l> 2K 5, = 3 +3 + ■-■ + (I FI亠I J 工 - ; ---- = --- 二片・CH)*( 1)^^=7.5^ 讥18为孑-心咖*Sj =o t即『-阳416 =o tBrijtfi -4)a =fi,从■而电=址3t® 6."・I妬f屋公比厂目的舗塩融列,所瓯虹胡厂'=2 - 4*_, =2fc_L从阿血丨的枫M和町帀啤二住=寻仟-I )■(2014年高考湖南卷文16).(本小题满分12分)2已知数列a n的前n项和S n亍,n N(I)求数列a n的通项公式;(II )设b 2an1n a n,求数列b n的前2n项和.I )当” I 时* H,V;an[上肾(用・】)*4(jr・|)7 1当用荒2吐d, = 5故盟蚪{% J的划顶公式为匹■ e im由HA灿‘才•(“衍础姗{耐的诃斟顶和为g剧Tj, = C21 + 2^+■*■■+■ I s*)+(—I 4 2- 3+4 —+ 2h),启斗-【*2・3 + £—半加"财-|>-ISlJS捌他}的曲舸段和乙旷口丹7-13、(2014年高考福建卷文17). 已知等比数列{a n}中,a2 3,a5 81.(I )求数列{臥}的通项公式;求数列的前项和(本小题满分12分)a2(II )若数列 6IOg3a n ,13、考查等差、等比数列等基础知识,考查运算求解能力,考查化归与转化思想解:(I )设{a n}的公比为q ,依题意得3 a 1q 481,解得n(d 2 因此,a n3n1(II ) V 数列 b nb n ) = n 2n2 'log 3a n= n 1,・°・数列{b n}的前n 项和S =14、(2014年高考江西卷 文17) 2已知数列a n的前n 项和S n詈(1) 求数列a n的通项公式;(2) 证明:对任意n 1,都有m比数列.解析: 14、 (本小题满分12分)N,使得a 1, a n, a m成等(1 )当 n 1 时 a ,S 1 当n 2时 % S S 检验当n 1时a 1a”使印,a n, a m成等比数列.则 a n2= a 1a m3n 2"=3m 23m 3n 2 2 2 9n 2 12n 6所以m 3n 24n 221 n 1 3n2 23n 2 (2) 即满足则对任意n 1 ,都有3n 24n 2 N所以对任意n 1 ,都有m N ,使得a” a n, a ”成等比数列.15、(2014年高考全国卷 文 仃).(本小题满分10分)数列{a n}满足 印 2,a 22,an 22a . 1 a . 2(1) 设bn a n 1 a n,证明{bn}是等差数列;(2) 求{a n}的通项公式.(17) t *汕仆)T ; J A 小=LHi = 2&n » I "1T I J 可匪t 九甘[曹用觌列I(n ) 如的逍顼笛亠W J [ I ) th j: = m ■ 1 -日"2 褐- art*i *4fnt+i - ti> + 2-X 枷匸出g 曲=11巧旦內}!上门卷X 处…2的带•岸歌吩hl[-应I xjiJ E9 乔[五X + ■f.・1 *蹄以細増強武为-分)已知a n是递增的等差数列,a 2, a 4是方程x 25x 6根。
2014高考题分类-(文科)数列(含答案)1、(2014年高考重庆卷文2)在等差数列{a n}中,a i 2 , a3 a5 10,则a7 ( )A. 5B. 8 C . 10 D. 141、解:.••数列{a n}是等差,a3 a5 10 ,・°・ 5 , a? 2a4 a 8 , •••选B.2、(2014年高考天津卷文5)设a…是首项为3 ,公差为1 的等差数列,S”为其前n项和,若S,S2, S4成等比数列,则 & =()A. 2B. - 2C. - D .222、解:• a”是首项为a,,公差为1的等差数列,S”为其前”项和,又• S” S2, S4 成等比数列,...佝a2)2= a1(a a2 a3 a«),即2(2a1 1) = a1 (4a1 6),解得a1 —2,••选D3、(2014年高考新课标2卷文5)等差数列a n的公差为2,若a2,a4,a8成等比数列,贝廿a.的前n项S.= ( )B. n n 1C.D.23、解:.•.等差数列a”的公差为2,且a2 , a4 , 成等比数列,二a42= a?a8 ,即(印6)2=⑻2)⑻14),解得a 2,则a n 2n,二选A4、(2014年高考全国卷文8).设等比数列©}的前n项和为S n,若S2 3,S4 15,则S6 ()A . 31 B. 32 C. 63 D ・644、解:••由等比数列{a n}的前n项和S,的性质得:S2 , S4 -S2, S6 —S4成等比数列,即3,12,S6—15 成等比数列,••• 122= 3(S—15), 解得:S e = 63,二选C5、(2014年高考辽宁卷文9).设等差数列{a n}的公差为d, 若数列0an}为递减数列,则()DA・d 0 B・d 0 C・a-|d 0 D . qd 06、(2014年高考江苏卷文7)在各项均为正数的等比数列,则a6的值是▲.{a n}中,a2 1, a8 a6 2a4【答累】A【解析】设公上匕为哲因为?刚由陽=令+纠得字"二『+2亍* -1?'2— 2 = 0(解得叨'二2 * 所园盹-n才=4・【着点】等比数列餉通项公式7、(2014年高考江西卷文13)在等差数列a n中,a1 7 ,公差为d ,前n 项和为S n,当且仅当n 8时&取最大值,则d 的取值范围 __________ .7、解:因为a i7 0,当且仅当n 8时Sn 取最大值,可知d 0且同时满足a 80,a 90,二a 87 If 0,解得1 d 7,・••答案1 d 1& (2014年高考广东卷 文13).等比数列a n的各项均为正数,且a ’a s4,贝Ulog 2 a 1 +log 2a 2+log 2a 3+log 2a 4+log 2 a 5= _________________.答案:5 提示: 设 Slog 2 a 1 log 2 a 2 log 2 a 3 log 2 a 4 log 2a 5,则 S log 2a 5 log 2a 4log 2 a 3 log 2 a 2 log 2 a 1,5log 2 4 10,a 9 7 8d 02S 5log 2(a i a s ) S 5.9、(2014年高考新课2卷文16)数列{a n}满足a”1[1 a na 2= 2,则a1 = ___________9、解:由已知得10、(2014年高考北京卷 已知a n是等差数列,满足 b 420,且b n a ”是等比数列.(1) 求数列a n和h 的通项公式; (2) 求数列0的前n 项和.文15) a 13,a(本小题满分13分)12,数列b n满足b i4 ,2项公式及其前n 项和T n.(15) f 共 13 分 >«t ( I )设聲筈数列扫」的分建为# +由题倉需所以 u n -Vi t i (N -1)(/ 3n)*设事比数列他-碍}的总比为「V^.1=2£zl£=g r 無% 岛一打I 4-3从丽氏=抑+ 2* 1 5工12- (11J 曲(1 ) + (fl = l31 . 1 -2*艸如伽"和吟仞0犠輸科潤鼬项和环—=r所乩数囲世」的前"顶櫛为]附小心I,11、 (I : (2014年高考重庆卷 文16)(本小题满分 小问6分,(II )小问5分)已知a n是首相为1,公差为2的等差数列,S13分. 表示an的前n 项和. (I )求aII )设 a 41 q S 40 及5 ;b n是首相为2的等比数列,公比 求S 的通q满足I )因为2」垦苗顶眄訂扭蛙"2的零養敦列[析民12、_ ・i 喊眄 *口J n(l<2rt"l> 2K 5, = 3 +3 + ■-■ + (I FI亠I J 工 - ; ---- = --- 二片・CH)*( 1)^^=7.5^ 讥18为孑-心咖*Sj =o t即『-阳416 =o tBrijtfi -4)a =fi,从■而电=址3t® 6."・I妬f屋公比厂目的舗塩融列,所瓯虹胡厂'=2 - 4*_, =2fc_L从阿血丨的枫M和町帀啤二住=寻仟-I )■(2014年高考湖南卷文16).(本小题满分12分)2已知数列a n的前n项和S n亍,n N(I)求数列a n的通项公式;(II )设b 2an1n a n,求数列b n的前2n项和.I )当” I 时* H,V;an[上肾(用・】)*4(jr・|)7 1当用荒2吐d, = 5故盟蚪{% J的划顶公式为匹■ e im由HA灿‘才•(“衍础姗{耐的诃斟顶和为g剧Tj, = C21 + 2^+■*■■+■ I s*)+(—I 4 2- 3+4 —+ 2h),启斗-【*2・3 + £—半加"财-|>-ISlJS捌他}的曲舸段和乙旷口丹7-13、(2014年高考福建卷文17). 已知等比数列{a n}中,a2 3,a5 81.(I )求数列{臥}的通项公式;求数列{b n}的前n项和S (本小题满分12分)a2(II )若数列 6IOg3a n ,13、考查等差、等比数列等基础知识,考查运算求解能力,考查化归与转化思想解:(I )设{a n}的公比为q ,依题意得3 a 1q 481,解得n(d 2 因此,a n3n1(II ) V 数列 b nb n ) = n 2n2 'log 3a n= n 1,・°・数列{b n}的前n 项和S =14、(2014年高考江西卷 文17) 2已知数列a n的前n 项和S n詈(1) 求数列a n的通项公式;(2) 证明:对任意n 1,都有m比数列.解析: 14、 (本小题满分12分)N,使得a 1, a n, a m成等(1 )当 n 1 时 a ,S 1 当n 2时 % S S 检验当n 1时a 1a”使印,a n, a m成等比数列.则 a n2= a 1a m3n 2"=3m 23m 3n 2 2 2 9n 2 12n 6所以m 3n 24n 221 n 1 3n2 23n 2 (2) 即满足则对任意n 1 ,都有3n 24n 2 N所以对任意n 1 ,都有m N ,使得a” a n, a ”成等比数列.15、(2014年高考全国卷 文 仃).(本小题满分10分)数列{a n}满足 印 2,a 22,an 22a . 1 a . 2(1) 设bn a n 1 a n,证明{bn}是等差数列;(2) 求{a n}的通项公式.(17) t *汕仆)T ; J A 小=LHi = 2&n » I "1T I J 可匪t 九甘[曹用觌列I (n ) 如的逍顼笛亠 W J [ I ) th j: = m ■ 1 -日"2 褐- art*i *4fnt+i - ti> + 2-X 枷匸出g 曲=11巧旦內}!上门卷X 处…2的带•岸歌吩hl[-应I xjiJ E9 乔[五X + ■f.・1 *蹄以細増強武为-分)已知a n是递增的等差数列,a 2, a 4是方程x 25x 6根。
2014年高考真题——文科数学(湖北卷)解析版 Word版含解析绝密★启用前2014年普通高等学校招生全国统一考试(湖北卷)数学(文史类)本试题卷共5页,22题。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1.答卷前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用统一提供的2B铅笔将答题卡上试卷类型A后的方框涂黑。
2.选择题的作答:每小题选出答案后,用统一提供的2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.填空题和解答题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2014?湖北卷] 已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则?UA =()A.{1,3,5,6} B.{2,3,7}C.{2,4,7} D.{2,5,7}1.C[解析] 由A={1,3,5,6},U={1,2,3,4,5,6,7},得?UA={2,4,7}.故选C.2.[2014?湖北卷] i为虚数单位,=()A.1 B.-1 C.i D.-i2.B[解析] ===-1.故选B.3.[2014?湖北卷] 命题"?x∈R,x2≠x"的否定是()A.?x∈/R,x2≠x B.?x∈R,x2=xC.?x0∈/R,x≠x0 D.?x0∈R,x=x03.D[解析] 特称命题的否定方法是先改变量词,然后否定结论,故命题"?x∈R,x2≠x"的否定是"?x0∈R,x=x0". 故选D.4.[2014?湖北卷] 若变量x,y满足约束条件则2x+y的最大值是()A.2 B.4 C.7 D.84.C[解析] 作出约束条件表示的可行域如下图阴影部分所示.设z=2x+y,平移直线2x+y=0,易知在直线x+y=4与直线x-y=2的交点A(3,1)处,z=2x+y取得最大值7. 故选C.5.[2014?湖北卷] 随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p1,点数之和大于5的概率记为p2,点数之和为偶数的概率记为p3,则() A.p1<p2<p3 B.p2<p1<p3C.p1<p3<p2 D.p3<p1<p25.C[解析] 掷出两枚骰子,它们向上的点数的所有可能情况如下表:123456123456723456783456789456789105678910116789101112则p1=,p2=,p3=.故p16.[2014?湖北卷] 根据如下样本数据x345678y4.02.5-0.50.5-2.0-3.0得到的回归方程为\s\up6(^(^)=bx+a,则()A.a>0,b<0 B.a>0,b>0C.a<0,b<0 D.a<0,b>06.A[解析] 作出散点图如下:由图像不难得出,回归直线\s\up6(^(^)=bx+a的斜率b0,所以a>0,b图1-17.[2014?湖北卷] 在如图1-1所示的空间直角坐标系O -xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①、②、③、④的四个图,则该四面体的正视图和俯视图分别为()图1-2A.①和②B.③和①C.④和③D.④和②7.D[解析] 由三视图可知,该几何体的正视图显然是一个直角三角形(三个顶点坐标分别是(0,0,2),(0,2,0),(0,2,2))且内有一虚线(一锐角顶点与一直角边中点的连线),故正视图是④;俯视图是一个斜三角形,三个顶点坐标分别是(0,0,0),(2,2,0),(1,2,0),故俯视图是②.故选D.8.、[2014?湖北卷] 设a,b是关于t的方程t2cos θ+ts θ=0的两个不等实根,则过A(a,a2),B(b,b2)两点的直线与双曲线-=1的公共点的个数为()A.0 B.1C.2 D.38.A[解析] 由方程t2cos θ+ts θ=0,解得t1=0,t2=-t θ,不妨设点A(0,0),B(-t θ,t2θ),则过这两点的直线方程为y=-xt θ,该直线恰是双曲线-=1的一条渐近线,所以该直线与双曲线无公共点.故选A.9.、[2014?湖北卷] 已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-3x,则函数g(x)=f(x)-x+3的零点的集合为()A.{1,3} B.{-3,-1,1,3}C.{2-,1,3} D.{-2-,1,3}9.D[解析] 设x0,所以f(x)=-f(-x)=-[(-x)2-3(-x)]=-x2-3x .求函数g(x)=f(x)-x+3的零点等价于求方程f(x)=-3+x的解.当x≥0时,x2-3x=-3+x,解得x1=3,x2=1;当x10.[2014?湖北卷] 《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求"锔"的术"置如其周,令相乘也.又以高乘之,三十六成一."该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2h.它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V≈L2h相当于将圆锥体积公式中的π近似取为()A. B. C. D.10.B[解析] 设圆锥的底面圆半径为r,底面积为S,则L=2πr.由题意得L2h≈Sh,代入S=πr2化简得π≈3.类比推理,若V≈L2h时,π≈.故选B.11.[2014?湖北卷] 甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.11.1800[解析] 设乙设备生产的产品总数为n,则=,解得n=1800.12.、[2014?湖北卷] 若向量\s\up6(→(→)=(1,-3),|\s\up6(→(→)|=|\s\up6(→(→)|,\s\up6(→(→)?\s\up6(→(→)=0,则|\s\up6(→(→)|=________.12.2[解析] 由题意知,\s\up6(→(→)=(3,1)或OB=(-3,-1),所以AB=OB-OA =(2,4)或AB=(-4,2),所以==2.13.[2014?湖北卷] 在△ABC中,角A,B,C所对的边分别为a,b,c.已知A=,a=1,b=,则B=________.13.或[解析] 由正弦定理得=,即=,解得s B=.又因为b>a,所以B=或.14.[2014?湖北卷] 阅读如图1-3所示的程序框图,运行相应的程序,若输入n的值为9,则输出S的值为________.图1-314.1067[解析] 第一次运行时,S=0+21+1,k=1+1;第二次运行时,S=(21+1)+(22+2),k=2+1;......所以框图运算的是S=(21+1)+(22+2)+...+(29+9)=1067.15.[2014?湖北卷] 如图1-4所示,函数y=f(x)的图像由两条射线和三条线段组成.若?x∈R,f(x)>f(x-1),则正实数a的取值范围为________.图1-415.[解析] "?x∈R,f(x)>f(x-1)"等价于"函数y=f(x)的图像恒在函数y=f(x-1)的图像的上方",函数y=f(x-1)的图像是由函数y=f(x)的图像向右平移一个单位得到的,如图所示.因为a>0,由图知6a16.[2014?湖北卷] 某项研究表明:在考虑行车安全的情况下,某路段车流量F(单位时间内经过测量点的车辆数,单位:辆/小时)与车流速度v(假设车辆以相同速度v行驶,单位:米/秒)、平均车长l(单位:米)的值有关,其公式为F=.(1)如果不限定车型,l=6.05,则最大车流量为________辆/小时;(2)如果限定车型,l=5,则最大车流量比(1)中的最大车流量增加________辆/小时.16.(1)1900(2)100[解析] (1)依题意知,l>0,v>0,所以当l=6.05时,F==≤=1900,当且仅当v=11时,取等号.(2)当l=5时,F==≤2000,当且仅当v=10时,取等号,此时比(1)中的最大车流量增加100辆/小时.17.[2014?湖北卷] 已知圆O:x2+y2=1和点A(-2,0),若定点B(b,0)(b≠-2)和常数λ满足:对圆O上任意一点M,都有=λ,则(1)b=________;(2)λ=________.17.(1)-(2)[解析] 设点M(cos θ,s θ),则由=λ得(cos θ-b)2+s2θ=λ2,即-2bcos θ+b2+1=4λ2cos θ+5λ2对任意的θ都成立,所以又由=λ,得λ>0,且b≠-2,解得18.、、、[2014?湖北卷] 某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:f(t)=10-cost-st,t∈[0,24).(1)求实验室这一天上午8时的温度;(2)求实验室这一天的最大温差.18.解:(1)f(8)=10-cos-s=10-cos-s=10-×-=10.故实验室上午8时的温度为10 ℃.(2)因为f(t)=10-2=10-2s,又0≤t所以≤t+当t=2时,s=1;当t=14时,s=-1.于是f(t)在[0,24)上取得最大值12,最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃.19.、、[2014?湖北卷] 已知等差数列{}满足:a1=2,且a1,a2,a5成等比数列.(1)求数列{}的通项公式.(2)记Sn为数列{}的前n项和,是否存在正整数n,使得Sn>+800?若存在,求n的最小值;若不存在,说明理由.19.解:(1)设数列{}的公差为d,依题意知,2,2+d,2+4d成等比数列,故有(2+d)2=2(2+4d),化简得d2-4d=0,解得d=0或d=4,当d=0时,=2;当d=4时,=2+(n-1)?4=-2,从而得数列{}的通项公式为=2或=-2.(2)当=2时,Sn=,显然此时不存在正整数n,使得Sn>+800成立.当=-2时,Sn==2.令2>+800,即n2--400>0,解得n>40或n此时存在正整数n,使得Sn>+800成立,n的最小值为41.综上,当=2时,不存在满足题意的正整数n;当=-2时,存在满足题意的正整数n,其最小值为41.20.、[2014?湖北卷] 如图1-5,在正方体ABCD -A1B1C1D1中,E,F,P,Q,M,N分别是棱AB,AD,DD1,BB1,A1B1,A1D1的中点.求证:(1)直线BC1∥平面EFPQ;(2)直线AC1⊥平面PQ.图1-520.证明:(1)连接AD1,由ABCD - A1B1C1D1是正方体,知AD1∥BC1.因为F,P分别是AD,DD1的中点,所以FP∥AD1.从而BC1∥FP.而FP?平面EFPQ,且BC1?平面EFPQ,故直线BC1∥平面EFPQ.(2)如图,连接AC,BD,A1C1,则AC⊥BD.由CC1⊥平面ABCD,BD?平面ABCD,可得CC1⊥BD.又AC∩CC1=C,所以BD⊥平面ACC1A1.而AC1?平面ACC1A1,所以BD⊥AC1.因为M,N分别是A1B1,A1D1的中点,所以∥BD,从而⊥AC1.同理可证PN⊥AC1.又PN∩=N,所以直线AC1⊥平面PQ.21.[2014?湖北卷] π为圆周率,e=2.718 28...为自然对数的底数.(1)求函数f(x)=的单调区间;(2)求e3,3e,eπ,πe,3π,π3这6个数中的最大数与最小数.21.解:(1)函数f(x)的定义域为(0,+∞).因为f(x)=,所以f′(x)=.当f′(x)>0,即0当f′(x)e时,函数f(x)单调递减.故函数f(x)的单调递增区间为(0,e),单调递减区间为(e,+∞).(2)因为e即3e于是根据函数y=x,y=ex,y=πx在定义域上单调递增可得,3e故这6个数中的最大数在π3与3π之中,最小数在3e与e3之中.由e即由π3.由综上,6个数中的最大数是3π,最小数是3e.22.[2014?湖北卷] 在平面直角坐标系xOy中,点M到点F(1,0)的距离比它到y轴的距离多1.记点M的轨迹为C.(1)求轨迹C的方程;(2)设斜率为k的直线l过定点P(-2,1),求直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时k的相应取值范围.22.解:(1)设点M(x,y),依题意得=|x|+1,即=|x|+1,化简整理得y2=2(|x|+x).故点M的轨迹C的方程为y2=(2)在点M的轨迹C中,记C1:y2=4x(x≥0),C2:y=0(x依题意,可设直线l的方程为y-1=k(x+2).由方程组可得ky2-4y+4(2k+1)=0.①当k=0时,y=1.把y=1代入轨迹C的方程,得x=.故此时直线l:y=1与轨迹C恰好有一个公共点.当k≠0时,方程①的判别式Δ=-16(2k2+k-1).②设直线l与x轴的交点为(x0,0),则由y-1=k(x+2),令y=0,得x0=-.③(i)若由②③解得k.即当k∈(-∞,-1)∪时,直线l与C1没有公共点,与C2有一个公共点,故此时直线l与轨迹C恰好有一个公共点.(ii)若或由②③解得k∈或-≤k即当k∈时,直线l与C1只有一个公共点,与C2有一个公共点.当k∈时,直线l与C1有两个公共点,与C2没有公共点.故当k∈∪时,直线l与轨迹C恰好有两个公共点.(iii)若由②③解得-1即当k∈∪时,直线l与C1有一个公共点,与C2有一个公共点,故此时直线l与轨迹C恰好有三个公共点.综上所述,当k∈(-∞,-1)∪∪{0}时,直线l与轨迹C恰好有一个公共点;当k∈∪时,直线l与轨迹C恰好有两个公共点;当k∈∪时,直线l与轨迹C恰好有三个公共点.。
2014年全国普通高等学校招生统一考试数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3) D.(﹣2,3)2.(5分)若tanα>0,则()A.sinα>0 B.cosα>0 C.sin2α>0 D.cos2α>03.(5分)设z=+i,则|z|=()A.B.C.D.24.(5分)已知双曲线﹣=1(a>0)的离心率为2,则实数a=()A.2 B.C.D.15.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数6.(5分)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B.C.D.7.(5分)在函数①y=cos|2x|,②y=|cosx|,③y=cos(2x+),④y=tan(2x﹣)中,最小正周期为π的所有函数为()A.①②③B.①③④C.②④D.①③8.(5分)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.10.(5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,AF=|x0|,则x0=()A.1 B.2 C.4 D.811.(5分)设x,y满足约束条件且z=x+ay的最小值为7,则a=()A.﹣5 B.3 C.﹣5或3 D.5或﹣312.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)二、填空题:本大题共4小题,每小题5分13.(5分)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为.14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)设函数f(x)=,则使得f(x)≤2成立的x的取值范围是.16.(5分)如图,为测量山高MN,选择A和另一座的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100m,则山高MN=m.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.20.(12分)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.21.(12分)设函数f(x)=alnx+x2﹣bx(a≠1),曲线y=f(x)在点(1,f (1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分。
专题6 数列1. 【2014高考安徽卷文第12题】如图,在等腰直角三角形ABC 中,斜边22BC =,过点A 作BC 的垂线,垂足为1A ;过点1A 作AC 的垂线,垂足为2A ;过点2A 作1AC 的垂线,垂足为3A ;…,以此类推,设1BA a =,12AA a =,123A A a =,…,567A A a =,则7a =________.2. 【2014高考大纲卷文第8题】设等不数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则S 6=( )A. 31B. 32C. 63D. 643. 【2014高考广东卷文第13题】等比数列{}n a 的各项均为正数,且154a a =,则212223242l o g l o g l o g l o g l o g a a a a a ++++= .4. 【2014高考江苏卷第7题】在各项均为正数的等比数列{}n a 中,若21a =,8642a a a =+,则6a 的值是 .5. 【2014高考江西卷文第13题】在等差数列{}n a 中,71=a ,公差为d ,前n 项和为n S ,当且仅当8=n 时n S 取最大值,则d 的取值范围_________.6. 【2014高考辽宁卷文第9题】设等差数列{}n a 的公差为d ,若数列1{2}n a a为递减数列,则( ) A .0d < B .0d > C .10a d < D .10a d >7. 【2014高考全国2卷文第5题】等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( )A. (1)n n +B. (1)n n -C.(1)2n n + D. (1)2n n - 8. 【2014高考全国2卷文第16题】数列}{n a 满足2,1181=-=+a a a nn ,则=1a ________.9.【2014高考陕西卷文第8题】原命题为“若12n n n a a a ++<,n N +∈,则{}n a 为递减数列”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是(A )真,真,真 (B )假,假,真 (C )真,真,假 (D )假,假,假 10. 【2014高考陕西卷文第14题】已知0,1)(≥+=x xxx f ,若++∈==N n x f f x f x f x f n n )),(()(),()(11,则)(2014x f 的表达式为________.11. 【2014高考天津卷卷文第5题】设{}n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项和,若,,,421S S S 成等比数列,则1a =( )A.2B.-2C.21 D .12- 12. 【2014高考重庆卷文第2题】在等差数列{}n a 中,1352,10a a a =+=,则7a =( ) .5A .8B .10C .14D 13. 【2014高考安徽卷文第18题】 数列{}n a 满足111,(1)(1),n n a na n a n n n N ++==+++∈(1) 证明:数列{}na n是等差数列; (2) 设3nn n b a =⋅,求数列{}n b 的前n 项和n S14. 【2014高考北京卷文第15题】已知{}n a 是等差数列,满足13a =,412a =,数列{}n b 满足14b =,420b =,且{}n n b a -是等比数列.(1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n b 的前n 项和.15. 【2014高考大纲卷文第17题】数列{a n }满足a 1=1,a 2=2,a n+2=2a n+1-a n +2.(1)设b n =a n+1-a n ,证明{b n }是等差数列; (2)求数列{a n }的通项公式.16. 【2014高考福建卷文第17题】在等比数列{}n a 中,253,81a a ==.(1)求n a ; (2)设3log nn b a =,求数列{}n b 的前n 项和n S .17. 【2014高考广东卷文第19题】设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足()223n n S n n S -+--()230n n +=,n N *∈.(1)求1a 的值;(2)求数列{}n a 的通项公式;(3)证明:对一切正整数n ,有()()()112211111113n n a a a a a a +++<+++.18. 【2014高考湖北卷文第19题】已知等差数列}{n a 满足:21=a ,且1a 、2a 、5a 成等比数列. (1)求数列}{n a 的通项公式.(2)记n S 为数列}{n a 的前n 项和,是否存在正整数n ,使得?80060+>n S n 若存在,求n 的最小值;若不存在,说明理由.19. 【2014高考湖南卷文第16题】已知数列{}n a 的前n 项和*∈+=N n nn S n ,22. (1)求数列{}n a 的通项公式;(2)设()n nan a b n 12-+=,求数列{}n b 的前n 2项和.20. 【2014高考江苏第20题】设数列{}n a 的前n 项和为n S .若对任意的正整数n ,总存在正整数m ,使得n m S a =,则称{}n a 是“H 数列”.(1)若数列{}n a 的前n 项和为*2()n n S n N =∈,证明:{}n a 是“H 数列”.(2)设{}n a 是等差数列,其首项11a =,公差0d <,若{}n a 是“H 数列”,求d 的值;(3)证明:对任意的等差数列{}n a ,总存在两个“H 数列” {}n b 和{}n c ,使得n n n a b c =+*()n N ∈成立.21. 【2014高考江西文第17题】已知数列{}n a 的前n 项和*∈-=N n nn S n ,232. (1)求数列{}n a 的通项公式;(2)证明:对任意1>n ,都有*∈N m ,使得m n a a a ,,1成等比数列. 22. 【2014高考全国1文第17题】已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。
2014高考真题+模拟新题之文科数学分类汇编:A单元集合与常用逻辑用语.doc 2014高考真题+模拟新题之文科数学分类汇编:B单元函数与导数.doc2014高考真题+模拟新题之文科数学分类汇编:C单元三角函数.doc2014高考真题+模拟新题之文科数学分类汇编:D单元数列.doc2014高考真题+模拟新题之文科数学分类汇编:E单元不等式.doc2014高考真题+模拟新题之文科数学分类汇编:F单元平面向量.doc2014高考真题+模拟新题之文科数学分类汇编:G单元立体几何.doc2014高考真题+模拟新题之文科数学分类汇编:H单元解析几何.doc2014高考真题+模拟新题之文科数学分类汇编:I单元统计.doc2014高考真题+模拟新题之文科数学分类汇编:J单元计数原理.doc2014高考真题+模拟新题之文科数学分类汇编:K单元概率.doc2014高考真题+模拟新题之文科数学分类汇编:L单元算法初步与复数.doc 2014高考真题+模拟新题之文科数学分类汇编:M单元推理与证明.doc2014高考真题+模拟新题之文科数学分类汇编:N单元选修4系列.doc数学A单元集合与常用逻辑用语A1 集合及其运算1.[2014·北京卷] 若集合A={0,1,2,4},B={1,2,3},则A∩B=()A.{0,1,2,3,4} B.{0,4}C.{1,2} D.{3}1.C[解析] A∩B={0,1,2,4}∩{1,2,3}={1,2}.1.[2014·福建卷] 若集合P={x|2≤x<4},Q={x|x≥3},则P∩Q等于()A.{x|3≤x<4} B.{x|3<x<4}C.{x|2≤x<3} D.{x|2≤x≤3}1..A[解析] 把集合P={x|2≤x<4}与Q={x|x≥3}在数轴上表示出来,得P∩Q={x|3≤x<4},故选A.16.,[2014·福建卷] 已知集合{a,b,c}={0,1,2},且下列三个关系:①a≠2;②b =2;③c≠0有且只有一个正确,则100a+10b+c等于________.16.201[解析] (i)若①正确,则②③不正确,由③不正确得c=0,由①正确得a=1,所以b=2,与②不正确矛盾,故①不正确.(ii)若②正确,则①③不正确,由①不正确得a=2,与②正确矛盾,故②不正确.(iii)若③正确,则①②不正确,由①不正确得a=2,由②不正确及③正确得b=0,c=1,故③正确.则100a+10b+c=100³2+10³0+1=201.1.[2014·广东卷] 已知集合M={2,3,4},N={0,2,3,5},则M∩N=()A.{0,2} B.{2,3}C.{3,4} D.{3,5}1.B[解析] ∵M={2,3,4},N={0,2,3,5},∴M∩N={2,3}.1.[2014·湖北卷] 已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁U A=()A.{1,3,5,6} B.{2,3,7}C.{2,4,7} D.{2,5,7}1.C[解析] 由A={1,3,5,6},U={1,2,3,4,5,6,7},得∁U A={2,4,7}.故选C.2.[2014·湖南卷] 已知集合A={x|x>2},B={x|1<x<3},则A∩B=()A.{x|x>2} B.{x|x>1}C.{x|2<x<3} D.{x|1<x<3}2.C[解析] 由集合运算可知A∩B={x|2<x<3}.11.[2014·重庆卷] 已知集合A={3,4,5,12,13},B={2,3,5,8,13},则A∩B =________.11.{3,5,13}[解析] 由集合交集的定义知,A∩B={3,5,13}.1.[2014·江苏卷] 已知集合A={-2,-1,3,4},B={-1,2,3},则A∩B=________.1.{-1,3}[解析] 由题意可得A∩B={-1,3}.2.[2014·江西卷] 设全集为R,集合A={x|x2-9<0},B={x|-1<x≤5},则A∩(∁R B)=()A.(-3,0) B.(-3,-1)C.(-3,-1] D.(-3,3)2.C[解析] ∵A=(-3,3),∁R B=(-∞,-1]∪(5,+∞),∴A∩(∁R B)=(-3,-1].1.[2014·辽宁卷] 已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=() A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}1.D[解析] 由题意可知,A∪B={x|x≤0或x≥1},所以∁U(A∪B)=x|0<x<1}.1.[2014·全国卷] 设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N 中元素的个数为()A.2 B.3C.5 D.71.B[解析] 根据题意知M∩N={1,2,4,6,8}∩{1,2,3,5,6,7}={1,2,6},所以M∩N中元素的个数是3.1.[2014·新课标全国卷Ⅱ] 已知集合A={-2,0,2},B={x|x2-x-2=0},则A∩B =()A.∅B.{2}C.{0} D.{-2}1.B[解析] 因为B={-1,2},所以A∩B={2}.1.[2014·全国新课标卷Ⅰ] 已知集合M={x|-1<x<3},N={-2<x<1},则M∩N=()A.(-2,1) B.(-1,1)C.(1,3) D.(-2,3)1.B[解析] 利用数轴可知M∩N={x|-1<x<1}.2.[2014·山东卷] 设集合A={x|x2-2x<0},B={x|1≤x≤4},则A∩B=()A.(0,2] B.(1,2)C.[1,2) D.(1,4)2.C[解析] 因为集合A={x|0<x<2},B={x|1≤x≤4},所以A∩B={x|1≤x<2},故选C.1.[2014·陕西卷] 设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1] B.(0,1) C.(0,1] D.[0,1)1.D[解析] 由M={x|x≥0},N={x|x2<1}={x|-1<x<1},得M∩N=[0,1).1.[2014·四川卷] 已知集合A={x|(x+1)(x-2)≤0},集合B为整数集,则A∩B=() A.{-1,0} B.{0,1}C.{-2,-1,0,1} D.{-1,0,1,2}1.D[解析] 由题意可知,集合A={x|(x+1)(x-2)≤0}={x|-1≤x≤2},所以A∩B ={-1,0,1,2}.故选D.20.、、[2014·天津卷] 已知q和n均为给定的大于1的自然数,设集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+x n q n-1,x i∈M,i=1,2,…,n}.(1)当q=2,n=3时,用列举法表示集合A.(2)设s,t∈A,s=a1+a2q+…+a n q n-1,t=b1+b2q+…+b n q n-1,其中a i,b i∈M,i=1,2,…,n.证明:若a n<b n,则s<t.20.解:(1)当q=2,n=3时,M={0,1},A={x|x=x1+x2²2+x3²22,x i∈M,i=1,2,3},可得A={0,1,2,3,4,5,6,7}.(2)证明:由s,t∈A,s=a1+a2q+…+a n q n-1,t=b1+b2q+…+b n q n-1,a i,b i∈M,i =1,2,…,n及a n<b n,可得s-t=(a1-b1)+(a2-b2)q+…+(a n-1-b n-1)q n-2+(a n-b n)q n-1≤(q-1)+(q-1)q+…+(q-1)q n-2-q n-1=(q-1)(1-q n-1)1-q-q n-1=-1<0,所以s<t.1.[2014·浙江卷] 设集合S={x|x≥2},T={x|x≤5},则S∩T=()A.(-∞,5] B.[2,+∞)C.(2,5) D.[2,5]1.D[解析] 依题意,易得S∩T=[2,5] ,故选D.A2 命题及其关系、充分条件、必要条件5.[2014·北京卷] 设a,b是实数,则“a>b”是“a2>b2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.D[解析] 当ab<0时,由a>b不一定推出a2>b2,反之也不成立.7.、[2014·广东卷] 在△ABC中,角A,B,C所对应的边分别为a,b,c,则“a≤b”是“sin A≤sin B”的()A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件7.A[解析] 设R是三角形外切圆的半径,R>0,由正弦定理,得a=2R sin A,b=2R sin B.故选A.∵sin≤A sin B,∴2R sin A≤2R sin B,∴a≤b.同理也可以由a≤b推出sin A≤sin B.6.[2014·江西卷] 下列叙述中正确的是()A.若a,b,c∈R,则“ax2+bx+c≥0”的充分条件是“b2-4ac≤0”B.若a,b,c∈R,则“ab2>cb2”的充要条件是“a>c”C .命题“对任意x ∈R ,有x 2≥0”的否定是“存在x ∈R ,有x 2≥0”D .l 是一条直线,α,β是两个不同的平面,若l ⊥α,l ⊥β,则α∥β6.D [解析] 对于选项A ,a >0,且b 2-4ac ≤0时,才可得到ax 2+bx +c ≥0成立,所以A 错.对于选项B ,a >c ,且b ≠0时,才可得到ab 2>cb 2成立,所以B 错. 对于选项C ,命题的否定为“存在x ∈R ,有x 2<0”, 所以C 错.对于选项D ,垂直于同一条直线的两个平面相互平行,所以D 正确. 5.、[2014·辽宁卷] 设a ,b ,c 是非零向量,已知命题p :若a ²b =0,b ·c =0,则=0;命题q :若a ∥b ,b ∥c ,则a ∥c .则下列命题中真命题是( )A .p ∨qB .p ∧qC .(綈p )∧(綈q )D .p ∨(綈q ) 5.A [解析] 由向量数量积的几何意义可知,命题p 为假命题;命题q 中,当b ≠0时,a ,c 一定共线,故命题q 是真命题.故p ∨q 为真命题.3.[2014·新课标全国卷Ⅱ] 函数f (x )在x =x 0处导数存在.若p :f ′(x 0)=0,q :x =x 0是f (x )的极值点,则( )A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件3.C [解析] 函数在x =x 0处有导数且导数为0,x =x 0未必是函数的极值点,还要看函数在这一点左右两边的导数的符号,若符号一致,则不是极值点;反之,若x =x 0为函数的极值点,则函数在x =x 0处的导数一定为0 ,所以p 是q 的必要不充分条件.4.[2014·山东卷] 用反证法证明命题“设a ,b 为实数,则方程x 2+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 2+ax +b =0没有实根B .方程x 2+ax +b =0至多有一个实根C .方程x 2+ax +b =0至多有两个实根D .方程x 2+ax +b =0恰好有两个实根4.A [解析] 方程“x 2+ax +b =0至少有一个实根”等价于“方程x 2+ax +b =0有一个实根或两个实根”,所以该命题的否定是“方程x 2+ax +b =0没有实根”.故选A.8.[2014·陕西卷] 原命题为“若a n +a n +12<a n ,n ∈N +,则{a n }为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真,真,真B .假,假,真C .真,真,假D .假,假,假8.A [解析] 由a n +a n +12<a n ,得a n +1<a n ,所以数列{a n }为递减数列,故原命题是真命题,其逆否命题为真命题.易知原命题的逆命题为真命题,所以其否命题也为真命题.15.、、[2014·四川卷] 以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含于区间[-M ,M ].例如,当φ1(x )=x 3,φ2(x )=sin x 时,φ1(x )∈A ,φ2(x )∈B .现有如下命题:①设函数f (x )的定义域为D ,则“f (x )∈A ”的充要条件是“∀b ∈R ,∃a ∈D ,f (a )=b ”; ②若函数f (x )∈B ,则f (x )有最大值和最小值;③若函数f (x ),g (x )的定义域相同,且f (x )∈A ,g (x )∈B ,则f (x )+g (x )∈/B ;④若函数f (x )=a ln(x +2)+xx 2+1(x >-2,a ∈R )有最大值,则f (x )∈B .其中的真命题有________.(写出所有真命题的序号)15.①③④ [解析] 若f (x )∈A ,则函数f (x )的值域为R ,于是,对任意的b ∈R ,一定存在a ∈D ,使得f (a )=b ,故①正确.取函数f (x )=x (-1<x <1),其值域为(-1,1),于是,存在M =1,使得函数f (x )的值域包含于[-M ,M ]=[-1,1],但此时函数f (x )没有最大值和最小值,故②错误.当f (x )∈A 时,由①可知,对任意的b ∈R ,存在a ∈D ,使得f (a )=b ,所以,当g (x )∈B 时,对于函数f (x )+g (x ),如果存在一个正数M ,使得f (x )+g (x )的值域包含于[-M ,M ],那么对于该区间外的某一个b 0∈R ,一定存在一个a 0∈D ,使得f (x )+f (a 0)=b 0-g (a 0),即f (a 0)+g (a 0)=b 0∉[-M ,M ],故③正确.对于f (x )=a ln(x +2)+xx 2+1(x >-2),当a >0或a <0时,函数f (x )都没有最大值.要使得函数f (x )有最大值,只有a =0,此时f (x )=xx 2+1(x >-2).易知f (x )∈⎣⎡⎦⎤-12,12,所以存在正数M =12,使得f (x )∈[-M ,M ],故④正确2.[2014·浙江卷] 设四边形ABCD 的两条对角线为AC ,BD ,则“四边形ABCD 为菱形”是“AC ⊥BD ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 2.A [解析] 若四边形ABCD 为菱形,则AC ⊥BD ;反之,若AC ⊥BD ,则四边形ABCD 不一定为平行四边形.故“四边形ABCD 为菱形”是“AC ⊥BD ”的充分不必要条件.故选A.6.[2014·重庆卷] 已知命题p :对任意x ∈R ,总有|x |≥0,q :x =1是方程x +2=0的根.则下列命题为真命题的是( )A .p ∧綈qB .綈p ∧qC .綈p ∧綈qD .p ∧q6.A [解析] 由题意知 p 为真命题,q 为假命题,则綈q 为真命题,所以p ∧綈q 为真命题.A3 基本逻辑联结词及量词 2.[2014·安徽卷] 命题“∀x ∈R ,|x |+x 2≥0”的否.定是( ) A .∀x ∈R ,|x |+x 2<0 B .∀x ∈R ,|x |+x 2≤0 C .∃x 0∈R ,|x 0|+x 20<0 D .∃x 0∈R ,|x 0|+x 20≥02.C [解析] 易知该命题的否定为“∃x 0∈R ,|x 0|+x 20<0”. 5.[2014·福建卷] 命题“∀x ∈[0,+∞),x 3+x ≥0”的否定是( ) A .∀x ∈(-∞,0),x 3+x <0 B .∀x ∈(-∞,0),x 3+x ≥0 C .∃x 0∈[0,+∞),x 30+x 0<0 D .∃x 0∈[0,+∞),x 30+x 0≥05.C [解析] “∀x ∈[0,+∞),x 3+x ≥0”是含有全称量词的命题,其否定是“∃x 0∈[0,+∞),x 30+x 0<0”,故选C.3.[2014·湖北卷] 命题“∀x ∈R ,x 2≠x ”的否定是( ) A .∀x ∈/R ,x 2≠x B .∀x ∈R ,x 2=xC .∃x 0∈/R ,x 20≠x 0D .∃x 0∈R ,x 20=x 03.D [解析] 特称命题的否定方法是先改变量词,然后否定结论,故命题“∀x ∈R ,x 2≠x ”的否定是“∃x 0∈R ,x 20=x 0”. 故选D.1.[2014·湖南卷] 设命题p :∀x ∈R ,x 2+1>0,则綈p 为( )A .∃x 0∈R ,x 20+1>0B .∃x 0∈R ,x 20+1≤0C .∃x 0∈R ,x 20+1<0 D .∀x ∈R ,x 2+1≤01.B [解析] 由全称命题的否定形式可得綈p :∃x 0∈R ,x 20+1≤0. 3.[2014·天津卷] 已知命题p :∀x >0,总有(x +1)e x >1,则綈p 为( ) A .∃x 0≤0,使得(x 0+1)e x 0≤1 B. ∃x 0>0,使得(x 0+1)e x 0≤1 C. ∀x >0,总有(x +1)e x ≤1 D. ∀x ≤0,总有(x +1)e x ≤13.B [解析] 含量词的命题的否定,先改变量词的形式,再对命题的结论进行否定.A4 单元综合4.[2014·湖南雅礼中学月考] 设全集U ={a ,b ,c ,d ,e },集合M ={a ,d },N ={a ,c ,e },则N ∩(∁U M )=( )A .{c ,e }B .{a ,c }C .{d ,e }D .{a ,e }4.A [解析] 因为∁U M ={b ,c ,e },所以N ∩(∁U M )={a ,c ,e }∩{b ,c ,e }={c ,e }. 7.[2014·宁德质检] 已知集合A ={0,1},B ={-1,0,a +2},若A ⊆B ,则a 的值为( )A .-2B .-1C .0D .17.B [解析] ∵A ⊆B ,∴a +2=1,解得a =-1. 8.[2014·蚌埠质检] 已知全集U =R ,集合A ={x |x 2-1≥0},B ={x |x -1≤0},则(∁U A )∩B =( )A .{x |x ≥1}B .{x |-1<x <1}C .{x |-1<x ≤1}8.B [解析] ∵集合A ={x |x 2-1≥0}={x |x ≥1或x ≤-1},∴∁U A ={x |-1<x <1}.又集合B ={x |x -1≤0}={x |x ≤1},∴(∁U A )∩B ={x |-1<x <1}. 4.[2014·湖南雅礼中学月考] 设函数f (x )=log 2x ,则“a >b ”是“f (a )>f (b )”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件 4.B [解析] 因为f (x )=log 2x 在区间(0,+∞)上是增函数,所以当a >b >0时,f (a )>f (b );反之,当f (a )>f (b )时,a >b .故选B.7.[2014·济南模拟] 已知命题p :∀a ∈R ,且a >0,a +1a≥2,命题q :∃x 0∈R ,sin x 0+cos x 0=3,则下列判断正确的是( )A .p 是假命题B .q 是真命题C .p ∧(綈q )是真命题D .(綈p )∧q 是真命题7.C [解析] 依题意可知,命题p 为真,命题q 为假,故选C.12.[2014·长沙联考] 若命题“∃x 0∈R ,x 20+mx 0+2m -3<0”为假命题,则实数m 的取值范围是__________.12.2≤m ≤6 [解析] 由题意可知,命题“∀x ∈R ,x 2+mx +2m -3≥0”为真命题,故Δ=m2-4(2m-3)=m2-8m+12≤0,解得2≤m≤6.数 学B 单元 函数与导数B1 函数及其表示 14.、[2014·安徽卷] 若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=______. 14.516 [解析] 由题易知f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=f ⎝⎛⎭⎫-34+f ⎝⎛⎭⎫-76=-f ⎝⎛⎭⎫34-f ⎝⎛⎭⎫76=-316+sin π6=516. 2.、[2014·北京卷] 下列函数中,定义域是R 且为增函数的是( )A .y =e -x B .y =x 3 C .y =ln x D .y =|x |2.B [解析] 由定义域为R ,排除选项C ,由函数单调递增,排除选项A ,D. 21.、、[2014·江西卷] 将连续正整数1,2,…,n (n ∈N *)从小到大排列构成一个数123…n ,F (n )为这个数的位数(如n =12时,此数为123456789101112,共有15个数字,F (12)=15),现从这个数中随机取一个数字,p (n )为恰好取到0的概率.(1)求p (100);(2)当n ≤2014时,求F (n )的表达式;(3)令g (n )为这个数中数字0的个数,f (n )为这个数中数字9的个数,h (n )=f (n )-g (n ),S ={n |h (n )=1,n ≤100,n ∈N *},求当n ∈S 时p (n )的最大值.21.解:(1)当n =100时,这个数中总共有192个数字,其中数字0的个数为11,所以恰好取到0的概率为p (100)=11192.(2)F (n )=⎩⎪⎨⎪⎧n ,1≤n ≤9,2n -9,10≤n ≤99,3n -108,100≤n ≤999,4n -1107,1000≤n ≤2014.(3)当n =b (1≤b ≤9,b ∈N *),g (n )=0;当n =10k +b (1≤k ≤9,0≤b ≤9,k ∈N *,b ∈N )时,g (n )=k ; 当n =100时,g (n )=11,即g (n )= ⎩⎪⎨⎪⎧0,1≤n ≤9,k ,n =10k +b ,11,n =100.1≤k ≤9,0≤b ≤9,k ∈N *,b ∈N , 同理有f (n )= ⎩⎪⎨⎪⎧0,1≤n ≤8,k ,n =10k +b -1,1≤k ≤8,0≤b ≤9,k ∈N *,b ∈N ,n -80,89≤n ≤98,20,n =99,100.由h (n )=f (n )-g (n )=1,可知n =9,19,29,39,49,59,69,79,89,90, 所以当n ≤100时,S ={9,19,29,39,49,59,69,79,89,90}. 当n =9时,p (9)=0.当n =90时,p (90)=g (90)F (90)=9171=119.当n =10k +9(1≤k ≤8,k ∈N *)时,p (n )=g (n )F (n )=k 2n -9=k 20k +9,由y =k20k +9关于k单调递增,故当n =10k +9(1≤k ≤8,k ∈N *)时,p (n )的最大值为p (89)=8169.又8169<119,所以当n ∈S 时,p (n )的最大值为119. 3.[2014·山东卷] 函数f (x )=1log 2x -1的定义域为( )A .(0,2)B .(0,2]C .(2,+∞)D .[2,+∞)3.C [解析] 若函数f (x )有意义,则log 2x -1>0,∴log 2x >1,∴x >2.B2 反函数5.[2014·全国卷] 函数y =ln(3x +1)(x >-1)的反函数是( ) A .y =(1-e x )3(x >-1) B .y =(e x -1)3(x >-1) C .y =(1-e x )3(x ∈R ) D .y =(e x -1)3(x ∈R )5.D [解析] 因为y =ln(3x +1),所以x =(e y -1)3.因为x >-1,所以y ∈R ,所以函数y =ln(3x +1)(x >-1)的反函数是y =(e x -1)3(x ∈R ).B3 函数的单调性与最值 2.、[2014·北京卷] 下列函数中,定义域是R 且为增函数的是( )A .y =e -x B .y =x 3 C .y =ln x D .y =|x |2.B [解析] 由定义域为R ,排除选项C ,由函数单调递增,排除选项A ,D. 4.、[2014·湖南卷] 下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是( )A .f (x )=1x2 B .f (x )=x 2+1C .f (x )=x 3D .f (x )=2-x4.A [解析] 由偶函数的定义,可以排除C ,D ,又根据单调性,可得B 不对.19.、、、[2014·江苏卷] 已知函数f (x )=e x +e -x ,其中e 是自然对数的底数. (1)证明:f (x )是R 上的偶函数.(2)若关于x 的不等式mf (x )≤e -x +m -1在(0,+∞)上恒成立,求实数m 的取值范围.(3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 30+3x 0)成立.试比较e a -1与a e -1的大小,并证明你的结论.19.解: (1)证明:因为对任意 x ∈R ,都有f (-x )=e -x +e -(-x )=e -x +e x =f (x ), 所以f (x )是R 上的偶函数.(2)由条件知 m (e x +e -x -1)≤e -x -1在(0,+∞)上恒成立.令 t =e x (x >0),则 t >1,所以 m ≤-t -1t 2-t +1=-1t -1+1t -1+ 1对任意 t >1成立.因为t -1+1t -1+ 1≥2(t -1)·1t - 1+1=3, 所以 -1t -1+1t -1+ 1≥-13,当且仅当 t =2, 即x = ln 2时等号成立. 因此实数 m 的取值范围是⎝⎛⎦⎤-∞,-13. (3)令函数 g (x )=e x +1e x - a (-x 3+3x ),则g ′ (x ) =e x -1ex +3a (x 2-1).当 x ≥1时,e x -1e x >0,x 2-1≥0.又a >0,故 g ′(x )>0,所以g (x )是[1,+∞)上的单调递增函数, 因此g (x )在[1,+∞)上的最小值是 g (1)= e +e -1-2a .由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 30+ 3x 0 )<0 成立,当且仅当最小值g (1)<0, 故 e +e -1-2a <0, 即 a >e +e -12.令函数h (x ) = x -(e -1)ln x -1,则 h ′(x )=1-e -1x . 令 h ′(x )=0, 得x =e -1.当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调递减函数;当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调递增函数. 所以h (x )在(0,+∞)上的最小值是h (e -1).注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0; 当x ∈(e -1,e)⊆(e -1,+∞)时, h (x )<h (e)=0.所以h (x )<0对任意的x ∈(1,e)成立. 故①当a ∈⎝⎛⎭⎫e +e-12,e ⊆(1,e)时, h (a )<0,即a -1<(e -1)ln a ,从而e a -1<a e -1;②当a =e 时,e a -1=a e -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故e a -1>a e -1.综上所述,当a ∈⎝⎛⎭⎫e +e -12,e 时,e a -1<a e -1;当a =e 时,e a -1=a e -1;当a ∈(e ,+∞)时,e a -1>a e -1.15.、、[2014·四川卷] 以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含于区间[-M ,M ].例如,当φ1(x )=x 3,φ2(x )=sin x 时,φ1(x )∈A ,φ2(x )∈B .现有如下命题:①设函数f (x )的定义域为D ,则“f (x )∈A ”的充要条件是“∀b ∈R ,∃a ∈D ,f (a )=b ”; ②若函数f (x )∈B ,则f (x )有最大值和最小值;③若函数f (x ),g (x )的定义域相同,且f (x )∈A ,g (x )∈B ,则f (x )+g (x )∈/B ;④若函数f (x )=a ln(x +2)+xx 2+1(x >-2,a ∈R )有最大值,则f (x )∈B .其中的真命题有________.(写出所有真命题的序号)15.①③④ [解析] 若f (x )∈A ,则函数f (x )的值域为R ,于是,对任意的b ∈R ,一定存在a ∈D ,使得f (a )=b ,故①正确.取函数f (x )=x (-1<x <1),其值域为(-1,1),于是,存在M =1,使得函数f (x )的值域包含于[-M ,M ]=[-1,1],但此时函数f (x )没有最大值和最小值,故②错误.当f (x )∈A 时,由①可知,对任意的b ∈R ,存在a ∈D ,使得f (a )=b ,所以,当g (x )∈B 时,对于函数f (x )+g (x ),如果存在一个正数M ,使得f (x )+g (x )的值域包含于[-M ,M ],那么对于该区间外的某一个b 0∈R ,一定存在一个a 0∈D ,使得f (x )+f (a 0)=b 0-g (a 0),即f (a 0)+g (a 0)=b 0∉[-M ,M ],故③正确.对于f (x )=a ln(x +2)+xx 2+1(x >-2),当a >0或a <0时,函数f (x )都没有最大值.要使得函数f (x )有最大值,只有a =0,此时f (x )=xx 2+1(x >-2).易知f (x )∈⎣⎡⎦⎤-12,12,所以存在正数M =12,使得f (x )∈[-M ,M ],故④正确21.、[2014·四川卷] 已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值; (2)若f (1)=0,函数f (x )在区间(0,1)内有零点,证明:e -2<a <1.21.解:(1)由f (x )=e x -ax 2-bx -1,得g (x )=f ′(x )=e x -2ax -b ,所以g ′(x )=e x -2a . 当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ].当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ;当a ≥e2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减,因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ; 当12<a <e2时,令g ′(x )=0,得x =ln(2a )∈(0,1), 所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增, 于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b .综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ;当12<a <e2时,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b ; 当a ≥e2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b .(2)证明:设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知, f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减. 则g (x )不可能恒为正,也不可能恒为负. 故g (x )在区间(0,x 0)内存在零点x 1.同理g (x )在区间(x 0,1)内存在零点x 2.故g (x )在区间(0,1)内至少有两个零点.由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点;当a ≥e2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意.所以12<a <e 2.此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增. 因此x 1∈(0,ln(2a )),x 2∈(ln(2a ),1),必有 g (0)=1-b >0,g (1)=e -2a -b >0. 由f (1)=0有a +b =e -1<2,有 g (0)=a -e +2>0,g (1)=1-a >0. 解得e -2<a <1.所以,函数f (x )在区间(0,1)内有零点时,e -2<a <1.B4 函数的奇偶性与周期性 4.[2014·重庆卷] 下列函数为偶函数的是( ) A .f (x )=x -1 B .f (x )=x 2+xC .f (x )=2x -2-xD .f (x )=2x +2-x4.D [解析] A 中,f (-x )=-x -1,f (x )为非奇非偶函数;B 中,f (-x )=(-x )2-x =x 2-x ,f (x )为非奇非偶函数;C 中,f (-x )=2-x -2x =-(2x -2-x )=-f (x ),f (x )为奇函数;D 中,f (-x )=2-x +2x =f (x ),f (x )为偶函数.故选D.14.、[2014·安徽卷] 若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=______. 14.516 [解析] 由题易知f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=f ⎝⎛⎭⎫-34+f ⎝⎛⎭⎫-76=-f ⎝⎛⎭⎫34-f ⎝⎛⎭⎫76=-316+sin π6=516. 5.[2014·广东卷] 下列函数为奇函数的是( ) A .2x -12x B .x 3sin xC .2cos x +1D .x 2+2x5.A [解析] 对于A 选项,令f (x )=2x -12x =2x -2-x ,其定义域是R ,f (-x )=2-x -2x=-f (x ),所以A 正确;对于B 选项,根据奇函数乘奇函数是偶函数,所以x 3sin x 是偶函数;C 显然也是偶函数;对于D 选项,根据奇偶性的定义,该函数显然是非奇非偶函数.9.、[2014·湖北卷] 已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( )A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3}9.D [解析] 设x <0,则-x >0,所以f (x )=-f (-x )=-[(-x )2-3(-x )]=-x 2-3x . 求函数g (x )=f (x )-x +3的零点等价于求方程f (x )=-3+x 的解. 当x ≥0时,x 2-3x =-3+x ,解得x 1=3,x 2=1;当x <0时,-x 2-3x =-3+x ,解得x 3=-2-7.故选D. 4.、[2014·湖南卷] 下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是( )A .f (x )=1x2 B .f (x )=x 2+1C .f (x )=x 3D .f (x )=2-x4.A [解析] 由偶函数的定义,可以排除C ,D ,又根据单调性,可得B 不对. 15.[2014·湖南卷] 若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.15.-32[解析] 由偶函数的定义可得f (-x )=f (x ),即ln(e -3x +1)-ax =ln(e 3x +1)+ax ,∴2ax =-ln e 3x =-3x ,∴a =-32.19.、、、[2014·江苏卷] 已知函数f (x )=e x +e -x ,其中e 是自然对数的底数. (1)证明:f (x )是R 上的偶函数.(2)若关于x 的不等式mf (x )≤e -x +m -1在(0,+∞)上恒成立,求实数m 的取值范围.(3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 30+3x 0)成立.试比较e a -1与a e -1的大小,并证明你的结论.19.解: (1)证明:因为对任意 x ∈R ,都有f (-x )=e -x +e -(-x )=e -x +e x =f (x ),所以f (x )是R 上的偶函数.(2)由条件知 m (e x +e -x -1)≤e -x -1在(0,+∞)上恒成立. 令 t =e x (x >0),则 t >1,所以 m ≤-t -1t 2-t +1=-1t -1+1t -1+ 1对任意 t >1成立.因为t -1+1t -1+ 1≥2(t -1)·1t - 1+1=3, 所以 -1t -1+1t -1+ 1≥-13,当且仅当 t =2, 即x = ln 2时等号成立. 因此实数 m 的取值范围是⎝⎛⎦⎤-∞,-13. (3)令函数 g (x )=e x +1e x - a (-x 3+3x ),则g ′ (x ) =e x -1ex +3a (x 2-1).当 x ≥1时,e x -1e x >0,x 2-1≥0.又a >0,故 g ′(x )>0,所以g (x )是[1,+∞)上的单调递增函数, 因此g (x )在[1,+∞)上的最小值是 g (1)= e +e -1-2a .由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 30+ 3x 0 )<0 成立,当且仅当最小值g (1)<0, 故 e +e -1-2a <0, 即 a >e +e -12.令函数h (x ) = x -(e -1)ln x -1,则 h ′(x )=1-e -1x . 令 h ′(x )=0, 得x =e -1.当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调递减函数;当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调递增函数. 所以h (x )在(0,+∞)上的最小值是h (e -1).注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0; 当x ∈(e -1,e)⊆(e -1,+∞)时, h (x )<h (e)=0.所以h (x )<0对任意的x ∈(1,e)成立. 故①当a ∈⎝⎛⎭⎫e +e-12,e ⊆(1,e)时, h (a )<0,即a -1<(e -1)ln a ,从而e a -1<a e -1;②当a =e 时,e a -1=a e -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故e a -1>a e -1.综上所述,当a ∈⎝⎛⎭⎫e +e -12,e 时,e a -1<a e -1;当a =e 时,e a -1=a e -1;当a ∈(e ,+∞)时,e a -1>a e -1.12.[2014·全国卷] 奇函数f (x )的定义域为R .若f (x +2)为偶函数,且f (1)=1,则f (8)+f (9)=( )A .-2B .-1C .0D .112.D [解析] 因为f (x +2)为偶函数,所以其对称轴为直线x =0,所以函数f (x )的图像的对称轴为直线x =2.又因为函数f (x )是奇函数,其定义域为R ,所以f (0)=0,所以f (8)=f (-4)=-f (4)=-f (0)=0,故f (8)+f (9)=0+f (-5)=-f (5)=-f (-1)=f (1)=1.15.[2014·新课标全国卷Ⅱ] 偶函数y =f (x )的图像关于直线x =2对称,f (3)=3,则f (-1)=________.15.3 [解析] 因为函数图像关于直线x =2对称,所以f (3)=f (1),又函数为偶函数,所以f (-1)=f (1),故f (-1)=3.5.[2014·全国新课标卷Ⅰ] 设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数5.C [解析] 因为f (x )是奇函数,g (x )是偶函数,所以有f (-x )=-f (x ),g (-x )=g (x ),于是f (-x )·g (-x )=-f (x )g (x ),即f (x )g (x )为奇函数,A 错;|f (-x )|g (-x )=|f (x )|g (x ),即|f (x )|g (x )为偶函数,B 错;f (-x )|g (-x )|=-f (x )|g (x )|,即f (x )|g (x )|为奇函数,C 正确; |f (-x )g (-x )|=|f (x )g (x )|,即f (x )g (x )为偶函数,所以D 也错. 13.[2014·四川卷] 设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝⎛⎭⎫32=________. 13.1 [解析] 由题意可知,f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫2-12f ⎝⎛⎭⎫-12=-4⎝⎛⎭⎫-122+2=1.B5 二次函数 10.[2014·江苏卷] 已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.10.⎝⎛⎭⎫-22,0 [解析] 因为f (x )=x 2+mx -1是开口向上的二次函数,所以函数的最大值只能在区间端点处取到,所以对于任意x ∈[m ,m +1],都有f (x )<0,只需⎩⎪⎨⎪⎧f (m )<0,f (m +1)<0,解得⎩⎨⎧-22<m <22,-32<m <0,即m ∈⎝⎛⎭⎫-22,0.14.、[2014·全国卷] 函数y =cos 2x +2sin x 的最大值为________.14.32 [解析] 因为y =cos 2x +2sin x =1-2sin x 2+2sin x =-2⎝⎛⎭⎫sin x -122+32,所以当sin x =12时函数y =cos 2x +2sin x 取得最大值,最大值为32.B6 指数与指数函数 5.[2014·安徽卷] 设a =log 37,b =21.1,c =0.83.1,则( ) A .b <a <c B .c <a <b C .c <b <a D .a <c <b5.B [解析] 因为2>a =log 37>1,b =21.1>2,c =0.83.1<1,所以c <a <b . 8.,,[2014·福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图1-2所示,则下列函数图像正确的是( )图1-2A BC D 图1-38.B [解析] 由函数y =log a x 的图像过点(3,1),得a =3.选项A 中的函数为y =⎝⎛⎭⎫13x,其函数图像不正确;选项B 中的函数为y =x 3,其函数图像正确;选项C 中的函数为y =(-x )3,其函数图像不正确;选项D 中的函数为y =log 3(-x ),其函数图像不正确,故选B.3.、[2014·辽宁卷] 已知a =2-13,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >b >aD .c >a >b3.D [解析] 因为0<a =2-13<1,b =log 213<0,c =log 1213>log 1212=1,所以c >a >b .15.、[2014·全国新课标卷Ⅰ] 设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.15.(-∞,8] [解析] 当x <1时,由e x -1≤2,得x <1;当x ≥1时,由x 13≤2,解得1≤x ≤8,综合可知x 的取值范围为x ≤8.5.,[2014·山东卷] 已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( ) A .x 3>y 3 B .sin x >sin yC .ln(x 2+1)>ln(y 2+1)D.1x 2+1>1y 2+15.A [解析] 因为a x <a y (0<a <1),所以x >y ,所以x 3>y 3恒成立.故选A. 7.[2014·陕西卷] 下列函数中,满足“f (x +y )= f (x )f (y )”的单调递增函数是( )A .f (x )=x 3B .f (x )=3xC .f (x )=x 12D .f (x )=⎝⎛⎭⎫12x7.B [解析] 由于f (x +y )=f (x )f (y ),故排除选项A ,C.又f (x )=⎝⎛⎭⎫12x为单调递减函数,所以排除选项D. 12.[2014·陕西卷] 已知4a =2,lg x =a ,则x =________.12.10 [解析] 4a =2,即22a =2,可得a =12,所以lg x =12,所以x =1012=10.7.、[2014·四川卷] 已知b >0,log 5b =a ,lg b =c ,5d =10,则下列等式一定成立的是( )A .d =acB .a =cdC .c =adD .d =a +c7.B [解析] 因为5d =10,所以d =log 510,所以cd =lg b ²log 510=log 5b =a ,故选B.9.、[2014·四川卷] 设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |+|PB |的取值范围是( )A .[5,2 5 ]B .[10,2 5 ]C .[10,4 5 ]D .[25,4 5 ]9.B [解析] 由题意可知,定点A (0,0),B (1,3),且两条直线互相垂直, 则其交点P (x ,y )落在以AB 为直径的圆周上,所以|P A |2+|PB |2=|AB |2=10,即|P A |+|PB |≥|AB |=10. 又|P A |+|PB |=(|P A |+|PB |)2= |P A |2+2|P A ||PB |+|PB |2≤ 2(|P A |2+|PB |2)=2 5,所以|P A |+|PB |∈[10,2 5],故选B.4.[2014·天津卷] 设a =log 2π,b =log 12π,c =π-2,则( )A .a >b >cB .b >a >cC .a >c >bD .c >b >a4.C [解析] ∵a =log 2π>1,b =log 12π<0,c =1π2<1,∴b <c <a .B7 对数与对数函数 12.[2014·天津卷] 函数f (x )=lg x 2的单调递减区间是________.12.(-∞,0) [解析] 函数f (x )=lg x 2的单调递减区间需满足x 2>0且y =x 2单调递减,故x ∈(-∞,0).11.[2014·安徽卷] ⎝⎛⎭⎫1681-34+log 354+log 345=________.11.278 [解析] 原式=⎣⎡⎦⎤⎝⎛⎭⎫234-34 +log 3⎝⎛⎭⎫54³45=⎝⎛⎭⎫23-3=278. 8.、[2014·浙江卷] 在同一直角坐标系中,函数f (x )=x a (x >0),g (x )=log a x 的图像可能是( )A BC D图1-28.D [解析] 只有选项D 符合,此时0<a <1,幂函数f (x )在(0,+∞)上为增函数,且当x ∈(0,1)时,f (x )的图像在直线y =x 的上方,对数函数g (x )在(0,+∞)上为减函数.故选D.8.,,[2014·福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图1-2所示,则下列函数图像正确的是( )图1-2A BC D 图1-38.B [解析] 由函数y =log a x 的图像过点(3,1),得a =3.选项A 中的函数为y =⎝⎛⎭⎫13x,其函数图像不正确;选项B 中的函数为y =x 3,其函数图像正确;选项C 中的函数为y =(-x )3,其函数图像不正确;选项D 中的函数为y =log 3(-x ),其函数图像不正确,故选B.13.、[2014·广东卷] 等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=________.13.5 [解析] 在等比数列中,a 1a 5=a 2a 4=a 23=4.因为a n >0,所以a 3=2,所以a 1a 2a 3a 4a 5=(a 1a 5)(a 2a 4)a 3=a 53=25,所以log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=log 2(a 1a 2a 3a 4a 5)=log 225=5.3.、[2014·辽宁卷] 已知a =2-13,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >b >aD .c >a >b3.D [解析] 因为0<a =2-13<1,b =log 213<0,c =log 1213>log 1212=1,所以c >a >b .6.,[2014·山东卷] 已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图像如图1-1所示,则下列结论成立的是( )图1-1A .a >1,x >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <16.D [解析] 由该函数的图像通过第一、二、四象限,得该函数是减函数,∴0<a <1.∵图像与x 轴的交点在区间(0,1)之间,∴该函数的图像是由函数y =log a x 的图像向左平移不到1个单位后得到的,∴0<c <1.7.、[2014·四川卷] 已知b >0,log 5b =a ,lg b =c ,5d =10,则下列等式一定成立的是( ) A .d =ac B .a =cd C .c =ad D .d =a +c7.B [解析] 因为5d =10,所以d =log 510,所以cd =lg b ²log 510=log 5b =a ,故选B.9.、[2014·重庆卷] 若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( ) A .6+2 3 B .7+2 3 C .6+4 3 D .7+4 39.D [解析] 由log 4(3a +4b )=log 2ab ,得3a +4b =ab ,则4a +3b=1,所以a +b =(a+b )⎝⎛⎭⎫4a +3b =7+4b a +3a b ≥7+2 4b a ²3a b =7+4 3,当且仅当4b a =3a b ,即a =4+2 3,b =2 3+3时等号成立,故其最小值是7+4 3.B8 幂函数与函数的图像 8.、[2014·浙江卷] 在同一直角坐标系中,函数f (x )=x a (x >0),g (x )=log a x 的图像可能是( )A BC D图1-28.D [解析] 只有选项D 符合,此时0<a <1,幂函数f (x )在(0,+∞)上为增函数,且当x ∈(0,1)时,f (x )的图像在直线y =x 的上方,对数函数g (x )在(0,+∞)上为减函数.故选D.8.,,[2014·福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图1-2所示,则下列函数图像正确的是( )图1-2A BC D 图1-38.B [解析] 由函数y =log a x 的图像过点(3,1),得a =3.选项A 中的函数为y =⎝⎛⎭⎫13x,其函数图像不正确;选项B 中的函数为y =x 3,其函数图像正确;选项C 中的函数为y =(-x )3,其函数图像不正确;选项D 中的函数为y =log 3(-x ),其函数图像不正确,故选B.15.[2014·湖北卷] 如图1-4所示,函数y =f (x )的图像由两条射线和三条线段组成. 若∀x ∈R ,f (x )>f (x -1),则正实数a 的取值范围为________.图1-415.⎝⎛⎭⎫0,16 [解析] “∀x ∈R ,f (x )>f (x -1)”等价于“函数y =f (x )的图像恒在函数y =f (x -1)的图像的上方”,函数y =f (x -1)的图像是由函数y =f (x )的图像向右平移一个单位得到的,如图所示.因为a >0,由图知6a <1,所以a 的取值范围为⎝⎛⎭⎫0,16.13.、[2014·江苏卷] 已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=⎪⎪⎪⎪x 2-2x +12.若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.13.⎝⎛⎭⎫0,12 [解析] 先画出y =x 2-2x +12在区间[0,3]上的图像,再将x 轴下方的图像对称到x 轴上方,利用周期为3,将图像平移至区间[-3,4]内,即得f (x )在区间[-3,4]上的图像如下图所示,其中f (-3)=f (0)=f (3)=0.5,f (-2)=f (1)=f (4)=0.5.函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同)等价于y =f (x )的图像与直线y =a 有10个不同的交点,由图像可得a ∈⎝⎛⎭⎫0,12.15.、[2014·全国新课标卷Ⅰ] 设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.15.(-∞,8] [解析] 当x <1时,由e x -1≤2,得x <1;当x ≥1时,由x 13≤2,解得1≤x ≤8,综合可知x 的取值范围为x ≤8.6.,[2014·山东卷] 已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图像如图1-1所示,则下列结论成立的是( )图1-1A .a >1,x >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <16.D [解析] 由该函数的图像通过第一、二、四象限,得该函数是减函数,∴0<a <1.∵图像与x 轴的交点在区间(0,1)之间,∴该函数的图像是由函数y =log a x 的图像向左平移不到1个单位后得到的,∴0<c <1.B9 函数与方程6.[2014·北京卷] 已知函数f (x )=6x -log 2x ,在下列区间中,包含f (x )的零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)6.C [解析] 方法一:对于函数f (x )=6x -log 2x ,因为f (2)=2>0,f (4)=-0.5<0,根据零点的存在性定理知选C.方法二:在同一坐标系中作出函数h (x )=6x 与g (x )=log 2x 的大致图像,如图所示,可得f (x )的零点所在的区间为(2,4).7.[2014·浙江卷] 已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( )A .c ≤3B .3<c ≤6C .6<c ≤9D .c >97.C [解析] 由f (-1)=f (-2)=f (-3)得⎩⎪⎨⎪⎧-1+a -b +c =-8+4a -2b +c ,-8+4a -2b +c =-27+9a -3b +c ⇒⎩⎪⎨⎪⎧-7+3a -b =0,19-5a +b =0⇒⎩⎪⎨⎪⎧a =6,b =11, 则f (x )=x 3+6x 2+11x +c ,而0<f (-1)≤3,故0<-6+c ≤3,∴6<c ≤9,故选C.10.[2014·重庆卷] 已知函数f (x )=⎩⎪⎨⎪⎧1x +1-3,x ∈(-1,0],x ,x ∈(0,1],且g (x )=f (x )-mx -m 在(-1,1]内有且仅有两个不同的零点,则实数m 的取值范围是( )A.⎝⎛⎦⎤-94,-2∪⎝⎛⎦⎤0,12B.⎝⎛⎦⎤-114,-2∪⎝⎛⎦⎤0,12C.⎝⎛⎦⎤-94,-2∪⎝⎛⎦⎤0,23D.⎝⎛⎦⎤-114,-2∪⎝⎛⎦⎤0,23 10.A [解析] 作出函数f (x )的图像,如图所示.函数g (x )=f (x )-mx -m 的零点为方程f (x )-mx -m =0的根,即为函数y =f (x )与函数y =m (x +1)图像的交点.而函数y =m (x +1)。
2014年高考数学真题(数列)一.选择题(共2小题)1.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=()A.n(n+1) B.n(n﹣1)C.D.2.(2014•广西)设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6=()A.31 B.32 C.63 D.64二.填空题(共2小题)3.数列{a n}满足a n+1=,a8=2,则a1=_________.4.(2014•江西)在等差数列{a n}中,a1=7,公差为d,前n项和为S n,当且仅当n=8时S n取得最大值,则d的取值范围为_________.三.解答题(共6小题)5.(2014•重庆)已知{a n}是首项为1,公差为2的等差数列,S n表示{a n}的前n项和.(Ⅰ)求a n及S n;(Ⅱ)设{b n}是首项为2的等比数列,公比为q满足q2﹣(a4+1)q+S4=0.求{b n}的通项公式及其前n项和T n.6.(2014•河南)已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.7.(2014•北京)已知{a n}是等差数列,满足a1=3,a4=12,数列{b n}满足b1=4,b4=20,且{b n ﹣a n}为等比数列.(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)求数列{b n}的前n项和.8.(2014•安徽)数列{a n}满足a1=1,na n+1=(n+1)a n+n(n+1),n∈N*.(Ⅰ)证明:数列{}是等差数列;(Ⅱ)设b n=3n•,求数列{b n}的前n项和S n.9.(2013•重庆)设数列{a n}满足:a1=1,a n+1=3a n,n∈N+.(Ⅰ)求{a n}的通项公式及前n项和S n;(Ⅱ)已知{b n}是等差数列,T n为前n项和,且b1=a2,b3=a1+a2+a3,求T20.10.(2013•浙江)在公差为d的等差数列{a n}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(Ⅰ)求d,a n;(Ⅱ)若d<0,求|a1|+|a2|+|a3|+…+|a n|.2014年高考数学真题(数列)参考答案与试题解析一.选择题(共2小题)1.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=()A.n(n+1)B.n(n﹣1)C.D.考点:等差数列的性质.专题:等差数列与等比数列.分析:由题意可得a42=(a4﹣4)(a4+8),解得a4可得a1,代入求和公式可得.解答:解:由题意可得a42=a2•a8,即a42=(a4﹣4)(a4+8),解得a4=8,∴a1=a4﹣3×2=2,∴S n=na1+d,=2n+×2=n(n+1),故选:A.点评:本题考查等差数列的性质和求和公式,属基础题.2.(2014•广西)设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6=()A.31 B.32 C.63 D.64考点:等比数列的前n项和.专题:等差数列与等比数列.分析:由等比数列的性质可得S2,S4﹣S2,S6﹣S4成等比数列,代入数据计算可得.解答:解:由等比数列的性质可得S2,S4﹣S2,S6﹣S4成等比数列,即3,12,S6﹣15成等比数列,可得122=3(S6﹣15),解得S6=63故选:C点评:本题考查等比数列的性质,得出S2,S4﹣S2,S6﹣S4成等比数列是解决问题的关键,属基础题.二.填空题(共2小题)3.数列{a n}满足a n+1=,a8=2,则a1=.考点:数列递推式.专题:计算题.分析:根据a8=2,令n=7代入递推公式a n+1=,求得a7,再依次求出a6,a5的结果,发现规律,求出a1的值.解答:解:由题意得,a n+1=,a8=2,令n=7代入上式得,a8=,解得a7=;令n=6代入得,a7=,解得a6=﹣1;令n=5代入得,a6=,解得a5=2;…根据以上结果发现,求得结果按2,,﹣1循环,∵8÷3=2…2,故a1=故答案为:.点评:本题考查了数列递推公式的简单应用,即给n具体的值代入后求数列的项,属于基础题.4.(2014•江西)在等差数列{a n}中,a1=7,公差为d,前n项和为S n,当且仅当n=8时S n取得最大值,则d的取值范围为(﹣1,﹣).考点:等差数列的性质.专题:点列、递归数列与数学归纳法.分析:根据题意当且仅当n=8时S n取得最大值,得到S7<S8,S9<S8,联立得不等式方程组,求解得d 的取值范围.解答:解:∵S n =7n+,当且仅当n=8时S n取得最大值,∴,即,解得:,综上:d的取值范围为(﹣1,﹣).点评:本题主要考查等差数列的前n项和公式,解不等式方程组,属于中档题.三.解答题(共6小题)5.(2014•重庆)已知{a n}是首项为1,公差为2的等差数列,S n表示{a n}的前n项和.(Ⅰ)求a n及S n;(Ⅱ)设{b n}是首项为2的等比数列,公比为q满足q2﹣(a4+1)q+S4=0.求{b n}的通项公式及其前n 项和T n.考点:数列的求和;等差数列的性质.专题:等差数列与等比数列.分析:(Ⅰ)直接由等差数列的通项公式及前n项和公式得答案;(Ⅱ)求出a4和S4,代入q2﹣(a4+1)q+S4=0求出等比数列的公比,然后直接由等比数列的通项公式及前n项和公式得答案.解答:解:(Ⅰ)∵{a n}是首项为1,公差为2的等差数列,∴a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1.;(Ⅱ)由(Ⅰ)得,a4=7,S4=16.∵q2﹣(a4+1)q+S4=0,即q2﹣8q+16=0,∴(q﹣4)2=0,即q=4.又∵{b n}是首项为2的等比数列,∴..点评:本题考查等差数列的性质,考查了等差数列和等比数列的通项公式、前n项和公式的求法,是基础题.6.(2014•河南)已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.考点:数列的求和;等差数列的通项公式.专题:综合题;等差数列与等比数列.分析:(1)解出方程的根,根据数列是递增的求出a2,a4的值,从而解出通项;(2)将第一问中求得的通项代入,用错位相减法求和.解答:解:(1)方程x2﹣5x+6=0的根为2,3.又{a n}是递增的等差数列,故a2=2,a4=3,可得2d=1,d=,故a n=2+(n﹣2)×=n+1,(2)设数列{}的前n项和为S n,S n=,①S n=,②①﹣②得S n==,解得S n==2﹣.点评:本题考查等的性质及错位相减法求和,是近几年高考对数列解答题考查的主要方式.7.(2014•北京)已知{a n}是等差数列,满足a1=3,a4=12,数列{b n}满足b1=4,b4=20,且{b n﹣a n}为等比数列.(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)求数列{b n}的前n项和.考点:数列的求和;等差数列的通项公式;等比数列的通项公式.专题:等差数列与等比数列.分析:(Ⅰ)利用等差数列、等比数列的通项公式先求得公差和公比,即得结论;(Ⅱ)利用分组求和法,有等差数列及等比数列的前n项和公式即可求得数列的和.解答:解:(Ⅰ)设等差数列{a n}的公差为d,由题意得d===3.∴a n=a1+(n﹣1)d=3n(n=1,2,…),设等比数列{b n﹣a n}的公比为q,则q3===8,∴q=2,∴b n﹣a n=(b1﹣a1)q n﹣1=2n﹣1,∴b n=3n+2n﹣1(n=1,2,…).(Ⅱ)由(Ⅰ)知b n=3n+2n﹣1(n=1,2,…).∵数列{3n}的前n项和为n(n+1),数列{2n﹣1}的前n项和为1×=2n﹣1,∴数列{b n}的前n项和为n(n+1)+2n﹣1.点评:本题主要考查学生对等差数列及等比数列的通项公式和前n项和公式的应用,考查学生的基本的运算能力,属基础题.8.(2014•安徽)数列{a n}满足a1=1,na n+1=(n+1)a n+n(n+1),n∈N*.(Ⅰ)证明:数列{}是等差数列;(Ⅱ)设b n=3n•,求数列{b n}的前n项和S n.考点:数列的求和;等比关系的确定.分析:(Ⅰ)将na n+1=(n+1)a n+n(n+1)的两边同除以n(n+1)得,由等差数列的定义得证.(Ⅱ)由(Ⅰ)求出b n=3n•=n•3n,利用错位相减求出数列{b n}的前n项和S n.解答:证明(Ⅰ)∵na n+1=(n+1)a n+n(n+1),∴,∴,∴数列{}是以1为首项,以1为公差的等差数列;(Ⅱ)由(Ⅰ)知,,∴,b n=3n•=n•3n,∴•3n﹣1+n•3n①•3n+n•3n+1②①﹣②得3n﹣n•3n+1==∴点评:本题考查利用等差数列的定义证明数列是等差数列;考查数列求和的方法:错位相减法.求和的关键是求出通项选方法.9.(2013•重庆)设数列{a n}满足:a1=1,a n+1=3a n,n∈N+.(Ⅰ)求{a n}的通项公式及前n项和S n;(Ⅱ)已知{b n}是等差数列,T n为前n项和,且b1=a2,b3=a1+a2+a3,求T20.考点:等比数列的前n项和;等差数列的前n项和;等比数列的通项公式.专题:等差数列与等比数列.分析:(Ⅰ)可得数列{a n}是首项为1,公比为3的等比数列,代入求和公式和通项公式可得答案;(Ⅱ)可得b1=3,b3=13,进而可得其公差,代入求和公式可得答案.解答:解:(Ⅰ)由题意可得数列{a n}是首项为1,公比为3的等比数列,故可得a n=1×3n﹣1=3n﹣1,由求和公式可得S n==;(Ⅱ)由题意可知b1=a2=3,b3=a1+a2+a3=1+3+9=13,设数列{b n}的公差为d,可得b3﹣b1=10=2d,解得d=5故T20=20×3+=1010点评:本题考查等差数列和等比数列的通项公式和求和公式,属中档题.10.(2013•浙江)在公差为d的等差数列{a n}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(Ⅰ)求d,a n;(Ⅱ)若d<0,求|a1|+|a2|+|a3|+…+|a n|.考点:数列的求和;等差数列的通项公式;等比数列的性质.专题:等差数列与等比数列.分析:(Ⅰ)直接由已知条件a1=10,且a1,2a2+2,5a3成等比数列列式求出公差,则通项公式a n可求;(Ⅱ)利用(Ⅰ)中的结论,得到等差数列{a n}的前11项大于等于0,后面的项小于0,所以分类讨论求d<0时|a1|+|a2|+|a3|+…+|a n|的和.解答:解:(Ⅰ)由题意得,即,整理得d2﹣3d﹣4=0.解得d=﹣1或d=4.当d=﹣1时,a n=a1+(n﹣1)d=10﹣(n﹣1)=﹣n+11.当d=4时,a n=a1+(n﹣1)d=10+4(n﹣1)=4n+6.所以a n=﹣n+11或a n=4n+6;(Ⅱ)设数列{a n}的前n项和为S n,因为d<0,由(Ⅰ)得d=﹣1,a n=﹣n+11.则当n≤11时,.当n≥12时,|a1|+|a2|+|a3|+…+|a n|=﹣S n+2S11=.综上所述,|a1|+|a2|+|a3|+…+|a n|=.点评:本题考查了等差数列、等比数列的基本概念,考查了等差数列的通项公式,求和公式,考查了分类讨论的数学思想方法和学生的运算能力,是中档题.。
2014年普通高等学校招生全国统一考试数学(文科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{}{}12|,31|≤≤-=≤≤-=x x B x x M ,则MB =( )A. )1,2(-B. )1,1(-C. )3,1(D. )3,2(-正确答案:A(2)若0tan >α,则A. 0sin >αB. 0cos >αC. 02sin >αD. 02cos >α 正确答案:A(3)设i iz ++=11,则=||z A. 21 B. 22 C. 23 D. 2正确答案:B(4)已知双曲线)0(13222>=-a y a x 的离心率为2,则=a A. 2 B. 26 C. 25D. 1正确答案:D(5)设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是A. )()(x g x f 是偶函数B. )(|)(|x g x f 是奇函数C. |)(|)(x g x f 是奇函数D. |)()(|x g x f 是奇函数正确答案:A(6)设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+ A. B.21 C. 21D. 正确答案:C(7)在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为A.①②③B. ①③④C. ②④D. ①③ 正确答案:C8.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( ) A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱正确答案:B9.执行右面的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( )A.203B.72C.165D.158正确答案:D10.已知抛物线C :x y =2的焦点为F ,()y x A 0,是C 上一点,zxxk xF A 045=,则=x 0( )A. 1B. 2C. 4D. 8正确答案:C(11)设x ,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a =(A )-5 (B )3 (C )-5或3 (D )5或-3 正确答案:B(12)已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值 范围是(A )()2,+∞ (B )()1,+∞ (C )(),2-∞- (D )(),1-∞-(B )正确答案:A第II 卷二、填空题:本大题共4小题,每小题5分(13)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________. 正确答案:2/3(14)甲、乙、丙三位同学被问到是否去过A 、B 、zxxk C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为________. 正确答案:A(15)设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是________.正确答案:((16)如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得 M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒.已知山高100BC m =,则山高MN =________m .本文来自正确答案:150三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。
2014年普通高等学校招生全国统一考试(山东卷)文科数学本试卷分第I卷和第II 卷两部分,共4页。
满分150分,考试用时120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
2. 第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如果改动,用橡皮擦干净后,再选涂其他答案标号、答案写在试卷上无效。
3. 第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
4. 填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:如果事件A ,B 互斥,那么()()()P A B P A P B +=+第I卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 已知,,a b R i ∈是虚数单位. 若a i +=2bi -,则2()a bi +=(A) 34i -(B) 34i + (C) 43i -(D) 43i +(2) 设集合2{|20},{|14}A x x x B x x =-<=≤≤,则A B =I(A) (0,2](B) (1,2)(C) [1,2)(D) (1,4)(3)函数()f x =(A) (0,2)(B) (0,2](C) (2,)+∞(D) [2,)+∞(4) 用反证法证明命题:“设,a b 为实数,则方程30x ax b ++=至少有一个实根”时,要做的假设是(A) 方程30x ax b ++=没有实根(B) 方程30x ax b ++=至多有一个实根(C) 方程30x ax b ++=至多有两个实根 (D) 方程30x ax b ++=恰好有两个实根(5) 已知实数,x y 满足(01)xya a a <<<,则下列关系式恒成立的是 (A) 33x y >(B) sin sin x y >(C) 22ln(1)ln(1)x y +>+(D)221111x y >++ (6) 已知函数log ()(,0,1)a y x c a c a a =+>≠为常数,其中的图象如右图,则下列结论成立的是(A) 0,1a c >> (B) 1,01a c ><<(C) 01,1a c <<>(D) 01,01a c <<<<(7) 已知向量(3,)a b m ==r r . 若向量,a b r r 的夹角为6π,则实数m =(A)(B)(C) 0(D)(8) 为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,右图是根据试验数据制成的频率分布直方图。
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 设集合M={1,2,4,6,8},N={2,3,5,6,7},则M N 中元素的格式为( )A. 2B. 3C. 5D. 7(2)已知角α的终边经过点(-4,3),则cos α=( )A. 45 B. 35 C. -35 D. -45(3)不等式组(2)01x x x +>⎧⎨<⎩的解集为()A. {21}x x -<<-B. {10}x x -<<C. {01}x x <<D. {1}x x >(4)已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为()A. 16B.C. 13D.(5)函数y =ln 1+)(x >-1)的反函数是( )A. 3(1)(1)x y e x =->-B. 3(1)(1)x y e x =->-C. 3(1)()x y e x R =-∈D. 3(1)()x y e x R =-∈.(6)已知a 、b 为单位向量,其夹角为60︒,则(2a -b )·b =( )A. -1B. 0C. 1D.2(7)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A. 60种B. 70种C. 75种D. 150种选法,根据分步计数乘法原理可得,组成的医疗小组共有15×5=75种不同选法.【考点】计数原理和排列组合.(8)设等不数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则S 6=( )A. 31B. 32C. 63D. 64(9)已知椭圆C :22221(0)x y a b a b +=>>的左右焦点为F 1,F 2,过F 2的直线l交C 与A,B 两点,若△AF 1B 的周长为C 的方程为( ) A. 22132x y += B. 2213x y += C. 221128x y += D. 221124x y +=(10)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积是( ) A. 814π B. 16π C. 9π D. 274π(11)双曲线C:22221(0,0)x y a b a b-=>>的离心率为2,则C 的焦距等于( )A. 2B.C.4D.(12)奇函数f (x )的定义域为R ,若f (x +2)为偶函数,则f (1)=1,则f (8)+f (9)= ( )A. -2B.-1C. 0D. 1二、填空题:本大题共4个小题,每个小题5分。
绝密★启封并使用完毕前2015年普通高等学校招生全国统一考试(全国卷1)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷4至6页。
注意事项:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3. 考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x|x=3n+2,n ∈N},B={6,8,12,14},则集合A ⋂B 中元素的个数为(A )5(B )4(C )3(D )2(2)已知点A (0,1),B (3,2),向量AC u u u r =(-4,-3),则向量BC uuu r=(A )(-7,-4) (B )(7,4) (C )(-1,4) (D )(1,4) (3)已知复数z 满足(z-1)i=i+1,则z=(A )-2-I (B )-2+I (C )2-I (D )2+i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为(A )103 (B )15 (C )110 (D )120(5)已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y ²=8x 的焦点重合,A ,B 是C 的准线与E 的两个焦点,则|AB|= (A )3 (B )6 (C )9 (D )12(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
数 学D 单元 数列D1 数列的概念与简单表示法17.、、[2014·江西卷] 已知数列{a n }的前n 项和S n =3n 2-n2,n ∈N *.(1)求数列{a n }的通项公式;(2)证明:对任意的n >1,都存在m ∈N *,使得a 1,a n ,a m 成等比数列.17.解:(1)由S n =3n 2-n2,得a 1=S 1=1.当n ≥2时,a n =S n -S n -1=3n -2,a 1也符合上式,所以数列{a n }的通项公式为a n =3n -2.(2)证明:要使得a 1,a n ,a m 成等比数列,只需要a 2n =a 1·a m ,即(3n -2)2=1·(3m -2),即m =3n 2-4n +2.而此时m ∈N *,且m >n ,所以对任意的n >1,都存在m ∈N *,使得a 1,a n ,a m 成等比数列. 18.、[2014·江西卷] 已知函数f (x )=(4x 2+4ax +a 2)x ,其中a <0. (1)当a =-4时,求f (x )的单调递增区间;(2)若f (x )在区间[1,4]上的最小值为8,求a 的值.18.解:(1)当a =-4时,由f ′(x )=2(5x -2)(x -2)x=0得x =25或x =2,由f ′(x )>0得x ∈⎝⎛⎭⎫0,25或x ∈(2,+∞). 故函数f (x )的单调递增区间为⎝⎛⎭⎫0,25和(2,+∞). (2)因为f ′(x )=(10x +a )(2x +a )2x ,a <0,所以由f ′(x )=0得x =-a 10或x =-a2.当x ∈⎝⎛⎭⎫0,-a 10时,f (x )单调递增;当x ∈⎝⎛⎭⎫-a 10,-a2时,f (x )单调递减;当x ∈⎝⎛⎭⎫-a2,+∞时,f (x )单调递增. 易知f (x )=(2x +a )2x ≥0,且f ⎝⎛⎭⎫-a2=0. ①当-a2≤1,即-2≤a <0时,f (x )在[1,4]上的最小值为f (1),由f (1)=4+4a +a 2=8,得a =±22-2,均不符合题意.②当1<-a2≤4时,即-8≤a <-2时,f (x )在[1,4]时的最小值为f ⎝⎛⎭⎫-a 2=0,不符合题意.③当-a2>4时,即a <-8时,f (x )在[1,4]上的最小值可能在x =1或x =4时取得,而f (1)≠8,由f (4)=2(64+16a +a 2)=8得a =-10或a =-6(舍去).当a =-10时,f (x )在(1,4)上单调递减,f (x )在[1,4]上的最小值为f (4)=8,符合题意. 综上有,a =-10.16.[2014·新课标全国卷Ⅱ] 数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=________.16.12 [解析] 由题易知a 8=11-a 7=2,得a 7=12;a 7=11-a 6=12,得a 6=-1;a 6=11-a 5=-1,得a 5=2,于是可知数列{a n }具有周期性,且周期为3,所以a 1=a 7=12.D2 等差数列及等差数列前n 项和 2.[2014·重庆卷] 在等差数列{a n }中,a 1=2,a 3+a 5=10,则a 7=( ) A .5 B .8 C .10 D .142.B [解析] 由题意,得a 1+2d +a 1+4d =2a 1+6d =4+6d =10,解得d =1,所以a 7=a 1+6d =2+6=8.5.[2014·天津卷] 设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1=( )A .2B .-2 C.12 D .-125.D [解析] ∵S 2=2a 1-1,S 4=4a 1+4×32×(-1)=4a 1-6,且S 1,S 2,S 4成等比数列,∴(2a 1-1)2=a 1(4a 1-6),解得a 1=-12.15.、[2014·北京卷] 已知{a n }是等差数列,满足a 1=3,a 4=12,数列{b n }满足b 1=4,b 4=20,且{b n -a n }为等比数列.(1)求数列{a n }和{b n }的通项公式; (2)求数列{b n }的前n 项和.15.解:(1)设等差数列{a n }的公差为d ,由题意得d =a 4-a 13=12-33=3.所以a n =a 1+(n -1)d =3n (n =1,2,…). 设等比数列{b n -a n }的公比为q ,由题意得 q 3=b 4-a 4b 1-a 1=20-124-3=8,解得q =2.所以b n -a n =(b 1-a 1)q n -1=2n -1.从而b n =3n +2n -1(n =1,2,…).(2)由(1)知b n =3n +2n -1(n =1,2,…).数列{3n }的前n 项和为32n (n +1),数列{2n -1}的前n 项和为1×1-2n 1-2=2n -1,所以,数列{b n }的前n 项和为32n (n +1)+2n -1.17.,[2014·福建卷] 在等比数列{a n }中,a 2=3,a 5=81. (1)求a n ;(2)设b n =log 3a n ,求数列{b n }的前n 项和S n . 17.解:(1)设{a n }的公比为q ,依题意得⎩⎪⎨⎪⎧a 1q =3,a 1q 4=81,解得⎩⎪⎨⎪⎧a 1=1,q =3. 因此,a n =3n -1.(2)因为b n =log 3a n =n -1,所以数列{b n }的前n 项和S n =n (b 1+b n )2=n 2-n2.19.、、[2014·湖北卷] 已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列.(1)求数列{a n }的通项公式.(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.19.解:(1)设数列{a n }的公差为d ,依题意知,2,2+d ,2+4d 成等比数列,故有(2+d )2=2(2+4d ), 化简得d 2-4d =0,解得d =0或d =4, 当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2,从而得数列{a n }的通项公式为a n =2或a n =4n -2. (2)当a n =2时,S n =2n ,显然2n <60n +800, 此时不存在正整数n ,使得S n >60n +800成立.当a n =4n -2时,S n =n [2+(4n -2)]2=2n 2.令2n 2>60n +800,即n 2-30n -400>0, 解得n >40或n <-10(舍去),此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的正整数n ;当a n =4n -2时,存在满足题意的正整数n ,其最小值为41.16.、[2014·湖南卷] 已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和. 16.解:(1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .故数列{a n }的通项公式为a n =n .(2)由(1)知,b n =2n +(-1)n n .记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ).记A =21+22+…+22n ,B =-1+2-3+4-…+2n ,则A =2(1-22n )1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2. 13.[2014·江西卷] 在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取得最大值,则d 的取值范围为________.13.⎝⎛⎭⎫-1,-78 [解析] 由题可知a 8>0且a 9<0,即7+7d >0且7+8d <0,所以-1<d <-78. 9.[2014·辽宁卷] 设等差数列{a n }的公差为d ,若数列{2a 1a n }为递减数列,则( ) A .d >0 B .d <0 C .a 1d >0 D .a 1d <09.D [解析] 令b n =2a 1a n ,因为数列{2a 1a n }为递减数列,所以 b n +1b n =2a 1a n +12a 1a n=2a 1(a n+1-a n )=2a 1d <1,所以a 1d <0.17.[2014·全国卷] 数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2. (1)设b n =a n +1-a n ,证明{b n }是等差数列;(2)求{a n }的通项公式.17.解:(1)由a n +2=2a n +1-a n +2,得 a n +2-a n +1=a n +1-a n +2, 即b n +1=b n +2. 又b 1=a 2-a 1=1,所以{b n }是首项为1,公差为2的等差数列. (2)由(1)得b n =1+2(n -1), 即a n +1-a n =2n -1.于是所以a n +1-a 1=n 2, 即a n +1=n 2+a 1.又a 1=1,所以{a n }的通项公式a n =n 2-2n +2. 5.[2014·新课标全国卷Ⅱ] 等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( )A .n (n +1)B .n (n -1)C.n (n +1)2D.n (n -1)25.A [解析] 由题意,得a 2,a 2+4,a 2+12成等比数列,即(a 2+4)2=a 2(a 2+12),解得a 2=4,即a 1=2,所以S n =2n +n (n -1)2×2=n (n +1).17.、[2014·全国新课标卷Ⅰ] 已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x +6=0的根.(1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和.17.解:(1)方程x 2-5x +6=0的两根为2,3. 由题意得a 2=2,a 4=3.设数列{a n }的公差为d ,则a 4-a 2=2d , 故d =12,从而得a 1=32.所以{a n }的通项公式为a n =12n +1.(2)设⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和为S n ,由(1)知a n 2n =n +22n +1,则S n =322+423+…+n +12n +n +22n +1,12S n =323+424+…+n +12n +1+n +22n +2, 两式相减得12S n =34+⎝⎛⎭⎫123+…+12n +1-n +22n +2=34+14⎝⎛⎭⎫1-12n -1-n +22n +2,所以S n =2-n +42n +1. 19.,,[2014·山东卷] 在等差数列{a n }中,已知公差d =2,a 2是a 1与a 4的等比中项.(1)求数列{a n }的通项公式;(2)设b n =a n (n +1)2,记T m =-b 1+b 2-b 3+b 4-…+(-1)n b n ,求T n .19.解:(1)由题意知,(a 1+d )2=a 1(a 1+3d ), 即(a 1+2)2=a 1(a 1+6),解得a 1=2. 故数列{a n }的通项公式为a n =2n . (2)由题意知,b n =a n (n +1)2=n (n +1),所以T n =-1×2+2×3-3×4+…+(-1)n n ×(n +1). 因为b n +1-b n =2(n +1), 所以当n 为偶数时,T n =(-b 1+b 2)+(-b 3+b 4)+…+(-b n -1+b n ) =4+8+12+…+2n =n2(4+2n )2=n (n +2)2, 当n 为奇数时, T n =T n -1+(-b n ) =(n -1)(n +1)2-n (n +1)=-(n +1)22.所以T n =⎩⎨⎧-(n +1)22,n 为奇数,n (n +2)2,n 为偶数.16.、、[2014·陕西卷] △ABC 的内角A ,B ,C 所对的边分别为a ,b ,c . (1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C ); (2)若a ,b ,c 成等比数列,且c =2a ,求cos B 的值.16.解: (1)∵a ,b ,c 成等差数列,∴a +c =2b .由正弦定理得sin A +sin C =2sin B . ∵sin B =sin[π-(A +C )]=sin(A +C ), ∴sin A +sin C =2sin(A +C ). (2)由题设有b 2=ac ,c =2a , ∴b =2a .由余弦定理得cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 24a 2=34.19.、、[2014·四川卷] 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图像上(n ∈N *).(1)证明:数列{b n }为等比数列;(2)若a 1=1,函数f (x )的图像在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列{a n b 2n }的前n 项和S n .19.解:(1)证明:由已知得,b n =2a n >0,当n ≥1时,b n +1b n=2a n +1-a n =2d .故数列{b n }是首项为2a 1,公比为2d 的等比数列.(2)函数f (x )=2x 在点(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2),其在x 轴上的截距为a 2-1ln 2.由题意知,a 2-1ln 2=2-1ln 2,解得a 2=2,所以d =a 2-a 1=1,a n =n ,b n =2n ,a n b 2n =n ·4n .于是,S n =1×4+2×42+3×43+…+(n -1)×4n -1+n ×4n ,4S n =1×42+2×43+…+(n -1)×4n +n ×4n +1,因此,S n -4S n =4+42+…+4n -n ·4n +1=4n +1-43-n ·4n +1=(1-3n )4n +1-43, 所以,S n =(3n -1)4n +1+49.19.[2014·浙江卷] 已知等差数列{a n }的公差d >0.设{a n }的前n 项和为S n ,a 1=1,S 2·S 3=36.(1)求d 及S n ;(2)求m ,k (m ,k ∈N *)的值,使得a m +a m +1+a m +2+…+a m +k =65. 19.解:(1)由题意知(2a 1+d )(3a 1+3d )=36, 将a 1=1代入上式解得d =2或d =-5. 因为d >0,所以d =2.从而a n =2n -1,S n =n 2(n ∈N *).(2)由(1)得a m +a m +1+a m +2+…+a m +k =(2m +k -1)(k +1), 所以(2m +k -1)(k +1)=65.由m ,k ∈N *知2m +k -1≥k +1>1,故⎩⎪⎨⎪⎧2m +k -1=13,k +1=5,所以⎩⎪⎨⎪⎧m =5,k =4. 16.、[2014·重庆卷] 已知{a n }是首项为1,公差为2的等差数列,S n 表示{a n }的前n 项和.(1)求a n 及S n ;(2)设{b n }是首项为2的等比数列,公比q 满足q 2-(a 4+1)q +S 4=0,求{b n }的通项公式及其前n 项和T n .16.解:(1)因为{a n }是首项a 1=1,公差d =2的等差数列,所以 a n =a 1+(n -1)d =2n -1.故S n =1+3+…+(2n -1)=n (a 1+a n )2=n (1+2n -1)2=n 2.(2)由(1)得a 4=7,S 4=16.因为q 2-(a 4+1)q +S 4=0,即q 2-8q +16=0, 所以(q -4)2=0,从而q =4.又因为b 1=2,{b n }是公比q =4的等比数列,所以b n =b 1q n -1=2×4n -1=22n -1.从而{b n }的前n 项和T n =b 1(1-q n )1-q=23(4n-1).D3 等比数列及等比数列前n 项和12.[2014·安徽卷] 如图1-3,在等腰直角三角形ABC 中,斜边BC =22,过点A 作BC 的垂线,垂足为A 1;过点A 1作AC 的垂线,垂足为A 2;过点A 2作A 1C 的垂线,垂足为A 3;….依此类推,设BA =a 1,AA 1=a 2,A 1A 2=a 3,…,A 5A 6=a 7,则a 7=________.图1-312.14 [解析] 在等腰直角三角形ABC 中,斜边BC =2 2,所以AB =AC =a 1=2,由题易知A 1A 2=a 3=12AB =1,…,A 6A 7=a 7=⎝⎛⎭⎫123·AB =2×⎝⎛⎭⎫123=14.17.,[2014·福建卷] 在等比数列{a n }中,a 2=3,a 5=81.(1)求a n ;(2)设b n =log 3a n ,求数列{b n }的前n 项和S n . 17.解:(1)设{a n }的公比为q ,依题意得⎩⎪⎨⎪⎧a 1q =3,a 1q 4=81,解得⎩⎪⎨⎪⎧a 1=1,q =3. 因此,a n =3n -1.(2)因为b n =log 3a n =n -1,所以数列{b n }的前n 项和S n =n (b 1+b n )2=n 2-n2.13.、[2014·广东卷] 等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=________.13.5 [解析] 在等比数列中,a 1a 5=a 2a 4=a 23=4.因为a n >0,所以a 3=2,所以a 1a 2a 3a 4a 5=(a 1a 5)(a 2a 4)a 3=a 53=25,所以log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=log 2(a 1a 2a 3a 4a 5)=log 225=5. 19.、、[2014·湖北卷] 已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式.(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.19.解:(1)设数列{a n }的公差为d ,依题意知,2,2+d ,2+4d 成等比数列,故有(2+d )2=2(2+4d ), 化简得d 2-4d =0,解得d =0或d =4, 当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2,从而得数列{a n }的通项公式为a n =2或a n =4n -2. (2)当a n =2时,S n =2n ,显然2n <60n +800, 此时不存在正整数n ,使得S n >60n +800成立.当a n =4n -2时,S n =n [2+(4n -2)]2=2n 2.令2n 2>60n +800,即n 2-30n -400>0, 解得n >40或n <-10(舍去),此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的正整数n ;当a n =4n -2时,存在满足题意的正整数n ,其最小值为41.7.[2014·江苏卷] 在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________.7.4 [解析] 由等比数列的定义可得,a 8=a 2q 6,a 6=a 2q 4,a 4=a 2q 2,即a 2q 6=a 2q 4+2a 2q 2.又a n >0,所以q 4-q 2-2=0,解得q 2=2,故a 6=a 2q 4=1×22=4.17.、、[2014·江西卷] 已知数列{a n }的前n 项和S n =3n 2-n2,n ∈N *.(1)求数列{a n }的通项公式;(2)证明:对任意的n >1,都存在m ∈N *,使得a 1,a n ,a m 成等比数列.17.解:(1)由S n =3n 2-n2,得a 1=S 1=1.当n ≥2时,a n =S n -S n -1=3n -2,a 1也符合上式,所以数列{a n }的通项公式为a n =3n -2.(2)证明:要使得a 1,a n ,a m 成等比数列,只需要a 2n =a 1·a m ,即(3n -2)2=1·(3m -2),即m =3n 2-4n +2.而此时m ∈N *,且m >n ,所以对任意的n >1,都存在m ∈N *,使得a 1,a n ,a m 成等比数列. 18.、[2014·江西卷] 已知函数f (x )=(4x 2+4ax +a 2)x ,其中a <0. (1)当a =-4时,求f (x )的单调递增区间;(2)若f (x )在区间[1,4]上的最小值为8,求a 的值.18.解:(1)当a =-4时,由f ′(x )=2(5x -2)(x -2)x=0得x =25或x =2,由f ′(x )>0得x ∈⎝⎛⎭⎫0,25或x ∈(2,+∞). 故函数f (x )的单调递增区间为⎝⎛⎭⎫0,25和(2,+∞). (2)因为f ′(x )=(10x +a )(2x +a )2x ,a <0,所以由f ′(x )=0得x =-a 10或x =-a2.当x ∈⎝⎛⎭⎫0,-a 10时,f (x )单调递增;当x ∈⎝⎛⎭⎫-a 10,-a2时,f (x )单调递减;当x ∈⎝⎛⎭⎫-a2,+∞时,f (x )单调递增. 易知f (x )=(2x +a )2x ≥0,且f ⎝⎛⎭⎫-a2=0. ①当-a2≤1,即-2≤a <0时,f (x )在[1,4]上的最小值为f (1),由f (1)=4+4a +a 2=8,得a =±22-2,均不符合题意.②当1<-a2≤4时,即-8≤a <-2时,f (x )在[1,4]时的最小值为f ⎝⎛⎭⎫-a 2=0,不符合题意.③当-a2>4时,即a <-8时,f (x )在[1,4]上的最小值可能在x =1或x =4时取得,而f (1)≠8,由f (4)=2(64+16a +a 2)=8得a =-10或a =-6(舍去).当a =-10时,f (x )在(1,4)上单调递减,f (x )在[1,4]上的最小值为f (4)=8,符合题意. 综上有,a =-10. 8.[2014·全国卷] 设等比数列{a n }的前n 项和为S n .若S 2=3,S 4=15,则S 6=( ) A .31 B .32 C .63 D .648.C [解析] 设等比数列{a n }的首项为a ,公比为q ,易知q ≠1,根据题意可得⎩⎪⎨⎪⎧a (1-q 2)1-q=3,a (1-q 4)1-q =15,解得q 2=4,a1-q =-1,所以S 6=a (1-q 6)1-q=(-1)(1-43)=63. 5.[2014·新课标全国卷Ⅱ] 等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( )A .n (n +1)B .n (n -1)C.n (n +1)2D.n (n -1)25.A [解析] 由题意,得a 2,a 2+4,a 2+12成等比数列,即(a 2+4)2=a 2(a 2+12),解得a 2=4,即a 1=2,所以S n =2n +n (n -1)2×2=n (n +1).19.,,[2014·山东卷] 在等差数列{a n }中,已知公差d =2,a 2是a 1与a 4的等比中项. (1)求数列{a n }的通项公式;(2)设b n =a n (n +1)2,记T m =-b 1+b 2-b 3+b 4-…+(-1)n b n ,求T n .19.解:(1)由题意知,(a 1+d )2=a 1(a 1+3d ), 即(a 1+2)2=a 1(a 1+6),解得a 1=2. 故数列{a n }的通项公式为a n =2n . (2)由题意知,b n =a n (n +1)2=n (n +1),所以T n =-1×2+2×3-3×4+…+(-1)n n ×(n +1). 因为b n +1-b n =2(n +1), 所以当n 为偶数时,T n =(-b 1+b 2)+(-b 3+b 4)+…+(-b n -1+b n ) =4+8+12+…+2n =n2(4+2n )2=n (n +2)2, 当n 为奇数时, T n =T n -1+(-b n ) =(n -1)(n +1)2-n (n +1)=-(n +1)22.所以T n =⎩⎨⎧-(n +1)22,n 为奇数,n (n +2)2,n 为偶数.16.、、[2014·陕西卷] △ABC 的内角A ,B ,C 所对的边分别为a ,b ,c . (1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C ); (2)若a ,b ,c 成等比数列,且c =2a ,求cos B 的值.16.解: (1)∵a ,b ,c 成等差数列,∴a +c =2b .由正弦定理得sin A +sin C =2sin B . ∵sin B =sin[π-(A +C )]=sin(A +C ), ∴sin A +sin C =2sin(A +C ). (2)由题设有b 2=ac ,c =2a , ∴b =2a .由余弦定理得cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 24a 2=34.20.、、[2014·天津卷] 已知q 和n 均为给定的大于1的自然数,设集合M ={0,1,2,…,q -1},集合A ={x |x =x 1+x 2q +…+x n q n -1,x i ∈M ,i =1,2,…,n }.(1)当q =2,n =3时,用列举法表示集合A .(2)设s ,t ∈A ,s =a 1+a 2q +…+a n q n -1,t =b 1+b 2q +…+b n q n -1,其中a i ,b i ∈M ,i =1,2,…,n .证明:若a n <b n ,则s <t .20.解:(1)当q =2,n =3时,M ={0,1},A ={x |x =x 1+x 2·2+x 3·22,x i ∈M ,i =1,2,3},可得A ={0,1,2,3,4,5,6,7}.(2)证明:由s ,t ∈A ,s =a 1+a 2q +…+a n q n -1,t =b 1+b 2q +…+b n q n -1,a i ,b i ∈M ,i =1,2,…,n 及a n <b n ,可得s -t =(a 1-b 1)+(a 2-b 2)q +…+(a n -1-b n -1)q n -2+(a n -b n )q n -1≤(q -1)+(q -1)q +…+(q -1)q n -2-q n -1=(q -1)(1-q n -1)1-q-q n -1=-1<0, 所以s <t . 16.、[2014·重庆卷] 已知{a n }是首项为1,公差为2的等差数列,S n 表示{a n }的前n 项和.(1)求a n 及S n ;(2)设{b n }是首项为2的等比数列,公比q 满足q 2-(a 4+1)q +S 4=0,求{b n }的通项公式及其前n 项和T n .16.解:(1)因为{a n }是首项a 1=1,公差d =2的等差数列,所以 a n =a 1+(n -1)d =2n -1.故S n =1+3+…+(2n -1)=n (a 1+a n )2=n (1+2n -1)2=n 2.(2)由(1)得a 4=7,S 4=16.因为q 2-(a 4+1)q +S 4=0,即q 2-8q +16=0, 所以(q -4)2=0,从而q =4.又因为b 1=2,{b n }是公比q =4的等比数列,所以b n =b 1q n -1=2×4n -1=22n -1.从而{b n }的前n 项和T n =b 1(1-q n )1-q=23(4n-1).D4 数列求和 15.、[2014·北京卷] 已知{a n }是等差数列,满足a 1=3,a 4=12,数列{b n }满足b 1=4,b 4=20,且{b n -a n }为等比数列.(1)求数列{a n }和{b n }的通项公式; (2)求数列{b n }的前n 项和.15.解:(1)设等差数列{a n }的公差为d ,由题意得d =a 4-a 13=12-33=3.所以a n =a 1+(n -1)d =3n (n =1,2,…). 设等比数列{b n -a n }的公比为q ,由题意得q 3=b 4-a 4b 1-a 1=20-124-3=8,解得q =2.所以b n -a n =(b 1-a 1)q n -1=2n -1.从而b n =3n +2n -1(n =1,2,…).(2)由(1)知b n =3n +2n -1(n =1,2,…).数列{3n }的前n 项和为32n (n +1),数列{2n -1}的前n 项和为1×1-2n 1-2=2n -1,所以,数列{b n }的前n 项和为32n (n +1)+2n -1.16.、[2014·湖南卷] 已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和. 16.解:(1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .故数列{a n }的通项公式为a n =n .(2)由(1)知,b n =2n +(-1)n n .记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ).记A =21+22+…+22n ,B =-1+2-3+4-…+2n ,则A =2(1-22n )1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2. 17.、[2014·全国新课标卷Ⅰ] 已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x +6=0的根.(1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和.17.解:(1)方程x 2-5x +6=0的两根为2,3. 由题意得a 2=2,a 4=3.设数列{a n }的公差为d ,则a 4-a 2=2d , 故d =12,从而得a 1=32.所以{a n }的通项公式为a n =12n +1.(2)设⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和为S n ,由(1)知a n 2n =n +22n +1,则S n =322+423+…+n +12n +n +22n +1,12S n =323+424+…+n +12n +1+n +22n +2, 两式相减得12S n =34+⎝⎛⎭⎫123+…+12n +1-n +22n +2=34+14⎝⎛⎭⎫1-12n -1-n +22n +2,所以S n =2-n +42n +1. 19.,,[2014·山东卷] 在等差数列{a n }中,已知公差d =2,a 2是a 1与a 4的等比中项.(1)求数列{a n }的通项公式;(2)设b n =a n (n +1)2,记T m =-b 1+b 2-b 3+b 4-…+(-1)n b n ,求T n .19.解:(1)由题意知,(a 1+d )2=a 1(a 1+3d ), 即(a 1+2)2=a 1(a 1+6),解得a 1=2. 故数列{a n }的通项公式为a n =2n . (2)由题意知,b n =a n (n +1)2=n (n +1),所以T n =-1×2+2×3-3×4+…+(-1)n n ×(n +1). 因为b n +1-b n =2(n +1), 所以当n 为偶数时,T n =(-b 1+b 2)+(-b 3+b 4)+…+(-b n -1+b n ) =4+8+12+…+2n =n2(4+2n )2=n (n +2)2, 当n 为奇数时, T n =T n -1+(-b n ) =(n -1)(n +1)2-n (n +1)=-(n +1)22.所以T n =⎩⎨⎧-(n +1)22,n 为奇数,n (n +2)2,n 为偶数.D5 单元综合18.[2014·安徽卷] 数列{a n }满足a 1=1,na n +1=(n +1)a n +n (n +1),n ∈N *.(1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列;(2)设b n =3n ·a n ,求数列{b n }的前n 项和S n .18.解: (1)证明:由已知可得a n +1n +1=a n n +1,即a n +1n +1-a n n =1,所以⎩⎨⎧⎭⎬⎫a n n 是以a 11=1为首项,1为公差的等差数列.(2)由(1)得a nn =1+(n -1)·1=n ,所以a n =n 2,从而可得b n =n ·3n .S n =1×31+2×32+…+(n -1)×3n -1+n ×3n ,①3S n =1×32+2×33+…+(n -1)3n +n ×3n +1.② ①-②得-2S n =31+32+ (3)-n ·3n +1=3·(1-3n )1-3-n ·3n +1=(1-2n )·3n +1-32,所以S n =(2n -1)·3n +1+34.19.[2014·广东卷] 设各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1(a 1+1)+1a 2(a 2+1)+…+1a n (a n +1)<13.19.、、[2014·湖北卷] 已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列.(1)求数列{a n }的通项公式.(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.19.解:(1)设数列{a n }的公差为d ,依题意知,2,2+d ,2+4d 成等比数列,故有(2+d )2=2(2+4d ), 化简得d 2-4d =0,解得d =0或d =4, 当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2,从而得数列{a n }的通项公式为a n =2或a n =4n -2. (2)当a n =2时,S n =2n ,显然2n <60n +800, 此时不存在正整数n ,使得S n >60n +800成立.当a n =4n -2时,S n =n [2+(4n -2)]2=2n 2.令2n 2>60n +800,即n 2-30n -400>0, 解得n >40或n <-10(舍去),此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的正整数n ;当a n =4n -2时,存在满足题意的正整数n ,其最小值为41. 20.[2014·江苏卷] 设数列{a n }的前n 项和为S n .若对任意的正整数n ,总存在正整数m ,使得S n =a m ,则称{a n }是“H 数列”.(1)若数列{a n }的前n 项和S n =2n (n ∈),证明:{a n }是“H 数列”.(2)设{a n }是等差数列,其首项a 1=1,公差d <0.若{a n }是“H 数列”,求d 的值. (3)证明:对任意的等差数列{a n },总存在两个“H 数列”{b n }和{c n },使得a n =b n +c n (n ∈)成立.20.解: (1)证明:由已知,当n ≥1时,a n +1=S n +1-S n =2n +1-2n =2n .于是对任意的正整数n ,总存在正整数m =n +1,使得S n =2n =a m ,所以{a n }是“H 数列”.(2)由已知得,S 2=2a 1+d =2+d .因为{a n }是“H 数列”,所以存在正整数m ,使得S 2=a m ,即2+d =1+(m -1)d ,于是(m -2)d =1.因为d <0,所以m -2<0,故m =1,从而d =-1.当d =-1时,a n =2-n ,S n =n (3-n )2是小于2的整数,n ∈N *.于是对任意的正整数n ,总存在正整数m =2-S n =2-n (3-n )2,使得S n =2-m =a m ,所以{a n }是“H 数列”,因此d 的值为-1.(3)证明:设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d =na 1+(n -1)(d -a 1)(n ∈N *). 令b n =na 1,c n =(n -1)(d -a 1),则a n =b n +c n (n ∈N *).下证{b n }是“H 数列”.设{b n }的前n 项和为T n ,则T n =n (n +1)2a 1(n ∈N *).于是对任意的正整数n ,总存在正整数m =n (n +1)2,使得T n =b m ,所以{b n }是“H 数列”.同理可证{c n }也是“H 数列”. 所以对任意的等差数列{a n },总存在两个“H 数列”{b n }和{c n },使得a n =b n +c n (n ∈N *)成立.17.、、[2014·江西卷] 已知数列{a n }的前n 项和S n =3n 2-n2,n ∈N *.(1)求数列{a n }的通项公式;(2)证明:对任意的n >1,都存在m ∈N *,使得a 1,a n ,a m 成等比数列.17.解:(1)由S n =3n 2-n2,得a 1=S 1=1.当n ≥2时,a n =S n -S n -1=3n -2,a 1也符合上式,所以数列{a n }的通项公式为a n =3n -2.(2)证明:要使得a 1,a n ,a m 成等比数列,只需要a 2n =a 1·a m ,即(3n -2)2=1·(3m -2),即m =3n 2-4n +2.而此时m ∈N *,且m >n ,所以对任意的n >1,都存在m ∈N *,使得a 1,a n ,a m 成等比数列. 18.、[2014·江西卷] 已知函数f (x )=(4x 2+4ax +a 2)x ,其中a <0. (1)当a =-4时,求f (x )的单调递增区间;(2)若f (x )在区间[1,4]上的最小值为8,求a 的值.18.解:(1)当a =-4时,由f ′(x )=2(5x -2)(x -2)x=0得x =25或x =2,由f ′(x )>0得x ∈⎝⎛⎭⎫0,25或x ∈(2,+∞). 故函数f (x )的单调递增区间为⎝⎛⎭⎫0,25和(2,+∞). (2)因为f ′(x )=(10x +a )(2x +a )2x ,a <0,所以由f ′(x )=0得x =-a 10或x =-a2.当x ∈⎝⎛⎭⎫0,-a 10时,f (x )单调递增;当x ∈⎝⎛⎭⎫-a 10,-a2时,f (x )单调递减;当x ∈⎝⎛⎭⎫-a2,+∞时,f (x )单调递增. 易知f (x )=(2x +a )2x ≥0,且f ⎝⎛⎭⎫-a2=0. ①当-a2≤1,即-2≤a <0时,f (x )在[1,4]上的最小值为f (1),由f (1)=4+4a +a 2=8,得a =±22-2,均不符合题意.②当1<-a2≤4时,即-8≤a <-2时,f (x )在[1,4]时的最小值为f ⎝⎛⎭⎫-a 2=0,不符合题意.③当-a2>4时,即a <-8时,f (x )在[1,4]上的最小值可能在x =1或x =4时取得,而f (1)≠8,由f (4)=2(64+16a +a 2)=8得a =-10或a =-6(舍去).当a =-10时,f (x )在(1,4)上单调递减,f (x )在[1,4]上的最小值为f (4)=8,符合题意. 综上有,a =-10. 19.、、[2014·四川卷] 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图像上(n ∈N *).(1)证明:数列{b n }为等比数列;(2)若a 1=1,函数f (x )的图像在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列{a n b 2n }的前n 项和S n .19.解:(1)证明:由已知得,b n =2a n >0,当n ≥1时,b n +1b n=2a n +1-a n =2d .故数列{b n }是首项为2a 1,公比为2d 的等比数列.(2)函数f (x )=2x 在点(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2),其在x 轴上的截距为a 2-1ln 2.由题意知,a 2-1ln 2=2-1ln 2,解得a 2=2,所以d =a 2-a 1=1,a n =n ,b n =2n ,a n b 2n =n ·4n .于是,S n =1×4+2×42+3×43+…+(n -1)×4n -1+n ×4n ,4S n =1×42+2×43+…+(n -1)×4n +n ×4n +1,因此,S n -4S n =4+42+…+4n -n ·4n +1=4n +1-43-n ·4n +1=(1-3n )4n +1-43, 所以,S n =(3n -1)4n +1+49.。