当前位置:文档之家› 水中硝酸盐污染现状_危害及脱除技术

水中硝酸盐污染现状_危害及脱除技术

水中硝酸盐污染现状_危害及脱除技术
水中硝酸盐污染现状_危害及脱除技术

CITY AND TOWN WATER SUPPLY?研究与探讨?

70 城镇供水 NO.1 2013

水中硝酸盐污染现状、危害及脱除技术

延利军

(阳城县环境保护局环境监测站,山西阳城 048100)

摘要:世界范围内地下水硝酸盐的污染已越来越严重。受硝酸盐污染后的地下水会以直接或间接的方式危害人们的健康,由于硝酸盐会在水体中沉积并不断地累积,会导致婴儿患上高铁血红蛋白症,已经成为世界性的环境问题。随着硝酸盐污染的日益恶化,水体中硝酸盐污染问题不容乐观。根据使用方法的不同,硝酸盐氮常规去除技术大体分为物理方法、生物脱氮法及化学还原法。利用一系列方法将水中的硝酸盐还原为氮气是水中硝酸治理的根本方法。

关键词:水硝酸盐 污染现象 危害 脱除技术

1 水中硝酸盐污染现状

很久以来地球上每年的固氮量远远超过通过反

硝化释放的氮素量,从而导致硝酸盐氮在地下水中

的积累,使自然界的各种水体硝酸盐大大超标。

世界范围内地下水硝酸盐的污染已越来越严重。

例如,意大利的PRIN研究报告表明国家虽然努力从

集约型农业方面减少硝酸盐的排放,但硝酸盐仍然

是托斯卡纳地区重要污染物之一,约35%的井水硝

酸盐浓度都超过50 mg/L 。美国亚拉巴马州两年的

地下水调查报告指出该州中部和东北部大部分地区

硝酸盐都超过了63 mg/L,其他地区有的甚至超过了

112 mg/L。德国50%的农用井水硝酸盐浓度已经超

过60 mg/L,法国巴黎附近部分地区硝酸盐浓度已经

高达180 mg/L。欧美地区水体硝酸盐超标现象如此

严重,亚洲地区也不例外,集约化农业生产地区尤

为严重。印度克什米尔地区的地下水调查中,夏季

85%的水样,冬季67%的水样硝酸盐浓度都超过了

世界卫生组织的水质标准(50 mg/L),污染主要来源

于氮肥的大量施用。通过采集孟加拉国中、东部地

区的地下水和河水水样分析发现, 在浅层和深层地

下水中硝酸盐浓度分别为中部最低为0.10 mg /L、最

高为75.12mg /L;西部最低为0.10 mg /L、最高40.78

mg /L。

我国的情况也不容乐观。在我国广大的农村及

市郊,由于硝酸盐易溶于水且无色无味,许多农民

长期饮用已被严重污染的井水,并不知道其危害。

张维理等通过对我国北方14个县市的69个调查点

的水质监测发现,半数以上超过饮用水硝酸盐的最

大允许量, 有的甚至高达300 mg/L [1]。2005年、2006

年、2007年连续3年对长春市77个地下水井的检

测资料显示,“三氮”的检出率都达到100%。硝酸

盐氮和氨氮的超标率都维持在较高水平。王正祥等[2]

对天津地区的201个水样进行了硝酸盐污染现状调

查研究,结果表明,大部分蔬菜种植区浅层地下水

硝酸盐污染状况十分严重。

2 水中硝酸盐污染危害

水中硝酸盐是在有氧环境下,各种形态的含氮

化合物中最稳定的氮化合物,亦是含氮有机物经无

机化作用最终阶段的分解产物。硝酸盐本身毒性很

低,但是它进入人体之后可以被还原为亚硝酸盐,

毒性加大,是硝酸盐毒性的11倍。亚硝酸盐的主要

生物效应就是将正常的血红蛋白氧化为不具有输送

氧能力的,从而降低血红蛋白给机体输高铁血红蛋

白送氧的能力。当高铁血红蛋白浓度达到正常血红

蛋白浓度的10%以上时就会成为高铁血红蛋白症(如

黄萎症等),出现皮肤紫绀、头晕、恶心、心跳加速、

呼吸困难、乏力、腹痛、腹泻等临床症状,更高浓

度会引起窒息甚至死亡。婴儿体内的血红蛋白更容

易被亚硝酸盐氧化为高铁血红蛋白,而且婴儿体内

没有高铁血红蛋白还原酶,所以更容易受到硝酸盐

或亚硝酸盐的影响。同时,亚硝酸盐具有抗甲状腺

素的作用,即使在碘含量很高的地区,如饮用水中

硝酸盐、亚硝酸盐的含量高,同样也会导致地方性

甲状腺肿,并且会干扰肌体对维生素A的利用,导

CITY AND TOWN WATER SUPPLY

?研究与探讨?

城镇供水 NO.1 2013 71

致维生素A 缺乏症,血质下降,抑制中心迷走神经,使心动过速。

与此同时,水环境中的硝酸盐和亚硝酸盐在各种含氮有机物(胺、酰胺、尿素、胍、氰胺)的作用下,还可形成化学稳定性、致癌和致突变机制不同的N-亚硝基胺和亚硝基酰胺的各种N-亚硝基族化合物。流行病学研究表明11个国家的每日硝酸盐摄入量与胃癌死亡率密切相关(r =0.88),哥伦比亚胃癌高发区的饮水、土壤、蔬菜及居民尿中的硝酸盐氮比低发区高,我国胃癌低发区水源中硝酸盐平均为5.6 ppm,明显低于高发区的29.2 ppm(P<0.02)。福建省长乐县胃癌高发区水源中硝酸盐达150.3 ppm。

由于硝酸盐的污染, “肥水井”现象不断增加, 作物从井灌水吸附过量的硝酸盐后, 在植物体内积累, 引起作物的病、虫、害, 并影响作物质量, 从而影响人体健康。如降低土豆收获和运输时对机械损伤的抵抗力,降低水果和蔬菜的等级,减少香味和冬季耐藏力,同时作物的营养价值也下降了。用含有大量硝酸盐的地下水灌溉菜田,就会使蔬菜如菠菜等中的硝酸盐含量增高,这种蔬菜在长途运输和贮存时,由于硝酸盐还原菌的催化作用,硝酸盐就被还原为亚硝酸盐,人食用后就会引起中毒。

可见,受硝酸盐污染后的地下水会以直接或间接的方式危害人们的健康,所以世界各国对饮用水中硝酸盐的含量都确定了标准值。世界卫生组织规

定饮用水中的NO 3--N<10 mg/L ;

我国生活饮用水卫生标准(GB5749-2006)规定饮用水中的NO 3--N 浓度不得超过10 mg/L。

由于硝酸盐会在水体中沉积并不断地累积,所以水体中硝酸盐污染问题不容乐观,必须采取有效措施来控制、防治水体中硝酸盐的污染。

3 脱除水中硝酸盐的主要技术

硝酸盐化学性质稳定,绝大多数硝酸盐均易溶于水,一般的饮用水处理工艺难以将其去除。我国硝酸盐污染严重,为了使水体中硝酸盐浓度达标,近年来,国内许多研究者对硝酸盐污染的修复技术进行了研究,并取得了较好的成果。根据使用方法的不同,硝酸盐氮常规去除技术大体分为物理方法、生物脱氮法及化学还原法。利用一系列方法将水中的硝酸盐还原为氮气是水中硝酸治理的根本方法。

3.1物理法脱除水中硝酸盐

物理方法主要有膜分离法(电渗析、反渗透)和

离子交换法等。

电渗析是一种较新的膜处理方法,它以直流电场作为驱动力,可将电解质离子组分从水溶液和其他不带电组分中分离出来。在去除水体中硝酸盐过程中,相比于离子交换树脂和反渗透而言,电渗析法具有无需添加化学试剂和高选择性的优点。电渗析过程膜的替换以及电能消耗占整个操作费用的最大部分。反渗透是另一种膜法水处理技术,利用压力使原水通过半透膜,只有水分子能穿过半透膜,其它溶质分子则被截留。反渗透对硝酸根离子无选择性, 但各种离子的脱除率与其价数成正比。反渗透和电渗析法主要适用于总溶解性固体含量高的水以及海水淡化,而若用这两种方法处理总溶解性固体含量低的水,其处理费太高。此外,膜分离法对硝酸盐无选择性,能去除所有的无机离子,产生浓缩无机盐废水,存在着废水排放问题。而且水经膜法处理后,其整个成分发生了变化,因此从人类健康、成本费等方面考虑,膜法的实用性较差。

离子交换法由于稳定、快速及其易于自动控制,是物理方法中最普遍的一种去除硝酸盐的工艺,它不受温度的影响,所以在小型或中型处理厂有很大的潜力。离子交换工艺去除水体中硝酸盐的基本原理就是将被污染的原水通过含有强碱阴离子交换树脂的树脂床,硝酸根离子与树脂中的氯离子或者碳酸氢根离子发生交换而被树脂吸附。当树脂交换容量耗尽后,可以用高浓度的氯化钠溶液等对交换树脂进行再生。Samatya 等[3]采用一种强碱基阴离子交换树脂Purolite A520E 去除饮用水中的硝酸盐。研究结果表明在最佳的反应条件下,硝酸盐的去除率可以达到98%。研究还发现当溶液中有浓度很高的竞争离子时,硝酸盐的去除率会降低。当溶液中氯化物和硫酸盐浓度增加时,硝酸盐的去除率从98%分别降到了85%和88%。虽然离子交换工艺发展成熟,但是会形成高浓度的再生盐水,在没有合适的排放水体情况下,会对当地的环境构成严重威胁,必须进一步处理。

物理方法所需费用过高,不具有选择性,且只是发生了硝酸盐污染物的转移或浓缩,实际上并没有彻底地去除,所以该方法在应用上受到一定的限制。

3.2 生物法脱除水中硝酸盐众所周知,自然界中水、土壤有一定的自净能力。

CITY AND TOWN WATER SUPPLY?研究与探讨?

72 城镇供水 NO.1 2013

自然界中存在的某些微生物对污染物有一定的降解

作用,但是这个降解过程通常较慢,在实际的水处

理过程中难以得到运用。研究表明:在地下水环境中,

一定的条件下,存在着反硝化作用。实质是在缺氧

状态下硝酸盐氮作为脱氮菌呼吸链的末端电子受体

而被还原为N2O或N2的过程。

硝酸盐氮的生物修复技术就是在人为的作用下,

强化自然界水体中的反硝化作用,根据进行去除的

场所可以分为原位生物脱氮技术和异位生物脱氮技

术。

3.3 化学还原法脱除水中硝酸盐

化学方法去除地下水中硝酸盐的原理是通过加

入还原剂,首先将硝酸盐氮还原为亚硝酸盐氮,继而

进一步还原为氮气或氨氮。

3.3.1活泼金属还原法

活泼金属还原法是以铁、铝、锌等金属单质为

还原剂,在碱性环境中将硝酸盐还原为亚硝酸盐或

氨氮。铁还原法是目前研究最多的技术。李胜业等[4]

用还原铁粉反应柱去除地下水中的硝酸盐,结果表

明: pH值越低,反应速度越快,初始pH值为2时,

硝酸盐氮去除率可达到90%以上。董军等[5]利用

Fe0为还原剂处理被垃圾渗滤液污染的地下水,结

果表明总氮从50 mg/L降到10 mg/L以下。近年来,

随着材料技术的发展,纳米铁的应用成为新的研究

热点。与普通铁相比,纳米级铁粉具有粒径小,比

表面积大,表面能大的特点,在与其它物质的反应

中具有较高的活性。李铁龙等[6]利用微乳液法制备

出粒径约80 nm的α-Fe纳米铁粒子去除硝酸盐氮,

在无氧环境中,室温、中性条件下,无需调节pH值,

振荡反应30 min,即可获得90%以上的脱硝率。由

试验得出纳米铁与硝酸盐氮反应的主要产物为氨氮。

活泼金属还原法的主要缺点在于反应的产物不

是以无害的N2为主,并且会产生金属离子、金属氧

化物和水合金属氧化物等二次污染,因而对后处理

要求较高。

3.3.2催化还原法

由于金属铁或二价铁等还原硝酸盐的条件难以

控制,易产生副产物,所以人们设法从中加入适当

的催化剂,减少副产物的产生,近年来出现了催化

还原硝酸盐的方法。催化还原法是指以氢气、甲酸

等为还原剂,在反应中加入适当的催化剂,以提高

反应速度、减少副产物的产生,将硝酸盐还原成氮气。

反应历程如下:

在理论上,只要合理选用催化剂和控制反应条件,

通过化学催化还原法完全可以将硝酸盐氮全部还原为

氮气。Horold等[7]用Pd-Cu二元金属作催化剂对水样

中的硝酸盐氮进行了试验,结果表明:溶液pH为6.5、

NO3-的初始浓度为100mg/L时,NO3-离子的转化率

可达100%,同时对氮气的选择性可达82%,催化剂

去除硝酸根的活性为3.13mg/(min?g)比生物反硝化酶

的活性高30倍以上。由于催化还原过程可以在地下

水的水质和水温条件下进行,若以氢气为还原剂不会

对被处理水产生二次污染,因此这一工艺原理受到密

切关注,并被认为是最有发展前景的饮用水脱硝工艺。

对于化学催化还原水中的硝酸根,进一步提高反应速

度、控制反应发生的方向是该技术的关键。寻求高效、

性能稳定的催化剂,探索环境因素对于催化反应的影

响是该领域的研究重点。

催化方法去除硝酸盐技术反应速度快,能适应

不同反应条件,易于运行管理。然而该技术的难点

是催化剂的活性和选择性的控制,有可能由于氢化

作用不完全形成亚硝酸盐,或由于氢化作用过强而

形成(NH3、NH4+)等副产物,这也正是目前研究的重

点和难点。

参考文献:

[1]张维理, 田哲旭, 张宁,等.我国北方农用氮肥造成地下水硝酸盐污

染的调查[J]. 植物营养与肥料学报, 1995, 1(2): 80- 87.

[2]王正祥,高贤彪,李明悦,潘洁,于彩虹.天津市水体硝酸盐污染

调查与空间分布研究[J].农业环境科学学报,2009,28(3):592-596.

[3] Samatya S, Yuksel U, Arda M, et al. Investigation of selectivity and kinetic

behavior of strong-base ion exchange resin Purolite A 520E for nitrate removal from

aqueous solution. Separation Science and Technology, 41(13):2973-2988.

[4]李胜业, 金朝晖, 金晓秋, 等. 还原铁粉反应柱去除地下水中硝酸盐

氮的研究[J]. 农业环境科学学报, 2004, 23(6):1203-1206.

[5]董军, 赵勇胜 ,赵晓波, 等.垃圾渗滤液对地下水污染的PRB原位

处理技术[J]. 环境科学, 2003, 24(5):151-156.

[6]李铁龙, 刘海水, 金朝晖, 等.纳米铁去除水中的硝酸盐氮的批试验

[J]. 吉林大学学报(工学版), 2006, 36(2):264-268.

[7]Horold S, Tacke T, Vorlop K D. Catalytic removal of nitrate and nitrite from

drinking water-1, Screening for hydrogenation catalysts and influence of reaction

conditions on activity and selectivity. Environ .Tehnol. , 1993,14:931-945

作者通联:013977384419

硝酸盐与亚硝酸盐的危害

仅供参考[整理] 安全管理文书 硝酸盐与亚硝酸盐的危害 日期:__________________ 单位:__________________ 第1 页共4 页

硝酸盐与亚硝酸盐的危害 硝酸盐(NO3)与亚硝酸盐(NO2)分别是硝酸(HNO3)和亚硝酸(HNO2)的酸根,它们作为环境污染物而广泛地存在于自然界中,尤其是在气态水、地表水和地下水中以及动植物体与食品内。 环境中硝酸盐与亚硝酸盐的污染来源很多,如:1.人工化肥:有硝酸铵、硝酸钙、硝酸钾、硝酸钠和尿素等;2.生活污水、生活垃圾与人畜粪便,据测试1升生活污水在自然降解过程中,可产生110毫克硝酸盐;1公斤垃圾粪便堆肥在自然条件下经淋滤分解后,可产生492毫克硝酸盐;3.食品、燃料、炼油等工厂排出大量的含氨废弃物,经过生物、化学转换后均形成硝酸盐进入环境中;4.汽车、火车、轮船、飞机、锅炉、民用炉等燃烧石油类燃料、煤炭、天然气,可产生大量氮氧化物,平均燃烧1吨煤、1千升油和1万立方米天然气可分别产生二氧化氮气体9、13与63公斤,这些二氧化氮气体经降水淋溶后可形成硝酸盐降落到地面和水体中;5.食品防腐与保鲜:硝酸盐与亚硝酸盐被广泛用在肉品和鱼的防腐和保存上,以使肉制品呈现红色和香味,在每公斤肉食品中加入亚硝酸盐(一般为亚硝酸钠)5毫克以下,在一定时间内肉色观感良好;加入20毫克以上,可呈现商业上需要的稳定色彩;加入50毫克则有特殊气味。 环境中化肥施用、污水灌溉、垃圾粪便、工业含氮废弃物、燃料燃烧排放的含氮废气等在自然条件下,经降水淋溶分解后形成硝酸盐,流入河、湖并渗入地下,从而造成地表水和地下水的硝酸盐污染。如污水下渗、污灌和滥施化肥可使地下水硝酸盐含量由数毫克/升剧增至400毫克/升以上(国家生活饮用水硝酸盐含量卫生标准小于88.6毫克/升,以氮计小于20毫克/升);滥施化肥、污灌、用硝酸盐污染的水源灌溉 第 2 页共 4 页

水体亚硝酸盐超标怎么办

水体亚硝酸盐超标怎么办? 亚硝酸盐是广泛存在于水体的一种物质,是水体氮循环的产物之一。养殖水体中利用目前的水质分析盒一般不得检出,能检出的浓度对鱼虾都会产生影响。 亚硝酸盐要在水体中完全不存在是不可能的,只是在养殖过程中要严格控制其危害浓度。近几年,亚硝酸盐中毒一直是养殖过程中碰到的比较棘手的问题,当前还没有能降解亚硝酸盐的特效药,但实践中,可以选择各种措施来缓解和降低亚硝酸盐带来的危害。 一、亚硝酸盐对水产养殖的影响 亚硝酸盐能促使血液中的血红蛋白转化为高铁血红蛋白,高铁血红蛋白不能与氧结合,造成血液输送氧气能力的下降。高铁血红蛋白使血液呈现褐色,称之为“褐血病”。 水体中低浓度的亚硝酸盐就能使鱼虾中毒。亚硝酸盐中毒后,血液的携带氧的能力减弱,即使含氧丰富的水体,鱼类也容易形成类似缺氧的症状。处于应激状态的鱼类,易交叉感染细菌性块状烂鳃病,不久出现大批死亡。 亚硝酸盐中毒分为两种: 1、慢性中毒:症状不明显,一般肉眼很难看出,但严重影响鱼类的生长和生活。中毒较深的摄食量减少,活动能力减弱,鱼体消瘦,体表无光泽,这为池塘的整体症状,只要细心观察,同样可以发现,见人回避反应缓慢。只要水体转好,该症状会逐步消失,但如果不及时调节水质,就会严重影响成活率,特别是恶劣天气或病毒侵害时,会造成极大损失。 2、急性中毒:一般发生在清晨,肉眼观察似缺氧浮头,且往往伴随缺氧症状同时发生,有时难以区分,但仍然还是可以区别的,缺氧浮头,鱼大多可以集群,但亚硝酸盐中毒就不同,鱼在整个池塘中不均匀分布,到处都是,即使注水解救,在短时间内也不会出现游向水口的情况,太阳出来后,症状也不会很快消失,甚至随着时间的推移会越来越严重,晴天中午都不会解除,只有在下午有点缓解,第二天更严重,甚至造成大批死亡,其死亡率可达90%以上,损失十分严重。 二、预防及解救 预防措施:

水质亚硝酸盐氮的测定分光光度法

水质亚硝酸盐氮的测定分光光度法

水质亚硝酸盐氮的测定分光光度法 本标准等效采用ISO 6777-1984《水质亚硝酸盐氮测定分子吸收分光光度法》。 本标准根据我国标准的格式对ISO 6777-1984标准技术上稍作修改和补充。 1 适用范围 本标准规定了用分光光度法测定饮用水、地下水、地面水及废水中亚硝酸盐氮的方法。 1.1 测定上限 当试份取最大体积(50ml)时,用本方法可以测定亚硝酸盐氮浓度高达0.20mg/L。 1.2 最低检出浓度 采用光程长为10mm的比色皿,试份体积为50ml,以吸光度0.01单位所对应的浓度值为最低检出限浓度,此值为0.003mg/L。 采用光程长为30mm的比色皿,试份体积为50ml,最低检出浓度为0.001mg/L。 1.3 灵敏度 采用光程长为10mm的比色皿,试份体积为50ml时,亚硝酸盐氮浓度cN=0.20mg/L,给出的吸光度约为0.67单位。 1.4 干扰 当试样pH≥11时,可能遇到某些干扰,遇此情况,可向试份中加入酚酞溶液(3.12)1滴,边搅拌边逐滴加入磷酸溶液(3.4),至红色刚消失。经此处理,则在加入显色剂后,体系pH值为1.8±0.3,而不影响测定。 试样如有颜色和悬浮物,可向每100ml试样中加入2ml氢氧化铝悬浮液(3.9),搅拌,静置,过滤,弃去25ml初滤液后,再取试份测定。 水样中常见的可能产生干扰物质的含量范围见附录A。其中氯胺、氯、硫代硫酸盐、聚磷酸钠和三价铁离子有明显干扰。 2 原理 在磷酸介质中,pH值为1.8时,试份中的亚硝酸根离子与4-氨基苯磺酰胺 (4-aminobenzenesulfonamide)反应生成重氮盐,它再与N-(1-萘基)-乙二胺二盐酸盐 [N-(1-naphthyl-1,2-diaminoethane dihydrochlo-ride]偶联生成红色染料,在540nm波长处测定吸光度。 如果使用光程长为10mm的比色皿,亚硝酸盐氮的浓度在0.2mg/L以内其呈色符合比尔定律。 3 试剂 在测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂,实验用水均为无亚硝酸盐的二次蒸馏水。 3.1 实验用水 采用下列方法之一进行制备: 3.1.1 加入高锰酸钾结晶少许于1 L蒸馏水中,使成红色,加氢氧化钡(或氢氧化钙)结晶至溶液呈碱性,使用硬质玻璃蒸馏器进行蒸馏,弃去最初的50ml馏出液,收集约700ml不含锰盐的馏出液, 待用。 3.1.2 于1 L蒸馏水中加入硫酸(3.3)1ml、硫酸锰溶液[每100ml水中含有36.49硫酸锰(MnSO4·H2O)]0.2ml,滴加0.04%(V/V)高锰酸钾溶液至呈红色(约l~3ml),使用硬质玻璃蒸馏器进行蒸馏,弃去最初的50ml馏出液,收集约700ml不含锰盐的馏出液,待用。 3.2 磷酸:15mol/L,ρ=1.70g/ml。 3.3 硫酸:18mol/L,ρ=l.84g/ml。 3.4 磷酸:1+9溶液(1.5mol/L)。

水体中亚硝酸盐的来源与去除

Hans Journal of Food and Nutrition Science 食品与营养科学, 2017, 6(1), 37-42 Published Online February 2017 in Hans. https://www.doczj.com/doc/9f15600910.html,/journal/hjfns https://https://www.doczj.com/doc/9f15600910.html,/10.12677/hjfns.2017.61006 文章引用: 王树庆, 范维江, 张红平, 赵鑫, 柏永亭. 水体中亚硝酸盐的来源与去除[J]. 食品与营养科学, 2017, 6(1): Origin and Removal of Nitrite in Water Shuqing Wang 1,2*, Weijiang Fan 1, Hongping Zhang 2, Xin Zhao 2, Yongting Bo 2 1Shandong Institute of Commerce and Technology, Jinan Shandong 2 Shandong Tianfu Jinda Biotechnology Co. Ltd., Jinan Shandong Received: Feb. 2nd , 2017; accepted: Feb. 18th , 2017; published: Feb. 22nd , 2017 Abstract Nitrite is an intermediate product of the nitrogen cycle in nature, which exists widely in water and has attracted more and more attention because of its strong biological toxicity. Origin, influencing factors and removal technology are summarized in details in this paper. Some practical signific- ances of solving nitrite in water are also proposed. Keywords Water, Nitrite, Origin, Removal 水体中亚硝酸盐的来源与去除 王树庆1,2*,范维江1,张红平2,赵 鑫2,柏永亭2 1 山东商业职业技术学院,山东 济南 2 山东天福晋大生物科技有限公司,山东 济南 收稿日期:2017年2月2日;录用日期:2017年2月18日;发布日期:2017年2月22日 摘 要 亚硝酸盐是自然界中氮循环的一个中间产物,广泛存在于水体中,其生物毒性越来越受到人们的关注。本文阐述了水体中亚硝酸盐的来源、影响因素以及去除技术,并指出了解决水体中亚硝酸盐的现实意义。 关键词 水体,亚硝酸盐,来源,去除 * 通讯作者。

水中硝酸盐氮的测定

水中硝酸盐氮的测定——紫外分光光度法 一、实验目的 1、熟悉并掌握紫外分光光度计的原理及使用方法 2、学习运用紫外分光光度法测定水中的NO3-N。 二、实验原理 硝酸盐中的氮称为硝酸盐氮,水中的有机氮、氨氮、亚硝酸盐氮和硝酸盐氮等几项指标的相对含量,在一定程度上反映了含氮有机物存在于水体的时间长短,从而对探讨水体污染历史、它们的分解趋势和水体自净情况有一定的参考价值。 在紫外光谱区,硝酸根有强烈的吸收,其吸收值与硝酸根的浓度成正比。 在波长210-220nm处,可测定其吸光度。 水中溶解的有机物,在波长220及275nm下均有吸收,而硝酸根在275nm 时没有吸收。这样,需在275nm处作一次测定,以校正硝酸根的吸光度。 三、主要仪器 紫外分光光度计;石英比色皿。 四、主要试剂 (1)盐酸溶液(c(HCl)=l mol/L):量取浓盐酸83mL,用蒸馏水稀释至1000mL; (2)硝酸根标准贮备溶液(100mg/L):准确称取在105~110℃烘干1h的硝酸钾0.1631g,溶于蒸馏水中,定容至1000mL。 (3)硝酸根标准溶液(10mg/L):取硝酸根标准贮备溶液(2)10.0mL于100mL 容量瓶中,用蒸馏水定容。 五、实验步骤 (1)待测水样前处理: 取25ml待测水样加入到50ml容量瓶中,加入盐酸溶液(l mol/L)1mL,用蒸馏水稀释至刻度,摇匀。 (2)空白样前处理: 取25ml无氨水加入到50ml容量瓶中,加入盐酸溶液1mL,用蒸馏水稀释至刻度。 (3)标准液前处理:

向7支50ml容量瓶中分别加入硝酸根标准溶液(10mg/L)1.0,2.0,4.0,10.0,15.0,20.0,40.0mL,各加入盐酸溶液1mL,用蒸馏水稀释至刻度。7支容量瓶中的NO3-N的质量分别为10,30,40,100,150,200,400 μg。 (4)分光光度计测定: ?标准液吸光度的测定,分别在220nm与275nm波长处测定7支装有不同浓度标准液和空白样溶液的吸光度,并且按照下列式进行校正: As=As220-2As275 Ab=Ab220-2Ab275 Ar=As-Ab 其中As220为标准溶液在220nm的吸光度,As275为标准溶液在275nm的吸光度,Ab220为空白液在220nm的吸光度,Ab275为空白液在275nm的吸光度。(s-standard,b-blank) ?按照每支标准溶液比色管中溶液的吸光度Ar和所含NO3-N质量绘制标准曲线。 ?按照同样方法测定水样的吸光度Ax。 (5)水样硝酸盐氮的计算: 得到水样的吸光度Ax,根据标准曲线找到Ax所对应的硝酸盐氮质量m,然后按下式计算水样硝酸盐氮: C N = m/V 其中,C为水样中的硝酸盐氮含量,m为根据标准曲线得出的水样硝酸盐氮质量,V为水样的测定体积,本操作取25ml(具体数值与水样添加值一致)。

水中亚硝酸盐含量的测定方法

N-(1-萘基)-胺光法(GB 13580.7-92) 1、原理 在Ph1.7一下,亚硝酸盐和对氨基苯磺酸反应生成重氮盐,在与N-(1-萘基)-乙二胺偶联生成红色染料,于540nm波长处测量吸光度,根据试样吸光度和亚硝酸盐浓度成正比的关系,即可进行定量 2、仪器 2.1,分光光度计 2.2, 25ml比色管 3、试剂 3.1,亚硝酸盐标准贮备液:1.000ug/ml,标准称取1.4998g亚硝酸钠(干燥器中干燥24小时)溶于水,并定容至1000ml 3.2,亚硝酸盐标准使用液:10ug/ml,标准吸取5.00ml亚硝酸盐的标准贮备液于500ml容量瓶中,用水稀释至刻度,使用时稀释配制。 3.3,盐酸溶液,(1+6),量取50ml浓盐酸加入到300ml水中,摇匀。 3.4,对氨基苯磺酸溶液:10g/L,称取5g对氨基苯磺酸,溶于350ml(1+6)盐酸溶液中,用水稀释至500ml,此溶剂可稳定数月 3.5,盐酸N-(1-萘基)-乙二胺1g/L:称取0.5g盐酸N-(1-萘基)-乙二胺溶于500ml水中,贮存于棕色瓶中,在冰箱里保存,此时

机可稳定数周,如变成深棕色则弃去重新配制。 4、方法 校准曲线的绘制,取25ml比色管6只,分别加入亚硝酸盐标准使用液0,0.50,1.00,2.50,5.00,10.0,ml,用水稀释至标线。各加入1.0ml对氨基苯磺酸溶液,摇匀后放置2~8min,加1.0mlN-(1-萘基)-乙二胺溶液,摇匀,以水作参比,用10nm吸收池在540nm 波长处测量吸光度,绘制校准曲线 样品测定,根据水样中的亚硝酸盐含量,吸取10.0~15.0ml水样于25ml比色管中,加水至25ml,以下按绘制标准曲线的步骤进行操作,测量试样的吸光度,从校准曲线上查出亚硝酸盐的含量 5、分析结果的表述 水样中亚硝酸盐(按NO2-计)浓度以mg/L表示,按下列计算式中:C-----------------水样中亚硝酸盐浓度mg/L M----------------冲校准曲线上查得亚硝酸盐含量,ug V-----------------取样体积

亚硝酸盐的危害

亚硝酸盐的危害 硝酸盐(NO3—)与亚硝酸盐(NO2—)分别是硝酸(HNO3)和亚硝酸(HNO2)的酸根,它们作为环境污染物而广泛地存在于自然界中,尤其是在气态水、地表水和地下水中以及动植物体与食品内。环境中硝酸盐与亚硝酸盐的污染来源很多,如:1.人工化肥:有硝酸铵、硝酸钙、硝酸钾、硝酸钠和尿素等;2.生活污水、生活垃圾与人畜粪便,据测试1升生活污水在自然降解过程中,可产生110毫克硝酸盐;1公斤垃圾粪便堆肥在自然条件下经淋滤分解后,可产生492毫克硝酸盐;3.食品、燃料、炼油等工厂排出大量的含氨废弃物,经过生物、化学转换后均形成硝酸盐进入环境中;4.汽车、火车、轮船、飞机、锅炉、民用炉等燃烧石油类燃料、煤炭、天然气,可产生大量氮氧化物,平均燃烧1吨煤、1千升油和1万立方米天然气可分别产生二氧化氮气体9、13与63公斤,这些二氧化氮气体经降水淋溶后可形成硝酸盐降落到地面和水体中;5.食品防腐与保鲜:硝酸盐与亚硝酸盐被广泛用在肉品和鱼的防腐和保存上,以使肉制品呈现红色和香味,在每公斤肉食品中加入亚硝酸盐(一般为亚硝酸钠)5毫克以下,在一定时间内肉色观感良好;加入20毫克以上,可呈现商业上需要的稳定色彩;加入50毫克则有特殊气味。 环境中化肥施用、污水灌溉、垃圾粪便、工业含氮废弃物、燃料燃烧排放的含氮废气等在自然条件下,经降水淋溶分解后形成硝酸盐,流入河、湖并渗入地下,从而造成地表水和地下水的硝酸盐污染。如污水下渗、污灌和滥施化肥可使地下水硝酸盐含量由数毫克/升剧增至400毫克/升以上(国家生活饮用水硝酸盐含量卫生标准小于88.6毫克/升,以氮计小于20毫克/升);滥施化肥、污灌、用硝酸盐污染的水源灌溉也使农作物吸收了大量的硝酸盐类,如过分施肥所产的菠菜中每公斤干重可含亚硝酸盐达3600毫克。还有腌制的渍酸菜、经过长途运输和长期贮存的蔬菜以及隔夜的熟蔬菜不仅硝酸盐含量大量增加,而且在硝酸盐还原菌的作用下,硝酸盐被还原为亚硝酸盐。 上述含有大量硝酸盐与亚硝酸盐的饮水、蔬菜、粮食、鱼、肉制品、渍酸菜、隔夜炒菜等经人食用后,大量亚硝酸盐可使人直接中毒,而且硝酸盐在人体内也可被还原为亚硝酸盐。亚硝酸盐与人体血液作用,形成高铁血红蛋白,从而使血液失去携氧功能,使人缺氧中毒,轻者头昏、心悸、呕吐、口唇青紫,重者神志不清、抽搐、呼吸急促,抢救不及时可危及生命。不仅如此,亚硝酸盐在人体内外与仲胺类作用形成亚硝胺类,它在人体内达到一定剂量时是致癌、致畸、致突变的物质,可严重危害人体健康。为了防止硝酸盐与亚硝酸盐的危害,除了要科学合理地施用化肥、禁止使用污水灌溉、实行污水、垃圾与粪便无害化处理等环保措施以保护地表水与地下水源不遭受硝酸盐和亚硝酸盐污染外,还应尽量少吃腌制、熏制、腊制的鱼、肉类、香肠、腊肉、火腿、罐头食品、渍酸菜、盐腌不久的菜;不买存放过久、隔日或发蔫的蔬菜;当日买的菜当日吃完;不吃隔夜的熟蔬菜;不可将剩饭菜长久存放;不可将工业用亚硝酸盐(如亚硝酸钠)当做食盐误食。 疏菜中的含量 硝酸盐测定仪 目前各类蔬菜中不仅农药残留超标现象仍然存在,而且硝酸盐超标的问题也比较突出,对人们身体健康构成了威胁。人体摄入的硝酸盐大部分来自蔬菜,约占80%。硝酸盐在细菌作用下可还原成亚硝酸盐。亚硝酸盐可使血液中毒,致使人体十现头昏缺氧症状;同时亚硝酸盐可与人体摄入的其他食品、药品、残留农药中的次级胺反应,在胃腔中形成强致癌物--亚硝胺,这是消化系统癌变的罪魁恶首。目前各地已经开始实行市场准人制,控制硝酸盐不超标将是取得市场"准入证" 的重要条件之一。尤其要注意对叶菜类、根茎菜类采取控硝措施。不同类型的蔬菜积累硝酸盐的敏感性不同,叶菜类为极敏感型,根茎菜类为敏感型.花菜类为不太敏感型,果菜类为不敏感型。对于菠菜、苋菜、空心菜、白菜、芹菜等叶菜类,以及胡萝卜、萝卜等根茎菜类,尤其要采取控硝措施。 以施用有机肥和生物肥料为主。施肥种类不同,同一种蔬菜中硝酸盐含量会有较大差别。以施用生物菌肥和高温堆肥的蔬菜含硝酸盐最少,其次为当地沤肥,以施用化肥的硝酸盐含量最高,其中尤以氮素化肥为甚。不同类型肥料施用对0~60厘米土层硝酸盐含量也表现出同样的趋势。土壤中硝酸盐含量不仅影响蔬菜对硝态氮的吸收,而且对地下水硝态氮含量高低也有较大影响。为了保护生态环境和防止蔬菜十硝酸盐的积累,应提倡以施用有机肥和生物肥料为主,尽可能少施化肥,特别是氮素化肥的施用,开切实做到氮磷钾配合施用:要求无机氮与有机氮的比例应少于1:1:氮磷钾三要素的比例,1 00天以内的短季蔬菜为1:0.2:0.5,长季蔬菜1:0.5:0.6。 选择适宜的氮肥种类、形态和用量。完全不施用氮肥目前恐怕还做不到,但要注意氮肥品种、氮素形态不同,蔬菜中硝酸盐的累积也不同。如施用铵态氮肥(氯化铵、硫酸铵等),会明显降低蔬菜中硝酸盐含量。因此,施用氮肥宜以尿素和铵态氮为主,或铵态氮与硝态氮配合使用,并控制比例7:3左右。短季节蔬菜施肥量全生育期推荐施纯氮10千克/667平方米,折合氯化铵21千克,厩肥1200千克或土杂肥1500千克:

养殖水体中PH值、氨氮、亚硝酸盐等指标的变化对鱼的影响及防治措施

酸碱度(即pH值) 对鱼的影响 池水是鱼类的生活环境,其酸碱度(即pH值)是鱼池水质的主要指标,它对鱼的生长、发育和繁殖等,有着直接或者间接的影响。 鱼类最适宜在中性或微碱性的水体中生长,其pH值为7.8~8.5。但在pH 值6~9时,仍属于安全范围。不过,如果pH值低于6或高于9,就会对鱼类造成不良影响。 鱼类在养殖过程中,如果pH过高或过低,不仅会引起水中一些化学物质的含量发生变化,甚至会使化学物质转变成有毒物质,对鱼类的生长和浮游生物的繁殖不利,还会抑制光合作用,影响水中的溶氧状况,妨碍鱼类呼吸。如果pH 值过高,鱼类生活在酸性环境中,水体中磷酸盐溶解度受到影响,有机物分解率减慢,物质循环强度降低,使细菌、藻类、浮游生物的繁殖受到影响,而且鱼鳃会受到腐蚀,使鱼的血液酸性增强,降低耗氧能力,尽管水体中的含氧量较高,但鱼会浮头,造成缺氧症,还会使鱼不爱活动,新陈代谢急剧减慢,摄食量减少,消化能力差,不利于鱼的生长发育。同时,偏酸性水体会引发鱼病,导致由原生动物引起的鱼病大量发生,如鞭毛虫病、根足虫病、孢子虫病、纤毛虫病、吸管虫病等。如果pH值过低,在5~6.5之间,又极易导致甲藻大量繁殖,对鱼的危害也较大。 pH值对鱼类繁殖也有影响。pH值不适宜,亲鱼性腺发育不良,妨碍胚胎发育。若pH值在6.4以下或9.4以上,则不能孵出鱼苗。若pH值过低,可使鱼卵卵膜软化,卵球扁塌,失去弹性,在孵化时极易提前破膜。若pH值在5~6.5之间,又遇适宜的温度条件(22℃~32℃),饲养的鱼种还极易得“打粉病”。 由于池水酸碱度对鱼类的生长、发育和繁殖都有密切关系,所以,要经常对

池水作pH值检测,并根据检测的结果,采取必要的相应措施,以保证池水的pH 值正常。 水的硬度对养鱼的影响 硬度作为一项水质指标对水草的生长有很重要的影响,但总是弄不明白什么是软水和硬水?什么是GH和KH?硬度是如何分级的?对水草有何影响? 水怎么会有软硬之分呢?这裡所说的软硬并不是物理性能上的软硬,而是根据水中所溶解的矿物质多寡来划分的,多了水就“硬”,少了水就“软”,硬水有许多缺点,使用时有不少麻烦。例如,在烧开水时易产生锅垢,又如硬水用来洗涤衣服时,消耗肥皂会比较多等。 因此,硬度可以用来描述水的软硬程度,其定义是指能使肥皂沉淀之量。这是因为肥皂是硬脂酸的钠或钾盐,遇到水中的钙、镁离子,易生成不溶性的硬脂酸钙和硬脂酸镁,使肥皂失去洗涤衣服的作用。除了钙、镁离子外,肥皂还能被铁、锰、铜…离子所沉淀,所以在化学上定义︰凡是水体存在能被肥皂产生沉淀的矿物质离子,都称为「硬度离子」,这裡指金属阳离子而言,主要包括钙、镁、铁、锰、铜离子等,而象钠、钾离子都不属于。但在一般的自然水(包括自来水)中,除了钙、镁离子外,其馀硬度离子存量很少,它们的总含量可能不到3%,因此水的硬度可以说主要表现为钙和镁离子,又称为“钙硬度”或“镁硬度”两者之和,称为“总硬度”,简称“硬度”,这其中钙硬度平均约占85%,镁硬度约占15%。 硬水又依加热之后是否可以发生矿物质沉淀,而分为“暂时硬水”和“永久硬水”两种。其中的部分金属离子可因加热而析出,故称为暂时硬水,主要是指那些含有酸式碳酸盐(例如,碳酸氢钙、碳酸氢镁、碳酸氢锰…等);所谓永久

浅谈亚硝酸盐

浅谈亚硝酸盐 摘要:参考相关文献,对亚硝酸盐的危害、限量、检测方法、抑制和去除方法以及研究现状等作一综述。 关键词:危害国家限量检测方法抑制和去除方法 亚硝酸盐,俗称“硝盐”,亚硝酸盐类食物中毒又称肠原性青紫病、紫绀症、乌嘴病,主要指亚硝酸钠和亚硝酸钾,为白色或微黄色结晶或颗粒状粉末,无臭,味微咸涩,易潮解,易溶于水,与食盐极为相似,因此被成为工业食盐。亚硝酸盐在工业、建筑业有广泛的用途,在食品中也常被用作为发色剂、防腐剂而限量使用。在水产品中,亚硝酸盐在防腐、保鲜方面有着不可替代的重要作用,而在生产过程中,很容易引起亚硝酸盐的过量。而亚硝酸盐对人体的危害是巨大的,在很多食品中,亚硝酸盐被检测出含量超标。一直以来,对亚硝酸盐的研究从未停止,也成为食品界急待解决的问题之一。 1危害 亚硝酸盐对人体的危害主要表现在以下几个方面: 1.1中毒 现在的科学研究结果一般认为硝酸盐本身是无毒的。而亚硝酸盐是强氧化剂,进入人体血液后与血红蛋白结合,使氧合血红蛋白变成高铁血红蛋白,导致“高铁血红蛋白症”,使血液失去携带氧的能力,导致组织缺氧,出现青紫而中毒,并对周围血管有扩张作用,严重的可能危及生命。 参考文献: 1.廖京勇.水体中硝酸盐和亚硝酸盐检测方法综述【J】.广东化工,2010,5. 2.冯枫,邹丽丽,郑娇,邱培梅.催化动力学光度法测定痕量亚硝酸盐.中国公共卫生,2002,11. 3.华煜等.仿生型信号分子对烟草硝酸盐、亚硝酸盐的抑制作用【J】.烟草农学,2010,7. 4.梅行等.大蒜与胃癌Ⅱ——大蒜对胃液硝酸盐还原菌生长及产生亚硝酸盐的抑制作用【J】.营养学报,1985,9. 5.王红霞,张稳婵.樱桃汁消除亚硝酸盐的研究【J】.安徽农业科学,2009,37(5).

亚硝酸的作用机理

亚硝酸盐的作用机理 亚硝酸盐的来源 1食品中常用的亚硝酸盐 ①.亚硝酸钠 亚硝酸钠为白色或微黄色结晶或颗粒状粉末,无臭,味微咸,易吸潮,易溶于水,微溶于乙醇,在空气中可吸收氧而逐渐变为硝酸钠。 本品是食品添加剂中急性毒性较强的物质之一,是一种剧药(在药物学中,根据毒性试 验结果,把毒性较强的物质称为剧药,如亚硝酸钠、氢氧化钠等;把毒性更强的称为毒药,如三氯化二砷等)。过量的亚硝酸盐进入血液后,可使正常的血红蛋白(二价铁)变成高铁血红蛋白(三价铁),失去携氧的功能,导致组织缺氧。潜伏期仅为0.5?1小时,症状为 头晕、恶心、呕吐、全身无力、皮肤发紫,严重者会因呼吸衰竭而死。ADI (每日允许摄入量)为0 ?0.2mg/kg。 我国规定:本品可用于肉类罐头和肉制品,最大使用量为0.15mg/kg。残留量以亚硝酸 钠计,肉类罐头不得超过0.05mg/kg,肉制品不得超过0.03mg/kg。此外,还规定亚硝酸盐可用于盐水火腿,但应控制其残留量为70ppm。 ②?硝酸钠 硝酸钠的毒性作用主要是因为它在食物中、水或胃肠道,尤其是在婴幼儿的胃肠道中,易被还原为亚硝酸盐所致,其ADI为0?5mg/kg。我国规定:本品可用于肉制品,最大使 用量为0.5g/kg,其残留量控制同亚硝酸钠。 ③.亚硝酸钾 亚硝酸钾的毒性作用参照亚硝酸钠,其ADI为0?0.2 mg/kg。④.硝酸钾 硝酸钾的毒性作用参照硝酸钠,在硝酸盐中,本品毒性较强,其ADI为0?5 mg/kg。本 品可代替硝酸钠,用于肉类腌制,其最大用量同硝酸钠。 ⑤?抗坏血酸和烟酰胺 用亚硝酸盐作为肉类的发色剂时,同时加入适量的L—抗坏血酸及其钠盐、烟酰胺作为发色助剂使用。抗坏血酸的使用量一般为原料肉的0.02%?0.05%,烟酰胺的用量为0.01%?0.02%,在腌制或斩拌时添加,也可把原料肉浸渍在这些物质的0.02 %的水溶液中。 2亚硝酸盐其他来源 蔬菜中含有较多的硝酸盐。 蔬菜也能从土壤中浓集更多的硝酸盐(如芹菜、韭菜、大白菜、萝卜、菠菜等);大量 施用含有硝酸盐的化肥或土壤缺钼时,可增加植物的蓄积作用。 在温度、水份、PH、渗透压等利于硝酸盐还原菌繁殖 可确进硝酸盐还原成亚硝酸盐(蔬菜存放在较高的温度下亚硝酸盐明显增高。食盐浓度5%时,温度愈高37C,产生的亚硝酸盐愈多;食盐浓度10%时次之;食盐浓度15%时,不论温度高低均无明显变化。腌制蔬菜的头2-4天亚硝酸盐有所增加,7-8天最高,9天后趋于下降)。饮用亚硝酸盐含量高的饮用水也可引起中毒。 亚硝酸盐亦可在体内形成。当胃肠功能紊乱、贫血、患肠寄生虫病、胃酸浓度下降时,硝酸盐还原成亚硝酸盐大量繁殖,如再大量食用硝酸盐含量高的蔬菜,使亚硝酸盐在肠内形成 过快,如机体不能及时将亚硝酸盐分解为氨,可引起中毒(称肠原性青紫症)。儿童最易出现。 亚硝酸盐危害 亚硝酸盐对人体的危害

水中亚硝酸盐含量测定

水中亚硝酸盐含量测定 来源:大禹网 什么叫水中的亚硝酸盐? 天然水中亚硝酸盐的含量很低。在洁净的地表水中,亚硝酸盐的含量一般不会超过O.1 mg/L。 亚硝酸盐是氮化合物无机化的中间产物,不稳定。分析水中亚硝酸根(NOf)可以推测水体的被污染程度及其氧化还原程度。 同时,亚硝酸根的测定,应在水样采集后立即进行,以免其成分发生改变。亚硝酸盐含量(亚硝酸盐紫外光度法)的测定原理是什么? 在波长219.0nm处,硝酸根离子与亚硝酸根离子的摩尔吸光系数相等。水中某些有机物在该波长处也有吸收,为了消除干扰,可取两份水样,其中一份加入氨基磺酸破坏水样中的亚硝酸根离子,作为空白对照,在219.0nm测定另一份水样的吸光度,从而计算出水样中亚硝酸盐的含量。 亚硝酸盐含量(亚硝酸盐紫外光度法)是怎样进行测定的? (1)标准曲线的绘制 ①准确吸取O.5mL、1 mL、1.5mL、2mL、2.5mL、3mL亚硝酸钠标准溶液,分别注入一组25mL比色管中,用试剂水稀释至刻度,摇匀。 ②以试剂水作空白对照,在219.0nm处,用1 em石英比色皿测定其吸光度,并以吸光度为纵坐标,亚硝酸根含量(mg)为横坐标绘制标准曲线。 (2)水样的测定 ①准确吸取两份各10mL经慢速定量滤纸过滤的水样,分别注入25mL比色管中,一份水样加入1mL 1%氨基磺酸溶液,用试剂水稀释至刻度,摇匀(A样)。 ②另一份水样用试剂水稀释至刻度,摇匀(B样)。 ③以上述A样为空白对比液,在219.0nm处,用1 cm石英比色皿测定B 样的吸光度,从标准曲线上查出相应的亚硝酸根离子含量(mg)。 水样中亚硝酸盐含量戈(mg/L)可用下式求出:

亚硝酸盐的来源及危害

结课论文 论文题目 学号: 姓名: 专业:化学工程与工艺系别:化学工程系指导教师: 二○一四年十一月

摘要 水和食物是人类维持生命必不可缺少的物质,也是人类生存最基本的需求,但同时也是传播疾病的重要媒介。随着人们生活水平的提高,食品安全越来越被人们重视。然而,食物中毒事件屡见不鲜。亚硝酸盐作为一种化学性污染物,与人们的饮食、健康有密切的关系。硝酸盐和亚硝酸盐是广泛存在于自然环境中的化学物质,特别是在食物中,如粮食、蔬菜、肉类和鱼类都含有一定量的硝酸盐和亚硝酸盐。它是一种允许使用的食品添加剂,只要控制在安全范围内使用,不会对人体造成危害,但是,使用不当则会对人造成严重的后果,甚至造成生命安全。本文从亚硝酸盐的来源、危害和控制以及发展等几个方面论述,通过对亚硝酸盐相关知识的介绍加强人们对其危害的认识,并提出采取科学有效的预防控制措施,尽量减少可能带来的危害,保证食品安全。 关键词:食品添加剂;亚硝酸盐;来源;危害;

1绪论 品名限量标准mg/kg 食盐(精盐)、牛乳粉≤2 香肠(腊肠)香肚、酱腌菜、广式腊肉≤20 鲜肉类、鲜鱼类、粮食≤3 肉制品、火腿肠、灌肠类≤30 蔬菜≤4 其他肉类罐头、其他腌制罐头≤50 婴儿配方乳粉、鲜蛋粉≤5 西式蒸煮、烟熏火腿及罐头、西式火腿罐头≤70

2亚硝酸盐的来源 2.1蔬菜中亚硝酸盐 2.1.1过量施用硝态氮肥 蔬菜施用过多硝酸铵和其它硝态氮肥后,未被蔬菜吸收利用的过剩硝态氮则 以硝酸盐的形式储藏在蔬菜中。硝酸盐在植物体内的含量是不均衡的,蔬菜品种 不同硝酸盐含量变化很大。不同种类蔬菜的新鲜可食部分中硝酸盐含量按其均值 大小排列为:根菜类>薯类>绿叶菜类>白菜>葱蒜类>豆类>茄果类。如根茎 类蔬菜中的甜菜根、萝卜等,叶菜类中菠菜、芹菜、灰菜、荠菜等都含有较高的 硝酸盐。其中甜菜根、莴苣和波菜硝酸盐含量多数高于2500mg/kg。凡有利于某些 还原菌,例如大肠杆菌、产气杆菌和革兰氏阳性球菌等生长和繁殖的各种因素(温度、水分、pH和渗透压等)都可促进硝酸盐还原为亚硝酸盐。因此新鲜蔬菜在贮 存过程中,腐烂蔬菜及放置过久的煮熟蔬菜,亚硝酸盐的含量明显增高。 2.1.2熟菜等腌制食品 生、鲜白菜等蔬菜中通常含有一定量的硝酸盐,在长期贮藏尤其是腌渍加工过 程中,由于硝酸还原菌的作用,硝酸盐被还原成亚硝酸盐,随后自然分解。以居 民家庭腌制酸菜为例,随着发酵时间的延长,酸菜中亚硝酸盐含量不断上升,第 6d时升至最高,随后会逐渐下降,20d后基本彻底分解。因此,腌渍菜具有一定的安全食用期。 2.1.3隔夜熟菜、霉变蔬菜 烹调熟化的白菜等蔬菜,其营养成分易被微生物吸收利用。随着存放时间的延长,菜肴中亚硝酸盐细菌含量增多,硝酸盐就会并逐渐被还原成亚硝酸盐。同理,霉变蔬菜的亚硝酸盐含量一般也较高。 2.2食品中的发色剂和防腐剂 肉制品、肉类罐头等肉类食品,在其加工过程中加入一定量的硝酸盐、亚硝 酸盐即可改善风味,稳定色泽,抑制肉毒梭菌的生长和繁殖,而且至今没有发现

硝酸盐超标治理方法

硝酸盐超标治理方法 The Standardization Office was revised on the afternoon of December 13, 2020

4 水中亚硝酸盐国内外处理方法概况国外对亚硝酸盐污染问题重视较早,并开发出了一系列处理工艺.欧洲在80年代初期就建立了一些实用的饮用水脱硝厂,美国则关闭了一些污染严重的地下水源井.随着水资源的日益紧张,目前国外对饮用水亚硝酸盐污染问题的研究再次趋热.在我国的不少地区,亚硝酸盐的污染问题已相当严重,但有关研究才刚刚开始. 综合国内外的研究现状,用于水中亚硝酸盐的处理工艺有化学法、生物法及物理法等几大类.化学法包括氧化法和还原法两种,物理法则包括膜分离法和离子交换法等.411 氧化法氧化法处理水中亚硝酸盐的技术具有设备简单、处理费用低的优点,是目前国际上普遍采用的方法.其原理为:亚硝酸离子中的氮为中间价态,具有被氧化的特性.当介质中的NO2-遇氧化剂时则会改变氮的价态,发生得失电子的变化而被氧化,最终NO2-离子会转变为毒性较小甚至无毒的物质.常采用的氧化剂有臭氧、双氧水、次氯酸钠 3 01第4期杨家澍等水中亚硝酸盐净化处理研究进展 ? 1994-2006 China Academic Journal Electronic Publishing House. All rights reserved. 等一些强氧化剂,用强氧化剂来氧化NO2-离子使其成为NO3-离子的优越之处在于反应速度快、氧化效率高. 宋成盈[12]等人采用臭氧氧化法对地下水中亚硝酸盐进行了处理研究,结果发现,对于含量较低、处理量较少的地下深井水中亚硝酸的处理,该工艺具有设备简单、处理费用低、无

亚硝酸盐氮的测定(N-(1-萘基)-乙二胺分光光度法)

亚硝酸盐氮得测定(N-(1-萘基)-乙二胺分光光度法): 亚硝酸盐就是氮循环得中间产物,不稳定,根据水环境条件,可被氧化成硝酸盐,也可被还原成氨。亚硝酸盐可使人体正常得血红蛋白(地铁血红蛋白)氧化成为高铁血红蛋白,发生高铁血红蛋白症,失去血红蛋白在体内输送氧得能力,出现组织缺氧得症状。亚硝酸盐可与仲胺类反应生成具致癌性得亚硝胺类物质,在PH 值较低得酸性条件下,有利于亚硝胺类得形成。 水中亚硝酸盐得测定方法通常采用重氮-偶联反应,使生成红紫色染料。方法灵敏、选择性强。所用重氮与偶联试剂种类较多,最常用,前者为对氨基苯磺酰胺与对氨基苯磺酸,后者为N-(1-萘基)-乙二胺与a-萘胺。此外,还有目前国内外普遍使用得离子色谱法与新开发得气相分子吸收法。这两种方法虽然须使用专用仪器,但方法简便、快速,干扰较少。 亚硝酸盐在水中可受微生物等作用而很不稳定,在采集后应尽快进行分析,必要时冷藏以抑制微生物得影响。 1、实验原理 在磷酸介质中,pH1、8±0、3时,亚硝酸盐与对-氨基苯磺酰胺反应,生成重氮盐,再与N-(1-萘基)-乙二胺偶联生成红色染料。在540nm波长处有最大吸收。 2、干扰及消除 氯胺、氯、硫代硫酸盐、聚磷酸钠与高铁离子有明显干扰。水样呈碱性(PH>11)时,可加酚酞溶液为指示剂,滴加磷酸溶液至红色消失。水样有颜色或悬浮物,可加氢氧化铝悬浮液并过滤。 3、方法得适用范围 本方法适用于饮用水、地表水、地下水、生活污水、与工业废水中亚硝酸盐得测定。最低检出浓度为0、003mg/L;测定上限为0、20mg/L亚硝酸盐氮、 4、仪器 分光光度计 5、试剂 实验用水均为不含亚硝酸盐得水 1)无亚硝酸盐得水:于蒸馏水中加入少许高锰酸钾晶体,使呈红色,再加氢氧化钡(或氢氧化钙)使呈碱性。置于全玻璃蒸馏器中蒸馏,弃去50ml初馏液,收集中间约70%不含锰得馏出液。亦可于每升蒸馏水中加1ml浓硫酸与0、2ml硫酸 锰溶液(每100ml水中含36、4gMnSO 4、H 2 O),JIARU 1~3ml0、04%高锰酸钾溶液至 呈红色,重蒸馏。 2)磷酸密度=1.70g/ml。

亚硝酸盐介绍、产生及其危害之令狐文艳创作

亚硝酸盐介绍、产生及危害 令狐文艳 亚硝酸盐 亚硝酸盐,亚硝酸盐类食物中毒又称肠原性青紫病、紫绀症、乌嘴病,是一种白色不透明结晶的化工产品,形状极似食盐。工业盐(又称私盐)因系由化工原料加工制成,含有大量的亚硝酸盐。为白色至淡黄色粉末或颗粒状,味微咸,易溶于水。外观及滋味都与食盐相似,并在工业、建筑业中广为使用,肉类制品中也允许作为发色剂限量使用。由亚硝酸盐引起食物中毒的机率较高。食入0.3~0.5克的亚硝酸盐即可引起中毒甚至死亡。 亚硝酸盐能使血液中正常携氧的低铁血红蛋白氧化成高铁血红蛋白,因而失去携氧能力而引起组织缺氧。亚硝酸盐是剧毒物质,成人摄入0.2一0.5克即可引起中毒,3克即可致死 硝酸盐及亚硝酸盐的产生 硝酸盐(NO3—)与亚硝酸盐(NO2—)分别是硝酸(HNO3)和亚硝酸(HNO2)的酸根,它们作为环境污染物而广泛地存在于自然界中,尤其是在气态水、地表水和地下水中以及动植物体与食品内。环境中硝酸盐与亚硝酸盐的污染来源很多,如:1.人工化肥:有硝酸铵、硝酸钙、硝酸钾、硝酸钠和尿素等;2.生活污水、生活垃圾与人畜粪便,据测试1升生活污水在自然降解过程中,可产生110毫克硝酸盐;1公斤垃圾粪便堆肥在自然条件下经淋滤分解后,可产生492毫克硝酸盐;3.食品、燃料、炼油等工厂排出大量的含氨废弃物,经过生物、化学转换后均形成硝酸盐进入环境中;4.汽车、火车、轮船、飞机、锅炉、民用炉等燃烧石油类燃料、煤炭、天然

气,可产生大量氮氧化物,平均燃烧1吨煤、1千升油和1万立方米天然气可分别产生二氧化氮气体9、13与63公斤,这些二氧化氮气体经降水淋溶后可形成硝酸盐降落到地面和水体中;5.食品防腐与保鲜:硝酸盐与亚硝酸盐被广泛用在肉品和鱼的防腐和保存上,以使肉制品呈现红色和香味,在每公斤肉食品中加入亚硝酸盐(一般为亚硝酸钠)5毫克以下,在一定时间内肉色观感良好;加入20毫克以上,可呈现商业上需要的稳定色彩;加入50毫克则有特殊气味。 环境中化肥施用、污水灌溉、垃圾粪便、工业含氮废弃物、燃料燃烧排放的含氮废气等在自然条件下,经降水淋溶分解后形成硝酸盐,流入河、湖并渗入地下,从而造成地表水和地下水的硝酸盐污染。如污水下渗、污灌和滥施化肥可使地下水硝酸盐含量由数毫克/升剧增至400毫克/升以上(国家生活饮用水硝酸盐含量卫生标准小于88.6毫克/升,以氮计小于20毫克/升);滥施化肥、污灌、用硝酸盐污染的水源灌溉也使农作物吸收了大量的硝酸盐类,如过分施肥所产的菠菜中每公斤干重可含亚硝酸盐达3600毫克。还有腌制的渍酸菜、经过长途运输和长期贮存的蔬菜以及隔夜的熟蔬菜不仅硝酸盐含量大量增加,而且在硝酸盐还原菌的作用下,硝酸盐被还原为亚硝酸盐。 上述含有大量硝酸盐与亚硝酸盐的饮水、蔬菜、粮食、鱼、肉制品、渍酸菜、隔夜炒菜等经人食用后,大量亚硝酸盐可使人直接中毒,而且硝酸盐在人体内也可被还原为亚硝酸盐。亚硝酸盐与人体血液作用,形成高铁血红蛋白,从而使血液失去携氧功能,使人缺氧中毒,轻者头昏、心悸、呕吐、口唇青紫,重者神志不清、抽搐、呼吸急促,抢救不及时可危及生命。不仅如此,亚硝酸盐在人体内外与仲胺类作用形成亚硝胺类,它在人体内达到一定剂量时是致癌、致畸、致突变的物质,可严重危害人体健康。为了防止硝酸盐与亚硝酸盐的危害,除了要科学合理地施用化肥、禁止使用污水灌溉、实行污水、垃圾与粪便无害化处理等环保措施以保护地表水与地下水源不遭受硝酸盐和亚硝酸盐污染外,还应尽量少吃腌制、熏制、腊制的鱼、肉类、香肠、腊肉、火腿、罐头食品、渍酸菜、盐腌不久的菜;不买存放过久、隔日或发蔫的蔬菜;当日买的菜当日吃完;不吃隔夜的熟蔬菜;不可将剩饭菜长久存放;不可将工业用亚硝酸盐(如亚硝酸钠)当做食盐误食。 疏菜中的含量 硝酸盐测定仪 目前各类蔬菜中不仅农药残留超标现象仍然存在,而且硝酸盐超标的问题也比较突出,对人们身体健康构成了威胁。人体摄入的硝酸盐大部分来自蔬菜,约占 80%。硝酸盐在细菌作用下可还原成亚硝酸盐。亚硝酸盐可使血液中毒,致使人体十现头昏缺氧症状;同时亚硝酸盐可与人体摄入的其他食品、药品、残留农药中的次级胺反应,在胃腔中形成强致癌物--亚硝胺,这是消化系统癌变的罪魁恶首。目前各地已经开始实行市场准人制,控制硝酸盐不超标将是取得市场"准入证" 的重要条件之一。尤其要注意对叶菜类、根茎菜类采取控硝措施。不同类型的蔬菜积累硝酸盐的敏感性不同,叶菜类为极敏感型,根茎菜类为敏感型.花菜类为不太敏感型,果菜类为不敏感型。对于菠菜、苋菜、空心菜、白菜、芹菜等叶菜类,以及胡萝卜、

亚硝酸盐含量高的处理方法

养殖中体中亚硝酸盐等含量过高形成的原因及处理办法 养殖水体中亚硝酸盐、氨氮、硫化氢、pH值、化学耗氧量等含量的高低将决定着养殖水质的好坏。在养殖过程中,养殖水体如果亚硝酸盐、氨氮、硫化氢、pH值等指标过高,将给养殖的水生动物带来很大的危害,现简单地介绍一下它们形成的原因、危害和处理方法。 一、形成原因 亚硝酸盐是氨转化为硝酸盐过程中的中间产物,在养殖水体中由于大量的投饵而留下的残饵、水体中水生动物的大量排泄物的累积和定期使用的消毒药剂,把有害的和有益的细菌通通杀灭,氧气的供应不足,造成大量积累的氮素硝化过程受阻,形成养殖时水中氨氮和亚硝酸氮含量高,但由于氨氮的转化速度较快,使得亚硝酸氮的问题最为突出。 硫化氢在缺氧条件下,由残饵或粪便中的含硫有机物经厌氧细菌分解而产生。硫化氢可与水体底泥中的金属盐结合形成金属硫化物,致使池底变黑。 二、造成危害 当水中的亚硝酸盐浓度积累到0.1毫克/升后,亚硝酸盐将对水体中养殖的鱼、虾产生危害。其作用机理主要是通过鱼虾的呼吸作用,由鳃丝进入血液,鱼、虾红细胞数量和血红蛋白数量逐渐减少,血液载氧能力逐渐减低,出现组织缺氧。此时鱼、虾摄食量降低,鳃组织出现病变,呼吸困难、躁动不安或反应迟钝,从而导致鱼虾缺氧,甚至窒息死亡。亚硝酸盐还可与仲胺类反应生成致癌性的亚硝酸胺类物质,pH值低时有利于亚硝酸胺形成。很多池塘出现鱼虾厌食现象,亚硝酸盐过高就是主要原因之一。 当养殖水体中的氨氮含量超过0.2毫克/升时。氨氮将对鱼、虾造成危害,其危害相似于亚硝酸盐。氨氮毒性与池水的pH值及水温有密切关系,一般情况,温度和pH值愈高,毒性愈强。 硫化氢有臭鸡蛋味,当养殖水体中硫化氢的浓度在0.1毫克/升以上时,对水体中的鱼、虾产生危害。硫化氢具强烈刺激、麻醉和影响鱼类呼吸的作用,对鱼、虾具有较强毒性。 水体pH值低可造成养殖鱼、虾血液中的pH值下降,削弱其血液载氧能力,尽管水中的溶解氧较高,还是会造成鱼、虾生理缺氧症,经常浮头,且生长受阻或患病。pH值过高则可能腐蚀鱼虾鳃部组织,使鱼虾等失去呼吸能力而大批死亡。另外,水中的pH值过高或过低,均会造成水中的微生物活动受到抑制,有机物不易分解。 三、处理方法 1.当亚硝酸盐、氨氮含量过高时,处理方法有:①开动增氧机或全池泼洒化学增氧剂,使池水有充足的溶氧,以促进亚硝酸盐向硝酸盐的转化,从而降低水体中亚硝酸盐的含量。 ②使用活性碳,每亩泼洒活性碳粉2~4千克有一定的效果,但成本也较高;或泼洒“亚硝酸盐降解灵”,通过离子交换作用,吸附或降解亚硝酸盐。③泼洒沸石,一般亩用沸石15~20千克。④在水体中泼洒芽孢杆菌、光合细菌、硝化细菌、放线菌等微生物制剂,通过微生物分解亚硝酸盐。⑤培植、种植少量的水生植物,以吸附氨氮等有毒物质。 2.当硫化氢含量过高时,处理方法为提高水体的溶解氧;严重的鱼池可每亩泼洒300~

相关主题
文本预览
相关文档 最新文档