当前位置:文档之家› 恒温控制系统设计

恒温控制系统设计

恒温控制系统设计
恒温控制系统设计

恒温箱PLC系统控制.

一、题目 恒温箱PLC系统控制 二、指导思想和目的要求 1)通过毕业设计培养学生综合运用所学的基础理论、基础知识、基本技能进行分析和解决实际问题的能力。 2)使学生受到PLC系统开发的综合训练,达到能够进行PLC 系统设计和实施的目的。 3)使学生掌握利用PLC对温度进行PID控制方法。 三、主要技术指标 1、选用三菱FX2N系列可编程控制器作为主机 2、主要参数 温度范围:200—1050℃ 控制精度:±1℃ 输入电压:AC200—240V 消耗功率:2KW 外形尺寸:40×45×45cm 3、系统构成 通过一个温度传感器检测恒温箱的温度值并把它转换成标准电流(或电压)信号后,送到A/D转换模块,转换成的数字信号输送到PLC主机。PLC主机得到一个控制量,该控制量的大小决定PLC输出控制的继电器的导通时间,从而控制温度值的大小。 4、控制要求 采用PID控制算法,使PLC控制的恒温箱的温度变化能按照给定的曲线运行,如图所示

四、要求 1.设计电气控制原理图。 2、进行PLC的选择及I/O分配。 3、设计PLC硬件系统。 4、对系统所需电气元器件选型,编制电气元件明细表。 5、PLC控制程序设计。 五、主要参考书及参考资料 1、自动控制原理及系统 2、PLC及应用 、

目录 摘要 (1) 第1章可编程控制器基础知识 (2) 1.1 PLC的定义 (2) 1.2 PLC的类型选择 (3) 第2章可编程器的系统运用 (5) 2.1恒温箱工艺过程及控制要求 (5) 2.2模块功能指令 (9) 2.2.1展热电阻/热电偶模块用法 (9) 2.2.2系统输入输出控制 (10) 第3章恒温箱工作的基本原理 (13) 3.1恒温箱工作原理 (13) 3.2控制系统温度采集 (17) 3.3恒温控制装置PLC接线图 (19) 3.4系统的配置及I/O地址 (20) 3.5梯形图(附录) (21) 总结 (22) 致谢 (23) 附录 (24) 参考文献 (31)

基于PID的STM32恒温控制系统设计

成绩评定

基于PID的STM32恒温控制系统设计 摘要 研究基于STM32单片机和温湿度传感器的恒温智能控制系统。温度具有时变性、非线性和多变量耦合的特点。在温度控制过程中,温度的检测往往滞后于温度的调控,从而会引起温度控制系统的温度出现超调、温度振荡的现象。在设计中提出了基于增量式PID算法控制温度的模型,系统采用低功耗的STM32作为主控芯片、DHT11数字式温度传感器和半导体温度调节器。实验结果表明,该系统能够有效地维持系统地恒温状态。通过将数字PID算法和STM32单片机结合使用,整个控制系统的溫度控制精度也提高了,不仅仅满足了对温度控制的要求,而且还可以应用到对其他变量的控制过程中。所以,在该温度控制系统的设计中,运用单片机STM32进行数字PID运算能充分发挥软件系统的灵活性,具有控制方便、简单和灵活性大等优点。 关键词:STM32,PID算法,恒温控制,DHT11

1绪论 温度控制系统具有滞后性,时变性和非线性的特点。无法建立精准的数学模型,因此使用常规的线性控制理论无法达到满意的控制效果。在嵌入式温度控制系统中的关键是温度的测量、温度的控制和温度的保持,温度是工业控制对象中主要的被控参数之一。因此,嵌入式要对温度的测量则是对温度进行有效及准确的测量,并且能够在工业生产中得广泛的应用,尤其在机械制造、电力工程化工生产、冶金工业等重要工业领域中,担负着重要的测量任务。在日常工作和生活中,也被广泛应用于空调器、电加热器等各种室温测量及工业设备的温度测量。但温度是一个模拟量,需要采用适当的技术和元件,将模拟的温度量转化为数字量,才生使用计算机进行相应的处理。 2 设计方案 为了对于交流负载做到温度精确,升温采用控制双向可控硅导通角度进行升温控制。降温采用PWM电压控制,因为当前降温采用制冷片,风扇等降温手段,采用直流电压供电方式,选用PWM控制使降温更加精确。温度采集选用温度传感器DHT11,好处为可做到高精度,整体框图如图1所示。 图1 系统框图 3硬件设计 3.1 DHT11温度传感器 DHT11数字温湿度传感器是一款含有已校准数字信号输出的温湿度复合传感器。它应用专用的数字模块采集技术和温湿度传感技术,确保产品具有枀高的可靠性与卓越的长期稳定性。传感器包括一个电阻式感湿元件和一个NTC测温元件,并与一个高性能8位单片机相连接。DHT11电路图如图2所示。

设计报告——温控电路设计

温控电路设计 报告书 姓名: 学校: 专业: 完成日期:2014/05/16

目录 1.设计要求 (1) 2.总体设计方案 (1) 2.1原理分析 (1) 2.2功能模块的实现 (1) 2.2.1控制模块 (1) 2.2.2温度采集模块 (1) 3.控制程序设计 (2) 3.1程序流程图 (2) 3.2程序模块说明 (2) 附录 (3) 1.主函数 (3) 2.ADS1115驱动程序 (6) 3.原理图 (13)

1.设计要求 设计一个温度测量电路,根据设定温度和测量值比较实现以下控制: 定义: 设定温度:ST(单位℃) 测量温度:T(单位℃) 控制逻辑要求: 当ST> T+2时,继电器闭合(如果当前继电器为断开状态,并且断开时间不够3分钟,不允许闭合); 当ST

恒温箱自动控制系统设计报告

恒温箱自动控制系统设计 【摘要】 本组设计的恒温箱自动控制系统主要由中央处理器、温度传感器、半导体制冷器、键盘、显示、声光报警等部分组成。处理器采用AVR Mega128单片机,温度传感器采用DS18B20,利用半导体制冷片一面制冷一面发热的工作特性进行升降温,用LCD12864作为显示输出。温度传感器检测到温度数据传送给单片机,单片机再将温度数据与给定值进行比较,从而发出对半导体制冷器的控制信号,使温度维系在给定值附近(偏差小于±2℃),同时单片机将数据送与显示器。【关键字】 单片机温度传感器半导体制冷器控制 一、设计方案比较 1.1总体设计方案 这里利用DS18B20芯片作为恒温箱的温度检测元件。DS18B20芯片可以直接把测量的温度值变换成单片机可以读取的标准电压信号。单片机从外部的两位十进制拨码键盘进行给定值设定,读入的数据与给定值进行比较,根据偏差的大小,采用闭环控制的方法使控制量更加精准。控制结果通过液晶显示器LCD12864予以显示。 系统整体框图如图一所示: 图一、系统整体框图 1)温度检测元件的选择: 方案一:这里所设计的是测温电路,因此可以采用热敏电阻之类的器件利用其

感温效应,检测并采集出随温度变化而产生的电压或电流,进行A/D转换后送给单片机进行数据处理,从而发出控制信号。此方案需要另外设计A/D转换电路,使得温测电路比较麻烦。 方案二:上网查得温度传感器DS18B20能直接读出被测温度,并可根据实际要求通过简单的编程实现9~12位的数字值读取方式,它内部有一个结构为8字节的高速暂存RAM存储器。DS18B20芯片可以直接把测量的温度值变换成单片机可以读取的标准电压信号。与方案一比较更加简单实用,因此我们选择方案二。 2)显示方案选择: 方案一:温度的显示可以用数码管,但数码管只能显示简单的数字,它有电路复杂,占用资源较多,显示信息少等缺点。 方案二:LCD12864汉字图形点阵液晶显示模块,可显示汉字及图形,内置 8192个中文汉字,128个字符及64×256点阵显示RAM。可显示内容:128列×64行,多种软件功能:光标显示、画面移位、自定义字符、睡眠模式等。我们设计的系统需要显示更多的信息,所以考虑显示功能更好的液晶显示,要求能显示更多的数据,增强显示信息的可读性,看起来更方便。所以选择方案二。 LCD12864接线方法如图二所示: 图二、LCD12864接线图 3)声光报警系统 采用蜂鸣器及三色LED组成声光报警系统。制冷时LED为红色,温度达到控制要求且上下浮动在1℃以内时为绿色,升温时为黄色。温度到达给定值的同时,蜂鸣器发出报警提示音。 二、理论分析与计算 实现温度的实时显示是由计算温度子程序将 RAM 中读取值进行 BCD 码的转换运算,并进行温度值正负的判定,从DS18B20读取出的二进制值必须先转换成十进制值,才能用于字符显示。因为 DS18B20 的转换精度为 9-12 位可选的,为了提高

智能温度控制系统设计

目录 一、系统设计方案的研究 (2) (一)系统的控制特点与性能要求 (2) 1.系统控制结构组成 (2) 2.系统的性能特点 (3) 3.系统的设计原理 (3) 二、系统的结构设计 (4) (一)电源电路的设计 (4) (二)相对湿度电路的设计 (6) 1.相对湿度检测电路的原理及结构图 (6) 3.对数放大器及相对湿度校正电路 (7) 3.断点放大器 (8) 4.温度补偿电路 (8) 5.相对湿度检测电路的调试 (9) (三)转换模块的设计 (9) 1.模数转换器接受 (9) 2.A/D转换器ICL7135 (9) (四)处理器模块的设计 (11) 1.单片机AT89C51简介及应用 (11) 2.单片机与ICL7135接口 (14) 3.处理器的功能 (15) 4.CPU 监控电路 (15) (五)湿度的调节模块设计 (15) 1.湿度调节的原理 (15) 2.湿度调节的结构框图 (16) 3.湿度调节硬件结构图 (16) 4.湿度调节原理实现 (16) (六)显示模块设计 (17) 1.LED显示器的介绍 (17) 2.单片机与LED接口 (17) (七)按键模块的设计 (18) 1.键盘接口工作原理 (18) 2.单片机与键盘接口 (19) 3.按键产生抖动原因及解决方案 (19) 4.窜键的处理 (19) 三、软件的设计及实现 (19) (一)程序设计及其流程图 (20) (二)程序流程图说明 (21) 四、致谢 (22) 参考文献: (22)

智能温度控制系统设计 摘要: 此系统采用了精密的检测电路(包刮精密对称方波发生器、对数放大及半波整流、温度补偿及温度自动校正及滤波电路等几部分电路组成),能够自动、准确检测环境空气的相对湿度,并将检测数据通过A/D转换后,送到处理器(AT89C51)中,然后通过软件的编程,将当前环境的相对湿度值转换为十进制数字后,再通过数码管来显示;而且,通过软件编程,再加上相应的控制电路(光电耦合及继电器等部分电路组成),设计出可以自动的调节当前环境的相对湿度:当室内空气湿度过高时,控制系统自动启动抽风机,减少室内空气中的水蒸气,以达到降低空气湿度的目的;当室内空气湿度过低时,控制系统自动启动蒸汽机,增加空气的水蒸气,以达到增加湿度的目的,使空气湿度保持在理想的状态;键盘设置及调整湿度的初始值,另外在设计个过程当中,考虑了处理器抗干扰,加入了单片机监视电路。 关键词: 湿度检测; 对数放大; 湿度调节; 温度补偿 一、系统设计方案的研究 (一)系统的控制特点与性能要求 1.系统控制结构组成 (1)湿度检测电路。用于检测空气的湿度[9]。 (2)微控制器。采用ATMEL公司的89C51单片机,作为主控制器。 (3)电源温压电路。用于对输入的200V交流电压进行变压、整流。 (4)键盘输入电路。用于设定初始值等。 (5)LED显示电路。用于显示湿度[10]。 (6)功率驱动电路(湿度调节电路)

温度控制电路设计---实验报告

温度控制电路设计一、设计任务 设计一温度控制电路并进行仿真。 二、设计要求 基本功能:利用AD590作为测温传感器,T L 为低温报警门限温度值,T H 为高 温报警门限温度值。当T小于T L 时,低温警报LED亮并启动加热器;当T大于 T H 时,高温警报LED亮并启动风扇;当T介于T L 、T H 之间时,LED全灭,加热器 与风扇都不工作(假设T L =20℃,T H =30℃)。 扩展功能:用LED数码管显示测量温度值(十进制或十六进制均可)。 三、设计方案 AD590是美国ANALOG DEVICES公司的单片集成两端感温电流源,其输出电流与绝对温度成比例。在4V至30V电源电压范围内,该器件可充当一个高阻抗、恒流调节器,调节系数为1μA/K。AD590适用于150℃以下、目前采用传统电气温度传感器的任何温度检测应用。低成本的单芯片集成电路及无需支持电路的特点,使它成为许多温度测量应用的一种很有吸引力的备选方案。应用AD590时,无需线性化电路、精密电压放大器、电阻测量电路和冷结补偿。 主要特性:流过器件的电流(μA) 等于器件所处环境的热力学温度(K) 度数;AD590的测温范围为- 55℃~+150℃;AD590的电源电压范围为4~30 V,可以承受44V正向电压和20V反向电压,因而器件即使反接也不会被损坏;输出电阻为710mΩ;精度高,AD590在-55℃~+-150℃范围内,非线性误差仅为±0.3℃。 基本使用方法如右图。 AD590的输出电流是以绝对温度零度(-273℃)为基准, 每增加1℃,它会增加1μA输出电流,因此在室温25℃时,其 输出电流I out =(273+25)=298μA。 V o 的值为I o 乘上10K,以室温25℃而言,输出值为 10K×298μA=2.98V 。 测量V o 时,不可分出任何电流,否则测量值会不准。 温度控制电路设计框图如下: 温度控制电路框图 由于Multisim中没有AD590温度传感器,根据它的工作特性,可以采用恒流源来替代该传感器,通过改变电流值模拟环境温度变化。通过温度校正电路得

恒温箱的控制设计毕业设计论文

摘要 温度与生物的生活环境密切相关,不同的生物或物体对温度的要求都不同。随着智能控制技术不断的发展,在现代工业生产以及科学实验的许多场合,为了获取生物或物体所需求的温度,需要及时准确的获取温度信息,同时完成对温度的预期控制,这时候温度检测与控制系统就显得尤其的重要。因此,温度检测系统的设计与研究一直备受广大科研者重视。 本次课题设计了一个低成本,高精度的恒温箱。该设计主要从硬件和软件两个方面出发: 1)在硬件上,选择AT89C52单片机为核心,采用了TL431组成2.5V的恒流源,并以Pt100温度传感器作为温度检测仪器,通过ICL7135模数转换器采集数据,用LED数码管作为显示器,构成了一个恒温箱; 2)在软件上,设计了温度检测算法,并在C语言编程环境下,编写了相应的程序来实现所设计的算法。最后通过Proteus ISIS与Keil的联合仿真,保证了算法的可行性。 通过仿真实验可以发现所设计的系统可以较好的检测、控制并且保持温度。但是由于温度调节的迟滞性以及设计上的不足,该系统具有一定的局限性。 关键词:温度检测;AT89C52单片机;恒温箱;C语言编程

ABSTRACT Temperature is closely related to life and environment. Different creature or object have different requirements to temperature. With the development of the intelligent-control- technology, and in order to arrive to the creature's or object's temperature-demand, we should take the information of temperature timely and accuratly, and control the temperature to the expected degree, in the modern industrial production and scientific experiment many occasions . I n this situation, the testing and controlling system for temperature is especially important. Therefore, the designs for temperature detection system attract researchers' attentions. In this dissertation, we designed a box with constant temperature which has low cost as well as high accuracy. We designed the system mainly from two aspects: hardware and software 1)Hardware's design: At first, we chosed AT89C52 SCM as the core of the system. And then we selected TL431 to compose the 2.5 V constant and Pt100 temperature sensor for testing temperature. At last, we collecte data througn the ICL7135 ADC and display data them on the LED. All of this consists of a the constant-temperature-box; 2)Software's design: In this papar, we designed a algorithm detecte temperature and implemented it based on the C programming language's environment. Finally we did a series of simulation experiment through the Proteus ISIS and Keil to ensure that the algorithm is feasible. Simulation results show that the system designed had a very good effect on temperature's detection, controlling and keeping . Because of the adjustmentand of the temperature and the insufficiency of the design, this system has some limitations. Keywords:Temperature detection;AT89C52 SCM; Box of constant temperature ; C language programming

恒温恒湿控制系统设计

生化处理的恒温恒湿控制系统设计 2007年第11期(总第108期) 宋奇光,伍宗富,梅彬运(湖南文理学院,湖南常德415000 ) 【摘要】以PLC为控制器,结合温度传感变送器、LED显示器等,组成 一个生化处理的恒温恒湿控制系统。使用温度传感变送器获得温度的感应电压, 经处理后送给PLC。PLC将给定的温度与测量温度的相比较,得出偏差量,然后 根据模糊控制算法得出控制量。执行器由开关频率较高的固态继电器开关担任, 采用PWM控制方法,改变同一个周期中电子开关的闭合时间。从而调节高温电 磁阀开关的导通时间,达到蒸汽控制目的。 【关键词】生化处理;PLC;恒温恒湿 引言 生化处理系统是食品工艺的关键设备。在此以米粉生产工艺中的生化处理系统的蒸汽温湿度控制进行实用设计,其温度控制在0~100℃,误差为±0.5℃,可用键盘输入设置温度及LED实时显示系统温度,采用模糊算法进行恒温控制,将数字处理控制方法运用到温度控制系统中,可以克服温度控制系统中存在的严重的滞后现象,可以很大程度的提高控制效果和控制精度[1]。 1米粉生化处理的恒温恒湿系统现状与分析 1.1 现状 由于国内米粉生产设备厂家尚未掌握米粉的关键技术,使其制造的设备无法满足米粉生产的工艺要求。我们经过现场堪察,发现原有的连续式米粉生化处理恒温恒湿控制系统具有如下现状。 一是连续式米粉生化处理恒温恒湿箱的控制基本上是手动调节; 二是箱内各部位温度分布不均匀,实际温度波动太大(40-70℃),远远达不到生产要求(62.5℃±2.5℃),影响米粉的抗老化效果; 三是实际湿度也达不到生产要求,容易出现湿度偏高(米粉发泡)或者偏低(米粉起壳)的现象,严重影响米粉生产质量; 四是上层辅助加热管道分布不合理,容易使散落米粉焦化,影响产品质量。

高精度恒温控制电路

第28卷第4期 武汉理工大学学报?信息与管理工程版 V o l .28N o .42006年4月 JOU RNAL O F WU T (I N FORMA T I O N &MANA GEM EN T EN G I N EER I N G ) A p r .2006 文章编号:1007-144X (2006)04-0038-03 收稿日期:2005-06-02. 作者简介:张洪昌(1980-),男,山东烟台人,武汉理工大学机电工程学院硕士研究生. 高精度恒温控制电路 张洪昌,田会方,赵 恒 (武汉理工大学机电工程学院,湖北武汉 430070) 摘 要:常用的温度调节方法有继电式调温、调压器调压调温和电子式(多用可控硅)调压调温等几种。继电式调温依靠继电器的频繁切换来保持温度,它的温度调节比较粗略,精度不高,响声大,使用寿命低。调压法调压的特点是对电网电压影响小,但比较笨重,调节粗糙,精度较低。而可控硅调压调温的特点是体积小、无噪声、调节方便且控制精度高,但对电网会产生一些影响,适用于科研实验等小功率加热器。所设计的恒温控制电路由于采用单片机作为控制器,其电路设计简单,控制精度高,可达到±0.04℃。关键词:可控硅;移相调压;P I D 算法;移相控制中图法分类号:T P 273.2 文献标识码:A 1 引 言 在实际工作和科研中,许多实验均需要用加热器来加热实验对象,使其达到并保持在某一设 定温度,而且在实验过程中,对象的温度有时要求稳定性很高,有时需要不断地调节。常用的调节方法有继电式调温、调压器调压调温和电子式(多用可控硅)移相调压调温等几种。可控硅调压调温的特点是体积小、无噪声、调节方便、控制精度高,但会对电网产生一定影响,适用于科研实验等小功率加热器,笔者设计的高精度恒温控制电路采用单片机作为控制器,其电路设计简单,控制效果好,以下将对利用可控硅设计的恒温控制电路做具体的介绍和分析。 2 控制原理 在交流电的一个周期中,从过零点起,延时一 段时间再给可控硅一个触发信号使其导通。这样,加在负载上的有效功率由延迟导通时间控制,延迟导通时间越长,负载的有效功率越低。因此,可对可控对象的温度进行控制[1]。 加热器的温度控制电路结构图如图1所示。图1中,U 1为电压;U 2为可控硅调节后的制热电压;T 为加热器反映到温度传感器的温度;T c 为反馈给温度控制算法计算移相控制量的温度信号;T k 为温度控制给定值; C t 为经过温度控制算法计算后的移相控制值,即可控硅延迟导通时间;P 为控制触发电路的电压;a 为触发可控硅导通的脉冲信号。整个电路可分成过零检测电路、温度检测电路、控制电路和算法计算主电路4个部分。 3 温控电路的设计与分析 3.1 过零检测电路 过零检测电路如图2所示。 图1 加热器的温度控制电路结构图

单片机恒温箱温度控制系统的设计说明

课程设计题目:单片机恒温箱温度控制系统的设计 本课程设计要求:本温度控制系统为以单片机为核心,实现了对温度实时监测和控制,实现了控制的智能化。设计恒温箱温度控制系统,配有温度传感器,采用DS18B20数字温度传感器,无需数模拟∕数字转换,可直接与单片机进行数字传输,采用了PID控制技术,可以使温度保持在要求的一个恒定围,配有键盘,用于输入设定温度;配有数码管LED用来显示温度。 技术参数和设计任务: 1、利用单片机AT89C2051实现对温度的控制,实现保持恒温箱在最高温度为110℃。 2、可预置恒温箱温度,烘干过程恒温控制,温度控制误差小于±2℃。 3、预置时显示设定温度,恒温时显示实时温度,采用PID控制算法显示精确到0.1℃。 4、温度超出预置温度±5℃时发出声音报警。 5、对升、降温过程没有线性要求。 6、温度检测部分采用DS18B20数字温度传感器,无需数模拟∕数字转换,可直接与单片机进行数字传输 7、人机对话部分由键盘、显示和报警三部分组成,实现对温度的显示、报警。

一、本课程设计系统概述 1、系统原理 选用AT89C2051单片机为中央处理器,通过温度传感器DS18B20对恒温箱进行温度采集,将采集到的信号传送给单片机,在由单片机对数据进行处理控制显示器,并比较采集温度与设定温度是否一致,然后驱动恒温箱的加热或制冷。2、系统总结构图 总体设计应该是全面考虑系统的总体目标,进行硬件初步选型,然后确定一个系统的草案,同时考虑软硬件实现的可行性。总体方案经过反复推敲,确定了以美国Atmel公司推出的51系列单片机为温度智能控制系统的核心,并选择低功耗和低成本的存储器、数码显示器等元件,总体方案如下图: 图1系统总体框图 二、硬件各单元设计 1、单片机最小系统电路 单片机选用Atmel公司的单片机芯片AT89C2051 ,完全可以满足本系统中要求的采集、控制和数据处理的需要。单片机的选择在整个系统设计中至关重要,该单片机与MCS-51系列单片机高度兼容、低功耗、可以在接近零频率下工作等诸多优点,而广泛应用于各类计算机系统、工业控制、消费类产品中。 AT89C2051是AT89系列单片机中的一种精简产品。它是将AT89C51的P0口、P2口、EA/Vpp、ALE/PROG、PSEN口线省去后,形成的一种仅20引脚的单片机,相当于早期Intel8031的最小应用系统。这对于一些不太复杂的控制场合,仅有一片AT89C2051就足够了,是真正意义上的“单片机”。AT89C2051为很多规模不太大的嵌入式控制系统提供了一种极佳的选择方案,使传统的51系列单片机

恒温控制电路设计

毕业设计论文 作者学号 系部 专业 题目恒温控制电路的设计 指导教师 评阅教师 完成时间:年月日

毕业论文外文摘要 题目:恒温控制电路的设计 摘要:本设计采用AT89C51单片机为核心部件,采用单总线型数字式的温度传感器DS18B20作为温度采集设计制作了带键盘输入控制,动态显示和越限报警功能的恒温控制系统。该系统既可以对当前温度进行实时显示,又可以对温度进行控制,并使其恒定在某一温度范围。控制按键设计时设置温度简单快捷,两位整数一位小数的显示方式具有更高的显示精度。通过对系统软件的合理规划,发挥单片机自身集成多系统功能单元的优势,在不减少功能的前提下有效降低了成本,系统操作简单。 关键词: AT89C51 单片机恒温控制 DS18B20 精度

毕业论文外文摘要 Title:The constant temperature control circuit design Abstract: This design uses an AT89C51 microcontroller as the core components, the use of single-bus digital temperature sensor DS18B20 which uses keyboard input control as a temperature collections device. It's an thermostat controlling system that has the ability to dynamically display temperature and function as off-limit alarm. The system can not only display real-time temperature but also keep the temperature staying in a constant region. It's very easy and fast to use the button to set the system temperature. Displaying two integer and a decimal makes the system even accurate. Through wise system software usage, we can bring the microcontroller's integration of multi-system functional units into full play, reduce system cost effectively without losing useful functions. The system is easy to operate. Keyword:AT89C51 MCU Microcomputer temperature control DS18B20 Precision

恒温箱控制系统

学科代码:080601 学号:101401010078 贵州师范大学(本科) 毕业论文 题目:恒温箱自动控制系统 学院:机械与电气工程学院 专业:电气工程及其自动化 年级:2010级 姓名:周康 指导教师:吴志坚(讲师) 完成时间:2014年5月5日

摘要 恒温箱主要是用来控制温度,它为农业研究、生物技术测试提供所需要的各种环境模拟条件,因此可广泛适用于药物、纺织、食品加工等无菌试验、稳定性检查以及工业产品的原料性能、产品包装、产品寿命等测试。恒温箱供科研机关及医院作细菌培养之用;也可以作育种、发酵以及大型养殖孵化等用途。恒温箱控制系统能够自动温度控制、人工干预温度控制、远程温度控制等多功能的高性能装置。可以形成规模化和产业化,大范围的应用到现代化工业生产。本论文结合工厂中如何实现恒温箱控制,讨论大多数工业生产情况下对恒温箱中的温度进行有效控制的方法。因此采用以单片机为基础的恒温箱控制系统,单片机系统包括89C52处理器、扩展存储器27512及6264,并行接口芯片8255、8253、ADC0809、8279、掉电保护和复位以及看门狗电路等。具体方法是使用铂锗-铂热电偶进行温度数据采集,经过放大和滤波电路进行A/D转换,转换后的值再根据标准分度表转换成温度值,同时显示出来。并且通过CAN总线传输控制参数 关键词: 单片机、恒温箱、热电偶、CAN总线 Abstract The thermostat is mainly used to control temperature. It can provide many kinds of simulated conditions which are needed for agricultural research and biological technology

基于PLC的恒温控制系统毕业设计开题报告

化工学院信息与控制工程学院 毕业设计开题报告 基于PLC的恒温控制系统 The teperature control systmem based on PLC 学生学号:09540235 学生:青民 专业班级:测控0902 指导教师:明丽 职称:副教授 起止日期:2013.3.04~2013.3.22

吉林化工学院 Jilin Institute of Chemical Technology

机之间信息交换,实现温度在线监测和控制,并对各个测量温度的大小和变化趋 势进行实时显示。控制系统装置结构图如图1所示。 图1 恒温控制系统装置结构图 技术路线: 1.硬件系统:本次设计采用西门子S7-300系列PLC作为系统控制器的核心处理系 统,除核心处理系统外,还包括温度监控系统、伺服系统以及数码显示系统等三 大部分。 2.软件系统:使用STEP7-5.4编程软件编写控制程序对PLC编程、调试、监控, 并用WinCC监控组态软件设计恒温系统监控界面,实时显示各个温度的大小和 变化曲线,实现温度在线监测和控制。 能够取得的预期成果: 本次设计利用S7-300常规PID控制器对水箱的温度进行控制,可以获得满足工业控制要求的控制效果,能减小超调量和调节时间,而且其抗干扰能力也大大加强。采用上位机来实现与PLC连接使其呈现出强大的功能,高速的计算,通讯能力使其能完成比较复杂的算法。 采取方案的可行性分析: 根据恒温控制系统的要求,本设计由S7-300PLC作为中央处理单元,WinCC作为监控组态软件,实现恒温控制系统实时监控。系统由硬件和软件两部分软件构成。本设计由PC机作为上位机对整个系统进行监控,S7-300PLC作为下位机完成具体控制要求,上位机与下位机之间的通信通过以太网的联接来达到通信的状态要求,以便更好的完成对系统的监控。

模电温控电路设计与仿真

水温测量与控制电路的设计与仿真 1设计任务与要求 温度测量,测量范围0~100 ℃; 控制温度±1 ℃; 控制通道输出为双向晶闸管或继电器,一组转换触点为市电(220V,10A)。 学习并运用proteus仿真软件,绘制电路图,进行基本的仿真实验对所设计的电路进行分析与调试。 2方案设计与论证 温度控制器是实现可测温度和控制温度的电路,通过对温度控制电路的设计、调试了解温度传感器的性能,学会在实际电路中的应用。进一步熟悉集成运算放大器的线性和非线性应用。 Proteus介绍: Proteus 软件是由英国 Labcenter Electronics 公司开发的EDA工具软件,已有近20年的历史,在全球得到了广泛应用。Proteus 软件的功能强大,它集电路设计、制版及仿真等多种功能于一身,不仅能够对电工、电子技术学科涉及的电路进行设计与分析,还能够对微处理器进行设计和仿真,并且功能齐全,界面多彩,是近年来备受电子设计爱好者青睐的一款新型电子线路设计与仿真软件。 Proteus软件和我们手头的其他电路设计仿真软件最大的不同即它的功能不是单一的。它的强大的元件库可以和任何电路设计软件相媲美;它的电路仿真功能可以和Multisim相媲美,且独特的单片机仿真功能是Multisim 及其他任何仿真软件都不具备的;它的PCB电路制版功能可以和Protel相媲美。它的功能不但强大,而且每种功能都毫不逊于Protel,是广大电子设计爱好者难得的一个工具软件。

Proteus具有和其他EDA工具一样的原理图编辑、印刷电路板(PCB)设计及电路仿真功能,最大的特色是其电路仿真的交互化和可视化。通过Proteus 软件的VSM(虚拟仿真模式),用户可以对模拟电路、数字电路、模数混合电路、单片机及外围元器件等电子线路进行系统仿真 Proteus软件由ISIS和ARES两部分构成,其中ISIS是一款便捷的电子系统原理设计和仿真平台软件,ARES是一款高级的PCB布线编辑软件。 Proteus ISIS的特点有: 实现了单片机仿真和SPICE电路仿真的结合。具有模拟电路仿真、数字电路仿真、单片机及其外围电路组成的系统仿真、RS232动态仿真、I2C调试器、SPI调试器、键盘和LCD系统仿真等功能;有各种虚拟仪器,如示波器、逻辑分析仪、信号发生器等。 具有强大的原理图绘制功能。 支持主流单片机系统的仿真。目前支持的单片机类型有68000系列、8051系列、AVR系列、PIC12系列、PIC16系列、PIC18系列、Z80系列、HC11系列以及各种外围芯片。 提供软件调试功能。在硬件仿真系统中具有全速、单步、设置断点等调试功能,同时可以观察各个变量、寄存器等的当前状态,因此在该软件仿真系统中,也必须具有这些功能;同时支持第三方的软件编译和调试环境,如Keil C51 uVision2等软件。 2.1温度控制系统的基本原理: 温度测量与控制原理框图如图下所示。本电路有温度传感器,K-OC变换、控制温度设置、数字电压表(显示)和放大器等部件组成。温度传感器的作用是把温度信号转换成电流信号或电压信号,K-OC变换将热力学温度K 转换成摄氏温度OC。信号经放大器放大和刻度定标后由数字电压表直接显示温度值,并同时送入比较器与预先设定的固定温度值进行比较,由比较器输出电平的高低变化来控制执行机构(如继电器)工作,实现温度的自动控制。 2.2AD590温度传感器简介: AD590是单片集成感温电流源,具有良好的互换性和线性性质,能够消

基于单片机恒温箱控制器设计

唐山学院 测控系统原理课程设计 题目恒温箱控制器的设计 系 (部) 机电工程系 班级 姓名 学号 指导教师 2014 年 03 月 02 日至 03 月 13 日共两周 2014年 03 月 13 日

测控系统原理课程设计任务书 一、设计题目、内容及要求 1、设计题目:恒温箱控制器的设计 2、设计内容:运用所学单片机、模拟和数字电路、以及测控系统原理与设计等方面的知识,设计出一台以AT89C52为核心的恒温箱控制器,对恒温箱的温度进行控制。完成恒温箱温度的检测、控制信号的输出、显示及键盘接口电路等部分的软、硬件设计,A/D和D/A 转换器件可自行确定,利用按键(自行定义)进行温度的设定,同时将当前温度的测量值显示在LED上。 恒温箱控制器要求如下: 1)目标稳定温度范围为100摄氏度——50摄氏度; 2)以PID控制算法实现控制精度为±1度; 3)温度传感器输入量程:30摄氏度——120摄氏度,电流4——20mA; 4)加热器为交流220V,1000W电炉。 3、设计要求: 1)硬件部分包括微处理器(MCU)、D/A转换、输出通道单元、键盘、显示等; 2)软件部分包括键盘扫描、D / A转换、输出控制、显示等; 3)用PROTEUS软件仿真实现; 4)用Protel画出系统的硬件电路图; 5)撰写设计说明书一份(不少于2000字),阐述系统的工作原理和软、硬件设计方法,重点阐述系统组成框图、硬件原理设计和软件程序流程图。说明书应包括封面、任务书、目录、摘要、正文、参考文献(资料)等内容,以及硬件电路图和软件程序框图等材料。 二、设计原始资料 Proteus 及KEIL51仿真软件,及软件使用说明。 三、要求的设计成果(课程设计说明书、设计实物、图纸等) 设计说明书一份(不少于2000字)。

恒温控制系统开题报告

SJ003-1 2016 届毕业设计(论文)开题报告 二级学院:电气与光电工程学院班级: 12测二 学生:宋悦学号: 12050213 指导教师:鲍玉军职称:副教授 课题名称嵌入式恒温培养箱设计 课题类型毕业设计□毕业论文 起止时间2016.2.22~6.24 开题报告 (毕业设计:含课题来源及现状、设计要求、工作容、设计方案、技术路线、预期目标、时间安 排及参考文献等。字数为3000以上。) 一、课题来源及现状 随着计算机控制技术的发展,恒温控制已经在工业生产领域中得到了广泛应用,并取得 了巨大的经济和社会效益。如,可以根据动物生活习性的需要控制饲养棚合适的温度来进行 孵卵或动物培养;在农业上,可用于种子的发芽;在科学实验上,可产生恒温环境用于各种 细菌培养等;在医学上,可用于做细菌培养、放射免疫分析、血清溶化、石腊熔化、试管消 毒等。智能恒温箱的性能在很大程度上取决于对温度的控制性能,本课题采用单片机为主控 制器,通过热电式传感器测得箱温度,再将温度信号送入主控制器,来完成恒温箱的温度控 制系统的硬件。箱温度可保持在设定的温度围,当设置的温度低于实时温度时,单片机送出 加热信号;当设置的温度低于实时温度时,单片机送出制冷信号,实现恒温箱的自动温度控制。在不同的领域,由于控制环境、目标等因素,需要针对具体情况来设计系统的机构和功能,以取得最佳的控制效果。 目前,国外温度控制系统及仪表正朝着高精度、智能化、小型化等方面快速发展。虽然 温度控制系统在国各行业的应用十分广泛,但从国生产的温度控制器及技术来讲,其发展水 平仍然不高,同国外的日本、美国、德国等先进国家相比,仍然有较大的差距。 我国目前在恒温控制技术这方面的技术水平处于20世纪80年代中后期水平,只能适应 于一般的温度系统控制。我国对于温度测控技术的研究较晚,始于20世纪80年代。我国工 程技术人员在吸收发达国家温度测控技术的基础上,才掌握了温度室微机控制技术,该技术 仅限于对温度的单项环境因子的控制。我国温度测控设施计算机应用,在总体上正从消化吸收、简单应用阶段向实用化、综合性应用阶段过渡和发展。在技术上,以单片机控制的单参

恒温控制电路的设计

恒温控制电路的设计 发表时间:2012-06-28T13:25:16.640Z 来源:《时代报告(学术版)》2012年5月(上)供稿作者:李毅 [导读] 本系统的开发与利用,具有安全舒适,结构简单,成本低,方便易用等特点。 李毅(黔南民族师范学院物理与电子科学系贵州都匀 558000)中图分类号:TM13 文献标识码:A 摘要:本文介绍了以89C51单片机为核心控制芯片,采用sht10温湿度传感器为主要部件,并加以键盘控制设置的睡枕恒温控制系统。阐述了系统的总体设计思想,介绍了系统的工作方式,分析了系统的硬件设计,并说明了89C51单片机的协调处理过程。 关键词: 89C51单片机控制芯片温湿度控制漏电保护 sht10 LCD 随着社会的进步与发展,电脑工作者、办公室工作者和老年人,由于工作和年龄的原因,颈椎病成为困扰人类的一大病痛。一个能一直保持着恒定温度的枕头,既能让颈椎病人保持良好的睡眠,也能在无形中改善和治疗着他们的病痛。据此,睡枕恒温控制系统应运而生,下面阐述设计原理。 一、系统设计 睡枕恒温控制系统由软件和硬件两部分组成。 (一)系统控制模块的硬件构成及简介 系统控制单元是以STC89C51单片机基本工作模块为核心,其它外围电路主要包括:按键控制模块,温湿度监测控制模块,报警显示模块,lcd数字显示模块,加热及保护模块,供电模块及漏电保护模块。其结构框图如图2-1所示。 图2-1 (二)系统控制的主要硬件电路 考虑到本系统直接用于人体,所以在设计过程中,电子元器件的选用、线路布置和设备的安放要充分考到安全及稳定性等问题。 1.单片机基本工作模块。本系统的主控模块采用STC89C51作为主控芯片,它是一种低功耗,8位CMOS工艺处理器,具有8K在线可编程Flash存储器,片内的Flash可多次编程,为在线编程提供了方便。片内有128字节的RAM,由于程序比较简单,不需要扩展外部RAM,因而电路结构简洁。 2.系统供电电路。系统供电原理如图2-3所示,采用+5V电压供电。本设计采用输出电压为9V的变压器。 图2-3 3.按键控制模块。本系统采用矩阵式按键,采用8个I/O满足16个按键的使用需求。矩阵键盘实现方法非常简单,采用扫描模式,即开始给行向加入高电平,列向加入低电平,若按下相应的键,则对应的行向就变为低了。 4.温湿度检测控制模块。本系统温度检测使用的是SHT10,该系列单芯片传感器是一款含有已校准数字信号输出的温湿度复合传感器。该产品具有品质卓越、超快响应抗干扰能力强、性价比极高、接线简单等优点。 5.报警显示模块。此设计主要是监测系统出现温度过低或过高而设计报警系统,正常使用中蜂鸣器不会响但在人体熟睡或行动不便时外加的报警,防止因系统出现故障时而引起的持续加热等现象。 6.LCD数字显示模块。在单片机的人机交流界面中,一般的输出方式有以下几种:发光管、LED数码管、液晶显示器。发光管和LED 数码管比较常用,软硬件都比较简单,显示形式比较简单,本方案显示内容符号较多,因而采用液晶板比较合适 7.加热及保护模块。本设计通过单片机控制加热热丝给睡枕加热,因而涉及到加热及保护部分,睡枕温度一般在30多度,加热丝功率不必很大,取200W-400W即可。为防止交流电对单片机影响,采用光电隔离的方式。 8.漏电保护模块。本设计为确保安全可靠,特引进漏电保护电路,此电路采用漏电专用芯片IC54123,该电路具有灵敏度高,当有人

相关主题
文本预览
相关文档 最新文档