当前位置:文档之家› 解析静止无功补偿器装置未来发展领域

解析静止无功补偿器装置未来发展领域

解析静止无功补偿器装置未来发展领域
解析静止无功补偿器装置未来发展领域

解析静止无功补偿器装置未来发展领域

静止无功补偿器的典型代表是晶闸管投切的电容器(TSC),和晶闸管控制的电抗器(TCR)。实际应用中,将TCR与并联电容器配合使用,根据投切电容器的元件不同,可分为TCR与固定电容器配合使用的静止无功补偿器,和TCR与断路器投切电容器配合使用的补偿器,以及TCR与TSC配合使用的无功补偿器。这些组合而成的SVC的重要特性是它能连续调节补偿装置的无功功率,进行动态补偿,使补偿点的电压接近维持不变,但SVC只能补偿系统的电压,其无功输出与补偿点节点电压的平方成正比,当电压降低时其补偿作用会减弱。SVC的主要作用是电压控制,采用适当的控制方式后,SVC也可以有阻尼系统功率振荡和增加稳定性等作用。目前,SVC技术已经比较成熟,国外从60年代就已经开始应用SVC,七十年代末开始用于输电系统的电压控制,经过几十年的发展,不仅将静止无功补偿器,用于输电系统的电压控制,也用于配电系统的补偿和控制,还可用于电力终端用户的无功补偿一电压控制。

未来SVC装置各领域的需求如下:

①电网建设领域

目前电网侧SVC主要应用于35kV以上线路,在不同电压等级下,电网安装无功补偿装置与变压器的容量比值呈现出电压等级越高,比值越大的关系,安装40%左右变压器需要装配SVC且SVC调节容量为变压器容量的15%估算,电网侧每年所需SVC的市场容量约为38亿元。

目前电网应用比例要明显小于企业用户,伴随对电网建设投资的不断加大,智能电网的技术要求不断提高,这也意味着电网领域中对SVC装置的需求存在巨大增量空间。上图中根据第二阶段电网整体投资推算得出SVC市场规模,并平均分配到未来几年,从国家电网的规划结合当前实际情况来看,2013年之后或将是市场需求大规模爆发的集中时段。

②风电建设领域

按照国家能源局所提出的风电并网指标,将在2015年之前实现9000万千瓦风电机组上网,而目前我国风电装机容量约为2000万千瓦,这意味着未来5年中,每年平均要实现1400万千瓦的风电机组实现上网,目前风电所需无功补偿的容量约占装机容量的20%-30%,以平均为25%计算,每年风电机组所需的SVC装置大概在350万千乏左右。以单位价格150元/千乏计算,风电站建设方面每年市场容量大概5.25亿元左右。

③电气化铁路

按照国家《中长期铁路网规划》,到2020年,全国铁路运营里程将达到12万公里,电气化率达到60%,这意味着到2020年全国电气化铁路运营里程将达到7.2万公里。通常电气化铁路要求每隔50公里就需要设一个变电站,截止到目前,我国电气化铁路里程已经突破3万公里,以未来十年内建设4万公里计算,则要同时建设800个牵引变电站,以每个变电站SVC装置造价为250万计算,每年市场容量在2亿元。

④冶金、煤矿、化工等其他领域

伴随我国节能减排工作的不断深入,国家对于企业节能的要求也日益严格,尤其针对高耗能行业,已经下达具体减排目标,这将促使企业积极寻找减排措施,从而为SVC带来市场空间。由于我国冶金、煤炭等行业企业数量众多,市场基数大,保守估计每年的市场容量将不低于10亿元。

在高压静止型动态无功补偿领域,由于TCR型技术成熟度比较高,推广早,在目前市场中占据绝大多数,虽然MSVC应用要晚于TCR型SVC,但是发展速度很快,客户的认知度已经上升到一个较高的阶段。作为SVC装置的重要种类之一,由于MCR型SVC对风电场及特高压输电线路具有较强的适用性,且未来以上两个领域将进入快速增长时期,未来几年中,MCR型SVC市场规模将呈现出较快的发展趋势。

根据不同领域未来对SVC装置的需求,未来SVC市场总容量将保持在56亿元左右,其中MCR型SVC将会呈现出较快发展的趋势,未来几年内主要类型SVC市场规模见下图:

目前我国高压领域的市场中,TCR、MCR没有各方面均绝对占优的型式,用户需结合工程具体条件适当选用。随着技术的发展以及各种原材料、元器件比价的变化,某种型式在一定使用条件下会有相对技术经济优势。TCR优点在于响应速度快,适用于电弧炉等要求响应时间的设备,MCR相应时间稍长,但是能够做成超高压直挂式,对于解决工频过电压是较好的方案,未来在特高压输电领域优势明显。

SVG静止无功补偿器

无功功率补偿 编辑词条分享 ?新知社新浪微博人人网腾讯微博移动说客网易微博开心001天涯MSN ? 1 定义 ? 2 产生和影响 ? 3 作用 ? 4 装置 无功功率指的是交流电路中,电压U与电流I存在一相角差时,电流流过容性电抗(X C)或感性电抗(X L)时所形成的功率分量(分别为)。这种功率在电网中会造成电压降落(感性电抗时)或电压升高(容性电抗时)和焦耳(电阻发热)损失,却不能做出有效的功。因而需要对无功功率进行补偿。合理配置无功补偿(包括在什么地点、用多大容量和采用何种型式)是电力系统规划和设计工作中一项重要内容。在运行中,合理使用无功补偿容量,控制无功功率的流动是电力系统调度的主要工作之一。 在交流电力系统中,发电机在发有功功率的同时也发无功功率,它是主要的无功功率电源;运行中的输电线路,由于线间和线对地间的电容效应也产生部分无功功率,称为线路的充电功率,它和电压的高低、线路的长短以及线路的结构等因素有关。电能的用户(负荷)在需要有功功率 (P)的同时还需要无功功率(Q),其大小和负荷的功率因数有关;有功功率和无功功率在电力系统的输电线路和变压器中流动会产生有功功率损耗(ΔP)和无功功率损耗(ΔQ),也会产生电压降落(ΔU)。 一般情况下,电力系统中发电机所发的无功功率和输电线的充电功率不足以满足负荷的无功需求和系统中无功的损耗,并且为了减少有功损失和电压降落,不希望大量的无功功率在网络中流动,所以在负荷中心需要加装无功功率电源,以实现无功功率的就地供应、分区平衡的原则。 无功补偿可以收到下列的效益:①提高用户的功率因数,从而提高电工设备的利用率;②减少电力网络的有功损耗;③合理地控制电力系统的无功功率流动,从而提高电力系统的电压水平,改善电能质量,提高了电力系统的抗干扰能力;④在动态的无功补偿装置上,配置适当的调节器,可以改善电力系统的动态性能,提高输电线的输送能力和稳定性;⑤装设静止无功补偿器(SV

SVC静止型动态无功补偿解决方案

SVC 静止型动态无功补偿解决方案 1 系统需求概述 随着中国经济的迅猛发展以及新能源应用的推进,对电力系统运行的安全性、可靠性和经济性以及对电能的质量的要求越来越高。一些大功率负荷的投入、退出,或者系统局部故障等,都会造成系统中有功功率和无功功率的大幅扰动,从而对电网的稳定性和经济性产生影响。同时,这些扰动引起的电磁暂态过程产生的过电流和过电压又往往会危害到有关电器设备的安全。 快速有效地调节电网的无功功率,使整个电网负荷的潮流分配更趋合理,这对电网的稳定、调相、调压、限制过电压等等方面都是十分重要的。 另外,现在的直流输电工程日益发展,大功率换流装置(无论整流或逆变)都需要系统 提供大量无功功率。特别是一端为弱系统或临近的交流系统发生故障时,如果不能迅速补偿大幅度波动的无功功率,就会导致系统失控或瓦解。 在SVC 出现前,人们除了精心设计和布局整个电网外,往往采用下面几种经典的办法或设备来调节电网的无功功率。 1)、适当调节发电机励磁,以调节机组运行功率因数。 2)、在交流系统适当地点(或直流输电弱系统侧)装设同步调相机。 3)、使用带抽头或有载开关的变压器,通过调节电网某些点的电压来调节潮流。 4)、采用串联补偿电容器来改善受端电压,提高电网极限传输能力并增强系统的稳定性。 5)、用开关投切并联电抗器或电容器,以满足系统随时变化的无功功率需求量,达到调相调压的目的。 这几种措施和方法,有些因其固有的优点,迄今仍为人们采用着。但是,许多方法明显存在着响应速度慢、调节性能差、运行维护和管理不便、长年运行损耗过大、自动监控跟踪性能差以及对整个电网的技术效益和经济效益都偏低等等缺陷。现在,性能优良的SVC (静止型动态无功补偿器)正逐步替换这些陈旧的设备。尤其在一些重要的场合,如大型钢厂,风力发电厂以及在大型复杂电网运行中有特殊要求的电站,SVC 正获得越

静止无功补偿器的研究课程设计

1 静止无功补偿器的总体设计 1.1 静止无功补偿器的主电路 ASVG 分为采用电压型桥式电路和电流型桥式电路两种类型。两者的区别是直流侧分别采用的是电容和电感这两者不同储能元件,对电压型桥式电路,还需要串联上电抗器才能并上电网;对电流型桥式电路,还需要并联上电容器才能并上电网。实际上,由于运行效率的原因,实际应用的ASVG 大多采用的是电压型桥式电路。因此ASVG 专指采用自换相的电压型桥式电路作为动态无功补偿的装置。ASVG 的基本结构如图1-1。它由下列几部分组成:电压支撑电容,其作用是为装置提供一个电压支撑;由大功率电力电子开关器件(IGBT 或GTO )组成的电压源逆变器(VSC ),通过脉宽调制(PWM )技术控制电力电子开关的通断,将电容器上的直流电压变换为具有一定频率和幅值的交流电压;耦合变压器或电抗器,一方面通过它将大功率变流装置与电力系统耦合在一起,另一方面还可以通过它将逆变器输出电压中的高次谐波滤除,使ASVG 的输出电压接近正弦波。 图1-1 电压型补偿器结构图 上图为电压型的补偿器,如果将直流侧的电容器用电抗器代替,交流侧的串联电感用并联电容代替,则为电流型的补偿器。交流侧所接的电感L 和电容C 的作用分别为阻止高次谐波进入电网和吸收换相时产生的过电压。无论是电压型,还是电流型的SVG 其动态补偿的机理是相同的。当送到逆变器的脉宽恒定时,调节逆变器输出电压与系统电压之间的夹角δ就可以调节无功功率和逆变器直流侧电容电压Uc ,同时调节夹角δ和逆变器脉宽,即可以在保持Uc 恒定的情况下, 发出或吸收所需的无功功率。SVG 装置的核心部分是逆变电路,它将整流后的直流电压进行逆变以产生-个频率与系统相同的交流电压,并且这个电压的幅值和相位都可调,然后通过电抗器把这个电压并到电网上去,从而产生所需的交流无功功率。利用IGBT 智能模块后,逆变器电路无论是在体积、性能、稳定性上还是控制方式上都得到了极大的简化。本文中所介绍到的静止无功发生器是电压型的SVG ,它具有主电路的拓扑结构简单,且逆变装置所用的电压型器件IGBT 易于控制,灵活方便。 1.2 静止无功补偿器的工作原理 系统线 路 整流器..系统线路 V dc 电压源逆变器耦合变压器 系统电压

国家标准《静止式动态无功补偿装置功能特性》(精)

国家标准《静止式动态无功补偿装置功能特性》 征求意见稿编制说明 2005年7月 一、概述 国家标准《静止式无功功率补偿装置(SVC)功能特性导则》被列入了2003年国家标准制修订计划,计划编号为20032411-T-469。完成年限2005年。本标准由国家标准化管理委员会提出;全国电压电流等级和频率标准化技术委员会(以下简称“标委会”)归口并负责起草。 本标准主要起草单位: 本标准主要起草人: 本标准参加起草单位: 本标准参加起草人: 为了保证标准质量,特别邀请西安交通大学夏道止教授、王兆安教授、清华大学陈建业教授、中国电力科学研究院林海雪教授级高工(兼)、全国电力电子学标委会秘书处周观允教授级高工(兼)担任标准编制工作组顾问。 1 标准项目的提出和编制过程 该项目是在全国电压电流等级和频率标委会委员、鞍山荣信电力电子有限公司左强总经理的提议下,于2001年初和《静止式动态无功补偿装置(SVC) 现场试验导则》国家标准项目一起,向国家标准委提出立项申请,2003年底被批准立项的。 2004年第1季度,标委会秘书处研究确定:成立以全国电压电流等级和频率标委会秘书处、全国电力电子学标委会秘书处、中国电力科学研究院、西安领步电能质量研究、鞍山容信电力电子有限公司为主要起草单位的标准编制工作组;随着工作的进一步开展,还将扩展供电、用电、设备及其主要部件制造行业的工程技术人员参加标准编制工作。 根据2004年6月23日国家标准委高新技术部有关“无功补偿装置”国家标准规划及制定工作会议精神,两项《静止式动态无功补偿装置(SVC)》国家标准的制定过程中将积极吸收相关行业和单位的意见。 2004年12月21-23日,于北京召开了主要起草人和顾问工作扩大会议。会议就采用美国IEEE相应标准的基本原则达成以下共识: ——本标准不是等同、也不是修改采用,但鉴于美国IEEE 1303:1994相应标准的框架和技术内容有一定价值,因此在编制我国标准时应作为主要参考文件;关键是要保证国家标准的先进性,提高产品竞争力,技术内容可适当超前以指导科研; ——标准的适用范围要突破美国IEEE相应标准,涵盖输电和配电系统; ——保持立项时的标准名称,暂不改变; ——标准中,对实现产品性能的方法(例如冷却方式)不应强行做推荐性规定; ——该标准在编制过程中,要注意与国家标准《静止式动态无功补偿装置现场试验》的编制工作的密切协调; ——标准内容不应与现行国家标准发生矛盾; ——编制标准时应注意充分研究现正在编制的相关电力行业标准和可控硅阀国家标准。 会议对由西安领步电能质量研究所、鞍山荣信电力电子有限公司分别组织翻译,并聘请有关专家校对的最新IEEE标准进行了集体校对;研究商讨了IEEE 1303:1994各章条的采用程度和增删意见。会议决定由刘军成高级工程师执笔起草、林海雪教授级高工校核本标准的征求意见稿讨论稿,然后提交2005年5月召开的主要起草人会议,供集体讨论修改。

静止无功补偿器的控制方式

SVC 输出容量控制主要有电压控制和恒导纳控制两种方式,可以在运行人员的指令下互相切换。 3.1.1电压控制模式 这种控制模式下控制系统将测量所得到的母线电压Vmeas与一个设定的参考电压Vref 进行比较,然后将差值进行计算, 得到一个标么值电纳信号Bref ,该电纳值除以单组机械可投切电容(电抗) 器的电纳值可以确定需要的电容(电抗)器数目,而差值由TCR来补充。随后将该标么值电纳送往脉冲触发发生电路,控制TCR 的触发角。SVC稳态特性曲线的斜率采用电流反馈来实现,这种方法能够保证在SVC 控制范围内使端电压和端电流之间保持线性关系。实测的SVC电流ISVC与代表调差率的系数KSL相乘,构成信号VSL再输入到加法节点。当ISVC为感性时, VSL取正;当ISVC为容性时,VSL取负。其传递函数为:G( s) =K1(1+s T Q)/s(1+s Tp),其中T Q=Tp+Kp/K1 由于Tp通常设为零,因而控制器转化为简单的比例积分器,比例系数Kp 反映响应速度。电压调节器输出的电纳参考信号被送到触发计算单元,该单元计算出6 组触发角,送至脉冲发生电路,从而在SVC 母线上得到期望的电纳值,达到设定的控制目标。 3.1.2恒导纳控制模式 在该模式下,SVC 的等效导纳Bord 由运行人员设定,且该导纳可以在规定范围内连续可调。Bref来自电压调节器的输出,在恒导纳模式下被偏置。首先根据监控单元提供的开入量需要确定已投运的电容(电抗) 器组的等效电纳,然后经过电纳计算,得出仍需投切的电容(电抗) 器组以及需要的TCR 触发角连续调节的等效感性电纳。最后换算成触发角发送到触发脉冲发生电路。 3.1.3 PWM电流控制 对PWM电路的电流控制可分为间接电流控制和直接电流控制。前者通过控制整流器产生的交流电压基波分量的相位和幅值来实现PWM 交流侧的电流控制;后者采用跟踪型PWM控制技术对交流侧的电流进行直接控制。在目前的STATCOM 系统中,考虑到PWM开关频率较低以及功耗问题,因此多采用间接电流控制。但间接电流控制其网侧电流的动态响应慢,且对系统参数变化灵敏。相比之下,直接电流控制更能精确地控制PWM输出的电流,因此在DSTATCOM设计中,采用直接电流控制方法,从而可以设置较高的PWM 开关频率,减少输出电流谐波,获得较好的输出电流波形,进而降低系统设计成本,提高运行可靠性。该实验控制方法采用基于矢量变换的直接电流控制,其控制方案如下图所示。

静止型动态无功补偿成套装置技术规范

35kV SVG型静止型动态无功补偿成套装置技术规范 1总则 1.l 本设备技术规范书适用于XXXXXXXXXXXXXXXXXXXX工程XXkV 动态无功补偿与谐波治理装置,它提出了该设备的功能设计、结构、性能、安装和试验等方面的技术要求。 1.2 本设备技术规范书提出的是最低限度的技术要求,并未对一切技术细节作出规定,也未充分引述有关标准和规范的条文,供方应提供符合工业标准和本协议要求的优质产品。 1.3 如果供方没有以书面形式对本技术规范书的条文提出异议,则意味着供方提供的设备完全符合本技术规范书的要求。 l.4 本设备技术规范书所使用的标准如遇与供方所执行的标准不一致时,按较高标准执行。 1.5 本设备技术规范书经供、需双方确认后作为订货合同的技术附件,与合同正文具有同等的法律效力。 1.6 本设备技术规范书未尽事宜,由甲、乙双方协商确定。 2工程概况 2.1环境条件 周围空气温度 最高温度 ℃ 37.8 最低温度 ℃ -37 最大日温差 K 25 1 日照强度 W/cm2 (风速 0.5m/s) 0.1 2 海拔高度 m 1805 最大风速 m/s 23.7 3 离地面高10m处,30年一遇10min平均最大风速 4 环境相对湿度(在25℃时)平均值 65% 地震烈度(中国12级度标准) 8 水平加速度 g 0.30 垂直加速度 g 0.15 5 地震波为正弦波,持续时间三个周波,安全系数1.67 污秽等级 III 泄漏比距 3.1cm/kV 6 最高运行电压条件下,制造厂根据实际使用高海拔进行修正,并提供 高海拔修正值 7 覆冰厚度(风速不大于15m/s时) 10 批注 [s1]: 需根据现场实际情况进行更改 第1页

有源滤波器和静止型无功补偿器在电力系统中的应用

有源滤波器和静止型无功补偿器在电力系统中的应用 【摘要】电力系统中的谐波源危及电网的正常运行。从谐波源及谐波补偿方法的分析出发,着重介绍了一种目前新兴的滤波措施—电力有源滤波器的工作原理和内部结构。有源滤波器滤波性能卓越,能起到减少电网谐波污染,提高电能质量的作用。同时介绍了静止无功补偿装置(SVC)在电力系统中的应用。实际运行结果表明,SVC抗强电磁干扰能力强,响应快,可靠性高,故障率低,达到了满意的效果,提高电力系统的自动化水平。 【关键词】电力系统;谐波治理;无功补偿;SVC 1 谐波的危害 谐波污染对电力系统的危害是严重的,主要表现在: (1)谐波影响各种电气设备的正常工作。如造成发电机的旋转电机产生附加功率损耗、发热。 (2)谐波对供电线路产生了附加损耗。由于中性线正常时流过电流很小,故其导线较细,当大量的三次谐波流过中性线时,会使导线过热,损害绝缘,引起短路甚至火灾。 (3)使电网中的电容器产生谐振。工频下,系统装设的各种用途的电容器比系统中的感抗要大得多,不会产生谐振,但对于谐波,由于频率倍增,感抗值成倍增加而容抗值成倍减少,这就有可能出现谐振,导致电容器等设备被烧毁。 (4)谐波将使继电保护和自动装置出现误动作,并使仪表和电能计量出现较大误差。 2 谐波抑制方法 抑制谐波电流主要有两方面的措施: 2.1 降低谐波源的谐波含量 在谐波源上采取措施,最大限度地避免谐波的产生。这种方法比较积极,能够提高电网质量,可大大节省因消除谐波影响而支出的费用。具体方法有:a.增加整流器的脉动数;b.脉宽调制法。但电力电子装置的应用不可避免产生谐波源。 2.2 在谐波源处吸收谐波电流 2.2.1 无源滤波器

静止无功补偿器SVG发展及应用

静止无功发生器SVG 发展及应用

目录 1. 电能质量 (1) 2. 无功补偿 (1) 2.1. FACTS简介 (1) 2.2. 可调无功补偿技术方案 (2) 2.3. 有源滤波与静止无功补偿技术 (3) 3. SVG介绍 (5) 3.1. 静止无功发生器主电路的拓扑结构 (5) 3.2. 静止无功发生器的基本工作原理 (6) 3.3. 常见的几种无功电流检测方法 (7) 3.4. SVG和SVC优劣性比较 (8) 4. SVG 的研究现状及发展趋势 (10) 4.1. SVG 的国内外应用实例 (10) 4.2. SVG 发展趋势 (11) 4.3. SVG 应用范围 (12)

1.电能质量 交流输电功率包括有功功率和无功功率。在有功功率不变的情况下,无功功率越大就会使功率因数降低,视在功率增大,从而需要增大发、输、配电设备的容量,增加投资和电力损耗费用;使输电线路电压降变大,不利于有功电力的输送与合理应用。但如果无功储备不足将会导致电网电压水平降低,冲击性的无功功率负载还会使电压产生剧烈的波动,恶化电网的供电质量。对于给定的有功分布,要想使无功潮流最小以减少系统的损耗,就要求对无功功率的流向与转移进行很好的控制。 随着电网的不断发展,对无功功率进行控制与补偿的重要性与日俱增:①输电网络对运行效率的要求日益提高,为了有效利用输变电容量,应对无功进行就地补偿;②电源(尤其水电)远离负荷中心,远距离的输电需要灵活调控无功以支撑解决稳定性及电压控制问题;③配电网中存在大量的屯感性负载,在运行中消耗大量无功,使得配电系统损耗大大增加;④直流输电系统要求在换流器的交流侧进行无功控制;⑤用户对于供电电能质量的要求日益提高。因此,对电网的无功进行就地补偿,尤其是动态补偿,在输配电系统中十分必要。 随着现代电力电子技术的发展,大量的大功率整流、变频装置应用于电力系统,由于这些设备大部分功率因数较低,在工作过程中需要大量的无功功率,给国家电网带来了很大的额外负担,直接影响到了电网的质量。电力电子装置本身还是一个谐波源,这些设备的大量应用使电网上的谐波污染日趋严重,严重影响了电力系统的供电质量,同时使系统留下严重的安全隐患。 2.无功补偿 2.1.FACTS简介 柔性交流输电系统(以下简称FACTS)是美国电力研究所(Electric Power Research Institule,EPRI)N.G.Hnigornai博士于1986年首先提出。它具有控制速度快、控制灵活、可靠性高、可连续调节、可迅速改变潮流分布等优点。近年来成为电力系统稳定控制的一个重要研究方向。 目前,主要的FACTS 装置包括三大类。第一类为并联装置,如静止无功补偿器(Static Var Compensator,SVC),它能够根据无功功率的需求自动补偿;静止无功发生器(Static Var Generator,SVG),它是最新出现的一种并联补偿装置,这是本文研究的主要对象。第二类为串联装置,如静止同步串联补偿器(Static Synchronous Series Compensator,SSSC)、晶闸管控制串联电容器(Thyristor Controlled Series Capacitor,TCSC)等。第三类为混合装置,如统一潮流控制器(United Power Flow Conrtollor,UPFC)相间潮流控制器(Interphase

什么叫无功补偿装置

什么叫无功补偿装置 总的来说“无功补偿装置”就是个无功电源。 一般电业规定功率因数为低压0.85以上,高压0.9以上。为了克服无功损耗,就要采用无功补偿装置来解决。 电力系统中现有的无功补偿设备有无功静止式补偿装置和无功动态补偿装置两类,前者包括并联电容器和并联电抗器,后者包括同步补偿机(调相机)和静止型无功动态补偿装置(SVS)。 并联电抗器的功能是: 1)吸收容性电流,补偿容性无功,使系统达到无功平衡; 2)可削弱电容效应,限制系统的工频电压升高及操作过电压。其不足之处是容量固定的并联电抗器,当线路传输功率接近自然功率时,会使线路电压过分降低,且造成附加有功损耗,但若将其切除,则线路在某些情况下又可能因失去补偿而产生不能允许的过电压。 文案大全

改进方法是采用可控电抗器,它借助控制回路直流的励磁改变铁心的饱和度(即工作点),从而达到平滑调节无功输出的目的。 工业上采用 1.同步电机和同步调相机; 2.采用移相电容器; 目前大多数采用移相电容器为主。 无功补偿对于降低线损有哪些作用? 电网的损耗分为管理线损和技术线损。管理线损通过管理和组织上的措施来降低;技术线损通过各种技术措施来降低。无功补偿是利用技术措施降低线损的重要措施之一,在有功功率合理分配的同时,做到无功功率的合理分布。按照就近的原则安排减少无功远距离输送。对各种方式进行线损计算制定合理的运行方式;合理调整和利用补偿设备提高功率因数。 1、提高负荷的功率因数 文案大全

提高负荷的功率因数,可以减少发电机送出的无功功率和通过线路、变压器传输的无功功率,使线损大为降低,而且还可以改善电压质量、提高线路和变压器的输送能力。 2、装设无功补偿设备 应当根据电网中无功负荷及无功分布情况合理选择无功补偿容量和确定补偿容量的分布,以进一步降低电网损耗。 农村低压客户的用电现状以及无功补偿在低压降损中的作用有哪些? 90年代以前,农村低压用电以居民生活用电为主,其负荷主要是照明用白炽灯,不仅用电量少而且负荷性质基本是纯电阻性(COSφ≈1),而低压动力用户的负荷功率因数虽然较低,但其用电量占总售电量的比例较小,故影响不大。近些年来,由于各种现代家用电器的迅速普及和大量使用,居民生活用电不仅用电量有了较大的增长,更重要的是其负荷性质有了很大的改变。与此同时,低压动力客户电量增长迅速,近几年已经占到了农村总用电量比重的60%~70%,主要以纺织行业、机械加工为主,而且动力客户的用电量明显呈现出继续增长趋势。这些动力客户,其设备自然功率因数较低(COSφ=0.6~0.7),且经常处于低功率因数运行状况。 文案大全

静止无功补偿器_SVC_及其工程应用发展前景

中国电力教育2010年管理论丛与技术研究专刊 450 静止无功补偿器(SVC)及其工程应用发展前景 陈鹏良*1?楼书氢2?刘世欣3 (1.天津市电力公司城西供电分公司,天津 300110;2.江西省吉安供电公司,江西 吉安 343009; 3.内蒙古电力科学研究院,内蒙古 呼和浩特 010020) 摘?要:静止无功补偿装置以其能够快速、平滑的调节容性和感性无功功率,实现动态补偿,在电力系统中得到了广泛的应用。本文主要介绍了它的主要结构型式,并对其在国内外电力系统当中的一些实际应用进行了介绍和总结,针对其关键技术内容指出了SVC国产化发展道路和在我国的应用前景。 关键词:静止无功补偿器;工程应用;发展前景 *作者简介:陈鹏良,男,天津市电力公司城西供电分公司,工程师。 电压是衡量电能质量的重要指标之一,电力系统运行 过程中必须保证母线电压稳定在允许范围内,以满足用电 设备对电压质量的要求。工业配电系统中较多采用电容器 组以达到无功补偿调压和提高功率因数的目的,但是该方 法只能进行分级阶梯状调节,并且受机械开关动作的限制, 响应速度慢,不能满足对波动频繁的无功负荷进行补偿的 要求。[1] 静止无功补偿器(Static Var Compensator, SVC) 是一种快速调节无功功率的装置,它可以使所需的无功功 率随时调整,从而保持系统电压水平的恒定,并能有效抑 制冲击性负荷引起的电压波动和闪变、高次谐波,提高功 率因数,还可实现按各相的无功功率快速补偿调节实现三 相无功功率平衡。 一、SVC结构性能对比及关键技术问题 SVC由可控支路和固定(或可变)电容器支路并联而成, 主要有3种结构型式,[2]如图1所示。 1.晶 闸管控制电抗器(Thyristor?Controlled?Reactor,? TCR) 用可控硅阀控制线性电抗器实现快速连续的无功功率 调节,它具有反应时间快(5~20ms),运行可靠、无级补偿、 分相调节、价格便宜等优点。同时能实现分相控制,有较 好的抑制不对称负荷的能力。 2.晶闸管投切电容器(Thyristor?Switched?Capacitor,? TSC) 分相调节、直接补偿、装置本身不产生谐波,损耗小。 在运行时,根据所需补偿电流的大小,决定投入电容的组 数。由于电容是分组投切的,所以会在电网中产生冲击电流。 为了实现无功电流尽可能的平滑调节,一是增加电容的组 数,组数越多,级差就越小,但又会增加运行成本;二是 把握电容器的投切时间,一般采取过零投切。 3.自饱和电抗器(Saturated?Reactor,?SR) 由饱和电抗器和串联电容器组成的回路具有稳压的特 性,能维持连接母线的电压水平,对冲击性负荷引起的电 压波动具有补偿作用,与其并联的滤波电路能吸收谐波并 提高功率因数,而且还具有有效抑制三相不平衡的能力。 其优点是补偿快速、可靠、过载能力强,维护简单,但运 行时电抗器长期处于饱和状态,有较大的噪声和损耗,原 材料消耗也大,补偿不对称负荷自身产生较大谐波电流, 无平衡有功负荷能力。 以上几种SVC装置性能对比如表1所示。[3,4] 表1?SVC装置性能对比 性能TCR TSC SR 调节范围超前/滞后超前超前/滞后 控制方式连续不连续连续 调节灵活性好好差 响应速度较快快快 调节精度好差好 产生谐波多无少 控制难易程度稍复杂稍复杂简单 技术成熟程度好好好 分相调节可以有限不可以 维护检修方便方便不常维修 二、国外SVC应用介绍 1.纳米比亚400kV,330Mvar项目 纳米比亚NamPower公司新建的一条长890km的 400kV输电系统,把纳米比亚高压输电系统和南非Eskon 高压输电系统连接起来,但是新增的线路带来了新的问题, 主要是电压的稳定性和谐振问题。NamPower的Auas变电 站会出现非常高的过电压。一旦发生50Hz的谐振,在某个 系统负荷的发电机出力条件下就会出现很高的动态过电压, (a)?TCR (b)?TSC (c)?SR 图1?常见的几种SVC基本结构

动态无功补偿与静态无功补偿区别

1、投入与切除的延时区别,动态的速度快,静态的延时长 2、动态的一般有分相补偿,静态的一般三相一起补偿 规定:静态无功补偿跟踪时间在5S以上的无功补偿,动态无功补偿就是指跟踪时间在5S以内的无功补偿。 现在的静态无功补偿与动态无功补偿其实就是在炒作概念,从理论上说现在全部就是静态无功补偿!只有静止补偿与自动补偿之分! 动态无功补偿的要求就是补偿容量动态可调,响应速度快,投切平稳,无冲击与波形畸变。对容性补偿来说,这就要求电容容量动态连续可调,其实现在就是做不到的!现在的所谓动态无功补偿就是投入与切除的延时区别,动态的速度快,静态的延时长。其实电容还就是悌度投入的,只就是所谓动态无功补偿过零点投入,冲击小些!呵呵! 动态无功通常指补偿容量可以任意调节的装置,如TCR、TSC、MCR、STATCOM,也称静止无功补偿器、静止无功发生器等。 您说的静态无功补偿可能指传统的开关投切电容器组或电抗器组。 SVC(Static Var Compensator):静止无功补偿器。静止无功补偿器就是由晶闸管所控制投切电抗器与电容器组成,由于晶闸管对于控制信号反应极为迅速,而且通断次数也可以不受限制。当电压变化时静止补偿器能快速、平滑地调节,以满足动态无功补偿的需要,同时还能做到分相补偿;对于三相不平衡负荷及冲击负荷有较强的适应性;但由于晶闸管控制对电抗器的投切过程中会产生高次谐波,为此需加装专门的滤波器。 SVC高压动态无功补偿及滤波装置 、SVC高压动态无功补偿及滤波装置简介] 基于DSP的全数字控制系统,具有运算速度快、处理数据量大,实现实时控制量计算。采用柜式结构,实现外来干扰屏蔽,抗干扰能力优越。控制整个系统的运行。采用卧式结构,晶闸管叠装压接式,纯水冷却、内取能、内阻尼、空气绝缘、BOD保护。晶闸管选用ABB优质产品,电气性能良好,串联使用控制电抗器的投入与切除。主电抗器,通过晶闸管阀组连接到SVC系统中,成为SVC最重要的部分。电抗器为空心、干式、铜线或铝线环氧固化型,线形度高、噪音小、动热稳定性好,绝缘强度高,散热好。通过晶闸管的相位控制达到动态无功补偿的目的。主要设备采用国外著名公司进口元件,主循环泵、等离子交换机、精密过滤器等核心机构采用不锈钢316L材质。PLC程序控制,保护、报警功能完备。无腐蚀,无污染,符合环保要求。 动态无功补偿 动态无功补偿发生装置,即静止同步补偿器,又名静止无功发生器。由于其开关器件为IGBT,所以其动态补偿效果就是早期的同步调相机、电容器与无功补偿装置不能比拟的,无功补偿装置以其较低谐波,较高的效率,较快速的动态响应,成为现代柔性交流输电系统中的重要设备。该装置主要用来补偿电网中频繁波动的无功功率,抑制电网闪变与谐波,提高电网的功率因数,改善配电网的供电质量与使用效率,进而降低网络损耗,有利于延长输电线路的使

静止无功发生器(SVG)无功补偿

静止无功发生器(SVG)无功补偿 专业知识:静止无功发生器(SVG)是指采用全控型电力电子器件组成的桥 式变流器来进态无功补偿的装置。SVG的思想早在20世纪70年代就有人提出,1980 年日本研制出了20MVA 的采用强迫换相晶闸管桥式电路的SVG,1991年和1994年日本和美国分别研制成功了80MVA和10OMVA的采用GTO晶闸管的SVG。目前国际上有关SVG的研究和将其应用于电网或工业实际的兴趣正是方兴未艾,国内有关的研究也已见诸报道。与传统的以TCR为代表的SVC相比,SVG的调节速度更快,运行范围宽,而且在采取多重化或PWM技术等措施后可大大减少补偿电流中谐波的含量。更重要的是,SVG使用的电抗器和电容元件远比SVC中使用的电抗器和电容要小,这将大大缩小装置的体积和成本。由于SVG具有如此优越的性能,是今后动态无功补偿装置的重要发展方向。 无功补偿的专业知识: 与电网中的有功损耗相比,无功损耗要大的多,这是因为高压线路、变压器的 等值电抗要比电阻大得多,并且变压器的励磁无功损耗也要比励磁有功损耗更大,事实证明电网最基本的无功电源——发电机所发出的无功功率远远满足不 了电网对无功的需求,因此对电网进行无功补偿显得尤为必要。另外,对电网 采取适当的无功补偿可以稳定受端及电网的电压,在长距离输电线路中选择合 适的地点设置无功补偿装置,还可以改善电网性能,提高输电能力,在负荷侧 合理配置无功,可以提高供用电系统的功率因数,减少功率损耗,因此,电网 中无功补偿的作用已得到普遍重视。 1.电网无功补偿的方法

电网无功补偿方法有很多种,从传统的带旋转机械的方式到现代的电力电子元件的应用经历了近一个世纪的发展历程,下面将按无功补偿方式的发展顺序逐一论述电网的无功补偿方法。 1.1同步调相机 同步调相机是一种专门设计的无功功率电源,相当于空载运行的同步电动机。调节其励磁电流可以发出或吸收无功功率,在其过励磁运行时,向系统供给感性无功功率而起无功电源的作用,可提高系统电压;在欠励磁运行时,它会从系统吸取感性无功功率而起无功负荷的作用,可降低系统电压,同步调相机欠励磁运行吸收无功功率的能力,约为其过励磁运行发出无功功率容量的 50%~65%。装有自动励磁调节装置的同步调相机,能根据装设地点电压的数值平滑的改变(输出或吸取)无功功率,从而进行电压调节。此外,装有强行励磁调节装置的同步调相机在系统发生故障而引起电压降低时,可以提供短时电压支撑,有利于提高电网稳定性。但它的不足之处也有很多,如有功损耗大、运行维护复杂,投资费用大、动态调节响应慢以及增加了系统的短路容量等等,同步调相机正逐渐被投资更少性能更优的新型无功补偿设备所取代。 1.2并联电容器 并联电容器是目前电网中应用最为广泛的一种无功补偿设备,只能发出无功功率,不能吸收无功功率。它藉提高负荷侧功率因数以减少无功功率流动而提高受端电压、降低网损。它需要根据负荷的的变化而进行频繁的投入或切除操作,而此投入或切除操作通常用机械开关控制,因此不能准确快速的实现无功功率补偿。另外在系统电压出现紧急状态时,并联电容器组的明显缺点是其无

SVC静止型无功补偿装置原理及应用

1.引言 随着国民经济的发展和现代化技术的进步,电力网负荷急剧增大,对电网感性无功要求也与日惧增。特别是如可逆式大型轧钢机、炼钢电弧炉等冲击负荷、非线性负荷容量的不断增加,加上普遍应用的电力电子和微电技术,使得电力网发生电压波形畸变,电压波动闪变和三相不平衡等,产生电能质量降低,电网功率因数降低,网络损耗增加等不良影响。近年发展起来的静止型无功补偿装置(STATICVARCOMPENSATOR,下简称SVC)是一种快速调节无功功率的装置,已成功的应于冶金、采矿和电气化铁路等冲击性负荷的补偿上。而晶闸管控制电抗器型(称TCR型)SVC用晶闸管控制线性电抗器实现较快、连续的无功功率调节,由于它具有反应时间快(5~20MS),运行可靠,无级补偿、分相调节,能平衡有功,适用范围广和价格便宜等优点。TCR装置还能实现分相控制,有较好的抑制不对称负荷的能力,因而其应用最广。尤其是在冶金行业中,使用例子也最多。 2.TCR+FC型SVC系统的组成及控制原理 2.1系统组成 TCR+FC型SVC系统的组成如图1所示,一般由TCR、滤波器(FC)及控制系统组成。通过控制与电抗器串联的两个反并联晶闸管的导通角,既可以向系统输送感性无功电流,又可以向系统输送容性无功电流。该补偿器响应时间快(小于半周波),灵活性大,而且可以连续调节无功输出,缺点是产生谐波,但加上滤波装置则可以克服。

图1TCR+FC型SVC系统的组成 2.2可调控电抗器相(TCR)产生连续变化感性无功的基本原理 如图2(A)所示,U为交流电压。TH1、TH2为两个反并联晶闸管,控制这两个晶闸管在一定范围内导通,则可控制电抗器流过的电流I,I和U的基本波形如图2(B)所示。 图2可调控电抗器相(TCR)产生连续变化感性无功的基本原理 α为TH1和TH2的触发角,则有 I=(COSα-COSωT) I的基波电流有效值为: I=(2π-2α+SIN2α) 式中:V为相电压有效值; ωL为电抗器的基波电抗(ω)。 因此,可以通过控制电抗器L上串联的两只反并联晶闸管的触发角α来控制电抗器吸收的无功功率的值。 2.3恒无功控制、保证功率因数及电压波动 控制系统的基本组成如图3所示。SVC连接到系统中,电容器提供固定容性无功功率QC,通过具有完好线性特征的补偿电抗器的电流决定了从补偿电抗器输出的感性无功值QTCR,感性无功与容性无功相抵消,只要QN(系统)=QV(负载)-QC+QTCR=恒定值(或0),功率因数就能保持恒定,电压几乎不波动。

静止无功补偿技术的现状及其发展趋势

静止无功补偿技术的现状及其发展趋势-九洲电气 文:开发中心/李一丹来源:九洲电气发表时间:2006-05-15 09:02:48 浏览量:1287 无功功率补偿是保持电网高质量运行的一种主要手段,也是当今电气自动化技术及电力系统研究领域所面临的一个重大课题,正在受到越来越多的关注电网中无功不平衡主要有两方面的原因:一方面是输送部门传送的三相电的质量不高,一方面是用户的电气性能不够好。这两方面的原因综合起来导致了无功的大量存在。在电力系统中,电压和频率是衡量电能质量的两个最重要的指标。为确保电力系统的正常运行,供电电压和频率必须稳定在一定的范围内。频率的控制与有功功率的控制密切相关,而电压控制的重要方法之一就是对电力系统的无功功率进行控制。 1.静止动态无功补偿的历史 将电容器与网络感性负荷并联是补偿无功功率的传统方法,在国内外获得了广泛的应用。并联电容器补偿无功功率具有结构简单、经济方便等优点,但其阻抗是固定的,故不能跟踪负荷无功需求的变化,即不能实现对无功功率的动态补偿。随着电力系统的发展,要求对无功功率进行动态补偿,从而产生了同步调相机。它是专门用来产生无功功率的同步电动机,在过励磁或欠励磁的情况下,能够分别发出不同大小的容性或感性无功功率。由于它是旋转电动机,运行中的损耗和噪声都比较大,运行维护复杂,响应速度慢,难以满足快速动态补偿的要求。 20世纪70年代以来,同步调相机开始逐渐补静止型动态无功补偿器所取代。早期的静止无功补偿装置是饱和电抗器型的。饱和电抗器比之同步调相机具有静止、响应速度快等优点,但其铁心需磁化到饱和状态,因而损耗和噪声还是很大,而且存在非线性电路的一些特殊问题,又不能分相调节以补偿负荷的不平衡,所以未能占据主流。 电力电子技术的发展及其在电力系统中的应用,将晶闸管的静止型动态无功补偿器推上了无功补偿的舞台,并逐渐占据了静止型动态无功补偿器的主导地位,于是静止型动态无功补偿器成了专门使用晶闸管的静止型动态无功补偿器。主要包括晶闸管摧投切电抗器(TCR)和晶闸管投切电容器(TSC)。

静止型动态无功补偿装置MSVC在煤矿系统的应用

静止型动态无功补偿装置MSVC 在煤矿系统的应用 北京三得普华科技有限责任公司 2010年3月

目录 一、概述 (2) 二、补偿容量的确定方法 (4) 1、计算方法 (4) 2、计算实例 (5) 三、提高煤矿供电系统电能质量的相关标准和重要性 (6) 四、应用静止型动态无功补偿装臵MSVC的优越性 (8) 1、传统电容器固定补偿方式存在的问题 (8) 2、MSVC装臵的优越性 (11) 3、MCR型SVC的基本构成 (19) 4、MCR介绍 (23) 5、MCR在电网中的实际应用 (32) 五、结束语 (39) 附件:工程概算、相关一次、二次、控制、保护设计图纸

一、概述 我国自70年代开始推广机械化采煤后,煤矿用电负荷逐年激增。近年来,出于采煤工艺和节能两方面的需求,大量非线性负荷在煤矿供电系统中被广泛使用,类如竖井提升机的整流装臵(近年来变频器呈逐步取代直流的趋势),绞车、盘车启动用变频装臵,综采机、刮板机变频装臵,露天矿的大型电铲、洗选煤厂的水泵变频设备等等。 煤矿供电系统通常远离城市供电负荷中心,存在供电距离长、供电容量相对较小的客观问题。在这样的供电客观条件下,用电负荷激增和非线性负荷的使用带来了一系列的电能质量问题,不利于煤矿的安全生产和经济运行,其主要表现在以下两个方面: 1、大量无功功率和电网的交换及无功的反复冲击 1.1对经济性的影响主要表现在: 煤矿用电负荷绝大部分由电动机及变压器这些感性无功负荷构成,其工作时需要大量的无功功率。煤矿生产不同于流水线固定模式,存在很大的随机性,负荷波动相对较为频繁。而目前煤矿供电系统的无功补偿装臵较为落后,还停留在固定电容器有级补偿的技术层面上,无法应对频繁波动的无功功率,往往存在过补偿和欠补偿的现象。对经济运行的影响表现为传递无功功率时引起的额外线路损耗和电力部门的力率罚款。 1.2对安全性的影响主要表现在: 冲击性无功引起电压波动。由《电力系统分析》可知,总压降是有功功率在电阻上产生的压降和无功功率在电感上产生的压降的合成。又因为线路电感远大于电阻,所以无功功率是影响电压的主要方面。

静止无功补偿器

专业知识:静止无功发生器(SVG)是指采用全控型电力电子器件组成的桥式变流器来进态无功补偿的装置。 SVG 的思想早在 20 世纪 70 年代就有人提出 ,1980 年日本研制出了 20MVA 的采用强迫换相晶闸管桥式电路的 SVG,1991 年和 1994 年日本和美国分别研制成功了80MVA 和 10OMVA 的采用 GTO 晶闸管的SVG 。目前国际上有关 SVG 的研究和将其应用于电网或工业实际的兴趣正是方兴未艾 , 国内有关的研究也已见诸报道。与传统的以 TCR 为代表的SVC 相比 ,SVG 的调节速度更快 , 运行范围宽 , 而且在采取多重化或 PWM 技术等措施后可大大减少补偿电流中谐波的含量。更重要的是 ,SVG 使用的电抗器和电容元件远比 SVC 中使用的电抗器和电容要小 , 这将大大缩小装置的体积和成本。由于 SVG 具有如此优越的性能 , 是今后动态无功补偿装置的重要发展方向。 无功补偿的专业知识: 与电网中的有功损耗相比,无功损耗要大的多,这是因为高压线路、变压器的等值电抗要比电阻大得多,并且变压器的励磁无功损耗也要比励磁有功损耗更大,事实证明电网最基本的无功电源——发电机所发出的无功功率远远满足不了电网对无功的需求,因此对电网进行无功补偿显得尤为必要。另外,对电网采取适当的无功补偿可以稳定受端及电网的电压,在长距离输电线路中选择合适的地点设置无功补偿装置,还可以改善电网性能,提高输电能力,在负荷侧合理配置无功,可以提高供用电系统的功率因数,减少功率损耗,因此,电网中无功补偿的作用已得到普遍重视。 1.电网无功补偿的方法 电网无功补偿方法有很多种,从传统的带旋转机械的方式到现代的电力电子元件的应用经历了近一个世纪的发展历程,下面将按无功补偿方式的发展顺序逐一论述电网的无功补偿方法。 1.1同步调相机 同步调相机是一种专门设计的无功功率电源,相当于空载运行的同步电动机。调节其励磁电流可以发出或吸收无功功率,在其过励磁运行时,向系统供给感性无功功率而起无功电源的作用,可提高系统电压;在欠励磁运行时,它会从系统吸取感性无功功率而起无功负荷的作用,可降低系统电压,同步调相机欠励磁运行吸收无功功率的能力,约为其过励磁运行发出无功功率容量的50%~65%。装有自动励磁调节装置的同步调相机,能根据装设地点电压的数值平滑的改变(输出或吸取)无功功率,从而进行电压调节。此外,装有强行励磁调节装置的同步调相机在系统发生故障而引起电压降低时,可以提供短时电压支撑,有利于提高电网稳定性。但它的不足之处也有很多,如有功损耗大、运行维护复杂,投资费用大、动态调节响应慢以及增加了系统的短路容量等等,同步调相机正逐渐被投资更少性能更优的新型无功补偿设备所取代。

10KV静止型动态无功补偿装置(SVG+FC)在矿井供电系统中的运用

10KV静止型动态无功补偿装置(SVG+FC)在矿井供电系统中的运用 【摘要】本文针对大功率设备及电力电子装置在矿井中的越来越频繁造成无功冲击大和产生谐波的现状,提出了基于静止型动态无功补偿装置的安装方案。介绍了基本工作原理并结合工程实例分析了充分验证了其经济合理性,达到了预期的效果。 【关键词】动态无功补偿;原理;矿井供电;应用 1、概述 近年来,随着当代电力电子技术的发展,大量的电力电子装置在矿井提升机、绞车等这些煤矿供电系统中的主要用电负荷中得以使用,这些装置构成了整流电路、逆变电路、直流斩波电路等。在这些装置运行的过程中,产生了大量的谐波,对供电系统的电能质量造成了危害。传通的无功补偿及谐波治理设备由于响应速度慢,大容量电容器组频繁投切,且与产生谐波的设备不能同步,不能起到滤波作用,造成整个供电系统的电压不稳定和功率因数忽高忽低,并且严重影响电容器组本身的使用寿命。且对高压交流接触器、变频设备、电子元件等使用寿命也构成严重危害,针对这种现象有必要对现有供电系统进行合理化改进。 2、传统供电系统存在的问题

一般电力系统用户负荷吸收有功功率PL和无功功率QL。 电源提供有功功率PS和无功功率QS(可能为感性无功,也可能是容性无功),忽略变压器和线路损耗,则有PS=PL,QS=QL。没有足够无功补偿的电网存在以下几个问题:(1)电网从远端传送无功;(2)负荷的无功冲击影响本地电网和上级电网的供电质量;(3)负荷的不平衡与谐波也会影响电网的电能质量; 因此,供电系统一般都要求对用电负荷进行必要的无功、不平衡与谐波补偿,以提高电力系统的带载能力,净化电网,改善电网电能质量。 3、解决方案 3.1SVG用于补偿无功 SVG是目前较为先进的无功补偿技术,其基于电压源型变流器的补偿装置实现了无功补偿方式质的飞跃。它不再采用大容量的电容、电感器件,而是通过大功率电力电子器件的高频开关实现无功能量的变换。 假设负荷消耗感性无功(一般工业用户都是如此)QL,此时控制SVG使其产生容性无功功率,并取QSVG=QL,这样在负荷波动过程中,就可以保证:QS=QSVG-QL=0。 如果对电网等比较复杂的补偿对象而言,当需要向电网提供感性无功时,可以通过对SVG的控制,使其产生感性

相关主题
文本预览
相关文档 最新文档