当前位置:文档之家› 电子科大研究生图论05-14年图论期末试题

电子科大研究生图论05-14年图论期末试题

电子科大研究生图论05-14年图论期末试题
电子科大研究生图论05-14年图论期末试题

2005年研究生期末试题(120分钟)

《图论及其应用》

一、填空(15分,每空1分)

1、 已知图G 有10条边,4个度数为3的顶点,其余顶点的度数均小于2,则

G 中至少有___8___个顶点 .

2、 m 条边的简单图G 中所有不同的生成子图(包括G 和空图)的个数为

__2____.m

3、 4个顶点的非同构的简单图有__11___个.

4、 图G 1的最小生成树各边权值之和为__28___.

5、若W 是图G 中一条包含所有边的闭通道,则W 在这样的闭通道中具有最短长度的充要条件是:

(1) 每一条边最多重复经过_1__次;

(2) 在G 的每一个圈上,重复经过的边的数目不超过圈的长度的____.一半

6、5阶度极大非哈密尔顿图族有5

52

1__,_____C C . 7、在图G 2 中,图的度序列为(44443322),频序列为(422),独立数为3,

团数为4,点色数为4,边色数为4,直径为3.

二、选择(15分)

(1)下列序列中,能成为某简单图的度序列的是( C )

(A) (54221) (B) (6654332) (C) (332222)

(2)已知图G 有13条边,2个5度顶点,4个3度顶点,其余顶点的的度数为2,则图G 有( A )个2度点。

图G 1

图G 2

(A) 2 ( B) 4 (C ) 8 (3) 图G 如(a)所示,与G 同构的图是( C )

(4) 下列图中为欧拉图的是( B ),为H 图的是( AB ),为偶图的是( BC ).

5.下列图中可1-因子分解的是( B )

三、设?和δ分别是(,)n m 图G 的最大度与最小度,求证:2m

n

δ≤≤?(10分). 证明:()

22().v V G m

n m d v n n

δδ∈≤=

≤??≤

≤?∑

四、正整数序列12(,,,)n d d d 是一棵树的度序列的充分必要条件是1

2(1)n

i i d n ==-∑

(10分).

证明:""? 结论显然

""?

设正整数序列12(,,

,)n d d d 满足1

2(1)n

i i d n ==-∑,易知它是度序列。

设G 是这个度序列的图族中连通分支最少的一个图,知m=()1E G n =-. 假设G 不连通,则()2G ω≥,且至少有一个分支1G 含有圈C ,否则,G 是森林,

(A)

(B)

(C)

(a)

(A)

(B)

(C)

(A)

(B)

(C)

有m=()1E G n n ω=-<-矛盾!从C 中任意取出一条边111e u v =。并在另一分支

2G 中任意取出一条边222e u v =,作图

{}{}11221221,,G G u v u v u v u v '=-+

则G '的度序列仍然为12(,,,)n d d d 且()()1G G ωω'=-,这与G 的选取矛盾!所

G 是连通的,G 是树。即12(,,

,)n d d d 一棵树的度序列。

五、求证:在简单连通平面图G 中,至少存在一个度数小于或等于5的顶点 (10分).

证明:若不然,()

2()661236,v V G m d v n n m n ∈=

≥>-?>-∑

这与G 是简单连通平

面图矛盾。

六、证明:(1) 若G 恰有两个奇度点u 与v ,则u 与v 必连通;

(2) 一棵树至多只有一个完美匹配 (10分).

证明;(1) 因为任意一个图的奇度点个数必然为偶数个,若G 恰有两个奇度点u 与v ,且它们不连通,那么就会得出一个连通图只有一个奇度点的矛盾结论。所以若G 恰有两个奇度点u 与v ,则u 与v 必连通。

(2) 若树T 有两个相异的完美匹配12,M M ,则12M M ?≠Φ且12[]T M M ?中

的每个顶点的度数为2,则T 中包含圈,这与T 是数矛盾!

七、求图G 的色多项式()k P G (15分).

解:图G 的补图如图G ,则

23411234(,)h H x r x r x r x r x =+++,其中,111()0r N H ==,221()2r N H ==

331()4r N H ==,441()1r N H ==;

2212(,)h H x r x r x =+,其中,112()1r N H ==,222()1r N H ==

图G

H 1

H 2

G

[][]2234

4365()()(24)56[]2[]k P G x x x x x k k k k =+++=+++。

八、求图G 中a 到b 的最短路(15分).

解 1. A 1= {a },t (a ) = 0,T 1 = Φ 2.()

113b v =

3. m 1 = 1, a 2 = v 3 , t (v 3) = t (a ) + l (av 3) = 1 (最小),

T 2 ={av 3} 2. A 2 ={a , v 3}, 2)

2(21)

2(1

,v b v b ==

3. m 2 = 1, a 3 = v 1 , t (v 1) = t (a ) + l (av 1) = 2 (最小),

T 3 ={av 3, av 1} 2. A 3 ={a , v 3, v 1}, 4)

3(32)3(22)

3(1

,,v b v b v b ===

3. m 3 = 3, a 4 = v 4 , t (v 4) = t (v 1) + l (v 1v 4) = 3 (最小),

T 4 ={av 3, av 1, v 1v 4}

2. A 4 = {a , v 3, v 1, v 4},b 1(4) = v 2,b 2(4) = v 2,b 3(4) = v 2, b 4(4) = v 5

3. m 4 = 4, a 5 = v 5 , t (v 5) = t (v 4) + l (v 4v 5) = 6 (最小),

T 5 ={av 3, av 1, v 1v 4, v 4v 5}

2. A 5 = {a , v 3, v 1, v 4, v 5},b 1(5) = v 2,b 2(5) = v 2,b 3(5) = v 2 , b 4(5) = v 2, b 5(5) = v 2

3. m 5 = 4, t (v 2) = t (v 4) + l (v 4v 2) = 7 (最小),

T 6 ={av 3, av 1, v 1v 4, v 4v 5, v 4v 2}

2. A 6 = {a , v 3, v 1, v 4, v 5, v 2}, b 2(6) = v 6, b 4(6) = b ,b 5(6) = v 6,b 6(6) = v 6

3. m 6 = 6, a 7 = v 6 , t (v 6) = t (v 2) + l (v 2v 6) = 9 (最小),

T 7 ={av 3, av 1, v 1v 4, v 4v 5, v 4v 2, v 2v 6}

2. A 7 = {a , v 3, v 1, v 4, v 5, v 2, v 6}, b 4(7) = b ,b 5(7) =b ,b 7(7) =b

3. m 7 = 7, a 8 = b , t (b ) = t (v 6) + l (v 6b ) = 11 (最小),

T 8 ={av 3, av 1, v 1v 4, v 4v 5, v 4v 2, v 2v 6, v 6b }

于是知a 与b 的距离

d (a , b ) = t (b ) = 11

由T 8导出的树中a 到b 路1426av v v v b 就是最短路。

b

图G

2006研究生图论期末试题(120分钟)

一、填空题(15分,每空1分)

1、若两个图的顶点与顶点之间,边与边之间都存在_________对应,而且它们的关联关系也保持其_________关系,则这两个图同构。

2、完全图4K 的生成树的数目为_________;阶为6的不同构的树有_________棵。

3、设无向图G 有12条边,已知G 中度为3的结点有6个,其余结点的度数均小于3,则

G 中至少有_________个结点。

4、具有5个结点的自补图的个数有_________。

5、已知图G 的邻接矩阵???

??

?

?

?

??=111101*********

10111

01010)(G A ,顶点集合{}54321,,,,)(v v v v v G V =,

则由2v 到5v 的途径长度为2的条数为_________。

6、若n K 为欧拉图,则n=_________;若n K 仅存在欧拉迹而不存在欧拉回路,则n=_________。

7、无向完全图n K (n 为奇数),共有_________条没有公共边的哈密尔顿圈。

8、设G 是具有二分类),(Y X 的偶图,则G 包含饱和X 的每个顶点的匹配当且仅当

_________,对所有X S ?。

9、在有6个点。12条边的简单连通平面图中,每个面均由_________条边组成。

10、彼德森图的点色数为_________;边色数为_________;点独立数为_________。 二、单选或多选题(15分,每题3分)

1、设{

}5,4,3,2,1=V ,{},)1,5(),5,4(),4,3(),3,2(),2,1(=E 则图>=

3 4 5

A

4

5

B

C

2

D

2、在下列图中,既是欧拉图又是哈密尔顿图的是( ).

3、下列图中的(

)图,2V 到4V 是可达的。

4、下列图中,可1—因子分解的是( ).

5、下列优化问题中,存在好算法的是(

)

(A) 最短路问题;(B) 最小生成树问题;(C) TSP 问题;(D) 最优匹配问题. 三、作图题(10分)

1

、分别作出满足下列条件的图

(1)、E 图但非H 图;(2) H 图但非E 图;(3) 既非H 图又非E 图;(4) 既是H 图又是E 图 2、画出度序列为(3,2,2,1,1,1)的两个非同构的简单图。

四、求下图的最小生成树,并给出它的权值之和(10分)。

A

B

C

D

A

V3

V4

B

V1

V2

V3

V4

C V3

V4 D V3

V4

(C)

(A) (B)

(D)

五、给出一个同构函数证明21G G ?(10分)

六、若图G 为自补图,那么,它的阶n 一定能够表示为k 4或者14+k 的形式,其中k 为非负整数。而且,图G 的边有

4

)

1(-n n 条。(5分) 七、设T 为一棵非平凡树,度为i 的顶点记为i n ,则k n k n n n )2(22431-++++= 。(10分)

八、证明:阶数为8的简单偶图至多有16条边(5分)

九、设图G 有10个4度顶点和8个5度顶点,其余顶点度数均为7。求7度顶点的最大数量,使得G 保持其可平面性(10分) 十、求图G 的色多项式(10分)

b

图G

G2 5 6

G1

c 4

G

电子科技大学研究生试卷

(考试时间: 至 ,共_____小时)

课程名称 图论及其应用 教师 学时 60 学分 教学方式 讲授 考核日期_2007__年___月____日 成绩 考核方式: (学生填写)

一.填空题(每题

2分,共12分)

1.简单图G=(n,m)中所有不同的生成子图(包括G 和空图)的个数是_____个;

2.设无向图G=(n,m)中各顶点度数均为3,且2n=m+3,则n=_____;

m=_____;

3.一棵树有i n 个度数为i 的结点,i=2,3,…,k,则它有____个度数为1的结点;

4.下边赋权图中,最小生成树的权值之和为_______;

5、某年级学生共选修9门课。期末考试时,必须提前将这9门课先考完,每天每人只在下午考一门课,则至少需要______天才能考完这9门课。

学 号 姓 名 学 院

…………………… 密……………封……………线……………以……………内……………答…… ………题……………无……………效……………………

v 5

v v 6

二.单项选择(每题2分,共10分)

1.下面给出的序列中,不是某简单图的度序列的是( ) (A) (11123); (B) (22222); (C) (3333); (D) (1333). 2. 下列图中,是欧拉图的是( )

3. 下列图中,不是哈密尔顿图的是( )

4. 下列图中,是可平面图的图的是( )

5.下列图中,不是偶图的是( )

A B

A

D

A B C

D

A

B

D

C

三、 (8分)画出具有7个顶点的所有非同构的树

四,用图论的方法证明:任何一个人群中至少有两个人认识的朋友数相同(10分)

五.(10分) 设G为n 阶简单无向图,n>2且n为奇数,G与G的补图G中度数为奇数的顶点个数是否相等?证明你的结论

六.(10分)设G 是具有n 个顶点的无向简单图,其边数

2)2)(1(2

1

+--=

n n m ,

证明(1) 证明G 中任何两个不相邻顶点的度数之和大于等于n 。(2)给出一个图,使它具有n 个顶点,1

)2)(1(21

+--=n n m 条边,但不是哈密尔顿图。

七、(10分)今有赵、钱、孙、李、周五位教师,要承担语文、数学、物理、化学、英语五门课程。已知赵熟悉数学、物理、化学三门课程,钱熟悉语文、数学、物理、英语四门课程,孙、李、周都只熟悉数学和物理两门课程。问能否安排他们5人每人只上一门自己所熟悉的课程,使得每门课程都有人教,说明理由

八、(10分)设G是具有n个顶点,m条边,p()2

P个连通分支的平面图,G的每个面至少由k(3

k)条边所围成,则

2)1

(

--

-≤

k p

n

k

m

九.(10分)求下图G的色多项式P k(G).

图G

十、(10分) (1)、在一个只有2个奇度点的边赋权图中,如何构造一个最优欧拉环游?说明理由;

(2)、在一个边赋权的哈密尔顿图中,如何估计其最优哈密尔顿圈的权值之和的下界?

电子科技大学研究生试卷

(考试时间: 至 ,共__2_小时)

课程名称 图论及其应用 教师 学时 50 学分 教学方式 讲授 考核日期_2008__年___月____日 成绩 考核方式: (学生填写)

一.填空题(每题

2分,共20分)

1.若n 阶单图G 的最大度是?,则其补图的最小度()G δ=_____; 2.若图111(,)G n m =,222(,)G n m =,则它们的联图12G G G =∨的顶点

数=_____;边数=_____;

3.G 是一个完全l 部图,i n 是第i 部的的顶点数i=1,2,3,…,l 。

姓 名 学 院

………以……………内……………答…… ………题……………无……………效……………………

则它的边数为____;

4.下边赋权图中,最小生成树的权值之和为_______;

5. 若n G K =,则G 的谱()spec G =_______;

6. 5个顶点的不同构的树的棵数为_______;

7. 5阶度极大非哈密尔顿图族是_______;

8. G 为具有二分类(X,Y)的偶图,则G 包含饱和X 的每个顶点的匹配的充分必要条件是______

9. 3阶以上的极大平面图每个面的次数为_______;3阶以上的极大外平面图的每个内部面的次数为_______;

10. n 方体的点色数为_______;边色数为_______。 二.单项选择(每题3分,共12分)

1.下面给出的序列中,不是某图的度序列的是( ) (A) (33323); (B) (12222); (C) (5533); (D) (1333). 2.设V(G)={}1,2,3,4,5,{}()(1,2),(2,3),(3,4),(4,5),(5,1)E G =则图(,)G V E =的补图是( )

2

3 5

(A)

2

3 5

(B)

2

3 5

(C)

2

3

4

(D)

3.下列图中,既是欧拉图又是哈密尔顿图的是( )

4.下列说法中不正确的是( ) (A)每个连通图至少包含一棵生成树; (B)k 正则偶图(k>0)一定存在完美匹配; (C)平面图(*)*G G ,其中*G 表示G 的对偶图; (D)完全图2n K 可一因子分解。

三、 (10分)设图G 的阶为14,边数为27,G 中每个顶点的度只可能为3,4或5,且G 有6个度为4的顶点。问G 中有多少度为3的顶点?多少度为5的顶点?

四,(10)证明:每棵非平凡树至少有两片树叶(10分)

(A)

(B)

(C)

(D)

五.(10分) 今有a,b,c,d,e,f,g 七个人围圆桌开会,已知:a 会讲英语,b 会讲英语和汉语,c 会讲英语、意大利语和俄语,d 会讲日语和汉语,e 会讲德语和意大利语,f 会讲法语、日语和俄语,g 会讲法语与德语。给出一种排座方法,使每个人能够和他身边的人交流(用图论方法求解)。

六.(10分)设l 是赋权完全偶图G=(V,E)的可行顶点标号,若标号对应的相等子图l G 含完美匹配*M ,则*M 是G 的最优匹配。

七.(10分) 求证:在n阶简单平面图G中有24

φ≤-,这里φ是G

n

的面数。

八、(10分)来自亚特兰大,波士顿,芝加哥,丹佛,路易维尔,迈阿密,以及纳什维尔的7支垒球队受邀请参加比赛,其中每支队都被安排与一些其它队比赛(安排如下所示)。每支队同一天最多进行一场比赛。建立一个具有最少天数的比赛时间表。

亚特兰大:波士顿,芝加哥,迈阿密,纳什维尔

波士顿:亚特兰大,芝加哥,纳什维尔

芝加哥:亚特兰大,波士顿,丹佛,路易维尔

丹佛:芝加哥,路易维尔,迈阿密,纳什维尔

路易维尔:芝加哥,丹佛,迈阿密

迈阿密:亚特兰大,丹佛,路易维尔,纳什维尔纳什维尔:亚特兰大,波士顿,丹佛,迈阿密(要求用图论方法求解)

九.(8分)求下图G的色多项式P k(G).

图G

电子科技大学研究生试卷

(考试时间: 至 ,共__2_小时)

课程名称 图论及其应用 教师 学时 60 学分 教学方式 讲授 考核日期_2009__年___月____日 成绩 考核方式: (学生填写)

一.填空题(每题

2分,共20分)

1.若自补图G 的顶点数是10,则G 的边数()m G =_____; 2.若图111(,)G n m =,222(,)G n m =,则它们的积图12G G G =?的顶点数

=_____;边数=_____;

3.具有m 条边的简单图的子图个数为____;

4.设G=K n,n,则其最大特征值为_______;

5. 设G是n阶的完全l等部图,则其边数m(G)=_______;

6. 下图G1中最小生成树的权值为_______;

图G1

7. 6阶度极大非哈密尔顿图族是_______;

8. K9的2因子分解的数目是______;

9. n(n≥3)阶极大外平面图内部面个数为_______;3阶以上的极大平面图的边数m和顶点数n的关系为_______;

10. 下图G2的点色数为_______;边色数为_______。

G2

二.单项选择(每题3分,共12分)

1.下面给出的序列中,不是某图的图序列的是( )

(A) (11123); (B) (22222); (C) (3333); (D) (1333).

2.下列有向图中是强连通图的是( )

集合论与图论 试题A

本试卷满分90分 (06级计算机、信息安全专业、实验学院) 一、判断对错(本题满分10分,每小题各1分) ( 正确画“√”,错误画“×”) 1.对每个集合A ,A A 2}{∈。 (×) 2.对集合Q P ,,若?==Q P Q Q P ,,则P =?。 (√) 3.设,,:X A Y X f ?→若)()(A f x f ∈,则A x ∈。 (×) 4.设,,:Y B Y X f ?→则有B B f f ?-))((1。 (×) 5.若R 是集合X 上的等价关系,则2R 也是集合X 上的等价关系。 (√) 6.若:f X Y →且f 是满射,则只要X 是可数的,那么Y 至多可数的。(√) 7.设G 是有10个顶点的无向图,对于G 中任意两个不邻接的顶点u 和v, 均有9deg deg ≥+v u ,则G 是哈密顿图。 (×) 8.设)(ij a A =是 p 个顶点的无向图G 的邻接矩阵,则对于G 的顶点i v , 有∑==p j ij i a v 1deg 成立。 (√) 9. 设G 是一个),(q p 图,若1-≥p q ,则]/2[)(q p G ≤χ。 (×) 10.图G 和1G 同构当且仅当G 和1G 的顶点和边分别存在一一对应关系。(×)

二.填空(本题40分,每空各2分) 1.设}},{,{φφ=S 则=S 2 }}}{,{}},{{},{,{φφφφφ 。 2.设B A ,是任意集合,若B B A =\,则A 与B 关系为 φ==B A 。 3.设1)(,0)()(,:};3,2{},1,0{},,,{===→===c f b f a f Y X f Z Y c b a X , 3)1(,2)0(,:==→g g Z Y g ,则)()(c f g a f g ,分别为 2,3 。 4.设X 和Y 是集合且X m =,Y n =,若n m ≤,则从X 到Y 的单射的 个数为 !m C m n 。 5.设}2,1{},,,2,1{==B n X ,则从X 到Y 的满射的个数为 22-n 。 6.设)}2,4(),1,3(),3,2{()},4,3(),2,2(),2,1{(},4,3,2,1{===S R X ,则 =)(R S R )}2,3(),4,2(),4,1{( 。 7. 设???? ??=???? ??=5123454321,415235432121σσ,则???? ??=235411234521σσ 。 8. 设)},(),,(),,{(},,,,{a c c b b a R d c b a X ==,则 )},(),,(),,(),,(),,(),,(),,(),,(),,{(b c a c a b c b c a b a c c b b a a R =+ 。 9. 设X 为集合且X n =,则X 上不同的自反或对称的二元关系的个数 为 22222222n n n n n n +--+- 。 10.设}}{},{},,{{},,,,{d c b a A d c b a X ==是X 的一个划分,则由A 确定的 X 上的等价关系为 )},(),,(),,(),,(),,(),,{(d d c c a b b a b b a a 。 11.}10,,2,1{ =S ,在偏序关系“整除”下的极大元为 6,7,8,9,10 。 12.给出一个初等函数)(x f ,使得它是从)1,0(到实数集合R 的一一对应, 这个函数为 x ctg π或-x ctg π或)2/(ππ-x tg 。 13. 设G 是),(p p 连通图,则G 的生成树的个数至多为 p 。

电子科技大学研究生试题《图论及其应用》(参考答案)

电子科技大学研究生试题 《图论及其应用》(参考答案) 考试时间:120分钟 一.填空题(每题3分,共18分) 1.4个顶点的不同构的简单图共有__11___个; 2.设无向图G 中有12条边,已知G 中3度顶点有6个,其余顶点的度数均小于3。则G 中顶点数至少有__9___个; 3.设n 阶无向图是由k(k ?2)棵树构成的森林,则图G 的边数m= _n-k____; 4.下图G 是否是平面图?答__是___; 是否可1-因子分解?答__是_. 5.下图G 的点色数=)(G χ______, 边色数=')(G χ__5____。 图G 二.单项选择(每题3分,共21分) 1.下面给出的序列中,是某简单图的度序列的是( A ) (A) (11123); (B) (233445); (C) (23445); (D) (1333). 2.已知图G 如图所示,则它的同构图是( D ) 3. 下列图中,是欧拉图的是( D ) 4. 下列图中,不是哈密尔顿图的是(B ) 5. 下列图中,是可平面图的图的是(B ) A C D A B C D

6.下列图中,不是偶图的是( B ) 7.下列图中,存在完美匹配的图是(B ) 三.作图(6分) 1.画出一个有欧拉闭迹和哈密尔顿圈的图; 2.画出一个有欧拉闭迹但没有哈密尔顿圈的图; 3.画出一个没有欧拉闭迹但有哈密尔顿圈的图; 解: 四.(10分)求下图的最小生成树,并求其最小生成树的权值之和。 解:由克鲁斯克尔算法的其一最小生成树如下图: 权和为:20. 五.(8分)求下图G 的色多项式P k (G). 解:用公式 (G P k -G 的色多项式: )3)(3)()(45-++=k k k G P k 。 六.(10分) 22,n 3个顶点的度数为3,…,n k 个顶点的度数为k ,而其余顶点的度数为1,求1度顶点的个数。 解:设该树有n 1个1度顶点,树的边数为m. 一方面:2m=n 1+2n 2+…+kn k 另一方面:m= n 1+n 2+…+n k -1 v v 1 3 图G

图论期末考试整理复习资料

目录 第一章图的基本概念 (2) 二路和连通性 (4) 第二章树 (4) 第三章图的连通度 (6) 第四章欧拉图与哈密尔顿图 (8) 一,欧拉图 (8) 二.哈密尔顿图 (10) 第五章匹配与因子分解 (14) 一.匹配 (14) 二.偶图的覆盖于匹配 (15) 三.因子分解 (16) 第六章平面图 (20) 二.对偶图 (24) 三.平面图的判定 (25) 四.平面性算法 (28) 第七章图的着色 (34) 一.边着色 (34) 二.顶点着色 (35)

第九章 有向图 (40) 二 有向树 (41) 第一章 图的基本概念 1. 点集与边集均为有限集合的图称为有限图。 2. 只有一个顶点而无边的图称为平凡图。 3. 边集为空的图称为空图。 4. 既没有环也没有重边的图称为简单图。 5. 其他所有的图都称为复合图。 6. 具有二分类(X, Y )的偶图(或二部图):是指该图的点集可以分解为两个(非空)子 集 X 和 Y ,使得每条边的一个端点在 X 中,另一个端点在Y 中。 7. 完全偶图:是指具有二分类(X, Y )的简单偶图,其中 X 的每个顶点与 Y 的每个顶点 相连,若 |X|=m ,|Y|=n ,则这样的偶图记为 Km,n 8. 定理1 若n 阶图G 是自补的(即 ),则 n = 0, 1(mod 4) 9. 图G 的顶点的最小度。 10. 图G 的顶点的最大度。 11. k-正则图: 每个点的度均为 k 的简单图。 例如,完全图和完全偶图Kn,n 均是正则图。 12. 推论1 任意图中,奇点的个数为偶数。 ()G δ()G ?

13. 14.频序列:定理4 一个简单图G的n个点的度数不能互不相同。 15.定理5 一个n阶图G相和它的补图有相同的频序列。 16. 17. 18.对称差:G1△G2 = (G1∪G2) - (G1∩G2) = (G1-G2)∪(G2-G1) 19.定义:联图在不相交的G1和G2的并图G1+G2中,把G1的每个顶点和G2的每个 顶点连接起来所得到的图称为G1和G2的联图,记为G1∨G2 20.积图:积图设G1= (V1, E1),G2 = (V2, E2),对点集V = V1×V2中的任意两个点u = (u1,u2)和v = (v1,v2),当(u1 = v1和u2 adj v2) 或(u2 = v2 和u1 adj v1) 时就把u 和v 连接起来所得到的图G称为G1和G2积图。记为G = G1×G2 设G1= (V1, E1),G2 = (V2, E2),对点集V = V1×V2中的任意两个点u = (u1,u2)和v = (v1,v2),当(u1 adj v1) 或(u1= v1 和u2 adj v2) 时就把u 和v 连接起来所得到的图G称为G1和G2的合成图。记为G=G1[G2]。

北大集合论与图论往年考题.pdf

一、用真值表证明德*摩根律(证明其中一条即可)。 二、设A,B,C是集合,试问在什么条件下(A-B)-C=A-(B-C)?给出证明。 三、设A={a,b,c},问A上有多少种不同的:二元关系?自反关系?对称关系?传递关系?等价关系?偏序关系?良序关系? 四、用花括号和空集来表示1?2(注意?表示集合的叉乘). 五、设R是实数集,Q是有理数集,试构造出R-Q与R之间的双射. 1.简单叙述构造的思路; 2.给出双射f:R-Q -> R 或f:R -> R-Q的严格定义。 2008年期末考题: 一、在有向图中,如果存在从顶点u到顶点v的有向通路,则说u可达v;如果顶点u和顶点v互相可达,则说u双向可达v。回答下列问题: 1.顶点集上的可达关系是不是等价关系?为什么? 2.顶点集上的双向可达关系是不是等价关系?为什么? 3.对于上述两个关系,如果是等价关系,其等价类的导出子图称为什么? 二、一棵树有13个顶点,除了3个2度顶点和若干个树叶之外,其余顶点都是5度。 1.求出5度顶点的个数(写出计算过程); 2.画出所有互不同构的这种树。 三、计算出右图中v1到v4长度为4的通路数(要写出计算过程 的主要步骤),并写出一个最小支配集、一个最大团、一个最小 边覆盖、一个最大匹配。 四、如果一个图中所有顶点度数都为k,则称为k正则图。8阶3 正则简单图一定是平面图吗?一定不是平面图吗?为什么? 五、证明:如果正则简单图G和补图G都是连通图,则G和G中至少有一个是欧拉图。 六、证明:如果n阶(n≥3)简单图G中,对于任何1≤j,<2,3>,<3,2>, <3,4>}. (1) 给出R的矩阵表示, 画出R的关系图; (2) 判断R具有哪些关系性质(自反,反自反,对称,反对称,传递); (3) 求出R的自反闭包r(R), 对称闭包s(R), 传递闭包t(R). (用关系图表示) 三、设X,Y,Z是任意集合, 构造下列集合对之间的双射, 并给出是双射的证明. (1) Z(X?Y)与(Z X)Y ; (2) P(X?Y) 与P(X)?P(Y). (假设X?Y=?) 四、已知对每个自然数n, 都存在唯一后继n+=n?{n}. 证明: 对于每个非零自然数n, 都存在唯一前驱n-, 满足n=(n-)+. 五、设f: A→B是单射, g: B→A是单射, 证明: 存在集合C,D,E,F, 使得A=C?D, C?D=?, B=E?F, E?F=?, 并且f(C)=E, g(F)=D.

答案(电子科大版)图论及其应用第一章

习题一: ● 。 证明:作映射f : v i ? u i (i=1,2….10) 容易证明,对?v i v j ∈E ((a)),有f (v i v j,),=,u i,u j,∈,E,((b)) (1≤ i ≤ 10, 1≤j ≤ 10 ) 由图的同构定义知,图(a)与(b)是同构的。 ● 5.证明:四个顶点的非同构简单图有11个。 证明:设四个顶点中边的个数为m ,则有: m=0: m=1 : m=2: m=3: m=4: (a) v 23 4 (b)

m=5: m=6: 因为四个顶点的简单图最多就是具有6条边,上面所列出的情形是在不同边的条件下的不同构的情形,则从上面穷举出的情况可以看出四个顶点的非同构简单图有11个。 ● 11.证明:序列(7,6,5,4,3,3,2)和(6,6,5,4,3,3,1) 不是图序列。 证明:由于7个顶点的简单图的最大度不会超过6,因此序列(7,6,5,4,3,3,2)不是图序列; (6,6,5,4,3,3,1)是图序列 1 1 12312(1,1,,1,,,)d d n d d d d d π++=---是图序列 (5,4,3,2,2,0)是图序列,然而(5,4,3,2,2,0)不是图序列,所以(6,6,5,4,3,3,1)不是图序列。 ● 12.证明:若 ,则包含圈。 证明:下面仅对连通图的下的条件下进行证明,不连通的情形可以通过分成若干 个连通的情形来证明。设 , 对于中的路 若与邻接,则构成一个闭路。若是一条路,由于,因 此,对于,存在与之邻接,则构成一个圈。 ● 17.证明:若G 不连通,则连通。 证明:对于任意的 ,若与属于G 的连通分支,显然与在中连通;

图论及其应用答案电子科大

图论及其应用答案电子科 大 Newly compiled on November 23, 2020

习题三: ● 证明:e 是连通图G 的割边当且仅当V(G)可划分为两 个子集V1和V2,使对任意u ∈V 1及v ∈V 2, G 中的路(u ,v )必含e . 证明:充分性: e 是G 的割边,故G ?e 至少含有两个连通分支,设V 1是其中一个连通分支的顶点集,V 2是其余分支的顶点集,对12,u V v V ?∈?∈,因为G 中的u,v 不连通, 而在G 中u 与v 连通,所以e 在每一条(u,v)路上,G 中的(u,v)必含e 。 必要性:取12,u V v V ∈∈,由假设G 中所有(u,v)路均含有边e ,从而在G ?e 中不存在从 u 与到v 的路,这表明G 不连通,所以e 是割边。 ● 3.设G 是阶大于2的连通图,证明下列命题等价: (1) G 是块 (2) G 无环且任意一个点和任意一条边都位于同一个圈上; (3) G 无环且任意三个不同点都位于同一条路上。 (1)→(2): G 是块,任取G 的一点u ,一边e ,在e 边插入一点v ,使得e 成为两条边,由此得到新图G 1,显然G 1的是阶数大于3的块,由定理,G 中的u,v 位于同一个圈上,于是G 1中u 与边e 都位于同一个圈上。 (2)→(3): G 无环,且任意一点和任意一条边都位于同一个圈上,任取G 的点u ,边e ,若u 在e 上,则三个不同点位于同一个闭路,即位于同一条路,如u 不在e 上,由定理,e 的两点在同一个闭路上,在e 边插入一个点v ,由此得到新图G 1,显然G 1的是阶数大于3的块,则两条边的三个不同点在同一条路上。

运筹学期末试题

《运筹学》试题样卷(一) 一、判断题(共计10分,每小题1分,对的打√,错的打X ) 1. 无孤立点的图一定是连通图。 2. 对于线性规划的原问题和其对偶问题,若其中一个有最优解, 另一个也一定有最优解。 3. 如果一个线性规划问题有可行解,那么它必有最优解。 4.对偶问题的对偶问题一定是原问题。 5.用单纯形法求解标准形式(求最小值)的线性规划问题时,与0 >j σ对应的变量 都可以被选作换入变量。 6.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷 多个最优解。 7. 度为0的点称为悬挂点。 8. 表上作业法实质上就是求解运输问题的单纯形法。 9. 一个图G 是树的充分必要条件是边数最少的无孤立点的图。 二、建立下面问题的线性规划模型(8分) 某农场有100公顷土地及15000元资金可用于发展生产。农场劳动力情况为秋冬季3500人日;春夏季4000人日。如劳动力本身用不了时可外出打工,春秋季收入为25元 / 人日,秋冬季收入为20元 / 人日。该农场种植三种作物:大豆、玉米、小麦,并饲养奶牛和鸡。种作物时不需要专门投资,而饲养每头奶牛需投资800元,每只鸡投资3元。养奶牛时每头需拨出1.5公顷土地种饲料,并占用人工秋冬季为100人日,春夏季为50人日,年净收入900元 / 每头奶牛。养鸡时不占用土地,需人工为每只鸡秋冬季0.6人日,春夏季为0.3人日,年净收入2元 / 每只鸡。农场现有鸡舍允许最多养1500只鸡,牛栏允许最多养200头。三种作物每年需要的人工及收入情况如下表所示: 试决定该农场的经营方案,使年净收入为最大。

三、已知下表为求解某目标函数为极大化线性规划问题的最终单纯形表,表中54,x x 为 (1)写出原线性规划问题;(4分) (2)写出原问题的对偶问题;(3分) (3)直接由上表写出对偶问题的最优解。(1分) 四、用单纯形法解下列线性规划问题(16分) 3212max x x x Z +-= s. t. 3 x 1 + x 2 + x 3 ≤ 60 x 1- x 2 +2 x 3 ≤ 10 x 1+ x 2- x 3 ≤ 20 x 1 , x 2 , x 3 ≥0 五、求解下面运输问题。 (18分) 某公司从三个产地A 1、A 2、A 3 将物品运往四个销地B 1、B 2、B 3、B 4,各产地的产量、各销地的销量和各产地运往各销地每件物品的运费如表所示: 问:应如何调运,可使得总运输费最小? 六、灵敏度分析(共8分) 线性规划max z = 10x 1 + 6x 2 + 4x 3 s.t. x 1 + x 2 + x 3 ≤ 100 10x 1 +4 x 2 + 5 x 3 ≤ 600 2x 1 +2 x 2 + 6 x 3 ≤ 300 x 1 , x 2 , x 3 ≥ 0

集合论与图论试卷2

哈工大 2007 年 秋季学期 本试卷满分90分 (06级计算机、信息安全专业、实验学院) 一、判断对错(本题满分10分,每小题各1分) ( 正确画“√”,错误画“×”) 1.对每个集合A ,A A 2}{∈。 (×) 2.对集合Q P ,,若?==Q P Q Q P ,,则P =?。 (√) 3.设,,:X A Y X f ?→若)()(A f x f ∈,则A x ∈。 (×) 4.设,,:Y B Y X f ?→则有B B f f ?-))((1。 (×) 5.若R 是集合X 上的等价关系,则2R 也是集合X 上的等价关系。 (√) 6.若:f X Y →且f 是满射,则只要X 是可数的,那么Y 至多可数的。(√) 7.设G 是有10个顶点的无向图,对于G 中任意两个不邻接的顶点u 和v, 均有9deg deg ≥+v u ,则G 是哈密顿图。 (×) 8.设)(ij a A =是p 个顶点的无向图G 的邻接矩阵,则对于G 的顶点i v , 有∑==p j ij i a v 1deg 成立。 (√) 9. 设G 是一个),(q p 图,若1-≥p q ,则]/2[)(q p G ≤χ。 (×) 10.图G 和1G 同构当且仅当G 和1G 的顶点和边分别存在一一对应关系。(×)

二.填空(本题40分,每空各2分) 1.设}},{,{φφ=S 则=S 2 }}}{,{}},{{},{,{φφφφφ 。 2.设B A ,是任意集合,若B B A =\,则A 与B 关系为 φ==B A 。 3.设1)(,0)()(,:};3,2{},1,0{},,,{===→===c f b f a f Y X f Z Y c b a X , 3)1(,2)0(,:==→g g Z Y g ,则)()(c f g a f g ,分别为 2,3 。 4.设X 和Y 是集合且X m =,Y n =,若n m ≤,则从X 到Y 的单射的 个数为 !m C m n 。 5.设}2,1{},,,2,1{==B n X ,则从X 到Y 的满射的个数为 22-n 。 6.设)}2,4(),1,3(),3,2{()},4,3(),2,2(),2,1{(},4,3,2,1{===S R X ,则 =)(R S R )}2,3(),4,2(),4,1{( 。 7. 设???? ??=???? ??=5123454321,415235432121σσ,则???? ??=235411234521σσ 。 8. 设)},(),,(),,{(},,,,{a c c b b a R d c b a X ==,则 )},(),,(),,(),,(),,(),,(),,(),,(),,{(b c a c a b c b c a b a c c b b a a R =+ 。 9. 设X 为集合且X n =,则X 上不同的自反或对称的二元关系的个数 为 22222222n n n n n n +--+- 。 10.设}}{},{},,{{},,,,{d c b a A d c b a X ==是X 的一个划分,则由A 确定的 X 上的等价关系为 )},(),,(),,(),,(),,(),,{(d d c c a b b a b b a a 。 11.}10,,2,1{ =S ,在偏序关系“整除”下的极大元为 6,7,8,9,10 。 12.给出一个初等函数)(x f ,使得它是从)1,0(到实数集合R 的一一对应, 这个函数为 x ctg π或-x ctg π或)2/(ππ-x tg 。 13. 设G 是),(p p 连通图,则G 的生成树的个数至多为 p 。

图论与组合数学期末复习题含答案

组合数学部分 第1章 排列与组合 例1: 1)、求小于10000的含1的正整数的个数; 2、)求小于10000的含0的正整数的个数; 解:1)、小于10000的不含1的正整数可看做4位数,但0000除外.故有9×9×9×9-1=6560个.含1的有:9999-6560=3439个 2)、“含0”和“含1”不可直接套用。0019含1但不含0。在组合的习题中有许多类似的隐含的规定,要特别留神。不含0的1位数有19个,2位数有29个,3位数有39个,4位数有49个 不含0小于10000的正整数有() ()73801919999954321=--=+++个含0小于10000的正整数9999-7380=2619个。 例2: 从[1,300]中取3个不同的数,使这3个数的和能被3整除,有多少种方案? 解:将[1,300]分成3类: A={i|i ≡1(mod 3)}={1,4,7,…,298}, B={i|i ≡2(mod 3)}={2,5,8,…,299}, C={i|i ≡0(mod 3)}={3,6,9,…,300}. 要满足条件,有四种解法: 1)、3个数同属于A; 2)、3个数同属于B ; 3)、3个数同属于C; 4)、A,B,C 各取一数;故共有3C(100,3)+1003=485100+1000000=1485100。 例3:(Cayley 定理:过n 个有标志顶点的数的数目等于2-n n ) 1)、写出右图所对应的序列; 2)、写出序列22314所对应的序列; 解: 1)、按照叶子节点从小到大的顺序依次去掉节点(包含与此叶子 节点相连接的线),而与这个去掉的叶子节点相邻的另外一个点值则记入序列。如上图所示,先去掉最小的叶子节点②,与其相邻的点为⑤,然后去掉叶子节点③,与其相邻的点为①,直到只剩下两个节点相邻为止,则最终序列为51155.。 2)、首先依据给定序列写出(序列长度+2)个递增序列,即1234567,再将给出序列按从小到大顺序依次排列并插入递增序列得到:7。我们再将给出序列22314写在第一行,插入后的递增序列写在第二行。如下图第一行所示: ??→????? ??--②⑤67112223344522314??→???? ? ??--②⑥11223344672314 ??→????? ??--③②11233447314??→???? ? ??--①③11344714

哈工大年集合论与图论试卷

-- 本试卷满分90分 (计算机科学与技术学院09级各专业) 一、填空(本题满分10分,每空各1分) 1.设B A ,为集合,则A B B A = )\(成立的充分必要条件是什么?(A B ?) 2.设}2,1{},,,2,1{==Y n X ,则从X 到Y 的满射的个数为多少?(22-n ) 3.在集合}11,10,9,8,4,3,2{=A 上定义的整除关系“|”是A 上的偏序关系, 则 最大元是什么? ( 无 ) 4.设{,,}A a b c =,给出A 上的一个二元关系,使其同时不满足自反性、反自 反性、对称性、反对称和传递性的二元关系。({(,),(,),(,),(,)}R a a b c c b a c =) 5.设∑为一个有限字母表,∑上所有字(包括空字)之集记为*∑,则*∑是 否是可数集? ( 是 ) 6.含5个顶点、3条边的不同构的无向图个数为多少? ( 4 ) 7.若G 是一个),(p p 连通图,则G 至少有多少个生成树? ( 3 ) 8. 如图所示图G ,回答下列问题: (1)图G 是否是偶图? ( 不是 ) (2)图G 是否是欧拉图? ( 不是 ) (3)图G 的色数为多少? ( 4 ) 二、简答下列各题(本题满分40分) 1.设D C B A ,,,为任意集合,判断下列等式是否成立?若成立给出证明,若不 成立举出反例。(6分) (1))()()()(D B C A D C B A ??=? ; (2)()()()()A B C D A C B D ?=??。 解:(1)不成立。例如}{,a c B D A ====φ即可。 (2)成立。(,)x y ?∈()()A B C D ?,有,x A B y C D ∈∈,即 ,,,x A x B y C y D ∈∈∈∈。所以(,),(,)x y A C x y B D ∈?∈?,因此 (,)()()x y A C B D ∈??,从而()()A B C D ??()()A C B D ??。 反之,(,)x y ?∈()()A C B D ??,有,,,x A x B y C y D ∈∈∈∈。即 (,)x y ∈()()A B C D ?,从而()()A C B D ???()()A B C D ?。

图论及其应用答案电子科大

图论及其应用答案电子科 大 This model paper was revised by the Standardization Office on December 10, 2020

习题三: 证明:e是连通图G 的割边当且仅当V(G)可划分为两个子集V1和V2,使对任意u ∈V 1及v ∈V 2, G 中的路(u,v)必含e . 证明:充分性: e是G的割边,故G ?e至少含有两个连通分支,设V 1是其中一个连通分支的顶点集,V 2是其余分支的顶点集,对12,u V v V ?∈?∈,因为G中的u ,v不连通, 而在G中u与v连通,所以e在每一条(u ,v )路上,G中的(u ,v )必含e。 必要性:取12,u V v V ∈∈,由假设G中所有(u ,v )路均含有边e,从而在G ?e中不存在从 u与到v的路,这表明G不连通,所以e 是割边。 3.设G 是阶大于2的连通图,证明下列命题等价: (1) G 是块 (2) G 无环且任意一个点和任意一条边都位于同一个圈上; (3) G 无环且任意三个不同点都位于同一条路上。 (1)→(2): G是块,任取G的一点u,一边e,在e边插入一点v,使得e成为两条边,由此得到新图G 1,显然G 1的是阶数大于3的块,由定理,G中的u,v 位于同一个圈上,于是G 1中u 与边e都位于同一个圈上。 (2)→(3): G无环,且任意一点和任意一条边都位于同一个圈上,任取G的点u ,边e ,若u在e 上,则三个不同点位于同一个闭路,即位于同一条路,如u不在e上,由定理,e的两点在同一个闭路上,在e边插入一个点v ,由此得到新图G 1,显然G 1的是阶数大于3的块,则两条边的三个不同点在同一条路上。 (3)→(1): G连通,若G不是块,则G中存在着割点u,划分为不同的子集块V 1, V 2, V 1, V 2无环,12,x v y v ∈∈,点u在每一条(x ,y )的路上,则与已知矛盾,G是块。 7.证明:若v 是简单图G 的一个割点,则v 不是补图G ?的割点。 证明:v是单图G的割点,则G ?v有两个连通分支。现任取x ,y ∈V (G ?v ), 如果x ,y 不在G ?v的同一分支中,令u是与x ,y处于不同分支的点,那么,x ,与y在G ?v的补图中连通。若x ,y在G ?v的同一分支中,则它们在G ?v的补图中邻接。所以,若v是G 的割点,则v不是补图的割点。 12.对图3——20给出的图G1和G2,求其连通度和边连通度,给出相应的最小点割和最小边割。 解:()12G κ= 最小点割 {6,8} 1()2G λ= 最小边割{(6,5),(8,5)}

集合论与图论SG2017-期中试题-答案(1)

一、(20分)对于任意集合A和B, (1)证明:P(A)?P(B) = P(A?B);(14分) 对任意的x∈P(A)?P(B),有x∈P(A)且x∈P(B)。即x?A并且x?B,则x?A?B。所以x∈P(A?B)。故P(A)?P(B)?P(A?B)。(7分)对任意的x∈P(A?B),有x?A?B,即x?A并且x?B,所以x∈P(A)且x∈P(B)。因此P(A?B)?P(A)?P(B)。(7分)综上所述,P(A)?P(B)=P(A?B) (2)举例说明P(A)?P(B) ≠ P(A?B). (6分) A={1}, B={2}, A?B={1, 2}; P(A)={?, {1}}, P(B)={?, {2}}, P(A)?P(B)= {?, {1}, {2}}, P(A?B)= {?, {1}, {2}, {1, 2}}; 所以P(A)?P(B)≠P(A?B) 二、(20分)设R, S是A上的等价关系且R?S=S?R,证明: R?S是A上的等价关系. 自反性和对称性容易证明,略。(5分) 传递性证明: 对任意a, b, c∈A,如果(a, b)∈R?S, (b, c)∈R?S,要证明(a, c)∈R?S。 因为R?S=S?R,则有(b, c)∈S?R,即存在e, f∈A,使(a, e)∈R,(e, b)∈S,(b, f)∈S,(f, c)∈R。 因为S是传递的,(e, b)∈S,(b, f)∈S,所以(e, f)∈S;因为(a, e)∈R,所以(a, f)∈R?S;R?S是对称的,则(f, a)∈R?S;因为R是对称的,(f, c)∈R,则(c, f)∈R。因为(f, a)∈R?S,则存在g∈A,使得(f, g)∈R,(g, a)∈S;因为R是传递的,

运筹学期末试题

一、判断题(共计10分,每小题1分,对的打√,错的打X) 1.无孤立点的图一定是连通图。 2.对于线性规划的原问题和其对偶问题,若其中一个有最优解, 另一个也一定有最优解。 3.如果一个线性规划问题有可行解,那么它必有最优解。 4.对偶问题的对偶问题一定是原问题。 5.用单纯形法求解标准形式(求最小值)的线性规划问题时,与 > j σ 对应的变量都可以被选作换入变量。 6.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷 多个最优解。 7. 度为0的点称为悬挂点。 8. 表上作业法实质上就是求解运输问题的单纯形法。 9. 一个图G 是树的充分必要条件是边数最少的无孤立点的图。 二、建立下面问题的线性规划模型(8分) 某农场有100公顷土地及15000元资金可用于发展生产。农场劳动力情况为秋冬季3500人日;春夏季4000人日。如劳动力本身用不了时可外出打工,春秋季收入为25元/ 人日,秋冬季收入为20元/ 人日。该农场种植三种作物:大豆、玉米、小麦,并饲养奶牛和鸡。种作物时不需要专门投资,而饲养每头奶牛需投资800元,每只鸡投资3元。 养奶牛时每头需拨出1.5公顷土地种饲料,并占用人工秋冬季为100人日,春夏季为50人日,年净收入900元 / 每头奶牛。养鸡时不占用土地,需人工为每只鸡秋冬季0.6人日,春夏季为0.3人日,年净收入2元 / 每只鸡。农场现有鸡舍允许最多养1500只 三、已知下表为求解某目标函数为极大化线性规划问题的最终单纯形表,表中5 4 ,x x 为松弛变量,问题的约束为?形式(共8分)

(1)写出原线性规划问题;(4分) (2)写出原问题的对偶问题;(3分) (3)直接由上表写出对偶问题的最优解。(1分) 四、用单纯形法解下列线性规划问题(16分) 3212max x x x Z +-= s. t. 3 x 1 + x 2 + x 3 ≤ 60 x 1- x 2 +2 x 3 ≤ 10 x 1+ x 2- x 3 ≤ 20 x 1, x 2 , x 3 ≥0 五、求解下面运输问题。 (18分) 某公司从三个产地A 1、A 2、A 3 将物品运往四个销地B 1、B 2、B 3、B 4,各产地的产量、各销地的销量和各产地运往各销地每件物品的运费如表所示: 六、灵敏度分析(共8分) 线性规划max z = 10x 1 + 6x 2 + 4x 3 s.t. x 1 + x 2 + x 3 ≤ 100 10x 1 +4 x 2 + 5 x 3 ≤ 600 2x 1 +2 x 2 + 6 x 3 ≤ 300 x 1 , x 2 , x 3 ≥ 0 的最优单纯形表如下:

集合论与图论习题册

集合论与图论习题册 软件基础教研室 刘峰 2015.02

第一章 集合及其运算 8P 习题 1. 写出方程2210x x ++=的根所构成的集合。 2.下列命题中哪些是真的,哪些为假 a)对每个集A ,A φ∈; b)对每个集A ,A φ?; c)对每个集A ,{}A A ∈; d)对每个集A ,A A ∈; e)对每个集A ,A A ?; f)对每个集A ,{}A A ?; g)对每个集A ,2A A ∈; h)对每个集A ,2A A ?; i)对每个集A ,{}2A A ?; j)对每个集A ,{}2A A ∈; k)对每个集A ,2A φ∈; l)对每个集A ,2A φ?; m)对每个集A ,{}A A =; n) {}φφ=; o){}φ中没有任何元素; p)若A B ?,则22A B ? q)对任何集A ,{|}A x x A =∈; r)对任何集A ,{|}{|}x x A y y A ∈=∈; s)对任何集A ,{|}y A y x x A ∈?∈∈; t)对任何集A ,{|}{|}x x A A A A ∈≠∈。 答案: 3.设有n 个集合12,,,n A A A 且121n A A A A ???? ,试证:12n A A A === 。 4.设{,{}}S φφ=,试求2S ? 5.设S 恰有n 个元素,证明2S 有2n 个元素。

16P 习题 6.设A 、B 是集合,证明:(\)()\A B B A B B B φ=?= 。 7.设A 、B 是集合,试证A B A B φ=?=?。 9.设A ,B ,C 为集合,证明:\()(\)\A B C A B C = 。 10.设A ,B ,C 为集合,证明:()\(\)(\)A B C A C B C = 。 11.设A ,B ,C 为集合,证明:()\(\)(\)A B C A C B C = 。 12.设A ,B ,C 都是集合,若A B A C = 且A B B C = ,试证B=C 。 15.下列命题是否成立?说明理由(举例)。 (1)(\)\(\)A B C A B C = ;(2)(\)()\A B C A B C = ; (3)\()()\A B C A B B = 。(答案:都不正确)

集合论图论 期中考试试题及答案

08信安专业离散数学期中考试试题 1.设A, B, C, D为4个集合. 已知A?B且C?D.证明: A∪C?B∪D; A∩C?B∩D . (15分) 2.化简以下公式: A∪((B―A)―B) (10分) 3.设R是非空集合A上的二元关系.证明:R∪R-1是包含R的 最小的对称的二元关系. (15分) 4.设A={1,2,…,20},R={|x,y∈A∧x≡y(mod 5)}.证 明:R为A上的等价关系. 并求商集A/R. (15分) 5.给出下列偏序集的哈斯图,并指出A的最大元,最小元,极 大元和极小元. A={a,b,c,d,e},?A= I A∪{,, ,,,,} (15分) 6.设g:A→B, f:B→C.已知g f是单射且g是满射,证明:f 是单射. (10分) 7.设S={0,1}A, 其中A={a1,a2,…,a n}.证明:P(A)与S等势. (10分) 8.证明:任何一组人中都存在两个人,他们在组内认识的人 数恰好相等(假设,若a认识b,则a与b互相认识). (10分)

期中考试试题解答 1.证明: ?x, x∈A∪C x∈A∩C ?x∈A∨x∈C ?x∈A∧x∈C ?x∈B∨x∈D (A?B,C?D) ?x∈B∧x∈D (A?B,C?D) ?x∈B∪D ?x∈B∩D ∴A∪C?B∪D ∴A∩C?B∩D 2.解: A∪((B―A)―B) =A∪((B∩∽A)∩∽B) =A∪(∽A∩(B∩∽B)) =A∪(∽A∩φ) =A∪ф =A . 3.证明:首先证R∪R-1是对称关系. ?, ∈R∪R-1 ?∈R∨∈R-1 ?∈R-1∨∈R ?∈R-1∪R ?∈R∪R-1

集合论与图论

《集合论与图论》课程示范性教学设计 1 本课程教学方法 (一)教学方法 在这里,仅总结一下我的教学方法,不细展开,因此不涉及专业术语和与专业有关的例子。以下仅是一些指导思想: (1 )启发式、由浅入深、从直观到抽象。要用些生动的例子帮助学生理解抽象概念的含义,但要做到生动而有趣又不失概念的准确性和推理的严格性,使学生易于接受,又了解直观背景。 (2 )突出基本思想及方法,强调规律性,提高学生的抽象能力。要从哲学的高度强调概念是第一位的,引导学生思考问题时必须清楚理解所涉及的概念,使问题有一个明确的提法,引导学生掌握从问题到建立数学模型这一抽象过程的方法。 (3 )利用集合论某些概念和理论与方法总结已学过的知识(如微积分、线性代数)找出本质的规律或主线,使学生认识事物内部的深刻规律。其次,随时指出在后继课如何应用这些知识、在科技论文中将怎样出现这些知识的应用。这不仅提高了学习的积极性,也使学生增强了学习的目的性。 (4 )只要有可能就要以建立数学模型组织教学,讲习题也不例外。这样,能使学生加深印象—任何时候都要抓住事物的本质与事物之间的联系。 (5 )鼓励学生多问为什么,为什么会是这样子而不是那个样子。不是教会学生怎样去使用工具、去模仿或复制,而是要教会学生独立思考,发现问题,提出问题和解决问题的思考,否则思维会退化。 (5 )适当地提出一些未解决的问题。尚无答案的问题是摆在我们及学生面前的有无限价值的东西,因为支持大学的最高准则是探究未知领域。事实上,在每年教此课时,提一些问题确实有学生在思考。 (6 )注意每个学科(内部)的美。如果某部分很丑或太复杂,人们倾向于认为是不清楚的和暂时的,它没有真正反映客观规律,因为我们相信,越接近终极真理,我们的解释中的不自然的东西就越少。科学是以越来越完美、有力的理论向终极真理发展的。 (二)关于素质教育、培养创新精神的人才的思考 素质教育应该是各类教育的核心,而培养创新人才则是高等教育的任务(见高等教育法,第五条)。在这里讨论这个题目不太合适,因为题太大。其实,在(五)中就本课的特点贯穿了素质教育和培养创新人才的思想。以下只扼要地总结一下。 1 )教会学生如何进行逻辑推理,如何进行正确地思维,如何在纷繁的事物中抓住主要的联

电子科技大学2017年图论期末试卷

1 2017年图论课程练习题 一.填空题 1.图1中顶点a 到顶点b 的距离d (a ,b )= 。 a b 9 图1 1 2.已知图G 的邻接矩阵0 11011 01001 1010001011001 0A = ,则G 中长度为2的途径总条数为 。 3.图2中最小生成树T 的权值W (T )= 。 4.图3的最优欧拉环游的权值为 。 12 图 2

2 图3 5.树叶带权分别为1,2,4,5,6,8的最优二元树权值为 。 二.单项选择 1.关于图的度序列,下列说法正确的是( ) (A) 对任意一个非负整数序列来说,它都是某图的度序列; (B) 若非负整数序列12(,,,)n d d d π= 满足1n i i d =∑为偶数,则它一定是图序 列; (C) 若图G 度弱于图H ,则图G 的边数小于等于图H 的边数; (D) 如果图G 的顶点总度数大于或等于图H 的顶点总度数,则图G 度优 于图H 。 2.关于图的割点与割边,下列说法正确的是( ) (A) 有割边的图一定有割点; (B) 有割点的图一定有割边; (C) 有割边的简单图一定有割点; (D) 割边不在图的任一圈中。 3.设()k G ,()G λ,()G δ分别表示图G 的点连通度,边连通度和最小度。下面说法错误的是( )

3 (A) 存在图G ,使得()k G =()G δ=()G λ; (B) 存在图G ,使得()()()k G G G λδ<<; (C) 设G 是n 阶简单图,若()2n G δ ≥ ,则G 连通,且()()G G λδ=; (D) 图G 是k 连通的,则G 的连通度为k 。 4.关于哈密尔顿图,下列命题错误的是( ) (A) 彼得森图是非哈密尔顿图; (B) 若图G 的闭包是哈密尔顿图,则其闭包一定是完全图; (C) 若图G 的阶数至少为3且闭包是完全图,则图G 是哈密尔顿图; (D) 设G 是三阶以上简单图,若G 中任意两个不邻接点u 与v ,满足 ()()d u d v n +≥,则G 是哈密尔顿图。 5.下列说法错误的是( ) (A) 有完美匹配的三正则图一定没有割边; (B) 没有割边的三正则图一定存在完美匹配; (C) 任意一个具有哈密尔顿圈的三正则图可以1因子分解; (D) 完全图21n K +是n 个哈密尔顿圈的和。 三、 设无向图G 有10条边,3度与4度顶点各2个,其余顶点度数均小于3,问G 中至少有几个顶点?在最少顶点数的情况下,写出G 的度序列,该度序列是一个图序列吗?。

电子科大图论答案

图论第三次作业 一、第六章 2.证明: 根据欧拉公式的推论,有m ≦l*(n-2)/(l-2), (1)若deg(f)≧4,则m ≦4*(n-2)/2=2n-4; (2)若deg(f)≧5,则m ≦5*(n-2)/3,即:3m ≦5n-10; (3)若deg(f)≧6,则m ≦6*(n-2)/4,即:2m ≦3n-6. 3.证明: ∵G 是简单连通图,∴根据欧拉公式推论,m ≦3n-6; 又,根据欧拉公式:n-m+φ=2,∴φ=2-n+m ≦2-n+3n-6=2n-4. 4.证明: (1)∵G 是极大平面图,∴每个面的次数为3, 由次数公式:2m==3φ, 由欧拉公式:φ=2-n+m, ∴m=2-n+m,即:m=3n-6. (2)又∵m=n+φ-2,∴φ=2n-4. (3)对于3n >的极大可平面图的的每个顶点v ,有()3d v ≥,即对任一一点或者

子图,至少有三个邻点与之相连,要使这个点或子图与图G 不连通,必须把与之相连的点去掉,所以至少需要去掉三个点才能使()(H)w G w G <-,由点连通度的定义知()3G κ≥。 5.证明: 假设图G 不是极大可平面图,那么G 不然至少还有两点之间可以添加一条边e ,使G+e 仍为可平面图,由于图G 满足36m n =-,那么对图G+e 有36m n '=-,而平面图的必要条件为36m n '≤-,两者矛盾,所以图G 是极大可平面图。 6.证明: (1)由()4G δ=知5n ≥当n=5时,图G 为5K ,而5K 为不可平面图,所以6n ≥,(由()4G δ=和握手定理有24m n ≥,再由极大可平面图的性质36m n =-,即可得6n ≥)对于可平面图有()5G δ≤,而6n ≥,所以至少有6个点的度数不超过5. (2)由()5G δ=和握手定理有25m n ≥,再由极大可平面图的性质36m n =-,即可得12n ≥,对于可平面图有()5G δ≤,而12n ≥,所以至少有12个点的度数不超过5. 二、第七章 2.证明: 设n=2k+1,∵G 是Δ正则单图,且Δ>0, ∴m(G)==>k Δ,由定理5可知χˊ(G)=Δ(G)+1.

相关主题
文本预览
相关文档 最新文档