当前位置:文档之家› 基于TMS320DM642的视频采集驱动程序的实现

基于TMS320DM642的视频采集驱动程序的实现

基于TMS320DM642的视频采集驱动程序的实现
基于TMS320DM642的视频采集驱动程序的实现

视频终端的核心是图像的数字化处理模块基于PC机的数字视频处理,给出了算法研究的途径,而基于高速DSP的应用模块才提供了实时嵌入式视频处理的可能

然而,基于DSP的海量视频数据的实时处理的关键则是实时、合适的视频数据采集本文针对自行研制的基于TMS320DM642(以下简称DM642)DSP的视频处理板卡,使其在C64x系列DSP的实时操作系统DSP/BIOS的环境下运行,实现基于类/微驱动模型的视频采集驱动程序,并进一步描述采用EDMA(增强的直接存储器存取控制器)的数字视频图像信号的实时传输

1 类/微驱动程序模型

C64x系列的DSP系统给出了类/微驱动模型[1] 的驱动程序结构,采用该模型进行驱动程序设计,应用程序可以复用绝大部分相似设备的驱动程序,从而提高驱动程序的开发效率类/微驱动模型结构如图1所示,该模型在功能上将驱动程序分为依赖硬件层(微驱动)和不依赖硬件层(类驱动)两层,并在两层之间给出通用接口上层的应用程序不直接控制微驱动,而是通过类驱动对其进行控制每一个类驱动在应用程序代码中表现为一个API函数,并通过标准微驱动的接口IOM与微驱动进行通信

在类/微驱动模型中,类驱动通常用于完成多线程I/O请求的序列化功能和同步功能,同时对设备实例进行管理类驱动通过每个外部设备独有的微驱动对设备进行操作微驱动采用芯片支持库[2]控制外设的寄存器、内存和中断资源微驱动程序必须将特定的外部设备有效地表示给类驱动

类驱动使用DSP/BIOS中的API函数[3]实现诸如同步等的系统服务,DSP/BIOS定义了三种类驱动模块:管道管理模块(PIP)、流输入输出管理模块(SIO)和通用输入输出模块(GIO)在PIP和SIO类驱动中,调用的API函数已经存在于DSP/BIOS的PIP和SIO模块中了,这些API函数需将参数传给相应的适配模块,才能与微驱动交换数据而在GIO 类驱动中,调用的API函数则直接与微驱动通信

2 基于DM642的视频采集驱动

2.1 硬件结构

笔者利用TI公司的多媒体处理芯片DM642自行研制了嵌入式视频处理板卡卡上的主要组成模块有视频采集模块、视频处理模块以及网络发送模块,其中视频采集模块主要由DSP芯片DM642[4]、视频A/D 转换芯片SAA7115和同步动态存储器芯片SDRAM等组成,如图2所示来自摄像头的视频信号通过SAA7115进行数字化处理,输出的数字视频信号经过视频端口的内部FIFO缓冲后,由DM642通过EDMA将数据传送到片外SDRAM 中,以便供视频应用程序使用

主芯片DM642的处理能力达到4800MIPS,它的最大特点是芯片内部集成了三个可配置的视频端口[5],这些视频端口提供了与通用视频A/D转换芯片的无缝接口,因而无需外加CPLD(复杂可编程逻辑器件)和FIFO就可以满足系统设计的要求SAA7115支持六路CVBS(复合模拟视频输入)或三路S-VIDEO (S端子信号)输入,支持多种格式的数字RGB 和YUV视频信号输出DM642通过IIC总线控制SAA7115的内部寄存器

采用类/微驱动模型编写DM642芯片视频端口的视频采集驱动程序,驱动必须满足如下几个基本功能:

·硬件中断;

·可同时处理DM642的三个视频端口;

·支持应用程序配置视频采集的参数,支持获取图像数据;

·支持场图像的采集,支持对CVBS和S-VIDEO两种模拟信号的采集

在视频采集过程中,最重要的是对视频数据进行实时控制和有效的传输,因此需要使用硬件中断,并在中断服务程序中,根据视频端口内部FIFO的状态通过EDMA完成视频数据的读入

2.2 视频采集驱动程序的框架构建

视频采集驱动程序包括类驱动和微驱动两个模块,视频采集驱动程序的结构框架如图3所示

类驱动使用GIO模块,GIO模块的传输模式是基于流输入输出模块的同步I/O模式的,更适合文件系统I/O,如视频采集的应用该模块的主要API函数的描述如表1所示

在图3中,应用程序使用GIO_create函数创建GIO通道,并通过调用GIO_submit 函数直接与微驱动的IOM交换数据,完成视频数据的采集

应用程序通过GIO类驱动调用微驱动的标准API函数,这些标准API函数的描述如表2所示这些规定的函数将放入微驱动的函数接口表(IOM_Fxns)中,以供应用程序通过GIO类驱动调用

在图3中,微驱动的IOM接口将应用程序获取图像的命令打包生成数据包,并向微驱动发送数据包的格式如下:typedef struct IOM_Packet {

QUE_Elem link; /* 数据包队列*/

Ptr addr; /* 数据地址*/

Uns size; /* 数据长度*/

Arg misc; /* 保留使用*/

Arg arg; /* 应用程序*/

Uns cmd; /* 命令字段*/

Int status; /* 命令完成状态*/

} IOM_Packet;

数据包中数据长度与数据地址两字段由应用程序提供,分别表示获取图像的大小及图像存储目的地址微驱动依据数据包中的命令字段,调用mdSubmitChan函数将数据包放入数据包队列,等待中断服务函数的处理视频采集中的硬件中断由视频端口内部FIFO的状态触发,中断服务程序根据数据包中的数据地址字段,通过EDMA将视频端口内部FIFO 中的视频数据读入SDRAM中的图像存储目的地址依据数据包中的数据长度字段,在完成相应大小图像的采集后,中断服务程序还将完成以下功能:出列数据包;设置下一次传送或服务请求;设置数据包中的命令完成状态,并向应用程序返回

3 视频采集驱动中的视频数据传输

视频端口内部FIFO与SDRAM之间的视频数据传输通常有以下几种方法:软件查询、中断和EDMA方法软件查询消耗CPU的资源太大,是不可取的,中断数据传输虽可节省很多CPU时间,但没有发挥DM642的EDMA资源EDMA[6]是在DMA基础上发展起来的,用于在没有CPU参与的情况下完成不同存储空间之间的数据搬移DM642提供了64个独立的EDMA通道,通道的优先级可编程设置,在没有CPU参与的情况下实现片内存储器、片内外设以及外部存储空间之间的数据高速搬移因此,为减轻CPU的负担,发挥DM642的强大的外部数据传输能力,视频采集驱动使用EDMA完成视频数据从FIFO到SDRAM的传输

3.1 基于双EDMA通道的视频数据传输

利用EDMA将FIFO中的数据传输到SDRAM中有两种方法,但是它们的性能却差别很大一种方法是利用EDMA将FIFO中的数据直接传送到SDRAM中这种方法虽然简单且易于操作,但它没有充分发挥SDRAM的页读写的优越性,原因在于EDMA读取FIFO 和写入SDRAM时分为两个不同过程来实现,因此EMIF(外部存储器接口)的时序不断地在两者之间切换,造成很大的时间浪费,所以这种传输效率不高

由于DM642视频端口的内部FIFO提供“满”、“半满”、“空”三种状态,另一方法使用两个EDMA通道进行数据传输以亮度信号的传输为例,当用于存储亮度分量的内部FIFO 半满(640字节)时,触发DM642的硬件中断,在中断服务程序中启用一个EDMA通道将数

据从FIFO中读出,存放到缓冲区BUF中传输完毕后,启动另一个EDMA通道将数据从BUF中传输到SDRAM中这样,两个EDMA通道分别进行读取FIFO和写入SDRAM的操作,避免了EMIF时序的切换,可以保证EDMA的有效传输

3.2 EDMA链表在场合成中的使用

在隔行扫描模式下,每帧分为两场,两场在时域上是分开的,但在数据处理时需要将两场合成一帧进行处理,因此要进行大量的数据搬移,占用了大量的CPU时间通过EDMA 链表可自动实现场合成,不需占用额外的CPU时间

EDMA的参数RAM存放了有关的传输参数,这些参数用于产生EDMA读写操作所需要的地址如图4所示,在使用EDMA通道传输奇数场与偶数场时,分别使用不同的EDMA 参数RAM两组参数RAM的目的地址分别指向存储图像的第一行与第二行象素的首地址,并且两组参数RAM通过链接地址循环相连在EDMA通道的传输中,奇数场传输任务的结束会自动地根据当前参数RAM的链接地址装载传输偶数场的参数RAM,又由两组参数RAM的目的地址可知,奇数场与偶数场分别经EDMA通道传输至帧缓冲区后被隔行存储,这样在无需占用额外CPU时间的前提下就实现了场合成

4 视频采集驱动程序的调用实例

DSP/BIOS应用程序通过GIO类驱动调用微驱动之前,需使用DSP/BIOS配置工具注册微驱动,将其命名为VP_CAPTURE,并启动GIO模块

在应用程序中,GIO_create函数使用已注册的微驱动VP_CAPTURE创建GIO通道,通过调用GIO_submit函数完成应用程序对视频数据的采集操作部分源代码如下:

(1) 创建通道

GIO_Handle capChan;

int status;

capChan = GIO_create('VP_CAPTURE')

IOM_INPUT&status(Ptr)&DM642_vCapParams NULL);

(2) 发送获取图像的数据包

GIO_submit(capChan IOM_READ bufp NULL NULL);其中,

DM642_vCapParams包含了视频采集的初始化参数,如图像大小、同步方式等;bufp用于指出采集图像的存储地址不同的视频应用程序在使用类驱动时,可以通过改变这两个变量复用视频设备这样,极大地提高了驱动程序的工作效率,对视频外设的控制也大大简化了

使用类/微驱动模型开发的视频采集驱动程序,有效地解决了图像采集和图像实时处理之间的关系,在几乎不需要CPU的干涉下,利用EDMA完成了数字视频图像数据的高速传输;通过使用类驱动复用驱动程序,视频应用程序的开发效率获得了极大的提高视频采集驱动程序现已在自主开发的视频处理板卡上运行良好,为进一步开发远程视频监控系统、可视电话等视频应用打下了坚实的基础

参考文献

1 DSP/BIOS Driver Developer’s Guide. Literature Number: SPRU616. Texas Instruments Incorporated November 2002

2 TMS320C6000 Chip Support Library API Reference Guide. Literature Number: SPRU401. Texas Instruments Incorporated December 2002

3 TMS320C6000 DSP/BIOS Application Programming Interface. Literature Number: SPRU403. Texas Instruments Incorporated October 2002

4 TMS320DM642 Technical Overview.Literature Number:SPRU615.Texas Instruments Incorporated September 2002

5 TMS320C64x DSP Video Port/ VCXO Interpolated Control (VIC) Port Reference Guide. Literature Number: SPRU629. Texas Instruments Incorporated April 2003

6 TMS320C6000 Peripherals Reference Guide. Literature Num-ber:SPRU190. Texas Instruments Incorporated February 2001

XX公司远程视频监控方案

XX燃气远程视频监控 设 计 方 案

书 设计单位: 设计人: 前言 本方案针对新澳燃气监控子系统的具体要求,我们特向用户推荐具有强大本地录像、检索和远程监控功能的,基于压缩格式的DS-7800系列硬盘录像机数字监控系统。产品采用稳定的嵌入式平台,用户界面友好。系统实时采集音视频信号(PAL制或NTSC制)压缩成标准的文件,并可在多个硬盘上实现循环录像。同时可存贮多个通道的音视频信号,并保证音视频的同步。支持各种网络传输介质,能在internet上做实时流畅传输,完全满足客户需求。 一、系统设计依据 1. GB50198-94(民用闭路监视电视系统工程技术规范)。 2. GA/T75-94(安全防范工程程序和要求)

3. GA/T70-94(安全防范工程费用概预算编制办法)。 4. GA/T74-94GA(安全防范系统通用图形符号) 5. GB50054-95(低压配电设计规范) 6. 中华人民共和国<<社会公共安全标准汇编1、2>> 7. 中华人民共和国<<国家电气工程施工规范汇编>> 8. GA/T27-1992<<中华人民共和国公安部行业标准>> 9. GA/T75-1994<<安全防范工程程序与要求>> 10. QB/T50198-1994<<民用闭路电视监控系统工程技术规范>> 11. QB/T9813-2000<<微型计算机通用规范>> 12. QB15207-1994<<视频入侵报警其标准汇编>> 13. 甲方的实际需求。 二、系统设计原则 本套监控系统的设计须严格按照甲方的要求且遵守以下原则: 先进性:本监控系统采用国际上技术先进、性能优良、工作稳定的监控设备,使整个系统的应用在相当长的一段时间内保持领先的水平。 可靠性:系统的可靠性原则应贯穿于系统设计、设备选型、软硬件配置到系统施工的全过程。只有可靠的系统,才能发挥有效的作用。 方便性:监控系统的操作应具有灵活简便,人机界面友好,易于掌握的特点,操作人员能够方便物进行使用及维护,使整个系统的功能得以最大实现。 扩展性:系统设计留有充分的余地,以便日后比较方便地进行系统扩充。为此,设备采用模块式结构,在需要时可随时补充。增加视频及其它控制模块,使系统具备灵活的扩展性。 三、集中监控系统需求分析: 随着网络通讯技术的发展,对监控管理系统提出了新的要求,集中监控的目标是充分利用现有的网络平台,在较小的投资下,实现监控系统的集中管理。完善原有的本地化安全防范手段,强化本地监控和远程管理中心两层安全防范机制,便于最大化的调动所有资源,处理突发事件,提高处警效率,规范下属网点日常工作。因此我们特向新澳燃气有限公司推荐

数字视频采集系统方案

预处理监控设备方案 概述 传统视频监控系统是通过摄像头等这些数据采集前端获取视频图片信息,仅提供视频的捕获、存储和回放等简单的功能;数据吞吐量大造成数据传输和服务器处理数据的压力大;需要大量的人力且准确度并不高;因此,智能视频监控系统应运而生。 本系统在视频采集前端搭建硬件平台,硬件平台中搭载图像处理算法,将摄像头传入的图片筛选出关键信息,通过物联网传入服务器中进行处理。利用算法提取关键信息可以减少传输的数据,从而能提高传输效率并且减小服务器的压力;同时在传输过程中把数据拆分成多个模块并行处理,也可大大提升传输处理速度,达到实时性、高效性的要求。 1硬件前端功能 1)采集图像信息; 2)实现算法对图像的灵活处理,并行高速传输; 3)提取、分类图像关键信息; 4)采用NB-IoT协议实现无线传输 2方案论述 2.1系统构成 图2.1是系统总体结构框图。

图2.1 系统总体结构框图 用CCD进行图像数据采集后,用视频解码芯片进行A/D转换,从模拟视频输入口输入的全电视信号在视频解码芯片内部经过钳位、抗混叠滤波、A/D转换、最后转换成BT.656视频数据流。 本系统中,对图像的处理分为两个阶段,第一个阶段为ZYNQ的双核ARM处理器部分通过算法对图像的处理;第二个阶段为ZYNQ的FPGA部分对数据的打包分类。为了尽可能提高性能并达到实时性要求,我们以ARM为中央处理核心,由FPGA实现系统控制。系统分为处理器模块、FPGA组模块和各总线接口模块等。其中处理器模块包含双核ARM、内存空间以及相应逻辑。处理器作为最小处理单元模块而存在,可以完成相应的处理子任务。 双核ARM作为从CPU做图像的处理(通过算法实现),两个处理模块在系统核心FPGA控制下并行运行。而FPGA作为系统中心,负责两个微处理器互相通信、互相协调以及它们与外界(通过主从总线和互连总线)的信息交换。同时,系统处理子任务可以由FPGA直接派发给处理器。灵活的FPGA体系结构设计是该系统有效性的保证。在实际应用中,可以根据系统的任务,通过配置FPGA控制两个微处理器按流水线方式运行,缩短系统的处理时间。另外,可以通过FPGA的配置扩展双ARM的工作方式,控制它们按MIMD方式并行处理同一输入图像。 最后经过处理过的图像通过NB-IoT协议发送到服务器端。 2.1.1 FIFO机制 为了加快ZYNQ的处理速度,本系统采用同步FIFO高速缓冲方案。FIFO即先进先出存储器, 也是一种专门用来做总线缓冲的特殊存储器。FIFO没有地址

多路视频数据实时采集系统设计与实现

多路视频数据实时采集系统设计与实现 常永亮王霖萱常馨蓉 ( 中国飞行试验研究院陕西西安 710089) ( 贵州省贵阳市花溪区贵州大学贵州省贵阳市 550025) ( 陕西省榆林市榆阳区榆林学院陕西省榆林市 719000) 摘要面对越来越多的实时视频采集、播放的应用,如何能更加方便的操控视频采集,保证流畅的播放效果,成为近几年实时媒体流的一个重要研究方向。本文介绍了视频数据的采集、记 录、编解码、多路视频数据间的切换,基于多网络协议组合下的多媒体流传输,动态切换四路视 频数据实时传输与播放,从而使远端操控、优质播放有了很大的提高。 关键词视频编解码、媒体流、RTP/RTCP协议、组播协议、TCP协议 0.引言 随着信息技术的不断发展,人们将计算机技术引入视频采集、视频处理领域,用计算机处理视频信息和网络传输数字视频数据在很多领域已有广泛的应用,飞机试飞中现如今也大量的应用。 针对目前分散在多处试飞现场视频传入监控大厅后监测设备多而分散的问题,提出了将多处试飞现场视频引入监控大厅后用一台高性能服务器管控,客户端通过网络请求服务器端检测关心的现场场景,达到集中管理优化监控的目的。 视频图像采集的方法较多,基本可分为2大类:数字信号采集和模拟信号采集。前者采用图像采集芯片组完成图像的采集、帧存储器地址生成以及图像数据的刷新;除了要对采集模式进行设定外,主处理器不参与采集过程,我们只要在相应的帧存储器地址取出采集到的视频数据即可得到相应的视频数据,这种方法,无论在功能、性能、可靠性、速度等各方面都得到了显著的提高,但成本高。后者采用通用视频采集卡实现图像的采集,并用软件进行实时编码,其特点是数据采集CPU占用率较高,对处理器的速度要求高,成本低、易于实现,能够满足某些图像采集系统的需要。此系统使用第二类视频采集方法。 如何将各处试飞现场视频信号通过VGA持续接收?传统方式是将模拟的VGA信号引到指定显示器显示,这样即浪费资源且多占空间。多路视频实时采集使用的是VisionRGB- PRO板卡(英国Datapath公司),此卡可同时实时采集两路视频数据,基本达到了本系统的要求,再用一台VGA矩阵切换器将前端数据源的四路视频数据进行人为切换采集,用H.264格式编解码,保存为H.264格式,通过RTP/RTCP 与组播协议将编码后视频流传输给请求客户端,而且可在客户端通过TCP协议选择关心的VGA采集通道。

视频制作操作流程

视频制作操作流程 一、编写解说文字材料(脚本),按文字内容进行拍摄视频。文字材料编写要参照频栏目大纲,要反应基本情况,又要突出地方特色。编写文字材料时要注意,说不清楚的东西最好不要说。(详见语音合成部分) 二、语音合成。 三、视频拍摄。要根据解说文字材料内容、语音时间进行拍摄,保证图(注意参看视频拍摄注意事项)像时间大于声音时间。。 四、整理素材。 1、DV 带的视频采集安装1394 采集卡,安装软件:把随卡附送的光盘放入光驱中,依照屏幕上自动弹出的安装选项进行操作,直到完成软件的安装。安装完1394 采集卡,开机系统提示找到新硬件并自动安装驱动后,在设备管理器里可以看到该设备已经运转正常。 2、安装绘声绘影10.0,安装完成后并运行。把摄像机与视频采集卡用配套数据线连接上,打开摄像机电源,操作系统提示找到接入的摄像机后点击标题栏的“捕获”菜单。1选择“捕获视频”项,格式选择为DV 格式。 2选择“捕获文件夹”项,选择捕获文件夹路径(注意:1捕获的视频文件多,容易产生混淆,需单独存放在新建的一个文。件夹中) 3选择“按场景分割”选项。 4点击“捕获视频”按钮,开始播放并捕获视频,结束时再次点击该按钮结束捕获。选中此选选择DV 格式选择文件保存路径为方便编辑,把视频素材、合成的语音文件、解说文字、数字乡村图标、背景音乐、片头片尾图片共6 项统一装在一(如村视频素材)个已命名的“大文件夹”里。 五、视频编辑操作 1、启动绘声绘影,做片头。片头要用相片来做。操作步骤:捕获→图像→打开图片→把图片拖到视频轨→输入文字→调整文字→打开时间轴→调整播放时间为 5 秒钟。2 。可应用动画。文字第一行注明“云南省数字乡村工程” 文字第二行注明:视频(乡镇、村)的隶属关系。片头样式见下图: 2、导入视频文件并去除杂音。操作步骤:捕获→视频→打开视频素材→按语音或解说文字内容把对应的视频素材拖到视频轨→播放视频→在有杂音的地方暂停→在该视频文件上点右键分割音频→在音频轨上点右键去除分离出来的杂音。分割音频详见下图: 3、导入语音语音要在片头5 秒后与视频同步播放。操作步骤:捕获→音频→语音文件→打开时间轴→把语音文件拖到音频轨→调整播放时间,片头 5 秒后与视频同步播放。 4、剪辑视频根据语音内容,适当剪辑视频,实现解说与画面相对应。操作步骤:选中要剪辑的视频文件→播放→在要剪切处暂停→剪切→在不需要部分点右键删除操作如下图:4 5、在视频上插入解说词操作步骤:点击音频轨上最前面的“T”后→双击视频画面→选中显示网格线→打开解说文字→选中需要部分→用Ctrlc 命令复制→在光标闪烁位置用Ctrlv 命令粘贴→调整字体、大小、颜色(黑体、25 号、白色)→把文字拖放到视频底黑色部分,达到黑底白字效果。在视上插入解说词时要注意视频、语音、文字相互配合对应。操作如下图:

IP远程视频监控系统解决方案

IP远程视频监控系统解决方案 作为最近几年崛起的新产品,网络视频服务器已经成为第三代全数字化视频监控系统的核心产品并日益被工程商和用户所熟知。但是,在基于宽带ADSL网 络的应用中,如何低成本地实现在动态 IP地址环境下监控中心对监控前端的实时访问,仍是困扰诸多工程商和系统集成商的难题之一。本文将就此问题提出完 整的解决方案。 随着网络技术的快速发展,宽带的普及以及宽带使用成本的日趋低廉,利用网络作为传输媒介的远程视频监控也得到日益普及的应用。 目前,利用网络作为传输媒介的远程视频监控系统的核心技术产品可分为数字硬盘录像机和网络视频服务器两大类。数字硬盘录像机通常被行内人士称为第二代准数字化监控系统产品,主要以在本地局域网监控应用为主。在远程网络视频监控应用领域,以数字硬盘录像机为核心的监控系统由于无法实现多路全实时监控、集成性差等缺陷,正逐步被基于网络视频服务器的第三代全数字化监控系统所取代。 网络视频服务器能够充分满足客户对远程视频监控方面的需求,在技术性能 上体现了目前视频监控领域中数字化和网络化两大趋势,具有高可靠性、高集成 度的鲜明特点,可广泛应用于诸如对电力无人驻守变电站、电信机房、银行、道路交通、学校、海关、连锁营业场所的远程视频监控以及本地局域网络方式下的监控。原则上,在任何网络通达的地方(包括企业专网和以ADSL接入为代表的 INTERNE公网),通过网络视频服务器均可以实现远程同步的视频监控应用。 除了诸如电力、电信、银行等大企业的远程视频监控应用会考虑利用其自身的专线网络媒介外,中小规模企业多会采用 ADSL宽带网络作为传输媒介,尤其是那些视频数据采集网点较多而且较分散的应用环境情况。 、基于INTERNET公网的远程监控基本原理 以通过ADSL接入INTERNET公网为例。各监控前端网络视频服务器读取相连的

交通视频采集系统

交通视频采集系统 第一章建设背景 1.1 视频监控系统现状 1.1.1交通应急指挥中心系统职能 威海市交通运输局作为威海市重要的政府主管部门,主要负责:全市公路、水路和地方铁路交通行业管理和运输组织管理,协调道路、水路运输与其它运输方式的衔接;组织实施上级下达的重点物资运输、紧急客货运输和军事运输。作为市交通运输局下属事业单位,威海市交通应急指挥与信息服务中心将负责本次视频采集系统的建设,必将进一步改善城市整体交通环境,提高城市交通管理水平、提升城市形象和品味。 1.1.2 视频在应急指挥中的作用 威海市交通应急视频监控系统通过视频监控布局,可实时反馈监控区域的图像信息,有利于在执法工作中提高现场即时办公效率,提高事件处理的真实性、准确性、实时性及宏观调配能力。 威海市交通应急指挥与信息服务中心的视频采集系统主要负责通过统一视频监控系统对全市二级以上客运站、客运站周边违章行为高发区域、站外广场等客流密集地进行管理。工作人员可通过图像采集来了解各站点的实时状况,实时传输的图像要保证清晰度高、连贯性高,不能出现拖尾、马赛克等情况,保证交通各职能部门的管理员在第一时间掌握实时的、清晰的高品质视频图像。系统一方面要做到事件即时处理,另一方面也要为交通管理职能部门保留数据信息,这就要求在图像实时采集的同时,根据具体需求进行录像存储。 1.2 视频监控系统存在的问题 部署分散,监控系统资源共享性差。交通、公安、交警、公

路、港航等相关部门的各类监控设备部署较为分散,由于之前缺乏实现信息互联互通的技术手段,加之跨域查阅视频的审批手续繁冗,视频信息共享性差,不能对应急事件即时处理、即时响应。 覆盖面广,但仍存在监控的“死角”。在汽车客运站、码头、机场、旅游集散地、景区景点等违章行为高发地、其他人员密集地仍存在诸多应急指挥监控死角,存在打击黑车黑导、即时处理应急事件的隐患,需增加相应监控点位,以确保应急事件的即时指挥与处理。 1.3 视频监控系统升级建设的必要性 1.3.1信息共享缺乏可信验证技术支持 通过最新的高清识别及可信验证技术,较好地解决部署分散,信息共享性差问题,盘活视频监控系统的存量资产,发挥投资建设的应有效应。本次视频采集系统将通过与公安、交警、公路、港航等相关部门协调,计划接入920路视频资源,主要包括市区主要路段、重点路口、治超点、主要道路、高速公路等,进一步提高各系统视频监控资源在交通应急指挥中心中的作用。 1.3.2 监控死角需自建视频设备扫除 为进一步扫除安全隐患,规交通运营秩序,威海市交通应急指挥中心将增加部分自建视频,解决监控死角问题,进一步提升“文明城市”形象的含金量。威海市交通应急指挥中心计划新增视频80路,主要分布在全市二级以上汽车客运站,包括威海站、荣成站、文登站、乳山站、石岛站以及威海北站汽车站,监控点位包括安检、进站口、出站口、站外广场、车站周边等违章行为高发地、其他人员密集地。本次主要建设容有:社会监控的接入、新建前端设备、立杆(含基础施工、路面开挖恢复等)、借杆、防雷地网施工、取电工程等,根据技术功能要求来进行整体综合

无线视频监控系统

无线视频监控系统说明 无线视频监控系统,无需铺设网络电缆,可迅速方便地在各种需要的地方布署数字摄像设备,建立新的视频监控系统或对现有的视频监控系统进行扩展,具有很强的灵活性和可扩充性。用宽带无线接入设备,可以将多个被监测点与中央控制中心连接起来,且搭建迅速,可以在最短的时间内迅速建立起无线链路。现场监控点安装的摄像机所摄录的实时和高分辨率的视频图像通过宽带无线接入设备进行传输, 传送到用户的安全监控中心,并可以完成对远程监控点的控制。 无线视频监控系统有以下优点: ?灵活性 工程建设周期短,扩充性强。即插即用,网络管理人员可以迅速将新的监控点加入到现有的网络中,不需要新建传输线路,轻而易举实现远程视频监控。 ?可移动性 系统可轻松实现有线难以铺设的区域的视频监控,一旦遇到河流山脉等障碍时,有线网络无法实现。但是要求需要互通的点达到可视(中间无障碍)。 ?经济性 设备成本低,性价比高。无线网络组建容易,前端设备即插即用,只需一次投入就可解决,所维护都比较简单。 ?功能强大 系统功能强大,利用灵活。提供高可靠性,保证不间断的视频监控,同时全数字化录像方便于保存与检索。 ?支持远程监控 在网络中的的任何一台计算机只要安装了客户端软件或是通过IE浏览器,授权用户可以在一定范围内进行操作。 一,系统组成: 1,视频采集与传输:前端视频采集由无线摄像机完成,无线摄像机内置了视频编码模块,可将摄像机采集到的模拟视频信号转换成网络数字信号(视频、音频和控制信号)。无线摄像机还内置了支持IEEE802.11b/g协议的WIFI无线网卡,可将网络数字信号通过2.4G的微波传输给同样支持IEEE802.11b/g协议的无线交换设备(无线路由器或无线AP)。如有需要听取声音,可在摄像机上接入拾音器。无线摄像机还可与报警设备联动。 2,视频观看:无线摄像机自带了IP地址和域名,局域网内的用户可通过登录IP地址访问无线摄像机观看该摄像机的视频并进行录像、控制和管理。远程用户可通过登录无线摄像机的域名来观看该摄像机的视频并可进行录像、控制和管理。 如果用户需要用电视墙(监控墙)来观看视频,则需要在监控中心增加网络视频解码器。解码器的数量可由客户观看需求和监控点数量来决定。 每个无线摄像机支持最多10个用户同时观看,如果同时观看某摄像机有需要超出10用户的情况,可以拿一台电脑当作代理转发服务器来解决此问题。 3,录像存储:监控视频录像的存储可在视频图像格式(D1、HALF D1、CIF等)、需存储的监控点(精确到某个摄像机是否需要存储)、时间段(精确到分钟,分四个时间段)、移动侦测录像(是否开启)等几方面进行设置。如果前端有拾音器,录像文件中同样有声音。存储录像的文件名有精确到秒的时间显示,这有利于人们快速调用录像。存储录像文件通过天

视频采集系统

数字图象处理技术在电子通信与信息处理领域得到了广泛的应用,设计一种功能灵活、使用方便、便于嵌入到监控系统中的视频信号采集电路具有重要的实用意义。 在研究基于DSP的视频监控系统时,考虑到高速实时处理及实用化两方面的具体要求,需要开发一种具有高速、高集成度等特点的视频图象信号采集监控系统,为此监控系统采用专用视频解码芯片和复杂可编程逻辑器件(CPLD)构成前端图象采集部分。设计上采用专用视频解码芯片,以CPLD器件作为控制单元和外围接口,以FIFO为缓存结构,能够有效地实现视频信号的采集与读取的高速并行,具有整体电路简单、可靠性高、集成度高、接口方便等优点,无需更改硬件电路,就可以应用于各种视频信号处理监控系统中。使得原来非常复杂的电路设计得到了极大的简化,并且使原来纯硬件的设计,变成软件和硬件的混合设计,使整个监控系统的设计增加柔韧性。 1 监控系统硬件平台结构 监控系统平台硬件结构如图1所示。整个监控系统分为两部分,分别是图象采集监控系统和基于DSP主监控系统。前者是一个基于SAA7110A/SAA7110视频解码芯片,由复杂可编程逻辑芯片CPLD实现精确采样的高速视频采集监控系统;后者是通用数字信号处理监控系统,它主要包括:64K WORD程序存储器、64K WORD数据存储器、DSP、时钟产生电路、串行接口及相应的电平转换电路等。 监控系统的工作流程是,首先由图象采集监控系统按QCIF格式精确采集指定区域的视频图象数据,暂存于帧存储器FIFO中;由DSP将暂存于FIFO中的数据读入DSP的数据存储器中,与原先的几帧图象数据一起进行基于H.263的视频数据压缩;然后由DSP将压缩后的视频数据平滑地从串行接口输出,由普通MODEM或ADSL MODEM传送到远端的监控中心,监控中心的PC机收到数据后进行相应的解码,并将还原后的视频图象进行显示或进行基于WEB的广播。 2 视频信号采集监控系统 2.1 视频信号采集监控系统的基本特性 一般的视频信号采集监控系统一般由视频信号经箝位放大、同步信号分离、亮度/色度信号分离和A/D变换等部分组成,采样数据按照一定的时序和总线要求,输出到数据总线上,从而完成视频信号的解码,图中的存储器作为帧采样缓冲存储器,可以适应不同总线、输出格式和时序要求的总线接口。 视频信号采集监控系统是高速数据采集监控系统的一个特例。过去的视频信号采集监控系统采用小规模数字和模拟器件,来实现高速运算放大、同步信号分离、亮度/色度信号分离、高速A/D变换、锁相环、时序逻辑控制等电路的功能。但由于监控系统的采样频率和工作时钟高达数十兆赫兹,且器件集成度低,布线复杂,级间和器件间耦合干扰大,因此开发和调试都十分困难;另一方面,为达到精确采样的目的,采样时钟需要和输人的视频信号构成同步关系,因而,利用分离出来的同步信号和监控系统采样时钟进行锁相,产生精确同步的采样时钟,成为设计和调试过程中的另一个难点。同时,通过实现亮度、色度、对比度、视频前级放大增益的可编程控制,达到视频信号采集的智能化,又是以往监控系统难以完成的。关于这一点,在监控系统初期开发过程中已有深切体会[1]。 基于以上考虑,本监控系统采用了SAA7110A作为视频监控系统的输入前端视频采样处理器。 2.2 视频图象采集监控系统设计 SAA7110/SAA7110A是高集成度、功能完善的大规模视频解码集成电路[2]。它采用PLCC68封装,内部集成了视频信号采样所需的2个8bit模/数转换器,时钟产生电路和亮度、对比度、饱和度控制等外围电路,用它来替代原来的分立电路,极大地减小监控系统设计的工作量,并通过内置的大量功能电路和控制寄存器来实现功能的灵活配置。

旅游景区远程视频监控系统

旅游景区远程视频监控系统解决方案

旅游景区网上视音频直播系统研究与实现 随着社会的发展和人民生活水平的提高,我国旅游业已经越来越大众化,旅游人数与日俱增,游客面对如此之多的景区,如何选择满意的景区;以及景区面对如此之多的旅客,又如何能把握商机吸引更多游客?旅游者的需求越来越个性化、多样化,而旅游企业也需要有越来越完善的对外宣传方式来提高了旅游景区的国际知名度,提高对游客服务质量,增加与游客的互动性。近几年来网络媒体的快速发展为景区宣传提供了媒介,而网上音视频直播直观、实时、互动等特点得到了国际知名景区的青睐,在旅游景区中采用网上直播系统,世界各地的游客可以在家中对景区的各种景点风光、会议现场、庆祝活动实时观看,提高游客来现场游览的兴趣。本文结合浙江省科技计划重大项目(2004C13034)“旅游景区网络化综合管理与服务平台研究及应用示范”,以组建第三代旅游网站、增加景区与旅客信息互动、扩大景区对外宣传力度以及提高景区国际知名度为目的,利用计算机领域的流媒体、人工智能、移动Agent、对等网络等理论和技术进行了相关的研究与工程实现工作,其具体工作如下: (1)对该领域的国内外研究现状进行了分析,总结网上音视频直播系统目前存在的技术难题和问题,并阐述本文研究的背景、意义和主要内容。 (2)对网上直播系统进行需求分析,设计了旅游景区网上直播系统的硬件构架和软件构架。硬件设计包括系统硬件总体框架设计以及硬件设备的选取。软件设计实现以下4个功能:音视频采集、数据压缩、流媒体服务和客户端播放。 (3)由于网上直播系统的客户端并发数多并可能处于不同的ISP运营网络下,而音/视频是大流量数据,对网络带宽要求高,音视频直播网的结构直接影响整个系统效率。本课题根据需求分析,研究了基于树形结构流媒体应用层的组网模式,将移动Agent理论引入到流媒体应用层组播网的实现中,以P2P协议作为直播网传输方式,提出了一种基于移动Agent的自组织直播网,使得组播网拓扑结构能够根据网络变化自动重建,流媒体服务的服务内容和格式可以在不需要用户人为参与的情况下动态增加和减少,还能根据一个区域内多个用户的实际情况进行综合优化每个转发节点的负荷。 (4)设计开发了旅游景区历史上大型活动等视音频资料的IPTV网上点播系统,景区多媒体信息点播系统采用VOD方式运行,最后并给出了流媒体服务端和客户端的实现。 景区在线平台(实时视频)解决方案-在线景区 景区风光或城市形象作为旅游产品具有非实体性、无转移性、不规范性、无贮存性、强敏感性的特点。良好的景区风光或城市形象营销策略能为景区或城市吸引更多的游客,带来巨大的商机,推动景区或城市的健康持续发展,因此其营销的重要性是毋庸置疑的,但其当前的营销理念还有些落后陈旧,终端营销模式主要还是依托于比较传统的手段和方法,尚未做到与时俱进。 营销理念落后,内容陈旧

电子元器件外形尺寸机器视觉测量系统设计

Optoelectronics 光电子, 2020, 10(3), 84-89 Published Online September 2020 in Hans. https://www.doczj.com/doc/9217829872.html,/journal/oe https://https://www.doczj.com/doc/9217829872.html,/10.12677/oe.2020.103011 电子元器件外形尺寸机器视觉测量系统 设计 李超,许杰 盐城市计量测试所,江苏盐城 收稿日期:2020年8月24日;录用日期:2020年9月4日;发布日期:2020年9月11日 摘要 电子元器件是电路的基本组成部分,有着广泛的应用。传统的人工检测存在很多不足,机器视觉尺寸测量技术由此应运而生,机器视觉由于自身具备高灵敏度、高精度及高耐用性的特性,对于提高工业自动化水平和工业生产效率有极大助力。根据课题要求,以单片机芯片为研究对象,以检测单片机芯片二维平面上的长度与宽度为研究目标,设计了基于机器视觉的单片机芯片检测系统的硬件方案,硬件组成包括光源与照明方式的选择,以及相机与镜头的选择。完成硬件平台搭建后,同时制作了应用于相机标定的标定板并在调试完成的硬件平台上拍摄了三十张左右的标定图片。利用MATLABR2016A作为系统的软件处理平台,一方面应用MATLAB标定箱对标定图做相机标定,另一方面编写用于单片机芯片尺寸测量的图像处理代码及测量代码。其中,在图像处理环节主要包括图像滤波、二值化处理和边缘提取等步骤。单片机芯片的尺寸测量实验完成后将实验结果与真实尺寸的对比,可以看出构建的基于机器视觉的电子元器件外形尺寸测量系统满足了课题设定目标。 关键词 机器视觉,图像处理,相机标定,尺寸测量 The Design of Machine Vision Measurement System for the Dimension of Electronic Components Chao Li, Jie Xu Yancheng Institute of Measurement and Testing, Yancheng Jiangsu Received: Aug. 24th, 2020; accepted: Sep. 4th, 2020; published: Sep. 11th, 2020

风光互补无线视频监控系统

风光互补无线视频监控系统 方 案 书 福州科瑞新电子有限公司 2012年2月16日

一.系统概述 电力供应是整个社会生产、人民生活的基本保证之一。为了提高电力部门的生产效益,各变电站/所实现无人值守将成为一种需要。在电力调度通讯中心建立监控中心,通过对各个变电站/所进行视频画面的实时监视,以便能够实时、直接地了解和掌握各个变电站/所的情况,及时对所发生的情况做出反应,适应行业发展需要。 针对这种形势,使用风光互补无线监控系统将能有效地实现监控和管理。系统全天候地对变电站/所现场的视频数据进行采集编码,一方面将视频数据存储数据于本地的存储设备中,以便事后的回放调查;另一方面,通过3G无线传输设备使监控中心能统一地监视和管理。 二.系统设计关键点 1、无线传输 由于监控点自身环境特点,传输方式不可能采用有线或光缆,因此应选择无线传输方式来进行数据的传输。目前,3G无线传输技术成熟,并得到广泛的应用,其具有信号覆盖率高,部署方便等特点,是该系统设计的最佳选择。 2、供电保证 同样由于监控点自身环境的特点,设备供电不能保证有市电的供应,所以要保证设备全天候正常工作,对应的配套供电系统成了该系统设计重点。太阳能供电系统由太阳电池组件构成的太阳电池方阵、太阳能充电控制装置、逆变器、蓄电池组构成。太阳能供电系统在晴朗的白天能将太阳能转换为电能,给负载供电的同时,也给蓄电池组充电;在无光照时,可由蓄电池给负载供电。又考虑到可能出现的极其恶劣的长时间无光照的天气,配备风能供电系统能给供电带来更大的保证。所以综合来看,风光互补放电系统将是保证设备供电的最佳选择。3、避雷接地安全可靠。 户外监控系统的软肋是前端的避雷与接地,前端设备的避雷与接地直接影响

交通信息采集系统中的行人检测算法

现 代计算机(总第二六三期) MODERNCOMPUTER2007.7 *基金项目:广东省科技计划项目(2002A1010308)收稿日期:2007-05-08修稿日期:2007-06-29 作者简介:曹江中(1976-),男,湖南郴州人,硕士,助教,研究方向为图像信息处理技术及应用 0引言 行人检测是交通信息采集系统的一个重要部分。 高速公路属于全封闭的安全通道,加强对行人的检测对于保障高速公路行车安全是有重要意义的。当检测到路面有行人时,监控中心马上做出相关处理,从而可以迅速地避免交通事故的发生。 1行人检测 1.1背景更新 用于检测行人的视频来自交通信息采集系统,采 用位置固定的摄像机,交通视频的背景相对静止,但由于室外光照的变化和车辆经过时的振动都会引起视频背景的变化,因此需要对背景不断进行更新。根据高速公路行车的特点,设计一个基于像素的背景更新算法[3] ,其基本思路是:给检测区的每一个像素设置 一个计数器Count(i,j),对该计数器作如下操作: ifCti,!"j-Bti,!" j>gray_thr Count(i,j)+1elseCount(i,j)=0 其中Bti,!"j、Cti,!" j分别表示t时刻的背景和采集的图像对应于位置(i,j)处的像素值,gray_thr是灰度阈值,可以根据当时CCD摄像机的电位噪声和地面光照强度来动态设定。 当gray_thr>N时就将当前像素值作为背景(Ct i,!"j←Bt i,!" j),也即:若检测区中像素的灰度连续N 次的变化小于阈值gray_thr。则将该当前像素值作为背景,其中N的值可以根据经验确定,但必须满足下 式: N>50mVmax×! "t式中t为采集连续两帧图像的时间间隔。Vmax为高速公路车辆允许的最大速度。 这种背景更新算法,对于云层阴影、 固定物体的影子、路面水迹等具有较好的适应性,但运动目标进入检测区域后停滞时间较长时会被误认为背景,因此,还需考虑不对运动目标区域进行更新。 1.2运动目标检测 针对高速公路上的行人在视频图像中有效面积较小,运动缓慢的情况,本文采用背景帧差法来检测运动目标。假定获取的背景图像为B,当前图像为C,则在理想情况下当前图像减去背景图像后,像素值发生改变的就是前景区域(运动目标),但在实际应用中,由于采集的图像存在着较大的噪声干扰,往往需要引入一个抑止噪声的阈值thr_gray,如式(1)。图像I中像素值为255的区域则为运动目标区域。 Ii,!" j 255ifabsCij-Bij!">thr_gray 0 ifabsCij-Bij!"<thr_gra$ y (1) 由于运动目标的某些区域往往在灰度上与背景相差不大,检测出的运动区域并不总是一个联通区域,因此还需对其进行后处理,使整个目标区域联通。后处理通常采用的是数学形态学的方法[4]。数学形态学在图像处理方法上表现为邻域运算形式,因此计算量较大,并且交通信息采集系统中的行人检测目的是判断行人的存在与否,并不一定要检测出行人的轮廓,因此我们采用了一种网格降维的方法,将检测区域网格化,划分为互不重叠的5×5的小块,统计小块 交通信息采集系统中的行人检测算法* 曹江中1,戴青云1,谭志标2,邸磊2 (1.广东工业大学信息工程学院,广州510090;2.广东新粤智能交通研究院,广州510101) 摘 要:根据高速公路行人运动的先验知识,设计了一种基于视频检测技术的高速公路行人检测算 法。该算法采用背景帧差分法获取运动目标区域,采用跟踪链实现运动目标跟踪,根据行人运动的先验知识在运动目标中检测行人。算法已嵌入到交通信息采集系统中,在高速公路上进行的现场测试结果表明,算法具有较好的实时性和实效性。 关键词:行人检测;视频检测;运动检测;目标跟踪! "

视频采集的过程

视频采集的过程 视频采集的主要工作包括了以下过程: (一)数据收集阶段。 本阶段是通过数据收集设备(如光源、镜头、摄像、电视设备、云台等)将视频数据进行收集工作。在收集过程中,在收集工作中,一方面摄像设施将需要收集的数据通过光信号的形式进行收集,接下来通过光电传感的方式,对收集来的光信号转换为电信号,完成视频数据采集的转换。 在数据收集阶段,一件重要的器材是图像传感器。视频数据采集系统通过收集设备将视频信号进行收集,同时通过传感系统的图像传感器将光源信号转化为电信号。现在我们经常采用的图像传感技术主要采用CCD和CMOS两种技术系统。这种将光源信号转化为电子信号的过程是这一阶段的主要工作。 在摄像技术中另一个重要的器材是摄像镜头。摄像镜头是由透镜和光组成的光学设备。它是摄像设备光信号的采集来源,所以在数据收集阶段的初步采集工作中,镜头的好坏直接影响到采集到的视频数据是否清晰、完整。 同时在数据收集工作中云台的作用也很重要。云台主要是指在摄像过程中安装、固定摄像设备,为摄像设备提供推来、挪移等运动的机械设备。它的主要作用是扩大摄像设备的监控范围。 (二)数据传输阶段。

在数据收集完成后,转化为电信号的数据通过数据传输阶段。数据传输设备决定了视频数据采集系统的组网方式和范围。在传统的数据传输工作中,多采用同轴电缆传输基带信号技术和光纤传输技术为主的有线传输技术。但随着无线网络、流媒体技术等新技术的出现,无线连接的数据传输技术的使用越来越广泛起来。流媒体技术包括流媒体编解码技术、流媒体服务器技术、端到端流媒体技术和流媒体系统技术。简单地说就是利用视频编码器,它可以把视频信号压缩编码为IP流,在另一端有一个叫视频解码器的设备,可以还原视频信号。通过无线网络的发展,视频数据的传输范围越来越广泛。这种传输技术的出现对于视频数据采集技术的发展是很有帮助的。它加大了传输数据的传输距离,减少了传输成本。 (三)数据收集整理阶段。 视频数据经过传输进入收集整理阶段。在这个阶段,视频数据经过处理并进行保存。因为视频数据的特殊性,所以收集到的视频数据在进入收集系统后,还要经过再次的整理。同时因为采集的数据有时还需要有一定的保存时间。所以数据还要有一定的保存手段。在传统的视频采集系统中,往往采用的是录像设备存储、录像带保存的方式。随着计算机技术的发展,视频处理和自动保存技术越来越先进。数据采集工作中采集来的电子模拟信号经过二次处理,转化为电子信号,去除噪音等干扰信号,同时利用数字技术进行保存,保存时间更长,也不会出现失真等现象。另外在某些采集系统中,采用的是实时监控

视频采集系统功能手册

关于建筑工地DS-9000视频采集系统操作介绍

(一)建筑工地监控主要操作功能介绍: 本地监控: a.1/4/6/8/9/16画面预览,预览通道顺序可调 b.预览分组切换、手动切换、或自动轮巡预览,自动轮巡周期可 设置 c.预览电子放大 d.屏蔽指定的预览通道 e.视频移动侦测、视频丢失检测、视频遮档检测、视频输入异常 检测 f.视频隐私遮盖 g.云台控制、预置点、巡航、轨迹设置、3D跟踪控制 录像与回放设置: a.录像触发:手动、定时、报警、移动侦测报等 b.按事件(报警输入、移动侦测、智能报警)查询录像文件 c.按通道号、录像类型、文件类型、起止时间等条件进行录像资 料的检索和回放 d.录像文件倒放、暂停、快放、慢放、前跳、后跳鼠标拖动定位 e.同步回放 资料备份: https://www.doczj.com/doc/9217829872.html,B 、eSATA盘进行备份 b.按文件进行批量备份 c.回放时进行剪辑备份 d.报警与异常管理: e.统一管理设备与IP通道的视频遮挡报警、视频移动侦测、视 频丢失报警 f.各种报警可触发弹出报警画面、声音警告等 g.系统运行异常时自恢复 其它功能: a.三级权限用户管理,管理员可创建多个操作用户并设定其权限,

权限可细化到通道 权限说明 “本地配置” 本地查看日志:查看系统的日志、系统信息。 本地参数设置:设置参数、恢复默认参数、导入/导出参数。 本地通道管理:可以“启用”/“禁用”模拟通道,增加/删除IP通道。 本地高级管理:可以进行硬盘管理(初始化、设置硬盘属性)、升级系统程序、清除IO报警输出。 本地关机/重启:可以进行重启/关机操作。 “远程配置” 远程查看日志:远程查看记录在硬盘录像机上的日志。 远程参数设置:远程设置参数、恢复默认参数、导入/导出参数。 远程通道管理:远程“启用”/“禁用“模拟通道,增加/删除IP通道。 远程控制串口:建立透明通道,发送/接收RS232/RS485端口的数据。 远程控制本地输出:可以发送远程按键。 语音对讲:可发起对硬盘录像机的语音对讲。 远程请求报警上传、报警输出:远程可以布防(即要求将报警/异常状态发送给远程客户端)和控制设备报警输出。 远程高级管理:远程进行硬盘管理(初始化、设置硬盘属性)、升级系统程序、清除IO报警输出。 远程关机/重启:远程进行重启/关机操作。 “通道配置” 远程预览:远程预览各通道的现场画面,此权限细化到每一个通道。 本地手动录像:本地手动启动/停止录像,此权限细化到每一个通道。 远程手动录像:远程手动启动/停止录像,此权限细化到每一个通道。 本地回放:本地回放硬盘录像机上记录的录像文件,此权限细化到每一个通道。 远程回放:远程回放、下载硬盘录像机上记录的录像文件,此权限细化到每一个通道。 本地云台控制:本地控制云台,此权限细化到每一个通道。 远程云台控制:远程控制云台,此权限细化到每一个通道。 本地备份:本地备份硬盘录像机上记录的录像文件,此权限细化到每一个通道。具有本地备份权限的通道一定具有本地回放权限。 b.完备的操作、报警、异常及信息日志记录和检索 客户端应用网络功能: a.分级用户管理(二级),管理员可创建多个操作用户并设定其 权限,权限可细化到通道 权限说明: 1)网络预览——权限可细化到通道 2)云镜控制——权限可细化到通道 3)视频调节——权限可细化到通道

无线视频监控系统详解

无线视频监控系统详解

无线视频监控系统详解 《自动化测试趋势展望2013》国防与航空航天应用解决方案与产品选型指? NI CompactRIO开发者指南? LabVIEW 2012评估版软件 无线视频监控典型部署方式 一般在无线网状网覆盖区域架设支持WLAN接入的无线视频前端设备(如支持WLAN的IP摄像机或IP视频服务器加模拟摄像机),然后通过无线网状网将采集的IP视频信号回传到网络中心的监控处理平台。通常在网络中心配置支持多通道的网络视频录像机和大容量的存储系统,用于监控视频录像和存储,同时为一个或多个网络监控终端提供实时的监控图像,还可通过安全的网络连接(如VPN),从远端视频监控终端上实现远程监控和管理。 以下是目前在无线监控网络中应用的典型IP视频系统单元。 *IP摄像机 IP摄像机为集成模拟视频图像采集和视频图像数字化处理功能的一体化视频前端设备。它可以将模拟的视频信号按照标准格式转换成数字信号,并直接提供IP网络接口。通过WLAN无线桥接器可以很方便地将IP摄像机变成支持无线传输的无线视频前端设备。 *IP视频服务器 IP视频服务器通常用于连接模拟摄像机,它可以将模拟的视频信号按照标准格式(普遍采用M-JPEG或MPEG4)转换成数字信号,并直接提供IP网络接口。通过WLAN无线桥接器也可很方便地将IP视频服务器变成支持无线传输的无线视频前端设备。 采用IP视频服务器方式,用户可以自由地选择模拟摄像机的类型。可以根据自己的需要,购买价格和性能不同的模拟摄像机,从而满足个性化的要求。 *WLAN无线桥接器 WLAN无线桥接器可以为具有有线网络接口的IP视频设备提供无线局域网接口的转换,为其扩展无线网络传输的能力。WLAN无线桥接器通常应支持以太网接口到802.11b/g无线局域网接口的转换,可满足长时间的无故障工作(其平

卫星传输远程视频监控系统方案

卫星传输远程视频监控系统方案 1.概述 所属矿山分别搭建iPSTAR双向站,在公司总部建立监控中心,通过北京iPSTAR关口站,基于卫星网络和互联网络构建视频监控网络。 网络拓扑结构为星型网,以关口站为中心辐射全国,远端站到关口站是卫星一跳。 系统拓扑图如下: 2.部署方案 远端站 双向远端站搭建在煤矿现场需要进行远程监控的地点,主要设备包括: iPSTAR双向天线 iPSTAR室外单元(包括功率放大器、低噪声变频放大器、L波段电缆等) iPSTAR室内单元(iPSTAR终端,具备一个Ethernet接口) HUB(将iPSTAR的Ethernet接口从一个扩展至多个) 视频服务器(将视频数据转换成编码,以IP格式封装转发给iPSTAR室内单元) 摄像机、镜头、云台、云台解码器等 可根需要据配置音响和麦克一套,用来与中心站语音交流 视频服务器具体参数参见《产品展示》--“IP网络视频产品”。 典型配置如下图: 监控中心 中心站搭建在煤炭公司,主要设备包括: 计算机服务器1台(高端配置计算机也可以) 交换机 软件防火墙 也可以上监视大屏,可以考虑根据投资情况考虑 3.实现功能 电子地图 系统支持电子地图访问,以空间数据库为基础,将应用数据与地图有机结合,提供强大的空间分析和查询功能,丰富的表达方式直观地显示结果。 分层结构管理

本系统采用多级用户管理和分级授权访问的机制。用户分成两类,一类是系统管理员,拥有系统级权限,可以添加、删除和修改用户,进行用户的分配和管理,可以对系统进行安装、配置和检查,保障整个系统的正常运行;另一类是操作用户,在操作用户中设置权限,用户根据权限执行相应的监控范围。 现场的实时视频监控和采集 通过配置高质量的紅外线摄像机,对监控点的监控达到在正常光照条件或夜间光照条件较差甚至是0照度的情况下仍能进行高质量的视频采集以及音频的实时采集。 对关键区域进行24小时全天候监控,现场画面实时显示在本地和监控中心的屏幕上。 发生报警后,联动前端镜头对报警区域进行实时监视。 监视区域内图像的动态变化,检测监视区域内的物体运动。 监控信息的存储和备份 前端摄像的音视频信号经过模数转换,编码压缩,传送到监控中心的中心管理服务器,经视频解码器解码后,给硬盘录像机,录制的文件方式保存在硬盘中,支持长时间连续不间断的录制和存储。 报警信息的采集和联动管理 可以管理报警器的输入节点。当前端有报警发生时,在监控中心,系统会以声音方式通知值班人员,并在监控软件上弹出报警摄像机画面。系统具有同时处理多任务能力,对于多个地方的同时报警情况也可以及时处理。 全方位云台及周边设备的与控制 远程监控系统可对摄像机镜头进行光圈、焦距、景深距离的控制操作,不仅对云台可做全方位控制,而且可以对模拟量、开关量进行实时准确的探测,并做出相应的反应。 现场指挥 挥可以利用监控终端与现场进行实时双向语音对讲,将现场图像转发到指定的分控点,以实现共同分析、决策的实战需求。 设备在线管理 对编码器、转发服务器等关键设备提供注册、检测的管理能力,凭借系统强大的网络管理能力,系统能直观、方便地检测设备和线路的工作状态。

相关主题
文本预览
相关文档 最新文档