Article Submitted to European Journal of Combinatorics Neighbourhood Graphs of Cayley Graph
- 格式:pdf
- 大小:154.85 KB
- 文档页数:10
欧洲心脏杂志审稿流程
欧洲心脏杂志(EuropeanHeartJournal)是一份高质量的心脏病学杂志,其审稿流程严谨、系统。
一般来说,文章需要经过以下步骤: 1. 投稿:作者可通过杂志的在线投稿系统提交文章,并填写相关信息。
2. 编辑初审:杂志的编辑会对文章进行初步筛选,主要考虑其研究领域是否符合杂志的发表范围和质量要求。
3. 外审:如果文章通过初审,杂志将会邀请2-3位与研究领域相关的专家对文章进行评审。
他们会对文章的科学性、方法学、结果分析等进行严格的检查,并提出修改建议。
4. 内审:根据外审专家的意见,杂志的编辑将对文章进行内部评审。
他们将会综合考虑专家意见、文章质量和杂志的发表需求,最终确定文章的接受或拒绝。
5. 修改:如果文章被要求修改,作者需要根据外审专家和编辑的建议进行修改,并在规定的时间内重新提交。
6. 终审:编辑将对修改后的文章进行最后的审核。
如果文章达到了杂志的质量标准,将被录用并发表于杂志上。
总的来说,欧洲心脏杂志的审稿流程非常严格,以确保发表的文章具有高质量和科学价值。
- 1 -。
《欧洲政治经济学杂志》(European Journal of Political Economy)是政治经济学领域的学术期刊,致力于发表高质量的学术论文,涵盖了政治经济学、国际政治经济学、发展政治经济学等方面的研究。
如果您想向该杂志投稿,首先需要了解该杂志的投稿要求和审稿流程。
您可以通过访问该杂志的官方网站或联系编辑部了解更多信息。
在投稿前,您需要仔细阅读投稿指南,确保您的稿件符合该杂志的要求和格式。
一般来说,政治经济学领域的学术期刊对论文的质量和学术性要求较高,因此您需要确保您的论文具有创新性、严谨性和实用性。
此外,您还需要注意论文的语言表达和逻辑性,以确保论文易于被读者理解和接受。
如果您想提高投稿的成功率,可以考虑以下几点建议:
1. 仔细阅读投稿指南,确保您的稿件符合要求。
2. 选择合适的学术期刊,避免向不相关或质量不高的期刊投稿。
3. 确保您的论文具有高质量和学术性,符合期刊的发表标准。
4. 在提交稿件之前,仔细检查论文的语言表达和格式是否符合要求。
5. 如果可能的话,可以寻求同行专家的意见和建议,以提高论文的质量和可读性。
总之,向《欧洲政治经济学杂志》投稿需要仔细准备和耐心等候。
如果您能够按照投稿指南的要求准备和提交稿件,并确保论文的质量和学术性,您就有可能成功发表您的研究成果。
european journal of integrative medicine投稿指南1. 引言1.1 概述引言部分是文章的开端,旨在向读者介绍研究的背景、目的和重要性。
本研究为了投稿到《European Journal of Integrative Medicine》,主要探讨某一特定领域或课题的内涵和关联。
本篇长文将集中讨论综合医学在该领域中的应用价值,并对其未来发展提出展望。
1.2 文章结构为了使读者能够更好地理解本篇长文的逻辑和内容,下面将简要介绍文章的结构。
文章分为五个主要部分:引言、正文、结果与讨论、应用与推广价值以及结论与展望。
在引言中,我们将阐明研究的背景和目标,介绍文章结构,并说明本研究对该领域发展的重要性。
在正文中,我们将首先回顾该领域相关研究的现状,并从中确定当前存在的问题或知识空白。
接着,我们将详细描述本篇研究所采用的方法和实验设计,包括数据收集、样本选择等。
结果与讨论部分将展示实验结果,并对其进行解读和讨论。
我们还会注意到本研究的创新点和局限性,为读者提供一个全面而客观的分析。
应用与推广价值部分将探讨综合医学在实践中的应用前景,并对其推广潜力进行评估。
我们还将给出对现有实践的启示和建议,以促进该领域的发展。
最后,在结论与展望部分,我们将总结本研究的主要发现,并指出存在的问题和未来改进方向。
同时,我们还会强调该研究对研究领域未来发展的意义和启示。
1.3 目的本篇长文旨在阐明综合医学在特定领域中的应用价值,并为该领域相关研究提供建议和启示。
通过深入探讨当前相关研究状态、方法与实验设计、结果解读及其创新点和局限性等方面,希望通过本研究能够促进综合医学在该领域中的发展,并为未来相关研究提供有益参考。
2. 正文:2.1 研究背景:在这一节中,我们将介绍本研究的背景和相关领域的现有研究成果。
首先,我们将概述整合医学的定义和发展背景,包括其在欧洲以及全球范围内的重要性和应用情况。
此外,我们还将讨论整合医学领域目前存在的一些挑战和问题,并提出本研究旨在解决的具体问题。
european journal of psychology of education 投稿经验在我的学术生涯中,我有幸在《European Journal of Psychology of Education》(欧洲教育心理学杂志)上发表了一篇关于学校中教师工作满意度的研究论文。
通过这个经历,我收获了许多宝贵的经验和教训,周围的同事也给予了我很多支持和帮助。
首先,对于有意向投稿到这样一本高质量的学术期刊,准备工作是至关重要的。
首先,我花了很多时间了解该期刊的主题和研究领域,并仔细阅读了一些已发表的论文。
这帮助我理解了期刊的定位和要求,也为我后续的研究和写作提供了灵感。
同时,我还研究了该期刊的发行周期和投稿流程,以便尽早开始准备我的稿件。
在准备稿件的过程中,我注意到了一些重要的要素。
首先是研究问题的选择。
我选择了一个具有实际意义的题目,即教师工作满意度。
这个问题在教育领域中是非常重要的,并有很多研究可以为我提供参考。
然后,我进行了一系列的文献综述,以便了解目前已有的研究成果和观点。
通过对现有文献的深入研究,我能够为我的论文提供一个坚实的理论基础。
接下来,我设计了一个合适的研究方法来回答我的研究问题。
我采用了问卷调查的方法,结合了定量和定性数据的收集和分析。
我花了很多时间来编写和验证问卷,以确保它能够准确地测量教师的工作满意度。
然后,我在一所学校中进行了实地调查,并对收集到的数据进行了统计分析和质性分析。
在写作过程中,我注意到了一些关键的考虑因素。
首先是论文的结构和逻辑。
我确保我的论文有一个清晰的组织结构,包括导言、方法、结果和讨论等部分。
这样可以使读者更容易理解我的研究和研究结果。
此外,我还特别关注了我的写作风格和语言表达。
我尽量用简洁明了的语言来表达我的观点和研究结果,避免使用复杂的术语和过于冗长的句子。
最后,我在投稿之前请了几位同事和导师对我的论文进行了仔细的审阅和反馈。
他们提出了一些建设性的建议,帮助我改进我的论文并提高其质量。
Eur.Phys.J.B9,725–730(1999)Mean magneticfield and noise cross-correlationin magnetohydrodynamic turbulence:results from a one-dimensional modelA.Basu1,a,J.K.Bhattacharjee2,and S.Ramaswamy1,b1Department of Physics,Indian Institute of Science,Bangalore560012,India2Indian Association for the Cultivation of Science,Calcutta700032,IndiaReceived29October1998and Received infinal form8December1998Abstract.We show that a recently proposed[J.Fleischer,P.H.Diamond,Phys.Rev.E58,R2709(1998)] one-dimensional Burgers-like model for magnetohydrodynamics(MHD)is in effect identical to existing models for drifting lines and sedimenting lattices.We use the model to demonstrate,contrary to claims in the literature,that the energy spectrum of MHD turbulence should be independent of mean magneticfield and that cross-correlations between the noise sources for the velocity and magneticfields cannot change the structure of the equations under renormalisation.We comment on the scaling and the multiscaling properties of the stochastically forced version of the model.PACS.47.27.Gs Isotropic turbulence;homogeneous turbulence–05.40.-a Fluctuation phenomena,random processes,noise,and Brownian motion–47.65.+a Magnetohydrodynamics and electrohydrodynamics1Introduction and resultsThe search for simple model equations embodying someof the features offluid turbulence prompted Burgers topropose his famous nonlinear diffusion equation[1]∂u∂x u=ν0∂2u∂t +u·∇u=−∇p4πρ+ν∇2u+f u(2)with∇·u=0;and Amp`e re’s law for a conductingfluid becomes∂Ba e-mail:abhik@physics.iisc.ernet.inb Also at Jawaharlal Nehru Centre for Advanced Scientific Research,Bangalore560064India.In(2)and(3),ρis thefluid density,p is the pressure,µis the“magnetic viscosity”,arising from the nonzero re-sistivity of the plasma,νis the kinematic viscosity andf u and f b are forcing functions.Since the MHD equations are distinctly more complicated than the Navier-Stokesequation,a toy model,whose relation to the MHD equa-tions is the same as that of the Burgers equation to the Navier-Stokes equation,should be very welcome.Thefirst attempt in this direction[5]lacked cross-helicity conservation.The1d model with all the scalarconservation laws of3dMHD is that due to Fleischer and Diamond[6].Their equations,however,have been in theliterature for some time now in a different context.Forthe case where the mean magneticfield b0=0,the equa-tions are those of the Erta¸s-Kardar[7]model of drifting lines.For the general case b0=0,they are the coupled equations,for the displacements along and normal to thedrift direction,of the one-dimensional reduced model ofLahiri and Ramaswamy[8]for a crystalline lattice mov-ing through a dissipative medium.This surprising relation arises from an exact correspondence between the symme-tries of these equations and those of the1dMHD equations [6]with and without b0=0.The relation between the ve-locity and magneticfields in[6]and the displacementfields in[7,8]is precisely the same as that between the height in the KPZ equation[9]and the velocity in(1).Reduced models are useful if they allow one to an-swer a question of principle.We use the1dMHD modelto show that the form of the energy spectrum in MHDwith a mean magneticfield should be the same as that726The European Physical Journal B without one,contrary to a claim by Kraichnan[10].Wealso explore the scaling and multiscaling properties of themodel equations in the presence of stochastic forcing.Fora temporally white noise source with variance∝k−y+3at small wavenumbers k,wefind“sweeping”divergencesfor y≥3and,within perturbative and renormalisation-group analyses,we show that the effective kinematic andmagnetic viscosities are equal at long wavelengths.Specif-ically for y=4,as is appropriate[2,3]for a study of1dturbulence,wefind within a scaling treatment that the en-ergy spectrum E(k)∼k−5/3and the dynamic exponentz=2/3.We show also that the multiscaling properties ofthe model should be precisely the same as that of a Burg-ers equation with the same driving[3].Lastly,we correcta claim[11]in the literature regarding the role of cross-correlations between the noise sources in the velocity andmagnetic-field equations.2Symmetries,equations of motion,and noisestatisticsLet us remind the reader of the“derivation”of the1dMHD equations[6]emphasising some points which wefeel are important and are missing in reference[6].Thestructure of the1d model is determined by the invariancesof the MHD equations.(i)The velocity and magneticfieldsare polar and axial vectors respectively.For a model inone space dimension with one-componentfields u(x)forthe velocity and b(x)for the magneticfield this impliesevolution equations which are invariant under x→−xtogether with u→−u,with b→b.(ii)The MHDequations are Galileian-invariant,so our1d model mustbe unchanged under x=x +u0t ,t=t ,u(x,t)=u (x ,t )+u0,b(x,t)=b (x ,t )for any constant u0.(iii)The1d equations,like the3d originals,must have the “conservation law”form∂t()=∇.().(iv)The equations,in the absence of the diffusion terms,must conserve the“energy”E≡(u2+βb2)d x(4)for some constantβ.To leading orders in gradients and bilinear order infields,the most general1dMHD model consistent with these requirements[6]is1∂u∂x +λ1u∂u∂x=ν0∂2u∂t +λ1b0∂∂x(ub)=µ0∂2b1The choice of bookkeeping coefficients in the equations as presented in[6]seems unnatural to us.Galileian invariance requires equality of the coefficients of u∂x u and∂x(ub),while that of b∂x b can be left entirely arbitrary.drifting lines when b0=0,and those of Lahiri and Ra-maswamy[8]for sedimenting lattices when b0=0.This transformation of variables is the same as that which takes one from the Burgers equation to the KPZ[9]equation.In(5),the constant b0is the“mean magneticfield”,νandµare the kinematic and magnetic viscosities,and f u and f b are forcing functions.λ1can always be rescaled to unity but is retained for book-keeping purposes.λ2is arbitrary,and all statements made in this paper hold inde-pendent of its value[6].It is straightforward to show that the equations,in the absence of the diffusion terms,con-serve the energy-like quantity E defined in equation(4), forβ=λ2/λ1,as well asxub,the analogue in d=1of the cross helicity(xu·B)[4],and that the model of[5] does not conserve the latter.A third conserved quantity, the magnetic helicityA·B,where A is the vector poten-tial,has no analogue in d=1.It is important to note that for b0=0the equations have a higher symmetry than for b0=0.For both b0=0and b0=0,they are of course invariant under x→−x,u→−u,b→b,as imposed by the transformation properties of thefields.For b0=0, they are in addition invariant under x→−x,u→−u, b→−b.Forλ1λ2>0,in the linear approximation at small wavenumber k,as discussed in[8],the equations(5) have a wavelike response with frequencyω=±|k|(7) so that the noise strength u has the units of the dissipa-tion parameter,i.e.(length)2/(time)3. f u f b and f b f b can be taken to be zero or at any rate no more singular than f u f u without altering any of our main conclusions.A self-consistent treatment starting with only a nonzero f u f u will generate f u f b and f b f b as well.In that sense,contrary to the statements in[6],the case where only one of the equations has a bare noise is not physi-cally distinct from that where both noises are non-zero.A.Basu et al.:Mean magneticfield and noise cross-correlation in1dMHD turbulence727 For convenience in carrying out bare perturbation theory,however,we take all components of the noise covarianceto be as singular as f u f u :A b(|k|)=bk·(9)Note that it is1/k and not1/|k|that appears on the right-hand side of(9).We now use the reduced equations(5)toobtain the results advertised in the introduction.3Energy spectrum and the role of a meanmagneticfieldDoes the presence of a mean magneticfield b0affect theenergy spectrum E(k)at wavenumber k in MHD turbu-lence?It has been argued[10]that if b0=0then(i)the dissipation must be proportional to the Alfv´e n wavepropagation time1/ck,where c is the wavespeed;(ii)must depend,apart from this,only on k and E(k);and(iii)as a result of energy conservation and a local-cascadepicture, must be independent of k.Taken together,theseimply[10]that E(k)∼k−3/2,while for b0=0the usualKolmogorov arguments yield k−5/3.The questionable assumption in the foregoing analysisis that the wave-propagation time sets the scale for thedynamics.In what follows,we test that assumption in the1dMHD(5)model since the above arguments,if correct,should apply there as well.We show below explicitly thatthe presence of a nonzero wavespeed leaves the equal-timecorrelations unchanged at small k.We begin by rescalingλ1u→u and rewriting(5)in terms of the Els¨a sser[14]variablesz±=u±√√∂t −√2∂x z+2=D∂xx z++...+f+;(11a)∂z−λ2b0∂x z−+11+λ2λ2f b 1+λ2,(12)λ2b0t,and x→x+√1+λ21+λ2λ2(z+−z−)(14)we see thatu(k,t)u(−k,0) =1+λ24λ2[ z+(k,t)z+(−k,t)+ z−(k,t)z−(−k,t)−2Re( z+(k,t)z−(−k,0) )](16)andu(k,t)b(−k,0) =1+λ2λ2[ z+(k,t)z+(−k,t)− z−(k,t)z−(−k,t)−2Im( z+(k,t)z−(−k,0) )].(17)Let us define shifted coordinatesy±=x∓λ2b0t,t)=z±(x,t).(19)Then,Fourier transforming and definingc=728The European Physical Journal B while that between z+and z−has a phase factor whichdepends on the sum of the time arguments3:z+(k,t)z−(k ,t ) =e−ikc(t+t ) ζ+(k,t)ζ−(k ,t ) .(23)Defining˜λ≡√2,(24)we see that thefieldsζ±obey the Burgers equation ∂tζ±+˜λd k2d k 2d k3This apparent nonstationarity is of course cancelled by cor-responding terms in ζ+ζ− are not relevant.This is justified by the numerical results of[3]where it is shown that,although higher-order cor-relations obey multiscaling,the scaling of two-point cor-relations agrees perfectly with that obtained by arguing that the vertex does not renormalise.In that case,the renormalised z+(k)z−(−k) correlation function can be written in terms of the renormalised propagator G(k,t)of the randomly-forced Burgers equation(25)and the(renor-malised,in principle)correlator N+−(k,t)of f+(k,t)with f−(−k,0)with appropriate phase factors arising from the change of variables(18):z+(k,t)z−(k ,t ) =e−ikct+ik ct δ(k+k )×t−∞d t1t−∞d t2G(k,t−t1)N+−(k,t1−t2)×e ick(t1+t2)G(−k,t −t2)(32)≡S+−(k,t−t )δ(k+k ).(33) Redefining t−t1→t1,t −t2→t2,we obtain the equal-time correlationsS+−(k)=∞d t1∞d t2G(k,t1)G(−k,t2)×e ikc(t1+t2)N+−(k,t2−t1).(34) Scaling tells us thatG(k,t)=Γ(k z t)(35) andN+−(k,t)=k z R+−(k)ΓN(k z t)(36) where z is the dynamic exponent for equations(25),i.e., without the wave terms,ΓandΓN are scaling functions, and R+−(k)is the zero-frequency renormalised covariance of f+and f−.Definingτ1=k z t1andτ2=k z t2,we see thatS+−(k)=R+−(k)∞dτ1∞dτ2Γ(τ1)Γ(τ2)×ΓN(τ1−τ2)e i(τ1+τ2)ck1−z.(37) Since the dynamic exponent governing the decay of corre-lations in the Burgers equation with noise variance∼1/k is known[3,2]to be2/3,the phase factor inside the inte-gral(37)for small k can be set to unity,i.e.,the wavespeed term drops out.This completes the demonstration that equal-time correlations in MHD turbulence are indepen-dent of the mean magneticfield4.A.Basu et al.:Mean magneticfield and noise cross-correlation in1dMHD turbulence7294Scaling,renormalisation groupand self-consistent analysesfor zero mean magneticfieldSome general observations will allow us to estimate the scaling exponents for this1dMHD model.First the Galileian invariance mentioned before implies thatλ1 will not renormalise.Secondly,the fact that b0can be eliminated completely from equation(10)to give equa-tions(25)by the transformations x→x±ct means that c≡√5This is another point of similarity with3dMHD:In terms of the Els¨a sser[14]variables z±,the nonlinearity in the3dMHD equation for z+is z−·∇z+,and that in the equation for z−is z+·∇z−.The equations in this form have the Galileian invari-ance z±→z±+u0,r→r−u0t for any constant vector u0, where r is the position coordinate.This guarantees that all the vertices in3dMHD are unaffected byfluctuation-corrections at zero wavenumber.the behaviour of the Els¨a sserfields in a shell model of 3dMHD[15].In Section3our decoupling of z+and z−required µ=ν.For b0=0,we showed that terms involvingµ−νwere subdominant to the b0terms.Since the same argu-ments cannot be made for b0=0,we have carried out a dynamic renormalisation group treatment in the absence of a mean magneticfield,following the momentum shell approach of[16,17].In our treatment we allow for inde-pendent coupling termsλ1u∂x u,andλ2b∂x b in the u equa-tion andλ3∂x(ub)in the b equation.We assume,as in the scaling argument above,that there is no diagramatic cor-rection to the noise strength,and we choose the rescaling so that the noise strength remainsfixed.For simplicity we ignore the cross-correlation f u f b .The resulting re-cursion relations have a stablefixed point at whichµ=ν. This allows us to work withµ=ν,and hence to use the decoupled description even when b0=0.We have also carried out a one-loop self-consistent treatment of a slight generalisation of equations(5)and (6)with A u(|k|)∼D1k−y+3,A b(|k|)∼D2k−s+3and kC(|k|)=0.Ignoring noise and vertex renormalisations, wefind that thefluctuation correctionsΣu(k)andΣb(k) at zero frequency forνandµrespectively obey:Σu(k)=d pp2Σu(p)[p2Σu(p)+(k−p)2Σu(k−p)](40)+D2p−s+32πD1p−y+3p2Σb(p)[p2Σu(p)+(k−p)2Σu(k−p)].(43) If we seek a solution of the formΣu=Γu k x1andΣb=Γb k x2wefind consistency requires x1=x2=y/3=s/3 andΓu=Γb,i.e.,that the scale-dependent kinematic and magnetic viscosities are identical at small k.The sin-gularities of the one-loop integral depend strongly upon y.For y≥3,these integrals diverge even when the ex-ternal wavenumber k=0(the“sweeping divergence”[18,19]).For y near0,on the other hands,onefinds Σu(k)∼Σb(k)∼k−y/3.These singularity structures are very similar to those seen in a self-consistent treatment of the randomly stirred Navier-Stokes equations.A technical clarification may be of some interest here. In carrying out the perturbation theory with b0=0,care must be taken to ensure that the condition b =0is maintained order by order.If ikC(|k|)=0,i.e.,there are cross correlations in the noise sources in equations(5),and µ=ν,then the perturbation theory generates an apparent730The European Physical Journal Bnon-zero b and an apparent Alfv´e n wave speed.Including a counterterm to cancel the spurious b automatically ensures the absence of Alfv´e n waves at b0=0.At the RG fixed point discussed above,whereµ=ν,this issue clearly does not arise.Ourfinal point concerns the assertion[11]that the in-troduction of a nonzero cross-correlation f u f b in3dMHD generates,under renormalisation,dissipative terms of the form∇2B in the equation for u and∇2u in the equa-tion for B.If this were true,the renormalised equations of motion would lack the symmetry properties enjoined on them by the fact that B and v are a pseudovector and a vector respectively.Unsurprisingly,a straightforward per-turbative analysis offluctuation corrections arising from the nonlinearities in(5)rules out any such anomaly.As long as the statistics of the noise sources are as in(6a) and(6c),so that the transformation properties of v and b are respected,no such terms are generated.It is clear that the error in[11]arose because their cross-correlation f u(k)f b(−k) was real and even in wavevector,which is simply not consistent with the nature of thefields in the problem.Such a cross-correlation will in fact generate not only the terms mentioned above but terms like∂x(ub)in the u equation and∂x(u2)and∂x(b2)in the b equation as well.The resulting system will have only the invari-ance x→−x,u→−u,b→−b,which has nothing to do with the intrinsic transformation properties of the physi-calfields.5SummaryWe have shown that a recently proposed[6]Burgers-like one-dimensional model for magnetohydrodynamics (1dMHD)is completely equivalent,through a simple transformation,to existing equations in the literature [7,8].We have obtained several new results from these 1dMHD equations.The most important of these,which should apply to3dMHD as well,is that the energy spectrum is unaffected by the presence of a mean mag-neticfield.Apart from this,we have presented scaling, renormalisation-group and self-consistent analyses of the large-distance,long-time behaviour of correlation functions in the model,and provided arguments for the existence of multiscaling therein when the forcing func-tions have singular small-wavenumber stly,we have corrected an erroneous claim[11]regarding the effect of cross-correlations between the forcing functions in the velocity and the magneticfield equations.We thank Rahul Pandit for useful discussions and a critical reading of the manuscript.AB was supported by the Council for Scientific and Industrial Research,India.Note added in proofIt just came to our attention that thefirst appearance,in an MHD context,of the1d model equations used in our paper is:S.Yanase,Phys.Plasmas4,1010(1997).This predates Fleischer and Diamond(Ref.[6]). References1.J.M.Burgers,The Nonlinear Diffusion Equation(Reidel,Boston,1977).2. A.Cheklov,V.Yakhot,Phys.Rev.E52,5681(1995).3. F.Hayot,C.Jayaprakash,Phys.Rev.E54,4681(1996).4.For a review,see D.Montgomery in Lecture Notes on Tur-bulence,edited by J.R.Herring,J.C.McWilliam(World Scientific,Singapore,1989).5.J.H.Thomas,Phys.Fluids11,1245(1968).6.J.Fleischer,P.H.Diamond,Phys.Rev.E58,R2709(1998);this paper came to our notice after our work was complete,and while our manuscript was being typed.7. D.Erta¸s,M.Kardar,Phys.Rev.E48,1228(1993).hiri,S.Ramaswamy,Phys.Rev.Lett.79,1150(1997).9.M.Kardar,G.Parisi,Y.-C.Zhang,Phys.Rev.Lett.56,889(1986).10.R.H.Kraichnan,Phys.Fluids8,1385(1965).11.S.J.Camargo,H.Tusso,Phys.Fluids B4,1199(1992).12.De Dominicis,P.C.Martin,Phys.Rev.A19,419(1979).13.V.Yakhot,S.A.Orzag,Phys.Rev.Lett.57,1722(1986).14.W.M.Els¨a sser,Phys.Rev.79,183(1950).15. A.Basu,A.Sain,S.K.Dhar,R.Pandit,Phys.Rev.Lett.81,2687(1998).16.S.K.Ma,G.F.Mazenko,Phys.Rev.B11,4077(1975).17. D.Forster,D.R.Nelson,M.J.Stephen,Phys.Rev.A16,732(1977).18.J.K.Bhattacharjee,J.Phys. A.Math.Gen.21,L551(1988).19. C.-Y.Mou,P.B.Weichman,Phys.Rev.E52,3738(1995).。
ejor revision submitted to journal全文共四篇示例,供读者参考第一篇示例:The process of submitting a revision to a journal can be a daunting task for many academics. However, with the right information and strategies, this process can be smoother and more successful. In this article, we will discuss the steps involved in submitting a revision to the European Journal of Operational Research (EJOR), one of the leading journals in the field of operations research.Step 1: Addressing the reviewers' commentsStep 3: Formatting the paper第二篇示例:ejor (European Journal of Operational Research) 是一本著名的管理科学与运筹学期刊,为科研领域中的学者们提供了一个交流研究成果和观点的平台。
在学术界,发表在ejor上的文章往往被认为是高质量研究成果的体现。
提出文章revision给ejor期刊是许多学者梦寐以求的目标。
当一个研究者提交文章给ejor后,通常会经历一系列的修改和审查过程,以保证文章的质量和学术水平。
在这个过程中,编辑和审稿人会对作者提出一些修改意见,以帮助作者完善文章,提高其可接受性。
一旦作者接收了这些修改意见,就需要按照要求对文章进行修改,并重新提交给ejor。
European Journal of Cardio-Thoracic Surgery 投稿经验简介作为一位研究心胸外科的学者,投稿论文是提高学术声誉和知名度的重要途径之一。
在选择合适的期刊投稿时,欧洲心胸外科杂志(European Journal of Cardio-Thoracic Surgery,以下简称EJCTS)是一个备受推崇的选择。
本文将分享关于在EJCTS投稿的一些建议和经验。
1. 检查期刊的要求在投稿前,请仔细阅读EJCTS的官方网站上的投稿指南(Guidelines for Authors)。
这些指南将详细说明所需文件的格式、字数限制、参考文献格式等要求。
确保你的论文符合这些规定,以提高被接受的机会。
2. 准备好完整的论文在投稿前,确保你的论文是完整的。
这意味着你需要进行充分的研究、数据分析和结果解释。
保证你的论文具有逻辑性和一致性,并通过审校来消除拼写和语法错误。
3. 确定创新和原创性EJCTS非常重视创新性的论文。
确保你的研究有一定的独创性,并对该领域做出重要的贡献。
在引言和讨论部分中,清楚地描述你的研究与当前文献的联系和区别,并突出你的研究的新颖性。
4. 详细描述方法和结果EJCTS非常关注研究的方法和结果。
确保你的方法部分清晰地描述了研究的设计、数据收集和数据分析过程。
同时,用清晰的图表和表格来展示你的结果。
这样可以增强读者对你的研究的理解,并提高文章的可读性。
5. 合理安排讨论和结论在讨论部分,你需要详细解释你的研究结果,并与已有的文献进行比较和讨论。
提出新的观点和研究的局限性,并讨论对未来研究的启示。
结论部分应简洁明了,并强调你的研究对该领域的重要性。
6. 遵守引用规范在文章中,要准确引用已发表的研究结果,以显示你对该领域的了解和尊重。
确保引用格式符合EJCTS的要求,并使用规范的引用工具进行管理,例如EndNote或Zotero。
7. 仔细审阅和修改在投稿前,对你的论文进行仔细审阅和修改是非常重要的。
european journal of neurology投稿经验投稿经验:我很荣幸能在欧洲神经学杂志(European Journal of Neurology,EJN)发表我的研究成果。
在这篇文章中,我将分享一些我在投稿给欧洲神经学杂志时的经验和建议。
首先,我发现在准备投稿之前,仔细阅读欧洲神经学杂志的指南和要求是非常重要的。
这些指南通常可以在杂志的官方网站上找到。
仔细阅读这些指南将帮助您了解杂志对投稿的要求,以及写作和格式方面的细节。
确保您的研究符合这些要求。
其次,我推荐您在撰写论文时遵循科学写作的基本原则。
确保您的论文有一个清晰的结构,包括引言、方法、结果和讨论。
在这些部分中,逐步介绍您的研究问题、方法、结果和发现。
此外,确保您的论文具有逻辑连贯和易于理解的语言。
在撰写论文的同时,确保您的研究具有权威性和科学价值。
这意味着您的研究应该有一个明确定义的研究问题,并使用可靠的方法来回答这个问题。
此外,您的研究结果应该是可重复的,并且能够为神经学领域提供有价值的见解。
在投稿之前,我还建议您仔细检查您的论文以确保准确性和完整性。
请检查您的引用格式是否符合杂志的要求,并确保您引用了相关的研究文献。
此外,还应检查您的文本是否存在语法和拼写错误,并使用合适的科学术语。
最后,我还想提醒您,投稿接受与否可能需要一定时间。
欧洲神经学杂志的审稿过程可能需要数周甚至数个月的时间。
这是正常的,因为审稿人需要时间仔细审查您的研究并提出建议。
因此,您需要耐心等待反馈,并准备接受潜在的修改和改进。
总之,投稿给欧洲神经学杂志是一次令人激动和有挑战性的经历。
遵循杂志的指南,撰写具有科学价值和可读性的论文,并耐心等待反馈是至关重要的。
希望我的经验和建议对您投稿给欧洲神经学杂志有所帮助!。
european journal of integrative medicine投稿经验European Journal of Integrative Medicine投稿经验欢迎来到《European Journal of Integrative Medicine》投稿经验分享。
本文将为您介绍该期刊的投稿流程、注意事项以及一些建议,以帮助您成功发表您的研究成果。
1. 简介《European Journal of Integrative Medicine》是一本专注于整合医学领域的国际性期刊。
该期刊旨在促进不同医学领域之间的交流与合作,并提供一个平台来发布高质量的整合医学研究成果。
2. 投稿流程首先,您需要访问期刊的官方网站,详细了解投稿要求和指南。
在准备投稿之前,建议您仔细阅读期刊的主题范围,并确保您的研究内容符合该期刊的定位。
接下来,您需要准备好您的研究论文。
请确保您的论文结构合理、内容完整,并符合期刊的格式要求。
此外,确保您的研究方法和结果可靠,并提供充分的数据支持。
在投稿之前,您需要注册一个账户,并登录到期刊的在线投稿系统。
按照系统的指示,填写相关信息,上传您的论文和相关材料。
3. 注意事项在投稿过程中,您需要注意以下几点:- 语言要求:《European Journal of Integrative Medicine》只接受英文投稿。
请确保您的论文使用准确、流畅的英语撰写,并注意语法、拼写和标点符号的正确性。
- 原创性和道德要求:您的研究成果必须是原创的,并且不能同时提交给其他期刊。
此外,请确保您的研究符合伦理标准,并遵守相关的道德规范。
- 引用和参考文献:在您的论文中,应准确引用他人的研究成果,并列出完整的参考文献。
请确保引用格式符合期刊的要求,并仔细核对参考文献的准确性。
4. 投稿建议为了提高您的投稿成功率,以下是一些建议:- 研究内容与期刊主题契合:确保您的研究内容与整合医学领域相关,并与该期刊的主题范围相符。
Article Submitted to European Journal of CombinatoricsNeighbourhood Graphs of Cayley Graphs for Finitely-Generated GroupsMarkus Neuhauser∗11Institut de Math´e matiques,Universit´e de Neuchˆa tel,Rue Emile Argand11,2007Neuchˆa tel,SwitzerlandAbstractIn this short note the neighbourhood graph of a Cayley graph is consid-ered.It has as nodes a symmetric generating set of afinitely-generatedgroupΓ.Two nodes are connected by an edge if one is obtained fromthe other by multiplication on the right by one of the generators.Twonecessary conditions on the graphs are shown.One is a condition on thedegrees of the graph,the other concerns complete subgraphs.1.IntroductionLetΓbe afinitely-generated group.A symmetric generating set ofΓis a subset S ofΓwith1/∈S and s−1∈S for all s∈S such that S generates the groupΓ. The Cayley graph ofΓwith respect to S is the graph which has as vertices the elements ofΓand as edges(γ,γs)whereγ∈Γand s∈S,see for example [1]or[3].The induced subgraph of a graph on a subset of the vertices is the subgraph with all edges of the graph with both endpoints in the subset.The neighbourhood graph of a vertex is the induced subgraph on the neighbours of this vertex.For graphs with given neighbourhoods see[4].Let now S be afinite symmetric generating set of afinitely-generated groupΓ. The neighbourhood graph(S,K)of1∈Γof the Cayley graph ofΓwith respect to S with edges K will be investigated.One motivation for considering these graphs is provided by a theorem of˙Zuk stating that the groupΓhas Kazhdan’s property T if the graph is connected and the smallest positive eigenvalueλof a certain Laplacian on the graph(S,K)is strictly greater than1/2,see[6]. Here the problem is considered of whichfinite connected graphs can occur in this way as the neighbourhood graph of a Cayley graph for somefinitely-generated group.Two necessary conditions are given.Thefirst is a condition on ∗Supported by grant20-65060.01of the Swiss National Fund for Scientific Research1M.Neuhauser:Neighbourhood graphs of Cayley graphs 2the degrees N (s )=|{t ∈S :(s,t )∈K }|of the graph.It says that the number of nodes with a given odd number of neighbours is always even.Theorem 1.1:If n ≡1mod 2then |N −1({n })|≡0mod 2.Note that this is certainly stronger than the general fact thats ∈S N (s )=|K |≡0mod 2.The theorem excludes for example all of the following graphs from considera-tion.rr rrr r rr rr r rr r rr rr r r r rrdd d d r r rrr r rr rr rr r r rd d d d Graphs not fulfilling the degree condition for n =1The second condition sets up a correspondence between complete subgraphs and finite subgroups of Γcontained in S ∪{1}.Clearly a subgroup contained in S ∪{1}induces a complete subgraph of (S,K ).But also the following holds.Theorem 1.2:Let S be a finite symmetric generating set of Γ,c r the number of complete subgraphs with r nodes,and u r the number of subgroups of order r +1of Γcontained in S ∪{1}.Then c r =u r + mj =1p j k j for some k j ≥0where p 1,...,p m are the distinct primes dividing r +1.The cases r =1or 2yield the following observations:For r =1the theorem implies the obvious fact that the number u 1of elements of order 2is ≡c 1mod 2,where c 1=|S |.When r =2the number of elements of order 3is equal to 2u 2,and c 2=|K |/2,and the theorem implies c 2=u 2+3k 1,hence we obtain the following.Corollary 1.3:If n is the number of elements of order 3in S ,then |K |≡n mod 6.This excludes for example the graph with 3nodes and 2edges because in that case |K |=4while n ≤|S |=3.More examples like this are provided in Section 2.The appendix contains a list of all graphs with ≤5nodes and the associatedM.Neuhauser:Neighbourhood graphs of Cayley graphs3 groups and generating sets.Theorems1.1and1.2were used to exclude certaingraphs which have no such description.None of the infinite groups which appear in our list has Kazhdan’s property T.So if there exists a generating set of an infinitefinitely-generated group withKazhdan’s property T such that the theorem of˙Zuk can be applied it must havea set with≥6generators forming a connected graph.The smallest known graph of a generating set of an infinitefinitely-generatedgroup for which the theorem of˙Zuk establishes property T has14nodes.It isassociated with a so-called A2-group,see[2]and[6].The graph of generators is the incidence graph of points and lines of a projective plane over afinitefieldwith two elements.It is a pleasure to thank M.B.Bekka,P.de la Harpe,H.F¨u hr,and G.Schlicht-ing for their comments and suggestions,and the referee for suggestions,remarks,and the reference[4].Partialfinancial support from the Centre de Coop´e rationUniversitaire Franco-Bavarois is acknowledged.2.Consequences of Theorem1.2Starting with a given graph,the subgroups contained in S∪{1}are not knownif the graph is presumed to be associated with a group with a generating setS,however the last theorem gives lower bounds for the number of subgroups oforder r+1contained in S∪{1}.Corollary2.1:Let S be a generating set of a groupΓ,c r the number ofcomplete subgraphs of(S,K)with r nodes,and let v r be the smallest non-negativeinteger expressible in the form c r− m j=1p j k j where p1,...,p m are the distinct primes dividing r+1,and k1,...,k m are non-negative integers.Then there are at least v r subgroups of order r+1ofΓcontained in S∪{1}.In this way the minimum possible number of subgroups is determined fromthe complete subgraphs which must be contained in S∪{1}.If U1=U2are two subgroups contained in S∪{1}then|U1∩U2|is a proper divisor of at least one of|U1|and|U2|.Let d(u,v)=gcd(u,v)if u=v and d(u,v)=u/p where p is the smallest prime dividing u if u=v.Then|U1∩U2|≤d(|U1|,|U2|). Proposition2.2:Let S be a symmetric generating set of a groupΓsuch that S∪{1}contains pairwise distinctfinite subgroups U1,...,U n ofΓof order|U k|≥2for all1≤k≤n,then|S|≥nk=1|U k|+n(n−3)2−nj=2j−1k=1d(|U j|,|U k|).This is easy to prove by induction using the fact|S|≥| n k=1U k|−1.M.Neuhauser:Neighbourhood graphs of Cayley graphs 4The proposition is also true with d (|U j |,|U k |)replaced by |U j ∩U k |.This quantity,however,is usually not known for a given graph.The corollary gives only the orders of U k for k =1,...,n ,where n = mr =1v r .Also note that the proposition is already true for n =1interpreting the second sum as 0.Together with the last corollary the proposition helps to exclude certain graphs which cannot be associated with generating sets of groups,such as the following.rr rr rrr r r r r rr r r rrrr rrrr r r r r d d d d r r r r r d d d dd d r r r r r d d d dd d Graphs not fulfilling the subgroup conditionTake for example the first graph in the second column.In this case c 1=4,c 2=4,c 3=1,and c 4=0.This yields v 1=0,v 2=1,v 3=1,v 4=0,and n =2but |S |=4<5=(3+4)−1−d (3,4)which contradicts the proposition.The other examples were obtained by similar reasoning.3.Proof of Theorems 1.1and 1.2Let S be a symmetric generating set of a finitely-generated group Γ.To prove Theorem 1.1the mapping Φ:s →s −1of S to itself is employed.Note that N (s −1)=N (s )because (s,t )∈K if and only if (s −1,s −1t )∈K .So the mapping t →s −1t from the neighbours of s to the neighbours of s −1is one-to-one.For elements of order 2even the following holds.Lemma 3.1:If s ∈S has order 2,then the number of neighbours of s is even.Proof:As s has order 2,for the edges (s,t )∈K if and only if (s,st )∈K .So the mapping t →st maps neighbours of s to themselves.Also st =t for every neighbour t ;otherwise s =1/∈S .So the neighbours of s come in disjoint pairs {t,st },and this shows that N (s )≡0mod 2.2Now Theorem 1.1can be proven.Proof:Let n ≡1mod 2,then the mapping Φmaps N −1({n })to itself.By the last lemma N −1({n })contains no element of order 2.So there is a disjoint par-tition of N −1({n })into pairs {s,s −1}and again this shows that |N −1({n })|≡0mod 2.2M.Neuhauser:Neighbourhood graphs of Cayley graphs5 Now Theorem1.2will be proven.Proof:Let M be the set of all sets of r nodes which form complete subgraphs and M1={C∪{1}:C∈M},A={(s1,...,s r):{s1,...,s r}∈M},A1={(s1,...,s r+1):{s1,...,s r+1}∈M1}.Then the symmetric group S r+1acts on A1byσ(s1,...,s r+1)= sσ(1),...,sσ(r+1) .Let the mapping P:A1→A be defined byP(s1,...,s r+1)= s−1r+1s1,...,s−1r+1s r .Note that P is surjective.Also via the mapping P,the symmetric group S r+1 acts on A byσ(P(s1,...,s r+1))=P(σ(s1,...,s r+1))forσ∈S r+1.This is well-defined.Indeed,if P(s1,...,s r+1)=P(t1,...,t r+1), thenP(σ(s1,...,s r,s r+1))= s−1σ(r+1)sσ(1),...,s−1σ(r+1)sσ(r)= s−1r+1sσ(r+1) −1s−1r+1sσ(1),..., s−1r+1sσ(r+1) −1s−1r+1sσ(r)= t−1r+1tσ(r+1) −1t−1r+1tσ(1),..., t−1r+1tσ(r+1) −1t−1r+1tσ(r)=P(σ(t1,...,t r,t r+1)).Considering S r as a subgroup of S r+1fixing the point r+1,we seeP(σ(s1,...,s r+1))= s−1r+1sσ(1),...,s−1r+1sσ(r) =P(s1,...,s r+1)forσ∈S r\{1}.Let S r act on the orbit S r+1V for V∈A.The above shows that every orbit of the S r-action has length r!and hence r!is a divisor of|S r+1V|. Let B⊂A be a set of representatives such that A= V∈B S r+1V is a disjoint decomposition into orbits.Then r!c r=|A|= V∈B|S r+1V|.If|S r+1V|=r! then since|S r+1V|divides(r+1)!,there exists a prime p j dividing r+1such that r!p j divides|S r+1V|.If V=(s1,...,s r)and|S r+1V|=r!,then the set U={1,s1,...,s r}is a subgroup of order r+1as s−1t∈U for all s,t∈U. Hence c r=u r+ m j=1p j k j for some k j≥0.2M.Neuhauser:Neighbourhood graphs of Cayley graphs 6A.AppendixWith the help of the two conditions given by Theorems 1.1and 1.2the following complete list of graphs with ≤5nodes together with the associated groups and generating sets was determined.For the graphs not excluded by the preceding theorems a combinatorial case-by-case analysis as below for the remaining graphs excluded some of the rest of the graphs with ≤5nodes.For the others this yielded groups whose generating set is associated with the given graph.The groups are given in terms of generators and relations.The group Γ= s 1,...,s n :r 1,...,r m is the factor group of the free group with generators s 1,...,s n by the normal subgroup generated by the elements r 1,...,r m of the free group.Note that each given group Γis universal in the sense that it is the largest possible group of its type associated with the given graph,and every other group of the same type corresponding to the given graph is a factor group of Γ.Obviously every complete graph is contained in the list;indeed,for any finite group Γwe may take S =Γ\{1}.On 4nodes,the graphs not excluded by the conditions above are the following:rrr r d dd d s 1s 2s 3s 4rrr r s 1s 2s 3s 4rrrrs 1s 2s 3s 4In the first case s 3=s −12by Lemma 3.1.As |K |=10there are n =4elements of order 3by Corollary 1.3and so s 4=s −11.But then (s 1,s 4)∈K since s −11s 4=s 24=s 1∈S ,a contradiction.In the second case |K |=8so by Corollary 1.3there are two elements of order 3,say s and s −1,and these must be adjacent as s −1s −1=s ∈S .Without loss ofgenerality s 2=s and s 4=s −1,and as (s 4,s 3)∈K ,we have ss 3=s −14s 3∈S .The only possibility is ss 3=s 1.If s 1has order 2then so does s 3and we have thedihedral group D 3of order 6,and otherwise s 3=s −11and then s =s 1s −13=s 21so Γ= S = s 1 must be cyclic of order 6.In the third case s 4=s −11.Since |K |=6there are no elements of order 3.Also either s −13=s 2and s −13s 2=s 1,or s −13=s 3and s −13s 2=s 4.The other possibilities lead to contradictions.The first possibility yields s 1=s 22and so Γ= S = s 2 ∼=Z .The second possibility yields Γ= S = s 2,s 3 ∼=D ∞.Proofs of this classification for the remaining graphs with 5nodes and less than 6edges by similar (but more involved)reasoning can be found in [5].M.Neuhauser:Neighbourhood graphs of Cayley graphs 7GroupGraphΓ= x :x 3 ∼=Z /3Z S ={x ±1}r rx x −1Γ= x :x 4 ∼=Z /4Z S ={x ±1,x 2}r rr xx −1x 2Γ=x,y :x 2,y 2,(xy )2∼=D 2∼= x :x 2 × y :y 2 ∼=(Z /2Z )×(Z /2Z )S ={x,y,xy }r rr x yxyΓ= x :x 5 ∼=Z /5ZS ={x ±1,x ±2}r rrrd d d d x 2x x −2x −1Γ= x :x 6 ∼=Z /6ZS ={x ±1,x ±2}rrrr x 2x x −2x −1Γ= x,y :x 2,y 2,(xy )3 ∼=D 3S ={x,y,xy,yx }rrr r x xyyyxM.Neuhauser:Neighbourhood graphs of Cayley graphs 8GroupGraphΓ= x ∼=Z S ={x ±1,x ±2}r r r rx 2x x −1x −2Γ= x,y :x 2,y 2 ∼=D ∞,S ={x,y,xy,yx }rr rrxyx yyxΓ= x :x 6 ∼=Z /6Z S ={x ±1,x ±2,x 3}r r r r r d d d dd d x −1x x −2x 2x 3Γ= x,y :x 2,y 2,(xy )3∼=D 3S ={x,y,xy,yx,xyx }r r r rr d d d dd d x xyyyxxyx Γ= x,y :x 2,y 2 ∼=D ∞S ={x,y,xy,yx,xyx }r r r r r444444x yxyxyx xyΓ=x,y,z :x 2,y 2,z 2,(zx )2,(zy )2∼= x,y :x 2,y 2 × z :z 2 ∼=D ∞×(Z /2Z )S ={x,y,z,zx,zy }r rr r r444444z zxx zy yΓ=x,y :x 4,y 2,(yx 2)2S ={x ±1,x 2,y,yx 2}r rr rr444444x 2x −1x yx 2yM.Neuhauser:Neighbourhood graphs of Cayley graphs 9GroupGraph Γ= x,y :x 4,y 4,x 2y 2 S ={x ±1,y ±1,x 2}r r r rr444444x 2x −1x y −1yΓ= x,z :z 2,zxzx −1∼= x × z :z 2 ∼=Z ×(Z /2Z )S ={x ±1,z,zx,zx −1}r rr r r444444z zxx zx −1x −1Γ= x,z :x 3,z 2 ∼=PSL (2,Z )S ={x ±1,z,xz,zx −1}r r rr r xz x x −1z zx −1Γ=x,z :x 3,z 2,(xz )3∼=PSL (2,Z /3Z )S ={x ±1,z,xz,zx −1}rr rrrdd xz zx −1xz x −1Γ= x :x 8 ∼=Z /8ZS ={x ±1,x ±2,x 4}rr rr rdd x −1x x −2x 2x 4Γ= x,y :x 2,y 2,(xy )4 ∼=D 4S = x,y,xy,yx,(xy )2rr r r rdd x yxyyx(xy )2M.Neuhauser:Neighbourhood graphs of Cayley graphs10 References[1]B.Bollob´a s,Modern graph theory,Springer,New York,(1998).[2]D.I.Cartwright, A.M.Mantero,T.Steger, A.Zappa,Groups acting sim-ply transitively on the vertices of a building of type˜A2,I,Geom.Dedicata, 47,(1993).143–166.[3]P.de la Harpe,Topics in geometric group theory,The University of ChicagoPress,Chicago,(2000).[4]P.Hell,H.Levinson,M.Watkins,Some remarks on transitive realizationsof graphs,Proc.2nd Carribean Conference on Combinatorics&Computing, R.C.Read, C.C.Cadogan,University of West Indies Press,Barbados, (1977).115–122.[5]M.Neuhauser,Neue Methoden zur Bestimmung expliziter Schrankenvon Kazhdan-Konstanten,Dissertation,Technische Universit¨a t M¨u nchen, (2001).[http://tumb1.biblio.tu-muenchen.de/publ/diss/ma/2001/neuhauser.html] [6]A.˙Zuk,Property(T)and Kazhdan constants for discrete groups,Preprint,(1999).。