当前位置:文档之家› 空间曲线与曲面的绘制

空间曲线与曲面的绘制

空间曲线与曲面的绘制
空间曲线与曲面的绘制

空间曲线与曲面的绘制

本实验的目的是:利用数学软件Mathematica 绘制三维图形来观察空间曲线和空间曲面图形的特

点,以加强几何的直观性。

1. 空间曲线的绘制

绘制空间曲线时一般使用曲线的参数方程,利用命令“ParametricPlot3D ”如画出参数方程「x =x(t)

* y = y(t) , h Et “2所确定的空间曲线的命令格式为:

Z =z(t)

ParametricPlot3D[{x[t],y[t],z[t]},{t,tmi n, tmax}, 选项]

例1 画出旋转抛物面z = x2y2与上半球面z = 1亠:1 - x2- y2交线的图形。

X = cost

解:它们的交线为平面z=1上的圆x2+y2=1,化为参数方程为*y = sint,t"O,勿],下面的

z = 1

mathematica命令就是作出它们的交线并把它存在变量p中:

p ParametricPlot3D Cos t , Sin t , 1 , t, 0, 2 Pi

运行即得曲线如图1所示。

在这里说明一点,要作空间曲线的图形,必须先求出该曲线的参数

乍(x, y, z) =0

方程。如果曲线为一般式,其在xOy面上的投影柱面的

"x = x(t)

准线方程为H (x, y) =0,可先将H (x, y) = 0化为参数方程丿

』= y(t)

z二z(t)即可。图1

再代入G(x, y,z) =0 或F(x, y,z) =0 解出

1、空间曲面的绘制

作一般式方程z = f(x,y)所确定的曲面图形的Mathematica命令为:

Plot3D[f[x,y],{x,xmin,xmax},{y,ymin,ymax}, 选项]

x = x(u, v)

作参数方程“ y = y(u,v),u € [U min ,max ],产Wmin Nmax]所确定的曲面图形的Mathematica命令为:

z = z(u, v)

ParametricPlot3D[{x[u,v],y[u,v],z[u,v]},{u,umi

n,umax}.

{v,vmin,vmax},选项]

例2 作出上半球面 z 詔 J -X 2 - y 2

的图形。 解:首先我们选取绘图区间 { -1 ::: x :: 1,-1 ::: y ::: 1}作图,输入下面语句: Plot3D 1 1—x^"2 — , x, 1, 1 , y, 1, 1

运行后得到了该曲面的图形 (图2),但是在图形的前面出现了一些蓝色字体报错信息, 而且图形不 完整,这是因为函数 z 在范围{ -1 ::: x :: 1,-1 ::: y ::: 1}内的一些点处无定义。为避免上述问题,可用下 面两种方法:

(1) 定义一个分区域函数 f(x),将无定义的点赋予函数值 1: f(x,y)=

2 -y 2 2 x y s 1 2 2

x y 1 作出该函数的图形只要键入命令: f x_, y_ : If x A 2 y A 2 1,1 1 x A 2 y A 2 , 1

Plot3D f x, y , x, 1,1, y, 1, 1 运行后得图3,可以看到该图形比上半球面多了一部分曲面的图形(即 Z = 1平面上的部分)。但是

图形比较粗糙,我们可以提高采样点数,例如取采样点数为 30,即运行命令 Plot3D f x, y , x, 1, 1 , y, 1, 1 , PlotPoints 30

可得图形4,由此可见图形已经比较精细了。 0.5

-0.5

0.5

1

1.75 1.25 -0.5

图2 0.5

1

-0.5

0 -

0.5

-0.5

1.75

1.25

图3 0.5

0.5

1.75

1.25

-0.5

-0.5

图4

x = cosus inv

JT

?y=sinusinv, u [0,2兀],[0,;],我们输入命令:

z =1 +cosv

ParametricPlot3D Cos u Sin v , Sin u

Sin v , 1 Cos v Pi u, 0, 2 Pi , v, 0,

, PlotPoints

30

2

3

运行后得图形5。我们还可以改变参数的范围画出上半球面的

部分(如图6):

4

Cos u Sin v , Sin u Sin v , 1 Cos v

2、空间图形的叠加

与平面图形类似,空间的立体图形同样可用“ Show ”命令,把不同的图形(曲线或曲面)叠加并在 个坐标系中显示出来。

例3画出由旋转抛物面 ^x 2 y 2与上半球面z =1 ? . 1 - x 2 - y 2相交所围成的立体几何图形。

解:这是一个组合图形。一般地,直接画出两者的图形再组合在一起。但是,这里所要的图形仅仅是两 个曲面图 形的一 部分,因 此需要 有选择 地画出两 曲面的 相应部 分再组合。由于 它们的 交线为

(2,2 .

x + y =1

,故相应的曲面部分的参数方程为:

、z =1

L

广

x = r cost x= cosu sin v

* y = r si nt, t ^ [0,2 兀],r [0,1]与 < y = si nusi n v, u 乏[0, 2 兀],X [0,—]。

2 2 z = r i z = 1 + cosv

输入以下Mathematica 语句:

有参数方程 ParametricPlot3D

u, 0, 3 Pi 2 v, 0, Pi 2 , PlotPoints 30

1

0.5

-0.5

0.5

■1

1

1 ■

1

1.75

1.25

-0.5

2

1.75 1.5 1.25

1

.5 -0.5

0.5

■1

1

1 -1

-0.5

t1

ParametricPlot3D r Cos

t , r

Sin t , r 人2 , t,

0, 2 Pi

r, 0, 1 , PlotPoints 30 J

t2

ParametricPlot3D Cos u Sin v , Sin u Sin v ,

1 Cos v

u, 0, 2 Pi , v, 0,

Pi

J

PlotPoints 30 ;

2

Show t1, t2

运行后即得旋转抛物面、上半球面及叠加曲面的图形(图 7 )。

DisplayFunction r$DisplayFunction ”则表示显示图形。运行结果如图 &

4 ?用动画来演示产生旋转曲面的过程。

例5用动画演示由曲线 y = sin z, z ,[0,二]绕z 轴旋转产生旋转曲面的过程。

2 2 2

解:该曲线绕绕z 轴旋转产生的曲面方程为x y 二sinz ,其参数方程

绘制由曲面 z 二 x 2 y 2、

x 二y 2

、x =1与z = 0所围成的立体区域。

解:输入命令:

s1 ParametricPlot3D

u, v, u A 2 v A 2 ,

u, 1,1, v, 1, 2 , PlotRange 0, 2

AxesLabel "X", "Y",

"Z",

DisplayFu ncti on Ide ntity

; s2

ParametricPlot3D uA2, u, v ,

u, 1, 1

v, 0, 2 , AxesLabel

"X", "Y", "Z"

DisplayFu ncti on Ide ntity

J

s3

ParametricPlot3D 1, u, v ,u,

1, 1 ,

v, 0, 2 , AxesLabel

"X", "Y", "Z"

DisplayFu ncti on Ide ntity

J

s4

ParametricPlot3D u, v, 0 ,u, 1, 1 ,

v, 1, 1 , AxesLabel

"X", "Y",

"Z"

5

DisplayFu ncti on Ide ntity

;

Show s1, s2, s3, s4,

DisplayFu ncti on $DisplayFu ncti

on

在上述语句中 Display Fun ctio n = Ide ntity

表示不显示图形, 1

0.5

1

-0.5

0.5

■1

1

0.75

0.25

-0.5

0.5

-0.5

0.5

1.75

1.5 1.25

-0.5

图7

1

0.5 0

0 '-

0.5

-0.5

-0.5

-1 -0.5

"x =sin zcosu

y =sinzsinu, z 可0,n], u 可0,2兀],输入以下命令,就可得到连续变化的 20幅图形:

m 20;

PlotPoi nts 30

运行后得到20幅曲面的图形,图 8中列举了其中的三幅。大家还可以进行动画演示,观察到旋转

曲面产生的过程。

1-1

-0.5

实验习题

1、 作出各种标准二次曲面的图形。

2、 利用参数方程作图,作出由下列曲面所围成的立体:

(1)

z=.1-x 2-y 2

、x 2

y 2

=x 及 xOy 面

(2) z = xy 、x y -1=0 及 z=0

3、 观察二次曲面族 ^x 2 y 2 kxy 的图形。特别注意确定 k 的这样一些值,当 k 经过这些值时,曲 面从一种类型变成了另一种类型。(2)

采用参数方程,选取参数的范围使得区域内的每一点都有定义。对于题目中的球面

For i 1, i m, i

ParametricPlot3D

Sin z Cos u , Sin z Sin u , z

z, 0, Pi , u, 0, 2 Pi i m , AspectRatio

1, AxesLabel

"X",

"Y",

"Z"

0.8

0.25

丫 0.6 . .

0.4

J ,

0.2

X

°5

0.75

丫 11 0.75 0.5

0.25

-0.5

0.5

-0.5

空间曲线与曲面

实验七空间曲线与曲面 实验目的 1.掌握空间直线、平面的画法。 2.了解常见的空间曲线与曲面的画法。 与本实验相关的理论 最基本的空间作图函数是Plot3 ,用于作所有二元函数的三维立方体图形,其格式是: Plot3D[f,{x,xmin,xmax},{y,ymin,ymax},可选项] 由于很多曲面和绝大多数曲线都不能用显函数的形式表示。Mathematica 还提供了Parametric Plot3D参数作图函数,其格式是:Parametric Plot3D[{x[u,v],y[u,v] ,z[u,v]} ,{u,umin,umax},{v,vmin,vmax},可选项] Mathematica作三维图形的机理是先在XOY坐标面给定区域内计算出一系列格点的值,再用矩形“小瓦片”拟合张在上面的曲面上。因而如果曲面的表面变化复杂,可通过设置更细的“瓦片”分割来改善。这时候可增加选项PlotPoint―>n 来说明分割数n。 实验步骤 一、画空间曲线 注意空间曲线的参数方程只有一个参变量,如果要画出螺旋线 x=10cost , y=10sint , z=2t 的图形,只要输入: Parametric Plot3D[{10cos[t],10sin[t],2t} ,{t,0,20}] 空间直线也类似地处理。 例1:求过A(3,5,-2),B(3,5,-2)的直线方程,并画图。 分析:空间直线方程可由点向式写出,再改成参数式

) 2(4)2(535313----=--=--z y x 化为参数式是:t x 23-=,t y 25-=,t z 62+-= 输入:Parametric Plot3D[{3-2t ,5-2t ,-2+6t} ,{t ,0,1}] 二、画空间曲面 例2:求过A (1,0,0),B (0,2,0),C (0,0,3),的平面方程,并画图。 分析:平面方程可由截距式写出,y x z 2 333--=。 输入:Parametric Plot3D[{3-3x-3y/2} ,{x ,-1,1},{y ,-1,1}] 例3:画出二元函数22),(y x y x f +=的图形。 输入:Parametric Plot3D[{x^2+y^2} ,{x ,-4,4},{y ,-4,4}] 例4:画出椭球心在原点,3=a ,4=b ,5=c 的椭球面。 输入:Parametric Plot3D[{3*Cos[u] Cos[v], 4*Sin[u] Cos[v],5*Sin[v]} ,{u ,0,2Pi},{v ,-Pi/2,Pi/2}] 例5:画出以x y cos =为准线,母线平行于Z 轴的柱面。 输入:Parametric Plot3D[{x,Cos[x],z} ,{x ,-4,4},{z ,-4,4}] 例6:画出由平面曲线z x cos 1+=绕Z 轴放转而成的旋转面。 输入:Parametric Plot3D[{(1+Cos[u])Cos[v] ,(1+Cos[u])Sin[v] ,u} ,{u ,-Pi ,Pi},{v ,0,2Pi}] 例7:画单叶双曲面。 输入:Parametric Plot3D[{Sec[u]Cos[v] ,Sec[u]Sin[v] ,Tan[u]} ,{u ,-Pi/2+0.5,Pi/2-0.5},{v ,0,2Pi}]

实验2-空间曲线曲面图形的绘制

实验二空间曲线曲面图形的绘制 一、实验目的 熟练掌握使用Mathematica软件绘制空间曲线曲面图形的方法. 二、实验容与Mathematica命令 1.基本三维图形 函数(,) 的图形为三维空间的一个曲面,Mathematica中,绘制三维曲面图形的 z f x y 基本命令格式为 Plot3D[f,{x,xmin,xmax},{y,ymin,ymax},Options] 其中,f为一个二元显函数. 该命令有众多可供使用的选项,可执行命令“Options[Plot3D]”查询. 1)绘制曲面的基本方法 运行t1=Plot3D[Sin[x+y]*Cos[x+y],{x,0,4},{y,0,4}] 图1 2)用PlotRange 设定曲面的表面的变化围 运行Show[t1,PlotRange{-0.2,0.5}]

图2 3)坐标轴上加标记,并且在每个外围平面上画上网格 运行Show[t1,AxesLabel{"Time","Depth","Value"},FaceGrids All] 图 3 4)观察点的改变 将观察点改变在(2,-2,0),运行 Show[t1,ViewPoint{2,-2,0}]

图 4 也可用鼠标拖动改变视点。 5)无网格和立体盒子的曲面 运行 Show[t1,Mesh False,Boxed False] 图 5 6)没有阴影的曲面 利用Shading取消曲面的阴影运行 Show[t1,Shading False]

图 6 7)给曲面着色 Show[t1,Lighting False 图 7 Show[t1,Lighting None]

空间曲线地切线与空间曲面地切平面

第六节 空间曲线的切线与空间曲面的切平面 一、空间曲线的切线与法平面 设空间的曲线C 由参数方程的形式给出:?? ? ??===)()()(t z z t y y t x x ,),(βα∈t . 设),(,10βα∈t t ,)(),(),((000t z t y t x A 、))(),(),((111t z t y t x B 为曲线上两点,B A ,的连线AB 称为曲线C 的割线,当A B →时,若AB 趋于一条直线,则此直线称为曲线C 在点A 的切线. 如果)()()(t z z t y y t x x ===,,对于t 的导数都连续且不全为零(即空间的曲线C 为光滑曲线),则曲线在点A 切线是存在的.因为割线的方程为 ) ()() ()()()()()()(010010010t z t z t z z t y t y t y y t x t x t x x --=--=-- 也可以写为 010********)()() ()()()()()()(t t t z t z t z z t t t y t y t y y t t t x t x t x x ---=---=--- 当A B →时,0t t →,割线的方向向量的极限为{})(),(),(000t z t y t x ''',此即为切线的方向向量,所以切线方程为 ) () ()()()()(000000t z t z z t y t y y t x t x x '-='-='-. 过点)(),(),((000t z t y t x A 且与切线垂直的平面称为空间的曲线C 在点 )(),(),((000t z t y t x A 的法平面,法平面方程为 ))(())(())((00'00'00'=-+-+-z z t z y y t y x x t x 如果空间的曲线C 由方程为 )(),(x z z x y y == 且)(),(0' 0'x z x y 存在,则曲线在点)(),(,(000x z x y x A 的切线是 ) () ()()(100000x z x z z x y x y y x x '-= '-=- 法平面方程为

数学实验教程实验6(空间曲线与曲面

实验6 空间曲线与曲面 实验目的 1.学会利用软件命令绘制空间曲线和曲面 2.通过绘制一些常见曲线、曲面去观察空间曲线和曲面的特点 3.绘制多个曲面所围成的区域以及投影区域。 实验准备 1.复习常见空间曲线的方程 2.复习常见空间曲面的方程 实验内容 1.绘制空间曲线 2.绘制空间曲面:直角坐标方程、参数方程 3.旋转曲面的生成 4.空间多个曲面的所围成的公共区域以及投影区域 软件命令 表6-1 Matlab 空间曲线及曲面绘图命令 实验示例 【例6.1】绘制空间曲线 绘制空间曲线sin ,cos ,x at t y at t z ct ===,在区间09t π≤≤上的图形,这是一条锥面螺旋线,取a=10,c=3。

【程序】: t=0:pi/30:9*pi; a=10; c=3; x=a*t.*sin(t); y=a*t.*cos(t); z=c*t; plot3(x,y,z,’mo ’) 【输出】:见图6-1。 图6-1 空间曲线的绘制 【例6.2】利用多种命令绘制空间曲面 绘制二元函数 22 2 2 sin x y z x y += +在区域:99,99D x y -≤≤-≤≤上的图形。 【程序】:参见Exm06Demo02.m 。 【输出】:见图6-2。 图 6-2 绘制空间曲面 【例6.3】绘制Mobius 带 Mobius 带的参数方程为 122122 cos sin cos ,[0,2],[,] sin u u x r u y r u r c v u v a b z v π=??==+∈∈??=?,, 其中,,a b c 为常数,绘制其图形。

曲面与空间曲面的归纳

曲面与空间曲线的总结

曲面与空间曲线一.曲面及其方程: 1.曲面方程的一般概念: 定义:若曲面上的点的坐标(x,y,z) 都满足方程F(x,y,z)=0, 而满足此方程的点都在曲面上,则称此方程为 该曲面的方程,而曲面称为此方程的‘图形’。 例1:求与A(2,3,1)和B(4,5,6)等距离的点的运动规迹。 解: 设M(x,y,z)为动点的坐标,动点应满足的条件是 |AM|=|BM|由距离公式得 此即所求点的规迹方程,为一平面方程。 2.坐标面及与坐标面平行的平面方程: ①坐标平面xOy 的方程:z=0 ②过点(a,b,c)且与xOy 面平行的平面方程:z=c 222222)6()5()4()1()3()2(-+-+-=-+-+-z y x z y x 整理得 631044=-++z y x

③坐标面yOz 、坐标面zOx 以及过(a,b,c)点且分别与之平行的平面方程:x=0; y=0; x=a; y=b 3. 球面方程: ①球面的标准方程:以M0(x0,y0,z0)为球心,R 为半径 的球面方程为 (x-x0)2+(y-y0)2+(z-z0)2=R2 ②球面的一般方程: x2+y2+z2+Ax+By+Cz+D=0 球面方程的特点:平方项系数相同;没有交叉项。 例2:求x2+y2+z2+2x-2y-2=0表示的曲面 解:整理得: (x+1)2+(y-1)2+z2=22 故此为一个球心在(-1,1,0),半径为2的球。 4.母线平行于坐标轴的柱面方程: 一般我们将动直线l 沿定曲线c 平行移动所形成的轨迹 称为柱面。其中直线l 称为柱面的母线,定曲线c 称为柱面 的准线。本章中我们只研究母线平行于坐标轴的柱面方程。 此时有以下结论: 若柱面的母线平行于z 轴,准线c 是xOy 面上的一条曲线,其方程为F(x,y)=0,则该柱面的方程为F(x,y)=0; 同理,G(x,z)=0,H(y,z)=0在空间中分别表示母线平行于y 轴和x 轴的柱面。 分析:母线平行于坐标轴的柱面的特点为:平行于某轴,则在其方程中无此坐标项。其几何意义为:无论z 取何值,只要满足F(x,y)=0,则总在柱面上。 几种常见柱面:x+y=a 平面; 2 22a y x =+圆柱面

曲面与空间曲线的方程

第 2 章曲面与空间曲线的方程 本章教学目的:通过本章学习,使学生理解空间坐标系下曲面与空间曲线方程之定义及 表示,熟悉空间中一些特殊曲面、曲线的方程。 本章教学重点:空间坐标系下曲面与空间曲线方程的定义。 本章教学难点:(1)空间坐标系下母线平行于坐标轴的柱面方程与平面坐标系下有关平面 曲线方程的区别; ( 2)空间坐标系下,空间曲线一般方程的规范表示。 本章教学内容: § 1 曲面的方程 普通方程: 1 定义:设工为一曲面,F(x, y, z) =0为一三元方程,空间中建立了坐标系以后, 若工上任一点P(x,y,z)的坐标都满足F(x,y, z)=0,而且凡坐标满足方程的点都在曲 面工上,则称F (x, y, z) =0为工的普通方程,记作 2:F (x, y, z) =0. 不难看出,一点在曲面2上〈一〉该点的坐标满足工的方程,即曲面上的点与其 方程的解之间是一一对应的???》的方程的代数性质必能反映出2的几何性质。 2 三元方程的表示的几种特殊图形:空间中任一曲面的方程都是一三元方程,反之,是否任一三 元方程也表示空间中的一个曲面呢?一般而言这是成立的,但也有如下特殊情况 1 ° 若F( x, y, z) =0 的左端可分解成两个(或多个)因式F1( x, y, z) 与F2 (x, y, z)的乘积,即 F (x, y, z)= F i (x, y, z) F2 (x, y, z),贝U F (x , y , z) =0〈一〉F i (x , y , z) =0 或F2 (x , y , z) =0 ,此时 F( x y z) =0 表示两叶曲面1与 2 它们分别以F1( x y z) =0 F2( x y z) =0 为其方程此时称F(x y z)=0 表示的图形为变态曲面。如 F(x,y,z) xyz 0 即为三坐标面。 2 0方程F(x,y,z) (x2 y2 z2) x i2 y 2 2 (z 3)2 0 仅表示坐标原点和点( i 2 3) 3 °方程F(x, y,z) 0可能表示若干条曲线如 F(x, y,z) (x2 y2)(y2 z2) 0 即表示z 轴和x 轴 °方程F(x, y,z) 0不表示任何实图形如 4

空间曲线与曲面的绘制

空间曲线与曲面的绘制 本实验的目的是:利用数学软件Mathematica 绘制三维图形来观察空间曲线和空间曲面图形的特 点,以加强几何的直观性。 1. 空间曲线的绘制 绘制空间曲线时一般使用曲线的参数方程,利用命令“ParametricPlot3D ”如画出参数方程「x =x(t) * y = y(t) , h Et “2所确定的空间曲线的命令格式为: Z =z(t) ParametricPlot3D[{x[t],y[t],z[t]},{t,tmi n, tmax}, 选项] 例1 画出旋转抛物面z = x2y2与上半球面z = 1亠:1 - x2- y2交线的图形。 X = cost 解:它们的交线为平面z=1上的圆x2+y2=1,化为参数方程为*y = sint,t"O,勿],下面的 z = 1 mathematica命令就是作出它们的交线并把它存在变量p中: p ParametricPlot3D Cos t , Sin t , 1 , t, 0, 2 Pi 运行即得曲线如图1所示。 在这里说明一点,要作空间曲线的图形,必须先求出该曲线的参数 乍(x, y, z) =0 方程。如果曲线为一般式,其在xOy面上的投影柱面的

空间曲面与空间曲线学习总结

面及其方程 一曲面方程的概念 空间曲面可看做点的轨迹,而点的轨迹可由点的坐标所满足的方程来表达。因此,空间曲面可由方程来表示,反过来也成立。 为此,我们给出如下定义: 若曲面 S与三元方程 F x y z (,,) 0 (1) 有下述关系: 1、曲面 S上任一点的坐标均满足方程(1); 2、不在曲面 S上的点的坐标都不满足方程(1)。 那么,方程(1)称作曲面 S的方程,而曲面S称作方程(1)的图形。 下面,我们来建立几个常见的曲面方程。 【例1】球心在点 ) , , ( z y x M ,半径为R的球面方程。

解:设M x y z (,,)是球面上的任一点,那么M M R 0=, 即: ()()()x x y y z z R -+-+-=020202 ()()()x x y y z z R -+-+-=0202022 (2) (2)式就是球面上任一点的坐标所满足的方程。 反过来,不在球面上的点 ''''M x y z (,,),'M 到M 0的距离M M R 0'≠, 从而点 'M 的坐标不适合于方程(2)。 故方程(2)就是以 M x y z 0000(,,)为球心,R 为半径的球面方程。 若球心在原点,即 M x y z O 0000000(,,)(,,)=,其球面方程为 x y z R 2222++= 【例2】设有点A (,,)123和B (,,)214-,求线段AB 垂直平分面π 的方程。 解:所求平面π是与A 和B 等距离的点的几何轨迹,设M x y z (,,)是所求平面上任意 的一点,则 AM BM = 即: ()()()()()()x y z x y z -+-+-=-+++-123214222222

曲面与空间曲线的方程

第2章 曲面与空间曲线的方程 本章教学目的:通过本章学习,使学生理解空间坐标系下曲面与空间曲线方程之定 义及表示,熟悉空间中一些特殊曲面、曲线的方程。 本章教学重点:空间坐标系下曲面与空间曲线方程的定义。 本章教学难点:(1)空间坐标系下母线平行于坐标轴的柱面方程与平面坐标系下有 关平面曲线方程的区别; (2)空间坐标系下,空间曲线一般方程的规范表示。 本章教学内容: §1 曲面的方程 一 普通方程: 1 定义:设Σ为一曲面,F (x ,y ,z )=0为一三元方程,空间中建立了坐标系以后, 若Σ上任一点P (x ,y ,z )的坐标都满足F (x ,y ,z )=0,而且凡坐标满足方程的点都在曲面Σ上,则称F (x ,y ,z )=0为Σ的普通方程,记作 Σ:F (x ,y ,z )=0. 不难看出,一点在曲面Σ上〈═〉该点的坐标满足Σ的方程,即曲面上的点与其方程的解之间是一一对应的 ∴Σ的方程的代数性质必能反映出Σ的几何性质。 2 三元方程的表示的几种特殊图形: 空间中任一曲面的方程都是一三元方程,反之,是否任一三元方程也表示空间中的 一个曲面呢?一般而言这是成立的,但也有如下特殊情况 1° 若F (x ,y ,z )=0的左端可分解成两个(或多个)因式F 1(x ,y ,z ) 与F 2(x ,y ,z )的乘积,即F (x ,y ,z )≡F 1(x ,y ,z )F 2(x ,y ,z ),则 F (x ,y ,z )=0〈═〉F 1(x ,y ,z )=0或F 2(x ,y ,z )=0,此时 F (x ,y ,z )=0表示两叶曲面1∑与2∑,它们分别以F 1(x ,y ,z )=0,F 2(x ,y ,z )=0为其方程,此时称F (x ,y ,z )=0表示的图形为变态曲面。如 0),,(=≡xyz z y x F 即为三坐标面。 20方程()()[] 0)3(21)(),,(222222=-+-+-++≡z y x z y x z y x F 仅表示坐标原点和点(1,2,3) 3°方程0),,(=z y x F 可能表示若干条曲线,如 0))((),,(2 222=++≡z y y x z y x F 即表示z 轴和x 轴 4°方程0),,(=z y x F 不表示任何实图形,如

§7.4.1-3空间曲面和空间曲线

§7.4空间曲面和空间曲线 本节以两种方式来讨论空间曲面: (1)已知曲面的形状,建立这曲面的方程; (2)已知一个三元方程,研究这方程的图形。 7.4.1球面与柱面 (一)球面 空间中与一定点等距离的点的轨迹叫球面。 求球心在点),,( z y x M ,半径为R 的球面方程。 设),,(z y x M 为球面上的任一点,则有R M M = ,即 R z z y y x x =-+-+-222)()()( ,化简得: 2222)()()(R z z y y x x =-+-+- 。 ① 满足方程①,因此,方程①是球面的方程。 当0=== z y x 时,即球心在原点的球面方程为 2 222R z y x =++。 ② 例1.指出方程05642222=+--+++z y x z y x 表示何种曲面。 解:9415964412222+++-=+-++-+++z z y y x x , 22223)3()2()1(=-+-++z y x ,方程表示以)3 ,2 ,1(-为球心,3为半径的球面。 (二)柱面 动直线L 沿给定曲线C 平行移动所形成的曲面,称为柱面。动直线L 称为柱面的母线,定曲线C 称为柱面的准线。 y

现在来建立以xoy 面上的曲线C :? ??== . 0, 0),(z y x F 为准线,平行于L z 轴的直线 设) ,,( z y x M 为柱面上任一点,过 M 作平行于轴的直线 z ,交xoy 面于点 ) 0 , ,( y x M ,由柱面定义可知点上必在准线C M 。故有0),(= y x F 。由于 M M 与点点有相同的横坐标和纵坐标,故的坐标点 M 也必满足方程 0),(=y x F 。反之,如果空间一点) ,,( z y x M 满足方程0),(=y x F ,即0 ),(= y x F ,故 ) ,,( z y x M 且与轴平行的直线 z 必通过 上的点准线C ) 0 , ,( y x M ,即) 0 , ,( y x M 在过) 0 , ,( y x M 的母线上,于是) ,,( z y x M 必在柱面上,因此方程0),(=y x F 表示平行于轴的柱面 z 。 一般地 方程0) ,(=y x F 表示母线轴的柱面平行于 z ; 方程0) ,(=z y H 表示母线轴的柱面平行于 x ; 方程0) ,(=z x G 表示母线轴的柱面平行于 y 。 以二次曲线为准线的柱面称为二次柱面。 例如:方程2 2 2 a y x =+表示圆柱面;方程 12 22 2=+ b y a x 表示椭圆柱面; 方程12 2 22 =- b x a y 表示双曲柱面;方程Py x 22=表示抛物柱面。 y 22 a y = x x y 1 2 2=b y

空间曲线的切线与空间曲面的切平面之欧阳光明创编

第六节空间曲线的切线与空间曲面 的切平面 欧阳光明(2021.03.07) 一、空间曲线的切线与法平面 设空间的曲线C 由参数方程的形式给出:?? ???===)()()(t z z t y y t x x ,),(βα∈t . 设),(,10βα∈t t ,)(),(),((000t z t y t x A 、))(),(),((111t z t y t x B 为曲线上两点,B A ,的连线AB 称为曲线C 的割线,当A B →时,若AB 趋于一条直线,则此直线称为曲线C 在点A 的切线. 如果)()()(t z z t y y t x x ===,,对于t 的导数都连续且不全为零(即空间的曲线C 为光滑曲线),则曲线在点A 切线是存在的.因为割线的方程为 也可以写为 当A B →时,0t t →,割线的方向向量的极限为{})(),(),(000t z t y t x ''',此即为切线的方向向量,所以切线方程为 )()()()()()(000000t z t z z t y t y y t x t x x '-='-='-. 过点)(),(),((000t z t y t x A 且与切线垂直的平面称为空间的曲线C 在点)(),(),((000t z t y t x A 的法平面,法平面方程为 如果空间的曲线C 由方程为 且)(),(0'0'x z x y 存在,则曲线在点)(),(,(000x z x y x A 的切线是 法平面方程为

如果空间的曲线C 表示为空间两曲面的交,由方程组 确定时,假设在),,(000z y x A 有0),(),(≠??=A z y G F J ,在),,(000z y x A 某邻域内满足隐函数组存在定理条件,则由方程组 ? ??==0),,(0),,(z y x G z y x F ,在点),,(000z y x A 附近能确定隐函数 有)(),(0000x z z x y y ==,) ,(),(1,),(),(1x y G F J dx dz z x G F J dx dy ??-=??-=。于是空间的曲线C 在 点),,(000z y x A 的切线是 即 法平面方程为 类似地,如果在点),,(000z y x A 有0),(),(≠??A y x G F 或0),(),(≠??A x z G F 时,我们得到的切线方程和法平面方程有相同形式。 所以,当向量 时,空间的曲线C 在),,(000z y x A 的切线的方向向量为r 例6.32 求曲线θθθb z a y a x ===,sin ,cos 在点()πb a ,0,-处的切线方程. 解 当πθ=时,曲线过点()πb a ,0,-,曲线在此点的切线方向向量为 {}{}b a b a a ,,0|,cos ,sin -=-=πθθθ, 所以曲线的切线方程为 b t z z a t y y t x x )()(0)(000-=--=-.

相关主题
文本预览
相关文档 最新文档