当前位置:文档之家› 高中物理竞赛教程(超详细)讲运动学

高中物理竞赛教程(超详细)讲运动学

高中物理竞赛教程(超详细)讲运动学
高中物理竞赛教程(超详细)讲运动学

第二讲 运动学

§2.1质点运动学的基本概念

2.1.1、参照物和参照系

要准确确定质点的位置及其变化,必须事先选取另一个假定不动的物体作参照,这个被选的物体叫做参照物。为了定量地描述物体的运动需要在参照物上建立坐标,构成坐标

系。

通常选用直角坐标系O –xyz ,有时也采用极坐标系。平面直角坐标系一般有三种,一种是两轴沿水平竖直方向,另

一是两轴沿平行与垂直斜面方向,第三是两轴沿曲线的切线和法线方向(我们常把这种坐标称为自然坐标)。

2.1.2、位矢 位移和路程

在直角坐标系中,质点的位置可用三个坐标x ,y ,z 表示,当质点运动时,它的坐标是时间的函数 x=X (t ) y=Y (t ) z=Z (t ) 这就是质点的运动方程。

质点的位置也可用从坐标原点O 指向质点P (x 、y 、z )的有向线段r

来表示。如图2-1-1所示, 也是描述质点在空间中位置的物理量。的长度为质点到原点之间的距离,的方向由余弦αcos 、βcos 、γcos 决定,它们之间满足

1cos cos cos 222=++γβα

当质点运动时,其位矢的大小和方向也随时间而变,可表示为r =r (t)。在直角坐标系中,设分别为i 、、k 沿方向x 、y 、z 和单位矢量,则r 可表示为

t z t y t x t )()()()(++=

位矢与坐标原点的选择有关。

研究质点的运动,不仅要知道它的位置,还必须知道它

的位置的变化情况,如果质点从空间一点),,(1111z y x P

运动到另一点),,(2222z y x P ,相应的位矢由r 1

变到r 2,其改

变量为?

k z z j y y i x x r r r )()()(12121212-+-+-=-=?

称为质点的位移,如图2-1-2所示,位移是矢量,它是从初始位置指向终止位置的一个有向线段。它描写在一定时间内质点位置变动的大小和方向。它与坐标原点的选择无关。

2.1.3、速度

平均速度 质点在一段时间内通过的位移和所用的时间之比叫做这段时间内的平均速度

)

2z

y

图2-1-1

t s v ?=

平均速度是矢量,其方向为与r

?的方向相同。平均速度的大小,与所取的时间间隔t ?有关,因此须指明是哪一段时间(或哪一段位移)的平均速度。

瞬时速度 当t ?为无限小量,即趋于零时,r

?成为t 时刻的瞬时速度,简称速度

t s v v t t ?==→?→?

00

lim

lim

瞬时速度是矢量,其方向在轨迹的切线方向。 瞬时速度的大小称为速率。速率是标量。 2.1.4、加速度

平均加速度 质点在t ?时间内,速度变化量为v ?,则v

?与t ?的比值为这段时间内的平均加速度

t v a ??=

平均加速度是矢量,其方向为v

?的方向。 瞬时加速度 当t ?为无限小量,即趋于零时,v

?与t ?的比值称为此时刻的瞬时加速度,简称加速度

t v

a t ??=→?

0lim

加速度是矢量,其方向就是当t ?趋于零时,速度增量的极限方向。 2.1.5、匀变速直线运动

加速度a 不随时间t 变化的直线运动称为匀变速直线运动。若a 与v

同方向,则为匀加速

直线运动;若a 与v 反方向,则为匀减速直线运动。

匀变速直线运动的规律为:

at v v +=ο1

2

021at t v s =

=

as v v 22

2

1=-ο t v v vt s t )(21

0+=

=

匀变速直线运动的规律也可以用图像描述。其位移—时间图像(s ~t 图)和速度—时间图像(v ~t 图)分别如图2-1-3和图2-1-4所示。

从(s ~t )图像可得出: (1)任意一段时间内的位

移。

(2)平均速度,在(12t t -)

的时间内的平均速度的大小,是通过图线上点1、点2的割线的斜率。

(3)瞬时速度,图线上某点的切线的斜率值,等于该时刻的速度值。从s ~t 图像可得出: 从(v ~t )图像可得出: (1)任意时刻的速度。

(2)任意一段时间内的位移,21t t 时间内的位移等于v ~t 图线,21t t 、时刻与横轴所围的“面积”。这一结论对非匀变速直线运动同样成立。

(3)加速度,v ~t 图线的斜率等于加速度的值。若为非匀变速直线运动,则v ~t 图线任一点切线的斜率即为该时刻的瞬时加速度的大小。

§2.2 运动的合成与分解相对运动

2.2.1、运动的合成与分解 (1)矢量的合成与分解

矢量的合成与分解的基本方法是平行四边形法则,即两分量构成平行四边形的两邻边,合矢量为该平行四边形与两分量共点的对角线。由平行四边形法则又衍生出三角形法则,多个矢量的合成又可推导出多边形法则。

同一直线上的矢量的合成与分解可以简化为代数运算,由此,不在同一直线上的矢量的合成与分解一般通过正交分解法进行运算,即把各个矢量向互相垂直的坐标轴投影,先在各轴上进行代数运算之后,再进行矢量运算。

(2)运动的合成和分解

运动的合成与分解是矢量的合成与分解的一种。运动的合成与分解一般包括位移、速度、加速度等的合成与分解。运动的合成与分解的特点主要有:①运动的合成与分解总是与力的作用相对应的;②各个分运动有互不相干的性质,即各个方向上的运动与其他方向的运动存在与否无关,这与力的独立作用原理是对应的;③位移等物理量是在一段时间内才可完成的,故他们的合成与分解要讲究等时性,即各个运动要取相同时间内的位移;④瞬时速度等物理量是指某一时刻的,故它们的合成分解要讲究瞬时性,即必须取同一时刻的速度。

两直线运动的合成不一定就是直线运动,这一点同学们可以证明。如:①两匀速直线运动的合成仍为匀速直线运动;②两初速为零(同一时刻)的匀加速直线运动的合成仍为初速为零的匀加速直线运动;③在同一直线上的一个匀速运动和一个初速为零的匀变速运动的合运动是一个初速不为零的匀变速直线运动,如:竖上抛与竖下抛运动;④不在同一直线上的一个匀速运动与一个初速为零的匀加速直线运动的合成是一个曲线运动,如:斜抛运动。

2.2.2、相对运动

任何物体的运动都是相对于一定的参照系而言的,相对于不同的参照系,同一物体的运动往往具有不同的特征、不同的运动学量。

通常将相对观察者静止的参照系称为静止参照系;将相对观察者运动的参照系称为运动参照系。物体相对静止参照系的运动称为绝对运动,相应的速度和加速度分别称为绝对速度和绝对加速度;物体相对运动参照系的运动称为相对运动,相应的速度和加速度分别称为相对速度和相对加速度;而运动参照系相对静止参照系的运动称为牵连运动,相应的速度和加速度分别称为牵连速度和牵连加速度。

绝对运动、相对运动、牵连运动的速度关系是:绝对速度等于相对速度和牵连速度的矢量和。

牵连相对绝对v v v +=

这一结论对运动参照系是相对于静止参照系作平动还是转动都成立。 当运动参照系相对静止参照系作平动时,加速度也存在同样的关系:

牵连相对绝对a a a +=

当运动参照系相对静止参照系作转动时,这一关系不成立。

如果有一辆平板火车正在行驶,速度为火地v (脚标“火地”表示火车相对地面,下同)。

有一个大胆的驾驶员驾驶着一辆小汽车在火车上行驶,相对火车的速度为汽火v ,那么很明显,

汽车相对地面的速度为:

火地汽火汽地v v v +=

(注意:汽火v 和火地v 不一定在一条直线上)如果汽车中有一只小狗,以相对汽车为狗汽

v

的速度在奔跑,那么小狗相对地面的速度就是

火地汽火狗汽狗地v v v v ++=

从以上二式中可看到,上列相对运动的式子要遵守以下几条原则:

①合速度的前脚标与第一个分速度的前脚标相同。合速度的后脚标和最后一个分速度的后脚标相同。

②前面一个分速度的后脚标和相邻的后面一个分速度的前脚标相同。 ③所有分速度都用矢量合成法相加。 ④速度的前后脚标对调,改变符号。

以上求相对速度的式子也同样适用于求相对位移和相对加速度。

相对运动有着非常广泛的应用,许多问题通过它的运用可大为简化,以下举两个例子。 例 如图2-2-1所示,在同一铅垂面上向图示的两个方向以s m v s m v B A /20/10==、的初速度抛出A 、B 两个质点,问1s

后A 、B 相距多远?这道题可以取一个初速度为零,当A 、B 抛出时开始以加速度g 向下运动的参考系。在这个参考系中,A 、B 二个质点都做匀速直线运动,而且方向互相垂直,它们之间的距离

()()4.225102

2==+=

m t v t v s B A AB m

在空间某一点O ,向三维空间的各个方向以相同的速度οv 射出很多个小球,球ts 之后这些小球中离得最远的二个小球之间的距离是多少(假设ts 之内所有小球都未与其它物体碰撞)?这道题初看是一个比较复杂的问题,要考虑向各个方向射出的小球的情况。但如果我们取一个在小球射出的同时开始自O 点自由下落的参考系,所有小球就都始终在以O 点为球心的球面上,球的半径是t v 0,那么离得最远的两个小球之间的距离自然就是球的直径2t v 0

图2-2-1

§2.3抛体运动

2.3.1、曲线运动的基本知识 轨迹为曲线的运动叫曲线运动。它一定是一个变速运动。图2-3-1表示一质点作曲线运动,它经过P 点时,在P 点两旁的轨迹上取11b a 、两点,过11b P a 、、三点可作一圆,当这两点无限趋近于P 点时,则圆亦趋近于一个定圆,我们把这个圆叫P 点的曲率圆,曲率圆的半径叫P 点的曲率半径,曲率圆的圆心叫P 点的曲率中心,曲率半径的倒数叫P 点的曲率。如图2-3-1,亦可做出Q 点的曲率圆。曲率半径大,曲率小,表示曲线弯曲较缓,曲率半径小,曲率大,表示曲线弯曲厉害。直线可认为是曲率半径为无穷大的曲线。

质点做曲线运动的瞬时速度的方向总是沿该点的切线方向。如图2-3-2所示,质点在△t 时间内沿曲线由A 点运动到B 点,速度由V A

变化到V B ,则其速度增量V ?为两者之矢量差,V ?=V B ―V A

,这个速度增量又可分解成两个分量:在V B 上取一段AC 等于V A

,则△V 分解成△V 1和△V 2,其中△V 1表示质点由A 运动到B 的速度方向上的增量,△V 2表示速度大小上的增量。

法向加速度a n 表示质点作曲线运动时速度方向改变的快慢,其大小为在A 点的曲率圆的向心加速度:

t V a t n ??=→?20lim

其方向指向A 点的曲率中心。切向加速度τa 表示质点作曲线运动时速度大小改变的快慢,

方向亦沿切线方向,其大小为

A A t R V t V a 2

10lim =

??=→?τ

总加速度a 方法向加速度和切向加速度的矢量和。 2.3.2、抛物运动是曲线运动的一个重要特例

物体以一定的初速度抛出后,若忽略空气阻力,且物体的运动在地球表面附近,它的运动高度远远小于地球半径,则在运动过程中,其加速度恒为竖直向下的重力加速度。因此,抛体运动是一种加速度恒定的曲线运动。

根据运动的叠加原理,抛体运动可看成是由两个直线运动叠加而成。常用的处理方法是:将抛体运动分解为水平方向的匀速直线运动和竖直方向的匀变速直线运动。

如图2-3-3。取抛物轨迹所在平面为平面,抛出点为坐标原点,水平方向为x 轴,竖直方

P

Q

O 1

R 1 O 2

a 1 a 2

b 1

b 2

图2-3-1

V B

图2-3-2

向为y 轴。则抛体运动的规律为:

??

?-==g a a y x 0 ??

?==θθsin cos 00v v v v y x ?????-==20021sin cos gt t v y t v x θθ

其轨迹方程为

2

2

2cos 2x v g

xtg y o θθ-

=

这是开口向下的抛物线方程。

在抛出点和落地点在同一水平面上的情况下,飞行时间T ,射程R 和射高H 分别为

g v T θ

sin 20=

g v R θ2sin 20=

g v H 2sin 220θ= 抛体运动具有对称性,上升时间和下降时间(抛出点与落地点在同一水平面上)相等(一

般地,从某一高度上升到最高点和从最高点下降到同一高度的时间相等);上升和下降时经过同一高度时速度大小相等,速度方向与水平方向的夹角大小相等。

下面介绍一种特殊的抛体运动——平抛运动:

质点只在重力作用下,且具有水平方向的初速度的运动叫平抛运动。它可以看成水平方向上的匀速运动(速度为v 0)与竖直方向上的自由落体运动的合成。

①速度:采用水平竖直方向的直角坐标可得:0v v x = gt v y =,其合速度的大小为

22

0)(gt v v +=,其合速度的方向为(设水平方向夹角为θ)

,可见,当∞→t 时,

2/,πθ→→gt V ,即表示速度趋近于自由落体的速度。 ②位移:仍按上述坐标就有,2/,2

0gt y t V x ==。仿上面讨论也可得到同样结论,当时间很长时,平抛运动趋近于自由落体运动。

③加速度:采用水平和竖直方向直角坐标系有,g a a y x ==,0,用自然坐标进行分解,如图2-3-4其法向加速度为θcos g a n =,切向加速度为θτsin g a =,θ为速度与水平向方的夹角,将速度在水平与竖直方向的坐标系中分解可知:

图2-3-4

2

220sin t g v gt

V

V y +=

=

θ

22200

cos t g V V V V x +==

θ

由此可知,其法向加速度和切向加速度分别为:

2

220

t g V gV a n +=

22202t g V t g a +=

τ

由上两式可以看出,随着时间的推移,法向加速度逐渐变小趋近于零,切向加速度趋近于定值g ,这表示越来越接近竖直下抛运动。在生活中也很容易看到,平抛物体的远处时就接近竖直下落了。

运动的轨迹方程:

2

202x V g y =

从方程可以看出,此图线是抛物线,过原点,且0V 越大,图线张开程度大,即射程大。根据运动的独立性,经常把斜抛运动分解成水平方向匀速直线运动和竖直方向上的竖直上抛运动来处理,但有时也可以用其它的分解分法。

抛体运动另一种常用的分解方法是:分解沿0v

方向的速度

为0v

的匀速直线运动和沿竖直方向的自由落体运动二个分运

动。

如图2-3-5所示,从A 点以0v 的初速度抛出一个小球,在离A 点水平距离为s 处有一堵高

度为h 的墙BC ,要求小球能越过B 点。

问小球以怎样的角度抛出,才能使0v 最小?

将斜抛运动看成是0v 方向的匀速直线运动和另一个自由落体运动的合运动,如图2-3-6所示。

在位移三角形ADB 在用正弦定理 )sin(1sin sin 2102

ββ+=

=a t v a gt

④轨迹:由直角坐标的位移公式消去时间参数t 便可得到直角坐标系中的平抛运

由①式中第一个等式可得

βsin sin 20

g a v t =

图2-3-5

图2-3-6

将②式代入①式中第二个等式

)sin(sin sin 2202ββ+=

a l

g a v

a a gl v sin )sin(sin 222

0ββ+=

βββcos )2cos(sin 22

0++-=

a gl v

当)2cos(β+-a 有极大值1时,即πβ=+a 2时,0v 有极小值。

因为 πβ=+a 2,π

π

?=++22a

所以

?

π214-=a ??????

?

-=-=2

020cos 21sin sin 21cos t g at v y t g at v x ??

当小球越过墙顶时,y 方向的位移为零,由②式可得

?cos sin 20g a v t =

③式代入式①:我们还可用另一种处理方法

以AB 方向作为x 轴(图2-3-7)这样一取,小球在x 、y 方向上做的都是匀变速运动了,

0v 和g 都要正交分解到x 、y 方向上去。

小球运动的方程为

??????

?-=-=2

2

2121t g v y t g t v x y oy x ox

2

000)

cos sin 2(sin 21cos sin 2cos ???g a v g g a v a v x -=

)sin sin cos (cos cos sin 220???a a g a

v -=

)cos(sin cos 22

20

??+=a a g v []???sin )2sin(cos 22

-+=

a g v

图2-3-7

???

sin )2sin(cos 220

-+=

a xg v 当)2sin(?+a 最大,即

22π

?=

+a 时,

?

π

214-=

a ,0v 有极小值

)sin 1/(cos 220??-=xg v

)sin 1/()sin 1(cos 22???-+=xg )sin 1(?+=xg

)

1(x h

xg +=

)(22s h h g ++=

§2.4质点的圆周运动

刚体平面平行运动与定轴转动

2.4.1、质点的圆周运动

(1)匀速圆周运动 如图2-4-1所示,质点P 在半径为R 的圆周上运动时,它的位置可用角度θ表示(习惯上以逆时针转角正,顺时针转角为负),转动的快慢用角速度表示:

t t ??=→?θ

ω0lim

质点P 的速度方向在圆的切线方向,大小为

R

t R t l

v t t ωθ=?=??=→?→?000lim lim

ω(或v )为常量的圆周运动称为匀速圆周运动。这里的“匀速”是指匀角速度或匀速率,

速度的方向时刻在变。因此,匀速圆周运动的质点具有加速度,其加速度沿半径指向圆心,称为向心加速度(法向加速度)。

v R R v n ωωω===22/

向心加速度只改变速度的方向,不改变速度的大小。

(2)变速圆周运动 ω(或v )随时间变化的圆周运动,称为变速圆周运动,描述角速度变化快慢的物理量为角加速度

t t ??=→?ωβ0lim

质点作变速圆周运动时,速度的大小和方向都在变化。将速

度增量v ? 分解为与2v 平行的分量//v ?和2v 垂直的分量1v

?,如

图2-4-2。1v 相当于匀速圆周运动个的v ? ,11v

?的大小为 R R v v v 121212ωω-=-=?=ω?R

质点P 的加速度为

图2-4-1

v ?

t v t v t v

a t t t ??+??=??=⊥→?→?→?

//00lim lim lim

n a a +=τ

其中n r a a ,就是切向加速度和法向加速度。 R a r βτ=

R R v a n 22/ω==

β为常量的圆周运动,称为匀变速圆周运动,类似于变速直线运动的规律,有

t βωω+=0

2

021

t t βωθ+=

R v 00ω=

t a v Rt v R v r +=+==00βω

(3)圆周运动也可以分解为二个互相垂直方向上的分运动。参看图2-4-3一个质点A 在t=0时刻从x 正方向开始沿圆周逆时针方向做匀速圆周运动,在x 方向上

t R x ωcos =

t R t v v x ωωωsin sin -=-=

t R t a a x ωωωcos cos 2-=-=

在y 方向上:

)2cos(sin π

ωω-

==t R t R y

)2sin(cos π

ωωω-

-==t R t v v y

)

2cos(sin 2π

ωωω-

-=-=t R t a a y

从x 和y 方向上的位移、速度和加速度时间t 表达的参数方程可以看出:匀速圆周运动可以分为两个互相垂直方向上的简谐运动,它们

的相位相差2π

2.4.2、刚体的平面平行运动

刚体平面平行运动的特征是,刚体上的任意质点都作平行于一个固定平面的运动。如圆柱沿斜面的滚动,即为平面平行运动。可取刚体上任意平行于固定平面的截面作为研究对

象。

刚体的平面平行运动,常有两种研究方法:

一种是看成随基点(截面上任意一点都可作为基点)的平动和绕基点的转动的合运动;另一

(a ) 图2-4-4

种是选取截面上的瞬时转动中心S (简称瞬心)为基点。瞬心即指某瞬间截面上速度为零的点。这样,刚体的平面平行运动看成仅作绕瞬心的转动。

确定瞬心的方法有两种:如图2-4-4(a)所示,若已知截面上两点的速度,则与两速度方向垂直的直线的交点即为瞬心。或如图2-4-4(b)所示,已知截面转动的角速度及截面上某一点A 的速度A v ,则在与速度垂直的直线上,与A 点距离为ω/A v 的点即为瞬心。

注意,瞬心的速度为零,加速度不一定为零。 2.4.3、刚体的定轴转动

刚体运动时,刚体上或其延展部分有一根不动直线,该直线称为定轴,刚体绕这一轴转动。刚体作定轴转动时,其上各点都在与轴垂直的平面内作圆周运动,各点作圆周运动的半径不同,在某一时刻,刚体上所有各点的角位移、角速度和角加速度都是相同的。而各点的线位移、线速度和线加速度则随各点离开转轴的垂直距离不同而不同。

2.4.4、一些求曲率半径的特殊方法

先看椭圆曲线122

2

2=+B y A x ,要求其两顶点处的曲率半径。介绍以下两种方法:

(1)将椭圆看成是半径R=A (设A >B )的圆在δ平面上的投影,圆平面和δ平面的夹角?

满足关系式(如图2-4-5)

A B

R B ==

?cos

设一个质点以速率v 在圆上做匀速圆周运

动,则向心加速度A v a 2=

,从上图中可以看出,

当顶点的投影在椭圆的长轴(x 轴)上的P 点

时,其速率和加速度分别为:

v

A B v v x =

=?cos ,

A v a x 2

=

当质点的投影在椭圆的短轴(y 轴)上的Q 点时,其速率和加速度分别为:

v v y = 2

2

c o s A v B a a y =Φ=。

因此椭圆曲线在P 、Q 的曲率半径分别为:

A

B a v x x p 22=

B A

a v y y Q 2

2==

ρ

y

如图2-4-5

x

图2-4-6

(2)将椭圆看成是二个简谐运动的合成,可以把椭圆的参数方程(设A >B )(如图2-4-6)

???==θθsin cos B y A x 可改写为 ??

?

??-==)2cos(cos π

ωwt B y t

A x 即可进一步写出x ,y 二个方程的速度v 和加速度a :

???-=-=wt A a t

A v x x cos sin 2

ωωω

那么在长轴端点P 处(0

0=t ω)的曲率半径:

A B A B a v p

p p 2

2

22)(=

==

ωωρ

在短轴端点Q 处(

ω=

t )的曲率半径

B A B A a v Q

Q

Q 22

22)(===

ω

ωρ

再把抛物线y=Ax 2

,要求其任意一点的曲率半径(如图2-4-7)因为抛物线可以写作参数方程

?????==2021at y t

v x

其中A v a

o =2,这样就可以导出

???==???==a a a at v v v y x y o x 0

对任意一个t 值: v=

2

2022)

(at v v v y x +=+

a N =acos θ=a

2200

)(at v av v

v x

+=

所以这一点的曲率半径

2

3222

2

av t a v a v N (+==

ρ

将t=0v x 代入,可得

2

023

2402/1v a x v a )(+=ρ 因为

2

02v a A =,所以抛物线y=Ax 2上任意一点的曲率半径 ???

???

?

--=--=)2cos()2sin(2πωπωωwt B a t B v y

y x

图2-4-7

A x A 2/412

3

22

)(+=ρ

§2.5几种速度的特殊求法

2.5.1、相关的速度

当绳端在做既不沿绳方向,又不垂直于绳方向的运动时,一般

要将绳端的运动分解为沿绳方向和垂直于绳方向二个分运动。 如图2-5-1所示的情况,绳AB 拉着物体m 在水平面上运动,A 端以速度v 做匀速运动,问m 做什么运动?有的同学会将绳的速度v 分

解成竖直 分速度vsina 和水平分速度vcosa ,以为木块的速度a v u cos =(u=,而且B v 随着a 的增大而越来越大。 如图2-5-2所示,杆AB 沿滑下,A 、B 二端的速度A v 和B v 也是二个相关的速度。将A v 分

解成沿杆方向的分速1A v 和垂直于杆的分速2B v 。由于杆的长度不会发生变化,所以11B A v v =,

即a v a v B A sin cos =,即

B A v tga v ?=

2.5.2、两杆交点的运动

两杆的交点同时参与了二杆的运动,而且相对每一根杆还有自己的运动,因而是一种比较复杂的运动。图2-5-3(a )中的AC 、BD 两杆均以角速度ω绕A 、B 两固定轴在同一竖

直面内转动,转动方向如图

示。当t=0时,==βa 60o,试求t 时刻两棒交点M 点的速度和加速度。t=0时,△ABM 为等边三角形,因此

AM=BM=l ,它的外接圆半径l OM R 3

3

=

=,图2-5-3(b )。二杆旋转过程中,a 角增大的角度一直等于β角减

小的角度,所以M 角的大小始终不变(等于60o),因此

B

α A v A

2A v v 1B v 图2-5-2

(a ) 图2-5-3(b )

1l

2l

2 图2-5-4(a )

1l

2l O

A

B

O '

O '' ?

1l '

M 点既不能偏向圆内也不能偏向圆外,只能沿着圆周移动,因为∠M MO '和∠M MA '是对着同一段圆弧(M M ')的圆心角和圆周角,所以∠M MO '=2∠M MA ',即M 以2ω的角速度绕O 点做匀速圆周运动,任意时刻t 的速度大小恒为

l R v ωω33

2)2(=

= 向心加速度的大小恒为

l R a 2

2334)2(ωω=

=

再看图2-5-4(a ),一平面内有二根细杆1l 和2l ,各自以垂直于自己的速度1v 和2v

在该平

面内运动,试求交点相对于纸平面的速率及交点相对于每根杆的速率。

参考图2-5-4(b ),经过时间t ?之后,1l 移动到了1l '的位置,2l 移动到了2l '的位置,1l '和

2l 的原位置交于O '点,1l '和2l '交于O ''点。

O O '=θ

sin /1t v ?

θsin /2t v O O ?='''

在O O O '''?中:

?cos 22

22O O O O O O O O O O '''?'-'''+'='' 因为?角和θ角互补,所以

θ?cos cos -=

θθ

sin cos 2212

221t

v v v v O O ?++=''

因此两杆交点相对于纸平面的速度

t O O v ?''=

θθ

sin 1cos 2212

221v v v v ++=

不难看出,经过t ?时间后,原交点在1l 上的位置移动到了A 位置,因此交点相对1l 的

位移就是O A '',交点相对1l 的速度就是:

t O O O A v ?'''+'='/)(1

=t

t v ctg t v ???? ??

?+??/sin 21θθ

θθsin /)cos (21v v +=

用同样的方法可以求出交点相对2l 的速度

θθsin /)cos (212

v v v +=' 因为t ?可以取得无限小,因此上述讨论与21,v v 是否为常量无关。如果21,v v 是变量,

上述表达式仍然可以表达二杆交点某一时刻的瞬时速度。

如果1v 和2v 的方向不是与杆垂直,这个问题应该如何解决?读者可以进行进一步的讨论。

高中物理竞赛试题及答案

高中物理竞赛模拟试卷(一) 说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150 分,考试时间 120 分钟. 第Ⅰ卷(选择题 共 40 分) 一、本题共 10 小题,每小题 4 分,共 40 分,在每小题给出的 4 个选项中,有的小题只有一个选项正确,有的小题有多个选项正确,全部选对的得 4 分,选不全的得 2 分,有错选或不答的得 0 分. 1.置于水平面的支架上吊着一只装满细砂的漏斗,让漏斗左、右摆动,于是桌面上漏下许多砂子,经过一段时间形成一砂堆,砂堆的纵剖面最接近下图Ⅰ-1中的哪一种形状 2.如图Ⅰ-2所示,甲乙两物体在同一光滑水平轨道上相向运动,乙上连有一段轻弹簧,甲乙相互作用过程中无机械能损失,下列说法正确的有 A.若甲的初速度比乙大,则甲的速度后减到 0 B.若甲的初动量比乙大,则甲的速度后减到0 C.若甲的初动能比乙大,则甲的速度后减到0 D.若甲的质量比乙大,则甲的速度后减到0 3.特技演员从高处跳下,要求落地时必须脚先着地,为尽量保证安全,他落地时最好是采用哪种方法 A.让脚尖先着地,且着地瞬间同时下蹲 B.让整个脚板着地,且着地瞬间同时下蹲 C.让整个脚板着地,且着地瞬间不下蹲 D.让脚跟先着地,且着地瞬间同时下蹲 4.动物园的水平地面上放着一只质量为M 的笼子,笼内有一只质量为 m 的猴子.当猴以某一加速度沿竖直柱子加速向上爬时,笼子对地面的压力为F 1;当猴以同样大小的加速度沿竖直柱子加速下滑时,笼子对地面的压力为 F 2(如图Ⅰ-3),关于 F 1 和 F 2 的大小,下列判断中正确的是 A.F 1 = F 2>(M + m )g B.F 1>(M + m )g ,F 2<(M + m )g C.F 1>F 2>(M + m )g D.F 1<(M + m )g ,F 2>(M + m )g 5.下列说法中正确的是 A.布朗运动与分子的运动无关 B.分子力做正功时,分子间距离一定减小 C.在环绕地球运行的空间实验室里不能观察热传递的对流现象 D.通过热传递可以使热转变为功 6.如图Ⅰ-4所示,虚线a 、b 、c 代表电场中的三个等势面,相邻等势面之 图Ⅰ -3 图Ⅰ -4 图Ⅰ-2

高中物理竞赛辅导讲义 第 篇 运动学

高中物理竞赛辅导讲义 第2篇 运动学 【知识梳理】 一、匀变速直线运动 二、运动的合成与分解 运动的合成包括位移、速度和加速度的合成,遵从矢量合成法则(平行四边形法则或三角形法则)。 我们一般把质点对地或对地面上静止物体的运动称为绝对运动,质点对运动参考照系的运动称为相对运动,而运动参照系对地的运动称为牵连运动。以速度为例,这三种速度分别称为绝对速度、相对速度、牵连速度,则 v 绝对 = v 相对 + v 牵连 或 v 甲对乙 = v 甲对丙 + v 丙对乙 位移、加速度之间也存在类似关系。 三、物系相关速度 正确分析物体(质点)的运动,除可以用运动的合成知识外,还可充分利用物系相关速度之间的关系简捷求解。以下三个结论在实际解题中十分有用。 1.刚性杆、绳上各点在同一时刻具有相同的沿杆、绳的分速度(速度投影定理)。 2.接触物系在接触面法线方向的分速度相同,切向分速度在无相对滑动时亦相同。 3.线状交叉物系交叉点的速度,是相交物系双方运动速度沿双方切向分解后,在对方切向运动分速度的矢量和。 四、抛体运动: 1.平抛运动。 2.斜抛运动。 五、圆周运动: 1.匀速圆周运动。 2.变速圆周运动: 线速度的大小在不断改变的圆周运动叫变速圆周运动,它的角速度方向不变,大小在不断改变,它的加速度为a = a n + a τ,其中a n 为法向加速度,大小为2 n v a r =,方向指向圆心;a τ为切向加速度,大小为0lim t v a t τ?→?=?,方向指向切线方向。 六、一般的曲线运动 一般的曲线运动可以分为很多小段,每小段都可以看做圆 周运动的一部分。在分析质点经过曲线上某位置的运动时,可 以采用圆周运动的分析方法来处理。对于一般的曲线运动,向心加速度为2n v a ρ =,ρ为点所在曲线处的曲率半径。 七、刚体的平动和绕定轴的转动 1.刚体 所谓刚体指在外力作用下,大小、形状等都保持不变的物体或组成物体的所有质点之间的距离始终保持不变。刚体的基本运动包括刚体的平动和刚体绕定轴的转动。刚体的任

高中物理竞赛辅导讲义-7.1简谐振动

7.1简谐振动 一、简谐运动的定义 1、平衡位置:物体受合力为0的位置 2、回复力F :物体受到的合力,由于其总是指向平衡位置,所以叫回复力 3、简谐运动:回复力大小与相对于平衡位置的位移成正比,方向相反 F k x =- 二、简谐运动的性质 F kx =- ''mx kx =- 取试探解(解微分方程的一种重要方法) cos()x A t ω?=+ 代回微分方程得: 2m x kx ω-=- 解得: 22T π ω== 对位移函数对时间求导,可得速度和加速度的函数 cos()x A t ω?=+ sin()v A t ωω?=-+ 2cos()a A t ωω?=-+ 由以上三个方程还可推导出: 222()v x A ω += 2a x ω=- 三、简谐运动的几何表述 一个做匀速圆周运动的物体在一条直径 上的投影所做的运动即为简谐运动。 因此ω叫做振动的角频率或圆频率, ωt +φ为t 时刻质点位置对应的圆心角,也叫 做相位,φ为初始时刻质点位置对应的圆心 角,也叫做初相位。

四、常见的简谐运动 1、弹簧振子 (1)水平弹簧振子 (2)竖直弹簧振子 2、单摆(摆角很小) sin F mg mg θθ=-≈- x l θ≈ 因此: F k x =- 其中: mg k l = 周期为:222T π ω=== 例1、北京和南京的重力加速度分别为g 1=9.801m/s 2和g 2=9.795m/s 2,把在北京走时准确的摆钟拿到南京,它是快了还是慢了?一昼夜差多少秒?怎样调整? 例2、三根长度均为l=2.00m 、质量均匀的直杆,构成一正三角彤框架 ABC .C 点悬挂在一光滑水平转轴上,整个框架可绕转轴转动.杆AB 是一导轨,一电动玩具松鼠可在导轨运动,如图所示.现观察到松鼠正在导轨上运动,而框架却静止不动,试论证松鼠的运动是一种什么样的运动?

高中物理竞赛教程15-温度和气体分子运动论

高中物理竞赛热学教程 第五讲机械振动和机械波 第一讲 温度和气体分子运动论 第一讲 温度和气体分子运动论 §1。1 温度 1.1.1、平衡态、状态参量 温度是表示物体冷热程度的物理量。凡是跟温度有关的现象均称为热现象。热现象是自然界中的一种普遍现象。 热学是研究热现象规律的科学。热学研究的对象都是由大量分子组成的宏观物体,称为热力学系统或简称系统。在不受外界影响的条件下,系统的宏观性质不再随时间变化的状态称为平衡态,否则就称为非平衡态。可见系统平衡态的改变依赖于外界影响(作功、传热)。 系统处于平衡态,所有宏观物理都具有确定的值,我们就可以选择其中几个物理量来描述平衡态,这几个量称为状态参量。P 、V 、T 就是气体的状态参量。 气体的体积V 是指盛放气体的容器的容积,国际单位制中,体积的单位是m 3 。 1m 3 =103L=106 cm 3 气体的压强P 是气体作用在容器的单位面积器壁上的平均压力,单位是p a 。 1atm=76cmHg=1.013?105 p a 1mmHg=133.3p a 1.1.2、 温标 温度的数值表示法称为温标。建立温标的三要素是: 1、选择某种物质的一个随温度改变发生单调显著变化的属性来标志温度,制作温度计。例如液体温度计T(V)、电阻温度计T(R)、气体温度计T(P)、T(V)等等。这种选用某种测温物质的某一测温属性建立的温标称为经验温标。 2、规定固定点,即选定某一易于复现的特定平衡态指定其温度值。1954年以前,规定冰点为0℃,汽点为100℃,其间等分100份,从而构成旧摄氏温标。1954年以后,国际上选定水的三相点为基本固定点,温度值规定为273.16K 。这样0℃与冰点,100℃与汽点不再严格相等,百分温标的概念已被废弃。 3、规定测温属性随温度变化的函数关系。如果某种温标(例如气体温度计)选定为线性关系,由于不同物质的同一属性或者同一物质的不同属性随温度变化的函数关系不会相同,因而其它的温标就会出现非线性的函数关系。 1.1.3、理想气体温标 定容气体温度计是利用其测温泡内气体压强的大小来标志温度的高低的。 T(P)=αP α是比例系数,对水的三相点有 T 3= αP 3=273.16K P 3是273.16K 时定容测温泡内气体的压强。于是 T(P)=273.16K 3P P (1) 同样,对于定压气体温度计有 T(V)=273.16K 3V V (2) 3V 是273.16K 时定压测温泡内气体的体积。 用不同温度计测量同一物体的温度,除固定点外,其值并不相等。对于气体温度计也有)()(V T P T ≠。但是当测温泡内气体的压强趋于零时,所有气体温度计,无论用什么气体,无论是定容式的还是定压式的,所测温度值的差别消失而趋于一个共同的极限值,这个极限值就是理想气体温标的值,单位为K ,定义式为 T=lim 0 →p T(V)=lim 0 →p T(P) =273.16K lim →p 3V V =273.16K lim 0→p 3P P (3) 1.1.4、热力学温标 理想气体温标虽与气体个性无关,但它依赖于气体共性即理想气体的性质。利用气体温度计通过实验与外推相结合的方法可以实现理想气体温标。但其测温范围有限(1K ~1000℃),T <1K ,气体早都已液化,理想气体温标也就失去意义。 国际上规定热力学温标为基本温标,它完全不依赖于任何测温物质的性质,能在整个测温范围内采用,具有“绝对”的意义,有时称它为绝对温度。在理想气体温标适用的范围内,热力学温标与理想气体温标是一致的,因而可以不去区分它们,统一用T(K)表示。 国际上还规定摄氏温标由热力学温标导出。其关系式是: t=T-273.15o (4) 这样,新摄氏温标也与测温物质性质无关,能在整个测温范围内使用。目前已达到的最低温度为5?108 -K , 但是绝对零度是不可能达到的。 例1、定义温标t *与测温参量X 之间的关系式为t * =ln(kX),k 为常数 试求:(1)设X 为定容稀薄气体的压强,并假定水的三相点 16.273*3=T ,试确定t *与热力学温标之间的关系。(2)在温标t * 中,冰点和汽点各为多少度;(3)在温标t * 中,是否存在零度? 解:(1)设在水三相点时,X 之值是3X ,则有273.16o =In(kX 3)将K 值代入温标t * 定义式,有 3316.273*16.273X X In X X e In t +=? ???? ?= (2) 热力学温标可采用理想气体温标定义式,X 是定容气体温度计测温泡中稀薄气体压强。故有 30 lim 16.273X X K T x →= (3) 因测温物质是定容稀薄气体,故满足X →0的要求,因而(2)式可写成 ) lim ln(16.273lim 30 *X X t x x →→+= (4) 16.27316.273*T In t += 这是温标* t 与温标T 之间关系式。 (2)在热力学温标中,冰点K T i 15.273=,汽点K T s 15.373=。在温标* t 中其值分别为 16.27316.27315 .27316.273*=+=In t 47.27315.27315 .37316.273*=+=In t (3)在温标*t 中是否存在零度?令* t =0,有 K e T 116.27316.273<<=- 低于1K 任何气体都早已液化了,这种温标中* t =0的温度是没有物理意义的。 §1-2 气体实验定律 1.2.1、玻意耳定律

《全国中学生物理竞赛大纲》2020版

《全国中学生物理竞赛大纲2020版》 (2020年4月修订,2020年开始实行) 2011年对《全国中学生物理竞赛内容提要》进行了修订,修订稿经全国中学生物理竞赛委员会第30次全体会议通过,并决定从2020年开始实行。修订后的“内容提要”中,凡用※号标出的内容,仅限于复赛和决赛。 力学 1.运动学 参考系 坐标系直角坐标系 ※平面极坐标※自然坐标系 矢量和标量 质点运动的位移和路程速度加速度 匀速及匀变速直线运动及其图像 运动的合成与分解抛体运动圆周运动 圆周运动中的切向加速度和法向加速度 曲率半径角速度和※角加速度 相对运动伽里略速度变换 2.动力学 重力弹性力摩擦力惯性参考系 牛顿第一、二、三运动定律胡克定律万有引力定律均匀球壳对壳内和壳外质点的引力公式(不要求导出) ※非惯性参考系※平动加速参考系中的惯性力 ※匀速转动参考系惯性离心力、视重 ☆科里奥利力 3.物体的平衡 共点力作用下物体的平衡 力矩刚体的平衡条件 ☆虚功原理 4.动量 冲量动量质点与质点组的动量定理动量守恒定律※质心 ※质心运动定理 ※质心参考系 反冲运动 ※变质量体系的运动 5.机械能 功和功率

动能和动能定理※质心动能定理 重力势能引力势能 质点及均匀球壳壳内和壳外的引力势能公式(不要求导出)弹簧的弹性势能功能原理机械能守恒定律 碰撞 弹性碰撞与非弹性碰撞恢复系数 6.※角动量 冲量矩角动量 质点和质点组的角动量定理和转动定理 角动量守恒定律 7.有心运动 在万有引力和库仑力作用下物体的运动 开普勒定律 行星和人造天体的圆轨道和椭圆轨道运动 8.※刚体 刚体的平动刚体的定轴转动 绕轴的转动惯量 平行轴定理正交轴定理 刚体定轴转动的角动量定理刚体的平面平行运动9.流体力学 静止流体中的压强 浮力 ☆连续性方程☆伯努利方程 10.振动 简谐振动振幅频率和周期相位 振动的图像 参考圆简谐振动的速度 (线性)恢复力由动力学方程确定简谐振动的频率简谐振动的能量同方向同频率简谐振动的合成 阻尼振动受迫振动和共振(定性了解) 11.波动 横波和纵波 波长频率和波速的关系 波的图像 ※平面简谐波的表示式 波的干涉※驻波波的衍射(定性) 声波 声音的响度、音调和音品声音的共鸣乐音和噪声

高中物理竞赛教程(超详细修订版)_第九讲_机械振动和机械波

第五讲 机械振动和机械波 §5.1简谐振动 5.1.1、简谐振动的动力学特点 如果一个物体受到的回复力回F 与它偏离平衡位置的位移x 大小成正比,方向相反。即满足: K F -=回的关系,那么这个物体的运动就定义为简谐振动。根据牛顿第二定律,物体的加速度m K m F a -== 回x ,因此作简谐振动的物体,其加速度也和它偏离平衡位置的位移大 小成正比,方何相反。 现有一劲度系数为k 的轻质弹簧,上端固定在P 点,下端固定一个质量为m 的物体,物体平衡时的位置记作O 点。现把物体拉离O 点后松手,使其上下振动,如图5-1-1所示。 当物体运动到离O 点距离为x 处时,有 mg x x k mg F F -+=-=)(0回 式中 0x 为物体处于平衡位置时,弹簧伸长的长度,且有mg kx =0,因此 kx F =回 说明物体所受回复力的大小与离开平衡位置的位移x 成正比。因回复力指向平衡位置O ,而位移x 总是背离平衡位置,所以回复力的方向与离开平衡位置的位移方向相反,竖直方向的弹簧振子也是简谐振动。 注意:物体离开平衡位置的位移,并不就是弹簧伸长的长度。 5.1.2、简谐振动的方程 由于简谐振动是变加速运动,讨论起来极不方便,为此。可引入一个连续的匀速圆周运动,因为它在任一直径上的分运动为简谐振动,以平衡位置O 为圆心,以振幅A 为半径作圆,这圆就称为参考圆,如图5-1-2,设有一质点在参考圆上以角速度ω作匀速圆周运动,它在开始时与O 的连线跟x 轴夹角为0?,那么在时刻t ,参考圆上的质点与O 的连线跟 x 的夹角就成为 0?ω?+=t ,它在x 轴上的投影点的坐标 )cos(0?ω+=t A x (2) 这就是简谐振动方程,式中0?是t=0时的相位,称为初相:0?ω+t 是t 时刻的相位。 参考圆上的质点的线速度为ωA ,其方向与参考圆相切,这个线速度在x 轴上的投影是 0cos(? ωω+-=t A v ) (3) 这也就是简谐振动的速度 参考圆上的质点的加速度为2 ωA ,其方向指向圆心,它在x 轴上的投影是 02 cos(?ωω+-=t A a ) (4) 这也就是简谐振动的加速度 由公式(2)、(4)可得 x a 2ω-= 由牛顿第二定律简谐振动的加速度为 x m k m F a -== 因此有 m k = 2ω (5) 简谐振动的周期T 也就是参考圆上质点的运动周期,所以 图5-1-1 图5-1-2

高中物理竞赛的数学基础(自用修改)

普通物理的数学基础 选自赵凯华老师新概念力学 一、微积分初步 物理学研究的是物质的运动规律,因此我们经常遇到的物理量大多数是变量,而我们要研究的正是一些变量彼此间的联系。这样,微积分这个数学工具就成为必要的了。我们考虑到,读者在学习基础物理课时若能较早地掌握一些微积分的初步知识,对于物理学的一些基本概念和规律的深入理解是很有好处的。所以我们在这里先简单地介绍一下微积分中最基本的概念和简单的计算方法,在讲述方法上不求严格和完整,而是较多地借助于直观并密切地结合物理课的需要。至于更系统和更深入地掌握微积分的知识和方法,读者将通过高等数学课程的学习去完成。 §1.函数及其图形 1.1函数自变量和因变量绝对常量和任意常量 1.2函数的图象 1.3物理学中函数的实例 §2.导数 2.1极限 如果当自变量x无限趋近某一数值x0(记作x→x0)时,函数f(x)的数值无限趋近某一确定的数值a,则a叫做x→x0时函数f(x)的极限值,并记作 (A.17)式中的“lim”是英语“limit(极限)”一词的缩写,(A.17)式读作“当x趋近x0时,f(x)的极限值等于a”。 极限是微积分中的一个最基本的概念,它涉及的问题面很广。这里我们不企图给“极限”这个概念下一个普遍而严格的定义,只通过一个特例来说明它的意义。 求极限公式

(2) (3) (4) 等价无穷小量代换 sinx~x; tan~x; 2.2极限的物理意义 (1)瞬时速度 对于匀变速直线运动来说, 这就是我们熟悉的匀变速直线运动的速率公式(A.5)。 (2)瞬时加速度 时的极限,这就是物体在t=t0时刻的瞬时加速度a: (3)水渠的坡度任何排灌水渠的两端都有一定的高度差,这样才能使水流动。为简单起见,我们假设水渠是直的,这时可以把x坐标轴取为逆水渠走向的方向(见图A-5),于是各处渠底的高度h便是x的函数:

初中物理竞赛试题运动学

初中物理竞赛试题精选:运动学1.A、B两辆车以相同速度v0同方向作匀速直线运动,A车在前,B车在后.在两车上有甲、乙两人分别用皮球瞄准对方,同时以相对自身为2v0的初速度水平射出,如不考虑皮球的竖直下落及空气阻力,则() A.甲先被击中B.乙先被击中 C.两人同时被击中D.皮球可以击中乙而不能击中甲 2.如图所示,静止的传送带上有一木块正在匀速下滑,当传送带突然向下开动时,木块图2滑到底部所需时间t与传送带始终静止不动所需时间t0相比是() A.t=t0B.t<t0C.t>t0 D.A、B两种情况都有可能 3.如图所示,A、B为两个大小和材料都相同而转向相反的轮子,它们的转轴互相平行且在同一水平面内。有一把均匀直尺C,它的长度大于两轮转轴距离的2倍。把该直尺静止地搁在两转轮上,使尺的重心在两轮之间而离B轮较近。然后放手,考虑到轮子和尺存在摩擦,则直尺将() A保持静止。B向右运动,直至落下。 C开始时向左运动,以后就不断作左右来回运动。 D开始时向右运动,以后就不断作左右来回运动。 4.在一辆行驶的火车车厢内,有人竖直于车厢地板向上跳起,落回地板时,落地点() A 在起跳点前面;B在起跳点后面; C与起跳点重合;D与火车运动情况有关,无法判断。

5.在水平方向作匀速直线高速飞行的轰炸机上投下一颗炸弹,飞机驾驶员和站在地面上的观察者对炸弹运动轨迹的描述如图12所示。其中有可能正确的是() 图12 6.一列长为s的队伍以速度V沿笔直的公路匀速前进。一个传令兵以较快的速度v 从队末向队首传递文件,又立即以同样速度返回到队末。如果不计递交文件的时间,那么这传令兵往返一次所需时间是 7.甲、乙两车站相距100千米,一辆公共汽车从甲站匀速驶向乙站,速度为40千米/时。当公共汽车从甲站驶出时,第一辆大卡车正好从乙站匀速开往甲站,而且每隔15分钟开出一辆。若卡车的速度都是25千米/时,则公共汽车在路途中遇到的卡车总共有() (A).20辆。(B)15辆。(C)10辆。(D)8辆 8.某高校每天早上都派小汽车准时接刘教授上班。一次,刘教授为了早一点赶到学校,比平时提前半小时出发步行去学校,走了27分钟时遇到来接他的小汽车,他上车后小汽车立即掉头前进。设刘教授步行速度恒定为v,小汽车来回速度大小恒定为u,刘教授上车以及小汽车掉头时间不计,则可判断() A.刘教授将会提前3分钟到校,且v:u=1:10。 B.刘教授将会提前6分钟到校,且v:u=1:10。 C.刘教授将会提前3分钟到校,且v:u=1:9。 D.刘教授将会提前6分钟到校,且v:u=1:9。 9.一氢气球下系一重为G的物体P,在空中做匀速直线运动。如不计空气阻力和风力影响,物体恰能沿MN方向(如图1中箭头指向)斜线上升,图1中OO’为竖直方向, 则在图1中气球和物体P所 处的情况正确的是() 10.某段铁路有长度L的铁

电磁感应难题(物竞培优)

1.如图4--练4所示,两根相距L=0. 5米的平行无电阻金属导轨MM'和NN',水平放置在方向竖直向上的匀强磁场中,磁感应强度B=0. 2特斯拉。导轨上垂直放置两根金属滑杆ab和cd,它们的有效电阻均为R=0. 1欧姆。金属滑杆ab,cd在导轨上滑行时受到的摩擦力分别为f1=0. 2牛顿和f2=0. 1牛顿。今施水平恒力F于ab杆上,使两杆最终都能以一定速度匀速运动。求: (1)恒力F多大? (2)滑杆ab和cd匀速运动的速度能否相等?如果不等,其速度 差是多少? 2. 在磁感应强度B=1特斯拉的匀强磁场中,放置两个同心共面的金属环,外环半径R1= 0. 3米,内环半径R2= 0. 1米。用导线把两个环与电源相作接(如图4-练5所示)。 已知电源电动势E=2伏,内阻r=0. 5欧,电路中串 接的保险丝电阻Ro = 0. 3欧姆,它的熔断电流为1安培, 一个金属棒沿半径方向放置在两圆环上,这个金属棒在 两环间的电阻为R=0. 2欧姆。使该棒以某一角速度。沿 顺时针方向绕圆环旋转,若其他电阻不计,问当K接通 时,要使保险丝不被熔断,金属棒旋转的角速度应为多 大?金属环电阻不 计。

3. (1)一质量为m的铜跨接杆在重力作用下可以沿两根平行光滑铜导条下滑,导条和水平面成a角,如图4一练6所示。在导条上端接一个阻值为R的电阻,导条间的距离为l,整个系统处在匀强磁场B中,B的方向垂直于跨接杆滑过的平面。导条和跨接杆的电阻、滑动接触电阻以及回路的自感均忽略不计。求跨接杆的稳定速度。 (2)若在图4一练6中将连接在两导条上端间的电阻改换成电动势为E、内阻为r的电源,求跨接杆的稳定速度。(电源正极与a端相接,负极与b端相接。) (3)若在图4一练6中将连接在两导条上端间的电阻改换成电容为C的电容器,求跨接杆下滑的加速度。 4. 如图4一练10(a)所示,一个正方形“田”字闭合导线框,共有12段导线线段,长度均l,其中除了1-8,2-9,3-4三段导线的电阻忽略不计(用虚线表示)外,其余九段导线的电阻均等于r。匀强磁场B的方向与框平面垂直,并指向纸面内,磁场的边界MN与5-6-7框边平行,如图(a)所示。今以速度v将线框向右匀速地拉出磁场区域;试求此过程中拉力所做的功。

高中物理竞赛教程(超详细)电场

第一讲电场 §1、1 库仑定律和电场强度 1.1.1、电荷守恒定律 大量实验证明:电荷既不能创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,正负电荷的代数和任何物理过程中始终保持 k 数, 0ε q F E = 式中q 是引入电场中的检验电荷的电量,F 是q 受到的电场力。 借助于库仑定律,可以计算出在真空中点电荷所产生的电场中各点的电场强度为 2 2r Q k q r Qq k q F E === 式中r 为该点到场源电荷的距离,Q 为场源电荷的电量。

1.1.4、场强的叠加原理 在若干场源电荷所激发的电场中任一点的总场强,等于每个场源电荷单独存在时在该点所激发的场强的矢量和。 原则上讲,有库仑定律和叠加原理就可解决静电学中的全部问题。 例1、如图1-1-1(a )所示,在半径为R 、体电荷密度 为ρ的均匀带电球体内部挖去半径为R '的一个小球,小球球心O '与大球球心O 相距为a ,试求O '的电场强度,并证明空腔内电场均匀。 ρ,R O 1.1.5.电通量、高斯定理、 (1)磁通量是指穿过某一截面的磁感应线的总条数,其大小为θsin BS =Φ,其中θ 为截面与磁感线的夹角。与此相似,电通量是指穿过某一截面的电场线的条数,其大小为 θ?sin ES = θ为截面与电场线的夹角。 高斯定量:在任意场源所激发的电场中,对任一闭合曲面的总通量可以表示为 ∑=i q k π?4 ( 041πε= k ) Nm C /1085.82120-?=ε为真空介电常 数 O O ' P B r a )

式中k是静电常量,∑i q为闭合曲面所围的所有电荷电量的代数和。由于高中缺少高等数学知识,因此选取的高斯面即闭合曲面,往往和电场线垂直或平行,这样便于电通 量的计算。尽管高中教学对高斯定律不作要求,但笔者认为简单了解高斯定律的内容,并 利用高斯定律推导几种特殊电场,这对掌握几种特殊电场的分布是很有帮助的。 (2)利用高斯定理求几种常见带电体的场强 ①无限长均匀带电直线的电场 一无限长直线均匀带电,电荷线密度为η,如图1-1-2(a)所示。考察点P到直线的 距离为r。由于带电直线无限长且均匀带电,因此直线周围的电场在竖直方向分量为零, 即径向分布,且关于直线对称。取以长直线为主轴,半径为r,长为l的圆柱面为高斯面, E 图1-1-5

初三物理竞赛培优(热机问题)

初三物理培优(三) 热机问题 一、【知识准备】 1、汽油机的四冲程是、、、 2、汽油机一个工作循环曲轴转周,飞轮也就旋转周,做功次。 二、【专题练习】 1.一台拖拉机的发动机是四汽缸、四冲程的柴油机,汽缸的直径为95毫米,活塞冲程为127毫米,第三冲程中气体作用在活塞上的平均压强是196牛/厘米2,飞轮的转数是1200转/分,这台发动机的功率是多少瓦? 答案:活塞的面积 燃气对活塞的压力 F=pS=196×71N=1.39×104N 每个做功冲程内,燃气对活塞所做的功为 W1=Fl=1.39×104×0.127J=1764J 由于发动机有四个气缸,则曲轴每转一周内有两个气缸经历做功冲程,故每分钟内发动机内燃气做功的次数为 n=2×1200=2400 故得每分钟内燃气所做的总功为 W=nW1=2400×1764J=4.2336×lO6J 则此内燃机的功率为 P=W/t=4.2336×106/60W=7.056×104W 2、国产165型单缸四冲程汽油机的汽缸直径为65毫米,活塞冲程长55毫米,满负荷工作时做功冲程燃气的平均压强为9.58×105帕,飞轮的转速是1500转/分。 (1)求这种汽油机满负荷工作时做功的功率(不计摩擦损失); (2)如果满负荷工作时每分钟消耗15克汽油,这种汽油机把内能转化为机械能的效率是多少?(汽油的燃烧值为4.6×107焦/千克) 答案: (1)在一个做功冲程中,燃气所做的功为 W1=pS·l=p·πd2/4·l 时间t=lmin内,飞轮转1500r,则共有750个做功冲程,则此汽油机满负荷工作时做功的功率为 (2)15g汽油燃烧释放的能量 Q=mq

舒幼生《物理竞赛培优教程》word版下载

第二节电场和电场强度 【知识要点】 从电场的观点看,电荷间的相互作用可分为两个基本问题:电荷产生电场和电场对电荷的作用. 电场强度,简称场强,是指放人电场中某一点电荷受到的电场力 F 跟它的电量q 的比值.数学表达式为 q为检验电荷, F 为q在场中受到的力.场强的方向规定为正电荷的受力方向. 只要有电荷存在,在电荷的周围就存在着电场.静止电荷在其周围的真空中产生电场,叫静电场,该电荷称为真空中静电场的场源电荷,电场对放人场中的电荷有力的作用. 在点电荷组成的电场里、任一点的场强等于各个点电荷单独存在时各自在该点产生的场强的矢量和,这就是场强叠加原理. 几种典型电场的场强: ( 1 )点电荷电场:由场强的定义和库仑定律可得,真空中点电荷的场 强分布为 ( 2 )均匀带电球壳的电场设有带电量为Q ,半径为R 的均匀带电球壳.由电场线的分布可知,只要球壳内没有电荷,壳内就没有电场线分 为0 布,即内部的场强 E 内 对于球壳外,电场线分布与点电荷Q 在球心处的电场线一样.因此 壳外的场强 E 外为 ( 3 )匀强电场 设有电荷面密度为δ的无限大带电平板,求其两侧的场强.根据场强叠加原理,空间某一点的场强,应是板上所有点电荷在该点产生场的叠加.由于平板是无穷大,根据对称性,板两侧的电场方向如图9 一 2 一 1 所示,且是匀强电场,但用叠加原理求场强的 大小要用到高等数学. 下面我们用不很严密的方法介绍一个定理,并根据它 求上述场强,先考虑点电荷,设一电量为Q 的点电荷, 则空间的场分布为

现取以Q 为球心,R 为半径作一球面,则Q 发出的电场线全部穿过这个面.像这样穿过一个面的电场线总数叫做穿过这个面的电通量,用 符号Φ表示.对于点电荷 由上式可知电通量与所取的面无关,即取任一面,只要这个面内包含Q ,通过此面的电通量为4πk Q . 推论 1 若所取的面不包含Q ,则通过此面的电通量为零. 推论 2 通过任意一个闭合曲线的电通量等于该面所包围的电荷电量的代数和的 4 π倍. 推论2通常叫高斯定理,利用高斯定理可以很方便地求出许多对称场的场强分布.如无限大平板,我们可以取关于板对称的圆柱体面,如图所示,设圆柱面的横截面半径为r ,高为l ,则 因此,电荷面密度为,的无限大带电平板两侧的场强为 E = 2πkδ 【例题分析】 例 1 如图9 一 2 论所示,电荷均匀分布在半球面上, 它在这半球面的中心O 处的电场强度等于E0,( l )证明 半球面底部的平面是等势面;( 2 )两个平面通过同一直径, 夹角为 a ,从半球中分出一部分球面.试求所分出的这部分球面上的电荷在O 处的电场强度 E . 分析与解 (l )证明一个平面是等势面一般有以下两条思路: a .根据电势叠加原理求出各点的电势,判断是否相等; b .根据场强叠加原理求出各点的场强,判断场强方向是否垂直平面. 设想有另一个完全相同的半球面与此半球面构成完整的球壳,则球壳及其内部各点电势都相等.根据对称性可知上、下两个半球壳分别在底面上各点引起的电势是相等的,再由电势叠加原理可知,当只有半球壳存在时,半球壳在底面上各点引起的电势也是相等的,而且电势是两个球壳的一半.场强是矢量,场强叠加比电势叠加要复杂.此题直接在底面上计算场 强较困难.我们可用反证法来说明场强方向一定垂直底面.假 定半球壳在底面产生的场强不垂直底面,则当把半球壳补完 整时,两半球壳在底面产生的合场强也不垂直底面,这与球 壳是等势体相矛盾.因此,假设不成立. ( 2 )由对称可知,E0的方向如图9 一 2 一 3 所示, 同样我们可知分出两部分的电场强度E1、E2,由矢量图可 得

高中物理竞赛辅导讲义-1.4运动学综合题

1.4运动学综合题 例1、如图所示,绳的一端固定,另一端缠在圆筒上,圆筒半径为R,放在与水平面成α角的光滑斜面上,当绳变为竖直方向时,圆 筒转动角速度为ω,(此时绳未松弛),试求此刻圆筒与绳分离处A 的速度以及圆筒与斜面切点C的速度 例2、如图所示,湖中有一小岛A,A与直湖岸的距离为d,湖岸边有一点B,B沿湖岸方向与A点的距离为l.一人自B点出发,要到达A 点.已知他在岸上行走的速度为v1,在水中游泳的速度为v2,且v1>v2,要求他由B至A所用的时问最短,问此人应当如何选择其运动路线?

例3、一根不可伸长的细轻绳,穿上一粒质量为m的珠 子(视为质点),绳的下端固定在A点,上端系在轻质 小环上,小环可沿固定的水平细杆滑动(小环的质量及 与细杆摩擦皆可忽略不计),细杆与A在同一竖直平面 内.开始时,珠子紧靠小环,绳被拉直,如图所示,已 知,绳长为l,A点到杆的距离为h,绳能承受的最大 T,珠子下滑过程中到达最低点前绳子被拉断, 张力为 d 求细绳被拉断时珠子的位置和速度的大小(珠子与绳子 之间无摩擦) 例4、在某铅垂面上有一光滑的直角三角形细管轨道,光滑小球从顶点A沿斜边轨道自静止出发自由滑到端点C所需时间恰好等于小球从A由静止出发自由地经B滑到C所需时间,如图所示.设AB为铅直轨道,转弯处速度大小不变,转弯时间忽略不计,在此直角三角形范围内可构建一系列如图中虚线所示的光滑轨道,每一轨道由若干铅直和水平的部分连接而成,各转弯处性质都和B点相同,各轨道均从A点出发到C点终止,且不越出△ABC的边界.试求小球在各条轨道中,从静止出发自由地由A到C所需时间的上限与下限之比值.

物理竞赛专题训练(功和能)

功和功率练习题 1.把30kg的木箱沿着高O.5m、长2m的光滑斜面由底部慢慢推到顶端,在这个过程中此人对木箱所做的功为J,斜面对木箱的支持力做的功为J。 2.一台拖拉机的输出功率是40kW,其速度值是10m/s,则牵引力的值为N。在10s 内它所做的功为J。 3.一个小球A从距地面1.2米高度下落,假设它与地面无损失碰撞一次后反弹的的高度是原来的四分之一。小球从开始下落到停止运动所经历的总路程是________m。 4.质量为4 ×103kg的汽车在平直公路上以12m/s速度匀速行驶,汽车所受空气和路面对它的 阻力是车重的O.1倍,此时汽车发动机的输出功率是__________W。如保持发动机输出功率不变,阻力大小不变,汽车在每行驶100m升高2m的斜坡上匀速行驶的速度是__________m/ s。 5.用铁锤把小铁钉钉敲入木板。假设木板对铁钉的阻力与铁钉进入木板的深度成正比。已知第一 次将铁钉敲入木板1cm,如果铁锤第二次敲铁钉的速度变化与第一次完全相同,则第二次铁钉进入木板的深度是__________cm。 6.质量为1Og的子弹以400m/s的速度水平射入树干中,射入深度为1Ocm,树干对子弹的平均 阻力为____ N。若同样质量的子弹,以200m/s的速度水平射入同一树干,则射入的深度为___________cm。(设平均阻力恒定) 7. 人体心脏的功能是为人体血液循环提供能量。正常人在静息状态下,心脏搏动一次,能以1.6 ×105Pa的平均压强将70ml的血液压出心脏,送往人体各部位。若每分钟人体血液循环量约为6000ml,则此时,心脏的平均功率为____________W。当人运动时,心脏的平均功率比静息状态增加20%,若此时心脏每博输出的血量变为80ml,而输出压强维持不变,则心脏每分钟搏动次数为____________。 8. 我国已兴建了一座抽水蓄能水电站,它可调剂电力供应.深 夜时,用过剩的电能通过水泵把下蓄水池的水抽到高处的上蓄水 池内;白天则通过闸门放水发电,以补充电能不足,如图8—23 所示.若上蓄水池长为150 m,宽为30 m,从深液11时至清晨4 时抽水,使上蓄水池水面增高20 m,而抽水过程中上升的高度 始终保持为400 m.不计抽水过程中其他能量损失,则抽水机的 功率是____________W。g=10 N/kg) 9. 一溜溜球,轮半径为R,轴半径为r,线为细线,小灵玩溜溜球时,如图所示,使球在水平桌面 上滚动,用拉力F使球匀速滚动的距离s,则(甲)(乙)两种不同方式各做功分别是_____________J和__________________J

高中物理竞赛教程:4.1《基本粒子》.doc

第四讲 基本粒子 §4、1、基本粒子 4.1.1、 什么是基本粒子 在古代就有一些哲学家认为物质是由原子组成的,原子是组成物质的最小颗粒,不可再分。有基本的涵义,可称为基本粒子。自19世纪初,英国科学家道尔顿以化学反应为依据,提出物质是由原子组成的学说以来,人们相继发现了电子、质子、中子、正电子、中微子、介子等大量的基本粒子,基本粒子数目的大量增加,使人们认识到它们也不可能是最基本的组分,所以有“基本料子不基本”的说法。 中微子的发现,中子不是稳定粒子,它衰变为质子和电子:e P n 01111 -+→,实验发现此衰变中动量不守恒。经不断实验发现,中子衰变的正确反应应为v e P n ++→-01111 0。v 为中微子的符号,v 为v 反粒子的符号。 4.1.2、 粒子的自旋 到本世纪30年代末,加上在宇宙射线中发现的μ子,人们认为,电子、质子、中子、中微子、μ子和光子都是基本粒子。除中子和μ子是不稳定粒子外,其余都是稳定的。基本粒子的主要特征除质量的电荷外,还有自旋,这是一个量子力学概念,表征粒子的内部属性,相当于经典物概念是微粒的自转。它遵从量子力学的规律,以π2h 为单位,只能取整数0、1、2……,或半整数1/2、3/2……。上述6种粒子,除光子自旋为1外,其余都是自旋为1/2的粒子。自旋为整数的粒子又称为玻色子;自旋为半整数的粒子又称为费米子。 4.1.3、 粒子和反粒子 经实验发现,每一种粒子都存在相应的反粒子。反粒子和粒子的质量、自旋都相同,电量相同而符号相反。对不带电

的粒子,粒子和反粒子有其它的区分标志,这里不具体描述。在粒子的符号上加一横,代表反粒子,如v 是反中微子。也有的粒子的反粒子就是自身,而无区别,如光子。1932年安得森发现了正电子,使反粒子的存在第一次得到了证实。其他反粒子也先后被发现。如反质子和反中子分别是1955年和1956年在加速器中发现的。粒子和反粒子是互为反粒子的,只是当初称呼电子、质子等为粒子而已。我们这个世界是由粒子组成的,而不是由反粒子组成的。 4.1.4、 强子——介子和重子 本世纪40年代到50年代,从宇宙射线中又发现了一批粒子。比如发现了π介子和K 介子,它们的自旋为零;又发现了与核子(质子和中子)属于同一类而质量更大的粒子,称为超子,有Λ超子、∑超子和Ξ超子,它们都是不稳定粒子。核子和超子统称为重子。介子和重子又统称为强子。因为它们之间的相互作用强大。 4.1.5、 粒子的奇异性 仔细地分析新发现的各种粒子的衰变反应,以及它们参与的其它反应,发现K 介子和超子具有产生快,衰变慢和同时产生两个或多个粒子的新特性,与π介子和核子所有的性质不同,当时认为有些奇异,引入了一个称为奇异数的量子数来标志这种奇异性。 + K 介子 和0K 介子的奇异数为1;+-∑∑∑Λ,0,1,0超子的奇异数为-1;0,ΞΞ-超子的奇异数为-2。具有奇异数的粒子,如其奇异数为s ,则其反粒子的奇异数为-s 。π介子和核子的奇异数为0。在强相互作用中,奇异数守恒。 4.1.6、 基本粒子分类 按照基本粒子之间的相互作用可分为三类: ①强子:凡是参与强相互作用的粒子,分为重子和介子两类。 ②轻子:都不参与强相互作用,质量一般较小。 ③光子:静质量为零,是传递电磁相互作用的粒子。

高中物理竞赛内容标准

高中物理竞赛内容标准 一、理论基础 力学 物理必修1 本模块是高中物理的第一模块。在本模块中学生,学生将进一步学习物理学的内容和研究方法,了解物理学的思想和研究方法,了解物理学在技术上的应用和物理学对社会的影响。 本模块的概念和规律是进一步学习物理的基础,有关实验在高中物理中具有基础性和典型性。要通过这些实验学习基本的操作技能,体验实验在物理学中的地位及实践人类在认识世界中的作用。 本模块划分两个四主题: ·运动的描述 ·相互作用与运动规律 ·抛体运动与圆周运动 ·经典力学的成就与局限性 (一)运动的描述 1.内容标准 (1)通过史实,初步了解近代实验科学产生的背景,认识实验对物理学发展的推动作用。 例1 了解亚里士多德、迪卡尔等关于力与运动的主要观点与研究方法。 例2 了解伽利略的实验研究工作,认识伽利略有关实验的科学思想和方法。 (2)通过对质点的认识,了解物理学中物理模型特点,体会物理模型在探索自然规律中的作用。 例3 在日常生活中,物体在哪些情况下可以看做质点? (3)经历匀变速直线运动的实验过程,理解参考糸、位移、时间、时刻、路程、速度、相对速度、加速度的概念及物理量的标矢性,掌握匀变速直线运动的规律,体会实验在发现自然运动规律中作用。 例4 用实验方法和图像方法研究物体的运动。

例5 通过实例描述物体的变速运动,运动的矢量性。 例6 通过史实及实验研究自由落体运动。 (4)能用公式和图像描述匀变速直线运动,掌握微元法,积分法等数学思想在研究物理问题中的重要性。 (5)对过位移、速度、加速度的学习,理解矢量与标量在物理学中重要性。掌握矢量的合成和分解。 例7 通过实例研究物体竖直上抛运动,体会物体在共线条件下的矢量合成与分解。 2.活动建议 (1)通过研究汽车的运行来分析交通事故的原因。 (2)通过实验研究自由落体运动的影响因素。 (3)通过查阅物理学史,了解并讨论伽利略对物体运动的研究在科学发展和人类进步上的重大意义。 (二)相互作用与运动规律 1.内容标准 (1)知道常见的形变,通过实验了解物体的弹性,知道胡克定律。 例1 调查在日常生活和生产中所用弹簧的形状及使用目的。 例2 制作弹簧秤并用胡克定律解释。 (2)通过实验认识滑动摩擦、静摩擦的规律,理解静摩擦力、滑动摩擦力、摩擦角的概念。能用动摩擦因数计算滑动摩擦力。 例3 设计实验测量摩擦力。体会摩擦力与摩擦角的实际意义。 (3)通过实验,理解力的合成与分解,掌握共点的平衡条件,物体平衡的种类。用力的合成与分解分析日常生活中的问题。 例4 通过实验,研究两个共点力在不同夹角时与合力的关系。 例5 调查日常生活和生产中平衡的类型,分析平衡原理。

高中物理竞赛辅导运动学

高中物理竞赛辅导运动学 §2.1质点运动学的差不多概念 2.1.1、参照物和参照系 要准确确定质点的位置及其变化,必须事先选取另一个假定不动的物体作参照,那个被选的物体叫做参照物。为了定量地描述物体的运动需要在参照物上建立坐标,构成坐标 系。 通常选用直角坐标系O –xyz ,有时也采纳极坐标系。平面直角坐标系一样有三种,一种是两轴沿水平竖直方向,另 一是两轴沿平行与垂直斜面方向,第三是两轴沿曲线的切线和法线方向〔我们常把这种坐标称为自然坐标〕。 2.1.2、位矢 位移和路程 在直角坐标系中,质点的位置可用三个坐标x ,y ,z 表示,当质点运动时,它的坐标是时刻的函数 x=X 〔t 〕 y=Y 〔t 〕 z=Z 〔t 〕 这确实是质点的运动方程。 质点的位置也可用从坐标原点O 指向质点P 〔x 、y 、z 〕的有向线段r 来表示。如图2-1-1所示, 也是描述质点在空间中位置的物理量。的长度为质点到原点之间的距离,的方向由余弦αcos 、βcos 、γcos 决定,它们之间满足 1cos cos cos 222=++γβα 当质点运动时,其位矢的大小和方向也随时刻而变,可表示为r =r (t)。在直角坐标系中,设分不为、、沿方向x 、y 、z 和单位矢量,那么r 可表示为 t z t y t x t )()()()(++= 位矢与坐标原点的选择有关。 研究质点的运动,不仅要明白它的位置,还必须明白它 的位置的变化情形,假如质点从空间一点),,(1111z y x P 运动到另一点),,(2222z y x P ,相应的位矢由r 1 变到r 2,其改 变量为? z z y y x x r r )()()(12121212-+-+-=-=? 称为质点的位移,如图2-1-2所示,位移是矢量,它是 从初始位置指向终止位置的一个有向线段。它描写在一定时刻内质点位置变动的大小和方向。它与坐标原点的选择无关。 2.1.3、速度 平均速度 质点在一段时刻内通过的位移和所用的时刻之比叫做这段时刻内的平均速度 ) 2z y 图2-1-1

相关主题
文本预览
相关文档 最新文档