当前位置:文档之家› 基于超声波的水流量设计)

基于超声波的水流量设计)

基于超声波的水流量设计)
基于超声波的水流量设计)

目前,我国家庭用水的计量多采用机械旋翼式水表,这种水表存在精度低等缺点。本文设计了一种基于超声波技术的适合家用的水流量计,具有精度高、操作简单、低成本等优点。

本设计的主要工作有两个方面:一是硬件设计,二是软件设计。硬件设计系统选用了高精度时间间隔测量芯片TDC-GP2用于时间测量,以及控制发射脉冲,以超低功耗的MSP430F427单片机作为系统的核心,用于控制及计算处理。结合超声流量计阀值比较模型和超声波信号过零点不受其电压幅度变化影响的优点,提出了过零阀值比较模型,阀值比较模型可以有效去除接收换能器接收到超声波信号之前的干扰信号,而超声波过零点不随其电压幅度变化而变化,结合两者的优点可以有效抑制静态时间差变化很大的范围。同时设计了脉冲计数电路,消除了部分干扰。采用GP2通过芯片,与传统的高速计数器相比,具有极高的精度,并可以在1MHz的频率下完成电路,避免了高频电路的干扰等复杂问题,有效提高流量计测量精度和稳定性。在设计软件时,为提高时间测量精度,消除干扰,设置了有效时间区间,无效时间,减少了干扰的影响。为降低功耗,间断性关断放大器电源,节省了电池电量,延长了更换电池的周期。

关键词:超声波时差式超声波流量计低功耗精度

目录

一、设计目的------------------------- 1

二、设计任务与要求--------------------- 3

2.1设计任务------------------------- 3

2.2设计要求------------------------- 4

三、设计步骤及原理分析 ----------------- 4

3.1设计方法------------------------- 4 3.2设计步骤------------------------- 5

3.3设计原理分析---------------------- 8

四、课程设计小结与体会 ---------------- 11

五、参考文献------------------------- 12

- 2 -

传感器技术课程设计

一、设计目的

我国水资源总量丰富,但人均水资源占有量仅相当于世界人均水资源占有量的1/4,位列世界第121位,是联合国认定的“水资源紧缺”国家。在全国600多个城市中,有400多个城市存在供水不足的问题,其中缺水比较严重的城市有110个,全国城市缺水年总量达60亿立方米。

不仅如此,水资源在全国范围的分布严重不均。占全国面积三分之一的长江以南地区拥有全国五分之四的水量,而面积广大的北方地区只拥有不足五分之一的水量,其中西北内陆的水资源量仅占全国的4.6%。我国多年平均降水量约6万亿立方米,其中54%即3.2万亿立方米左右通过土壤蒸发和植物散布又回到大气中,余下的约有2.8万亿立方米绝大部分形成了地面径流和极少数渗入地下。这就是我国拥有的淡水资源总量,这一总量低于巴西、俄罗斯、加拿大、美国和印度尼西亚,居世界第六位。但因人口基数大,人均拥有水资源量是很少的,仅为2200 立方米,占世界人均占有量的四分之一。专家预测,我国人口在2030年将进入高峰时期,届时人均水资源量大约只有1750立方米,中国将成为严重缺水的国家。从20世纪70年代以来就开始闹水荒,这不是危言耸听,而是客观存在的事实。80年代以来,中国的水荒由局部逐渐蔓延至全国,情势越来越严重,对农业和国民经济已经带来了严重影响。

目前,世界80多个国家和地区约16亿人口面临淡水资源供应不足;25多个国家近 3 亿的人口生活在严重缺水状态。预计

1

单相电流跟踪型逆变器

到2030 年,全球近40多个国家和地区,约35 亿人口生活在严重缺水状态。水资源越来越珍贵,水的价格也越来越高,对水量的计量精度要求也越来越高。面对这种严峻的现状,各国政府都采用相应的制度措施,来应对这一问题,例如采用民用水电的阶梯收费,那么就需要高精度的仪表对流量进行准确的测量,在这种背景下,超声流量计以自身测量方式简单、计量精度高、无接触测量等优点应运而生。超声流量计可以实现与流体的非接触式的计量,无阻流件,无压力损失,精度高,功耗低,可实现多种流体的(气体、液体以及含少量杂质的流体等)测量,而且具有受干扰较小的优点,但是目前超声流量计的市场价格还比较高,超声流量计的推广受到很大限制。超声波流量计不仅适用于对生活用水、工业废水及废气等准确计量,而且也适用于粘度较大、杂质含量较高液体的准确计量。在国外,超声流量计被广泛应用到居民日常生活中,由于价格问题,我国仅在应用在工业领域,而且高精度的超声流量计主要还是靠进口。研究一种低成本、测量精度高、低功耗的超声流量计有着很好的经济效益和社会效益。本文对流体状态和超声换能器进行了分析研究,从而为提升超声流量计奠定了理论基础,另外本文从硬件和软件算法的改进来进一步提升计量精度、降低系统功耗,最后采取抗干扰措施来提高系统的稳定性,并提供了低成本、高精度的设计方案。

2

传感器技术课程设计

二、设计任务与要求

2.1设计任务

设计是围绕超声流量计精度的提升、功耗的降低进行展开工作的,在精度的提升方面,首先是从超声换能器以及流体状态分析、流速补偿角度来提升计量精度,其次从超声流量计硬件系统角度对传统信号处理部分进行改进;在降低功耗方面,从硬件和软件的角度出发完成整个超声流量计系统功耗的降低。叙述了课题研究的背景、意义、目前的国内外现状以及发展趋势,以及设计的来源以及内容和安排。然后对超声流量计做了介绍,包括超声流量计的分类,时差法超声流量计测量原理以及流体状态对超声流量流速的影响,并得到经验修正系数。在超声换能器的选择上,先对超声换能器做了总体的介绍,分析了换能器参数、换能器晶片的谐振特性及对超声换能器声、电匹配的实现的过程。对于时差法超声流量计功能的实现,从系统角度分析超声流量计的每个模块的工作原理及实现过程,包括微处理器的选择、计时模块、切换开关以及驱动电路模块、稳压电路模块、电池电量检测模块、信号处理模块等。对超声流量计功耗的以及精度做了定量分析,所设计的超声波水表的精度主要取决于时间差的测量,为提高时间精度在硬件电路设计时尽量采用高精度的原件,换能器的工作频率于1MHz,在此频率时,分立原件很难有较高的精度,故采用TDC-GP2测时芯片,单次测量的误差在50ps,为水表的精度提供了保障,软件方面,为排除干扰设置阈值检测的有限时间和无效时间。功

3

单相电流跟踪型逆变器

耗方面选用低功耗的芯片,并用软件在相应时间关断放大器等器件,保证水表在B级精度范围内。

此外,要了解超声波的产生与传播及其原理,包括什么是超声波和超声波的传播特点,然后讲述了超声波传感器的结构与原理及其应用,包括压电效应,超声波直式换能器,超声波检测原理等。

2.2设计要求

(1)选择用超声波传感器测水流量的方法,即超声波流量计。

(2)知道超声波流量计的分类及应用特点。

(3)要求超声流量计精度要高、功耗要低,在精度的提升方面,首先是从超声换能器以及流体状态分析、流速补偿角度来提升计量精度,其次从超声流量计硬件系统角度对传统信号处理部分进行改进以降低功耗。

(4)本设计采用时差法超声波流量计,掌握其原理,测量及应用特点。

三、设计步骤及原理分析

3.1设计方法

3.1.1流量的基本概念

流体在单位时间流过管道或设备的某处截面的数量称为流量。流过的数量按体积计算的称为体积流量,(或容积流量)用符号Q表示;按质量计算的称为质量流量,用符号G表示。

设流体通过管道或设备某处横截面积中的某以微小面积为dF,并将通过该微小面积的流量取为v,则通过微小面积dF的体积流量

4

传感器技术课程设计

5

dQ 为

dQ=vdf (2.1) 根据式(2.l),可求出流过横截面的体积流量

?=vdF Q (2.2) 如果所截面上的各点流速相同,则从式(2.2)可知体积流量 Q=vF (2.3) 事实上界面上的各点速度并不相等,因此引入平均流速的概念

v=Q/f (2.4)

质量流量G 可用体积流量Q 和流体的密度户之积来表示

G=QP (2.5)

某段时间内流过的流体的总量称为累积流量,等于在该时间内对时间积分。与累积流量相对应的流量称为瞬时流量。

3.1.2超声波流量计的基本概念

超声波流量检测是超声应用的一种,主要是声速测量技术的应用。超声波在流动的流体中传播时就会载上流体流速的信息,超声波在运动的流体中

传播与在静态流体中比较时,相对于管道壁(视为固定坐标系),波束的某些物理特性会发生变化,在静态的基础上又增加了流体流速的信息,因此通过接收到的超声波信号就可以检测出流体的流速,进而换算成流量。

3.2设计步骤

3.2.1 超声波换能器

单相电流跟踪型逆变器

超声的发射和接收,需要一种电声之间的能量转换装置,这就是换能器。超生换能器,也即超声传感器,是超声流量计中的重要组成部分。通常所说的超生换能器一般是指电声换能器,它是一种既可以把电能转化为声能、又可以把声能转化为电能的器件和装置。换能器处在发射状态时,将电能转化为机械能,再将机械能转化为声能;反之,当换能器处在接收状态时,将声能转化为机械能,再转化为电能。

3.2.2 超声波发射电路

超声波发射电路的主要目的是驱动超声波发射探头内的压电晶片振动,使之发出超声波,并且发射的超声波具有一定的能量,可传播较远的距离,实现测量的目的。驱动超声发射探头工作的方式很多,只要在探头上施加一串其频率与探头中心频率一致且能量足够大的脉冲即可。发射脉冲可以由单片机或振动器来实现。本设计中采用的是由单片机发出的方波,单片机P3.7输出方波信号一路经一级反向器后送到超声波换能器的一个电极。另一路经两级反向器后送到超声波换能器的另一个电极。用这种推挽形式将方波信号加到超声波换能器两端,可以提高超声波的发射强度。输出端采用两个反向器并联。用以提高驱动能力。上拉电阻R1、R2一方面可以提高反向器74HC04AN 输出高电平的驱动能力。另一方面可以增加超声波换能器的阻尼效果,缩短其自由振荡的时间,下图为超声波发射部分电路图。

6

传感器技术课程设计

7

图1 超声波发射电路

3.2.3 超声波接收电路

超声波接收器包括超声波接收探头、CX20106A 处理两部分。超声波探头必须采用与发射探头对应的型号,关键是频率要一致,否则将因无法产生共振而影响接收效果,甚至无法接收。由于经探头变换后的正弦波电信号非常弱,经过CX20106A 处理后产生负跳变,引起单片机的外部中断,下图为超声波接收部分电路图。

图2 超声波接收电路

单相电流跟踪型逆变器

8

3.2.4 换能器的安装

换能器的安装选择V 型结构,如图4所示,V 型结构既保证了波的传播方向又可以扩大声程,是现在现在国际流行的两个换能器安装在同一侧的设计。所以我们的换能器将采用单通道V 字型安装,这样不仅可以提高系统的分辨率,单通道形式可以消除由双通道换能器参数不对称等引起的一些附加温度误差,特别是单通道的发射器、接收器安装在管壁同一侧,让超声波在管壁对侧反射一次的方法还可以减少流速断面分布均匀的误差,另外这种方法也可以减少超声波在声道中反射引起的对测量的干扰。

图3 换能器的安装 3.3设计原理分析

当超声波束在液体中传播时,液体的流动将使传播时间产生微小变化,其传播时间的变化正比于液体的流速,而时差法超声流量计工作原理如图 4 所示,α 为流速方向和超声波传播方向的夹角,当 α 为锐角时,称之为顺流;当 α 为钝角时,称之为逆流。超声波信号在动态介质(流体)中,与静态介质(流速为零)相比,顺流时信号传播速度增加,传播时间减小,同样逆流时超声波信号传播速度减小,传播时间增加,从而顺逆流方向超声波信号传播时间存在一个差值(即时差)。时差法超声流量计就是根据介质的流速与时差存在

传感器技术课程设计

9

一定的线性关系原理进行测量的,只要准确测定顺逆流时间,计算出时间差,再根据流速与其线性关系,可以求出瞬时流速,进而可以求出瞬时流量以及累积流量。图3.1中,S1、S2 分别为两个超声波换能器,V 为液体流速,D 为管道直径,θ 超声波进入液体的入射角。t1 为换能器 S1 发射、S2 接收时,超声波在管道中传播时间,即顺流时间;t2 为换能器 S2,S1接受时,超声波在管道中的传播时间,即逆流时间。

图4时差法超声流量计原理

超声流量计顺流时间 t1 和逆流时间 t2 分别用下式计算,即

τθθ++=sin cos 1V C D t (3.3.1)

τθθ+-=

sin cos 2V C D t (3.3.2) 其中 C 为超声波信号在水中的声速,τ 为信号在换能器及硬件电路中的时间延迟。设Δ T 为顺逆流时间差,则

θθθθθθ22212sin tan 2sin cos sin cos V C DV V C D V C D

t t T -=+--=-=? (3.3.3) 因常见液体中声速要大于1000m/s,而液体流速小于10m/s,

单相电流跟踪型逆变器

2

即C 2 >> V2,所以(3.3.3)式可以简化为

V C D T 2tan 2θ=? (3.3.4)

T D C V ?≈θtan 22 (3.3.5)

通过(3.3.5)式可求出瞬时流量,

T K DC V D K T f S K V S K Q ?≈=??=??=θππtan 841)(1122 (3.3.6 )

式(3.3.6)中,K 为流速分布修正系数,S 为管道截面积,D 为管道直径。

由于在管道横截面上流体速度轴向分量的分布模式称为速度分布,它是通过多很直线之末端的一根曲线(或曲面)。这些直线沿着直径(或横截面)各个点上画出来的,它们平行十管道轴线并且在长度上比例于各点的轴向速度。如图

5

图5 (a) 理想流体流速分布 (b) 实际流体流速分布

根据管内的流动状态不同,管内流体的流速分布主要有两种模型,分别为层流流动和湍流流动。在层流状态下,流速分布是以管道中心线为对称轴的一个抛物面;在湍流状态下,流速分布是以管道中心线为对称轴的一个指数曲面。典型的管内流速分布,是指管内流体

传感器技术课程设计

通过足够长的直管段后形成的,并非管内流动都是这样分布的。一般情况下,由于各种干扰,管内流速分布总是要偏离典型的流速分布响。这正是许多流量计需要足够长的直管段的根本原因。

对于流速分布修正系数K值,也可以采用经验算法, 本文设计的流量计是用在家庭水流量的计量,家用自来水的流速相对较小为了简化计算,本次设计中流量修正系数K统一取4/3。

四、课程设计小结与体会

通过本次课程设计,我了解了超声波的一些基础知识,时差法测流量的基本原理。在课程设计的实验过程中,我遇到了不少的困难,主要集中超声波收发电路的理解,以及计时器以及切换电路的设计,经过同学和指导教师的帮助我总算是完成了实验,由此可见我在设计上确实存在不足,以后需要进一步提高。本次课程设计让我回顾了以前学习到的各种知识,锻炼了动手能力和团队合作能力,是对今后走出学校步入工作岗位的一次对基础的巩固,对于以后找工作是相当有帮助的经历。

7

单相电流跟踪型逆变器

五、参考文献

[1] 荆刚.超声波流量测量关键技术研究[D].青岛:山东科技大学,2007.6.

[2] 吕云飞.相位差法超声流量计技术的研究「D].哈尔滨:哈尔滨工程大

[3] 陈强. 超声波流量计的流速测量的研究[D].沈阳:沈阳工业大学,

[4] 姜勇.时差法超声波流量计设计与研发[D].杭州:浙江大学,2006.

4

超声波热量表的施工安装要点及相关技术要求

超声波热量表的施工安装要点及相关技术要求 超声波流量传感器是通过波在介质中的传输速度在顺水流和逆水流方向的差异,而求出介质流速的方法来测量流量。按传感器水流通道方式,超声波流量传感器分单通道式和U 形管式。 超声波式热量表选用主要控制参数为:公称直径DN、常用流量、最大流量、最小流量、额定压力、最大压力损失、温度范围、温差范围等。超声波热量表的初期投资相对较高,仪表的流量传感器具有精度高、压损小、不易堵塞等特点,但流量传感器的管壁锈蚀程度、水中杂质含量、管道振动等因素将影响流量计的精度。 超声波热量表施工安装要点 1. 当使用分体式热量表时,积分仪与流量传感器的距离不宜超过10M。 2. 气泡对准确测量干扰很大,不能安装在管道最高处。 3.安装时远离交流电和高频输射源,避开高温辐射源、阳光直射。 流量传感器的安装 1) 热量表的流量传感器必须安装在一次网的供水管道上。 2) 热量表的流量传感器应安装在直径等于其公称直径的管道上,并且在前、后端分别留有规定长度的直管段(以厂家产品技术说明书为准,一般表前为公称直径10倍的直管段,表后为公称直径5倍的直管段,直管段范围内无其它任何测温、测压、过滤器、阀门等元件)。 3) 在安装流量传感器时应考虑留出便于读数和维修的空间,强烈建议在表体下游满足直管段后安装管道伸缩器,便于热量表的安装及校验。 4) 安装时必须按照流量计管段上水流指示箭头方向安装,并建议在流量传感器前后安装阀门,便于检修。 5) 热量表可以水平、垂直安装,但水平安装时两换能器应在同一水平面上,防止供水沉淀后的淤泥沉积于低处换能器影响信号传输,垂直安装时水流方向必须为从下而上;流量传感器前端应安装过滤器(必须满足表体的前直管段要求)。 温度传感器的安装 1)温度传感器必须安装在流量传感器规定的直管段以外;安装温度传感器管道处的水温须均匀。在安装与流量传感器处于同一根管上(供水管或回水管)的温度传感器时,最好将它安装在流量传感器的后端(下游)。 2)温度传感器不宜安装在管道较高的位置上(可能不充满液体),安装时要与管道中心轴面相垂直。 3)确定温度传感器插入管道的长度,应以使其中热敏元件位于管道中心并偏下的位置为原则。 4)在不影响热计量精度的前提下,建议在同一管道上安装双金属玻璃温度计或其它现场温度计。 热量积分仪的安装 1)积分仪所处位置的环境温度不能超过生产厂家标明的使用环境温度范围。

超声波流量计特点

超声波流量计发展很快,且日益完善,越来越显示出其优越性。各种超声波流量计已广泛应用于工业生产、商业计量和水利检测等方面,例如,在市政行业的原水、自来水、中水、污水的计量中。 产品介绍 超声波流量计是采用高集成度FPGA芯片及低电压宽脉冲发射技术设计的一种通用时差型超声波液量计,适用于水的测量 产品特点 超声波流量计除高精度、高可靠性、高性能、低价格的显著特还具有下列优点 1、超大规模集成电路设计。硬件数目少,低电压工作,多脉冲发射,低功耗,高可靠性,抗干扰、适用性好。优化的智能信号自适应处理,用户无需任何电路调整,就像使用万用表一样方便简单。

2、全窗口化的软件设计。通过窗口可方便地设置管径、管材质、壁厚、输出信号等参数或类型。可使用公制或英制单位。 3、日、月、年流量累积功能。可记录前64个运行日、前64个运行月、前5个运行年的累积流量上、断电管理功能,可记录前64次上电、断电时间及上、断电时刻的瞬时流量,并具有自动或手动补加断电时间段内的流量功能。 4、带倍乘因子的机内七位数长的正向、负向及净流量累积器并行工作。 5、探头可以安装在管道的外边,不妨碍管道内流体的流动状况,以减小压力损失; 6、AFTU型-2W,外夹式超声波流量计的价格与管径无关; 7、测量精度与管道口径有关,管径越大有可能得到的精度越高(采用多声段)。 8、方便测量,随时打印数据。 9、机内自带充电电源,便于户外携带、使用。 10、掉电保护功能,在线自诊断功能。 11、测量准确度高,从算法上消除了环境温度对测量值的影响。 12、全中文或全英文显示,液晶显示 13、非接触式测流量方式,体积小,携带方便

基于BP神经网络的超声波流量计的设计

基于BP神经网络的超声波流量计的设计 学习调整能力,能够适应动态变化的环境。主要介绍流量测量基本原理、硬件结构以及软件设计,最后通过多种环境下的测试和结果分析,证明了该流量计适应性强、精确度高。关键词:STM32;神经网络;时差法;广义互相关算法 中图分类号:TN926?34;TP311 文献标识码:A 文章编号:1004?373X(2016)16?0006?04 Abstract:A ultrasonic flowmeter taking time?difference method for pipe flow measurement was designed based on the controller STM32. In order to improve the environmental suitability and flow measurement accuracy,the generalized cross?correlation time?delay estimation algorithm based on the BP neural network filtering is applied to time?difference detection. The algorithm filters the mixed noise by combining and optimizing the multiple filters with specific statistical characteristics,has self?learning and self?adjusting ability,and is able to adapt to the dynamic changing environment. The basic principles of the flow measurement,hardware structure and software design are mainly introduced in this paper. The strong adaptability and high accuracy of the flowmeter were proved through test in a variety of environment and the result analysis. Keywords:STM32;neural network;time?difference method;generalized cross ?correlation algorithm 流量的精确测量对提高人们的生活质量、企业的生产效率,对节约型社会的建立都有着非常

基于单片机的智能压力检测系统的设计—-毕业论文设计

题目:基于单片机的智能压力检 测系统的设计

基于单片机的智能压力检测系统的设计 摘要 压力是工业生产过程中的重要参数之一。压力的检测或控制是保证生产和设备安全运行必不可少的条件。实现智能化压力检测系统对工业过程的控制具有非常重要的意义。本设计主要通过单片机及专用芯片对传感器所测得的模拟信号进行处理,使其完成智能化功能。介绍了智能压力传感器外围电路的硬件设计,并根据硬件进行了软件编程。 本次设计是基于AT89C51单片机的测量与显示。是通过压力传感器将压力转换成电信号,再经过运算放大器进行信号放大,送至8位A/D转换器,然后将模拟信号转换成单片机可以识别的数字信号,再经单片机转换成LED显示器可以识别的信息,最后显示输出。而在显示的过程中通过键盘,向计算机系统输入各种数据和命令,让单片机系统处于预定的功能状态,显示需要的值。 本设计的最终结果是,将软件下载到硬件上调试出来了需要显示的数据,当输入的模拟信号发生变化的时候,通过A/D转换后,LED将显示不同的数值。 关键词:压力;AT89C51单片机;压力传感器;A/D转换器;LED显示;

Design of pressure detecting system based on single-chip Abstract Pressure is one of the important parameters in the process of industrial production. Pressure detection or control is an essential condition to ensure production and the equipment to safely operating, which is of great significance. The single-chip is infiltrating into all fields of our lives, so it is very difficult to find the area in which there is no traces of single-chip microcomputer. In this graduation design, primarily through by using single-chip and dedicated chip, handling of analog signal measured by the sensor to complete intelligent function. This design illustrates external hardware circuit design of intelligent pressure sensor, and conduct software development to the hardware. The design is based on measurement and display of AT89C51 single-chip. This is the pressure sensors will convert the pressure into electrical signals. After using operational amplifier, the signal is amplified, and transferred to the 8-bit A/D converter. Then the analog signal is converted into digital signals which can be identified by single-chip and then converted by single-chip into the information which can be displayed on LED monitor, and finally display output. In the course of show, through the keyboard to input all kinds of data and commands into the computer, the single-chip will locate in a predetermined function step to display required values. The end result of this design is that by downloading software to the hardware, it will get the data which is required to display by debugging. When the input analog signals change, the LED monitor will display different values through the A/D converting. Key words:pressure; AT89C51 single-chip; pressure sensor; A/D converter; LED monitor;

超声波流量计的基本原理及类型

超声波流量计的基本原理及类型 超声波流量计的基本原理及类型 刘欣荣 超声波在流动的流体中传播时就载上流体流速的信息。因此通过接收到的超声波就可以检测出流体的流速,从而换算成流量。根据检测的方式,可分为传播速度差法、多普勒法、波束偏移法、噪声法及相关法等不同类型的超声波流量计。起声波流量计是近十几年来随着集成电路技术迅速发展才开始应用的一种 非接触式仪表,适于测量不易接触和观察的流体以及大管径流量。它与水位计联动可进行敞开水流的流量测量。使用超声波流量比不用在流体中安装测量元件故不会改变流体的流动状态,不产生附加阻力,仪表的安装及检修均可不影响生产管线运行因而是一种理想的节能型流量计。 众所周知,目前的工业流量测量普遍存在着大管径、大流量测量困难的问题,这是因为一般流量计随着测量管径的增大会带来制造和运输上的困难,造价提高、能损加大、安装不仅这些缺点,超声波流量计均可避免。因为各类超声波流量计均可管外安装、非接触测流,仪表造价基本上与被测管道口径大小无关,而其它类型的流量计随着口径增加,造价大幅度增加,故口径越大超声波流量计比相同功能其它类型流量计的功能价格比越优越。被认为是较好的大管径流量测量仪表,多普勒法超声波流量计可测双相介质的流量,故可用于下水道及排污水等脏污流的测量。在发电厂中,用便携式超声波流量计测量水轮机进水量、汽轮机循环水量等大管径流量,比过去的皮脱管流速计方便得多。超声被流量汁也可用于气体测量。管径的适用范围从2cm到5m,从几米宽的明渠、暗渠到500m宽的河流都可适用。 另外,超声测量仪表的流量测量准确度几乎不受被测流体温度、压力、粘度、密度等参数的影响,又可制成非接触及便携式测量仪表,故可解决其它类型仪表所难以测量的强腐蚀性、非导电性、放射性及易燃易爆介质的流量测量问题。另外,鉴于非接触测量特点,再配以合理的电子线路,一台仪表可适应多种管径测量和多种流量范围测量。超声波流量计的适应能力也是其它仪表不可比拟的。超声波流量计具有上述一些优点因此它越来越受到重视并且向产品系列化、通用化发展,现已制成不同声道的标准型、高温型、防爆型、湿式型仪表以适应不同介质,不同场合和不同管道条件的流量测量。

智能温度检测与显示系统的设计毕业设计论文

南京工程学院 自动化学院 本科毕业设计(论文)题目:智能温度检测与显示系统的设计专业:自动化

南京工程学院自动化学院本科毕业设计(论文) Graduation Design (Thesis) Design of Intelligent temperature examination and display system By Zhang zhe Supervised by Associate Prof. Song Lirong Department of Automation Engineering Nanjing Institute of Technology June, 2009

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

天然河流在线流量监测系统方案

天然河流在线流量监测系统方案 1. 在线监测系统概述 1.1 基本情况 流量站实时测流系统的建立。 随着国家工业发展水资源越来越紧,同时水污染加重可利用水源越发稀缺。中小河流在线流量监测重要性更显突出。 河流在线流量监测,可实时掌握可用水资源。 河流在线流量监测,可通过水闸等调配县市级流域水量。 河流在线流量监测,可了解污水走向,提供决策依据。 河流在线流量监测,在山洪和台风期间掌握各河道流量防范“天灾”。 省市县镇交界河道流量在线流量监测,可为相互“水权”提供依据。 1.2 设计目标 流量站新建全自动的流量实时在线监测方式,实现对河段断面流量流速的实时在线监测,并且将流量计算的水位信息等数据通过无线传输方式传送到水文站房。 1.3 设计原则 (1)实时性、容错性 实时采集现场中的流速、水文等信息,会同断面数据能及时获得流量信息,并将其存在业务数据库中。具有较强的实时性和较高的处理效率,对访问的响应时间要短;采集接口的实时性好,能满足其应用的需要;采集接口的采集周期在5秒到5分钟之间(可根据需要进行设定);采集接口的实时性不能影响控制系统的性能。采集通信方式在具备条件的场合,实现冗余;采集软件要有容错处理机制;实时数据库系统具有容错能力,根据具体的硬件条件实现冗余。 (3)完整性、标准化 信息的传输与处理遵循标准化的协议,以保证信息的相对完整性与一致性。对采集方式、采集设备尽量采用统一标准和型号, 坚持系统的开放性和可扩展性。建立一个开放的、标准的、可扩充、易管理、升级的实时数据库系统。不仅仅要做到配置上的先进,更主要的是开发上和应用上的先进。

(5)安全性、可靠性 在操作上严格权限管理。系统应提供审计跟踪功能,记录所有用户操作过程,对出现的系统安全问题提供调查的依据和手段;系统应具备事务日志功能。保证在恶劣天气条件下能正常运行,确保采集通信信道畅通。 1.4 系统功能 (1)能对断面流速、水温、流向、水位等进行24小时连续在线监测。 (2)能根据实时采集的流速、水位,计算断面流量。 (3)能实现水量数据采集、流量计算、存储、传输的功能。 (4)能将采集的水位、流速、流量和测站状态信息通过通讯网络传输到接收中心。 (5)可人工设定和修改断面平均流速关系线。 2. 流量方案比选 监测方法 主要断面流量监测方法 2.1 主要断面流量 目前进行流量自动测量的方式有以下6种:缆道测流、声学多普勒流速(ADCP)、超声波时差法测流、水工建筑物(涵闸)推算流量、水位比降法推算流量、雷达水表面波流速测量再推算流量。 缆道自动测流 1、缆道自动测流 缆道测流是适合我国国情的一种测流方式,经 50多年发展,技术设备较为成熟,其中全自动缆道测流系统测流精度可达到95~98%。该方法由人工一次性启动缆道测流装置后,可自动测量全断面测点流速和垂线水深,并自动计算出断面面积和流量。由于缆道测流的测量精度较高,且不需要进行率定,在系统工程中主要是用于不规则断面的流量测量,实现对主要测流断面的流量控制。 超声波时差法测流 2、超声波时差法测流 超声波时差法测量流速国内外均有定型产品用于管道和渠道,但国内没有定型生产用于天然河流的产品。本方法能方便地解决断面不同水层的平均流速测量,充分利用电脑技术将超声波时差法测流、超声或压力水位计和预置河床断面等技术集于一体后,可构建实时在线的流量测量系统,该方法适用于断面较稳定,

压力检测系统设计论文

目录 1 压力检测系统总体方案 (2) 1.1设计方案 (2) 2 检测硬件系统 (2) 2.1 压力的测量装置 (2) 2.2 CB-68LP连接模块 (3) 2.3 TDS1012示波器 (3) 2.4 DH1715A-3型双路稳压稳流电源 (3) 2.5 其他 (4) 3 系统中的软件 (3) 3.1 软件支持 (4) 4 压力检测系统的设计 (5) 4.1 压力检测装置前面板设计 (5) 4.2 压力检测装置后面板设计................................. .8 4.3 测量调试 (8) 5 实验数据处理及误差分析 (8) 5.1 数据采集程序 (8) 5.2 数据回放滤波程序及数字滤波器的设计理论 (8) 5.3 对传感器的压力标定 (9) 5.4 误差分析 (10) 6 心得体会 (11) 参考文献 (11)

1 压力检测系统总体方案 1.1设计方案 该系统的总体设计方案,主要由软件和硬件两大部分组成。传感器先将被测信号转换成电压信号,经过信号调理电路,由数据采集与传输模块进行A/D 转换和数据采集,再通过串口与计算机通信。应用LabVIEW 虚拟仪器开发工具编写软件,实现对信号的显示、存储和分析。 1.2 实验原理 在现代包括检测在内的绝大多数信息处理的思路都是将采集的信号转化为电压值(因为电压值便于处理),再将电压值转化为我们要的对象。压力传感器测量压力也不例外。 本实验是通过压力传感器采集压力,再通过采集卡,由电脑进行数据处理,最后转化为压力值。 2检测硬件系统 2.1 压力的测量装置 小量程测力/称重传感器,型号:BK—3;量程:120kg;供电:12V;输出:0~5V 精度:0.2%,弹性体为三片梁、复合悬臂梁结构,结构小巧,用于拉伸力和压缩力测量。精度高,性能稳定可靠,安装使用方便。拉式或压式承载。适用于建材行业的电子秤、皮带秤、小量程测力/称重的工业自动化测量控制系统。

水库大坝自动化监测系统

水库大坝自动化监测系统 沟水坡自动化监测系统由水库水位监测GSM预警系统、水库出入水流量监测系统、水库雨量监测系统及视频监控系统、中心控制系统及组态软件五部分组成。 一、水位监测和GSM预警系统 一)计算机监测 通过静压液位变送器采集水库水位高度,输出模拟量信号,利用AD模块将模拟量信号转换成数字量信号传送至工业无线数传电台里面。无线数传电台再通过RS485信号把水位数字信号传送到控制中心数传电台里内,最后进入控制中心服务器里面,形成数字、图形或报表。二)GSM预警 通过PLC设定水位上限高度,经液位计变送器利用模块信号把水位值传送到PLC内。水位超过上限值时,PLC通过数字量信号触动GSM预警模块,以短信方式给值班人员报警。二、水库流量出入水流量监测系统 一)入水流量 由于管道是水泥管道且入水流量不固定,拟采用明渠式超声波流量计,又由于管道为半球形,现有流量计无法计算弧形渠流量,所以我们用分离式流量计通过超声波分别计算管道水位和库内水流速,再把水位及流速转换成数字量信号通过无线数传电台发送到中心控制室服务器上,通过计算机计算横截面积及流量速度得出入水流量。 二)出水流量 出水管道是DN900钢制管道,水流满管,所以我们采用外夹式超声波流量计,不用破坏管道结构,而且能准确通过内部计算出管道流量,再通过无线数传电台把流量值直接传送到计算机里内便可。 三、水库雨量监测系统 采用双翻斗式雨量采集仪,再通过数采模块把雨量仪翻转脉冲信号累加成数字信号。雨量采集仪可以置于中控中心楼顶,距离较近,可采用RS485线缆,把采集到的信号传送到中控计算机里面,最终形成图象、文字或报表。 四、视频监控系统 我们采用无线高清网络摄像机,在原有系统基础上增加视频信号。 一)优点 1.百万高清摄像头画质远高于传统模拟摄像头。 2.无线WIFI传输,减少架设光纤及线缆成本及人工施工成本。 3.无线高清网络摄像机在系统连接互联网后,采用最新的云技术可以在世界各地随时通过手机、电脑及各种手持设备监控水库情况。 二)缺点 1.小雨或雾天WIFI信号会衰减。 2.高清视频存储量大。 三)解决办法

超声波热量表的施工安装要点及相关技术要求

超声波热量表的施工安装要点及相关技术要求标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

超声波热量表的施工安装要点及相关技术要求超声波流量传感器是通过波在介质中的传输速度在顺水流和逆水流方向的差异,而求出介质流速的方法来测量流量。按传感器水流通道方式,超声波流量传感器分单通道式和U 形管式。 超声波式热量表选用主要控制参数为:公称直径DN、常用流量、最大流量、最小流量、额定压力、最大压力损失、温度范围、温差范围等。超声波热量表的初期投资相对较高,仪表的流量传感器具有精度高、压损小、不易堵塞等特点,但流量传感器的管壁锈蚀程度、水中杂质含量、管道振动等因素将影响流量计的精度。 超声波热量表施工安装要点 1. 当使用分体式热量表时,积分仪与流量传感器的距离不宜超过10M。 2. 气泡对准确测量干扰很大,不能安装在管道最高处。 3.安装时远离交流电和高频输射源,避开高温辐射源、阳光直射。 流量传感器的安装 1) 热量表的流量传感器必须安装在一次网的供水管道上。 2) 热量表的流量传感器应安装在直径等于其公称直径的管道上,并且在前、后端分别留有规定长度的直管段(以厂家产品技术说明书为准,一般表前为公称直径10倍的直管段,表后为公称直径5倍的直管段,直管段范围内无其它任何测温、测压、过滤器、阀门等元件)。

3) 在安装流量传感器时应考虑留出便于读数和维修的空间,强烈建议在表体下游满足直管段后安装管道伸缩器,便于热量表的安装及校验。 4) 安装时必须按照流量计管段上水流指示箭头方向安装,并建议在流量传感器前后安装阀门,便于检修。 5) 热量表可以水平、垂直安装,但水平安装时两换能器应在同一水平面上,防止供水沉淀后的淤泥沉积于低处换能器影响信号传输,垂直安装时水流方向必须为从下而上;流量传感器前端应安装过滤器(必须满足表体的前直管段要求)。 温度传感器的安装 1)温度传感器必须安装在流量传感器规定的直管段以外;安装温度传感器管道处的水温须均匀。在安装与流量传感器处于同一根管上(供水管或回水管)的温度传感器时,最好将它安装在流量传感器的后端(下游)。 2)温度传感器不宜安装在管道较高的位置上(可能不充满液体),安装时要与管道中心轴面相垂直。 3)确定温度传感器插入管道的长度,应以使其中热敏元件位于管道中心并偏下的位置为原则。 4)在不影响热计量精度的前提下,建议在同一管道上安装双金属玻璃温度计或其它现场温度计。 热量积分仪的安装 1)积分仪所处位置的环境温度不能超过生产厂家标明的使用环境温度范围。

超声波流量计系统的设计

超声波流量计系统的设计 樊伟佳 (陕西理工学院电信工程系电子信息工程专业,2012级1班,陕西汉中 723004) 指导教师:秦伟 [摘要]超声波流量计是利用超声波在流体中的传播特性来测量流量的计量仪表,并且以其非接触式的测量、高精度等特点在工业生产、医药、水资源等领域有着广泛的应用。本设计利用时差法超声波流量计原理,针对超声波流量计测量精度容易受温度影响的问题,利用改进型算法避免温度对测量精度的影响。设计系统时选择了一些基本电路设计了以下电路:超声波发射电路,超声波接收电路,LED显示电路,主从单片机电路,电源电路以及存储电路等,成功实现了瞬时流量的测量与辅助功能的实现,总的来说,本次设计的超声波流量计具有精度高、测量范围大、安装方便、测试操作简单等特点。另外,本次设计的超声波流量计适用于管道和明渠流量测量,适合测量的流体:水或其它杂质较少的液体,管径或明渠宽度:0.3~20m,流速:0.1~12m/s。 [关键词]超声波流量计;单片机;时差法; The Design of Ultrasonic Flow Meter System Fan Weijia (Grade 04,Class 1,Major electronics and information engineering,Electronics and information engineering Dept.,Shaanxi University of Technology,Hanzhong 723000,Shaanxi) Tutor: Qin Wei [Abstract]: Ultrasonic flowmeter is the use of ultrasonic wave propagation characteristics in the fluid to measure the flow rate measuring instruments, and its non-contact measurement, high accuracy and other characteristics in industrial production, medicine, water and other fields have a wide range of applications. This design uses the principle of transit-time ultrasonic flowmeter, ultrasonic flowmeter for measurement accuracy easily affected by temperature problems using the improved algorithm to avoid the effect of temperature on the measurement accuracy. Design system selected some basic circuit design of the following circuits: ultrasonic transmitter circuit ultrasonic receiver circuit, LED display circuit, master-slave microcontroller circuit, power circuit and a memory circuit, successfully realized its measurement and accessibility of instantaneous flow, Overall, this design ultrasonic flowmeter has high accuracy, wide measuring range, easy installation, simple test operation. In addition, this ultrasonic flowmeter design suitable for pipes and open channel flow measurement, suitable for measuring fluid: water or other impurities, less liquid, open channel diameter or width: 0.3 ~ 20m, flow rate: 0.1 ~ 12m / s. [Key words]:Ultrasonic flowmeter; single chip microcomputer; time difference method;

智慧河道水位流量监测系统

智慧河道方案 一、目的 实现整体河道在线式视频监控,为河道治污追源提供及时便捷的追查手段,同时对排污等违法行为提供监控预警和取证。二是管理人员、巡查人员能够通过移动终端查看实时视频,实现随时随地监控河道状况,可智能分析人员轨迹,辅助河道巡查考核,辅助违法抓拍。三是可通过视频监控手段,加以智能化分析,在末端截污、点位治理、源头治理、河道系统治理上形成高效、可视化、平台化、信息化的治理方法,为滇池保护治理提供有针对性的决策依据。四是为智慧河道、智慧城市提供感知层数据基础,在增加各类传感设施后,可提供包括河道、排污口、雨水管道等水位、流量、pH值、温度、浑浊度、COD、BOD、氨氮等重要传感数据在线式采集、上传、分析,为每条入滇河道形成定期的河道数据分析报告。 智慧河道一般由以下几个方面组成: 1、水位流量:可以根据现场环境选择多普勒超声波流量计(接触式)或者雷达流量计(包含雷达流 速仪和雷达水位计)(非接触式)。 2、水质在线监测:包括PH,温度,浊度,COD,氨氮,BOD等。 2、图像视频:用于拍摄下泄口或者是流量计安装处的视频图像,通过4G网络将数据传输至服务器远端可以查看。 3、供电系统:用于给整套系统进行供电、根据现场环境可以选择太阳能供电或者市电供电。 4、通信设备:可以通过遥测终端机将采集到的传感器数据通过GPRS发送至云端。 5、数据查看:数据可以通过遥测终端机发送至数据服务器、用户可以通过云平台或者手机浏览器远程查看数据,数据也可以发送至相应监管部门的服务器。 二、数据传输方式: 1、光纤有线传输:采用光纤或者有线宽带网络。适合安装点有网络且下泄流量站点离的比较近的地方可以考虑采用这种方式。 2、GPRS/4G无线通信:采用GPRS或者4G信号将数据和视频图像传输至服务器。适合安装点比较远、无法布线的场合。 3、北斗通信:采用北斗短报文进行通信,遥测终端机采集到的数据通过北斗短报文的形式发送至一

超声波流量计设计

学号:14111501202 湖南理工学院 毕业论文 题目:超声波流量计的设计 作者:刘阳届别:2011级 院别:机械工程学院专业:机械电子工程 指导老师:周红波职称:讲师 完成时间: 2015.5.10

摘要 超声波流量计是利用超声波在流体中的传播特性来测量流量的计量仪表。凭借其非接触测流、仪表造价基本上与被测管道口径大小无关、精度高、测量范围大、安装方便、测试操作简单等自身的优势被认为是较好的大管径流量测量仪表,在电力、石油、化工特别是供水系统中被广泛应用。然而,由于超声波流量计只是在近几十年才出现的一种新型仪表,还有很多不完善的地方,比如成本较高、精度不够等,有必要对其加以改进和提高。 本设计与传统的机械式流量仪表不同,它具有机械式仪表所不具备的优点,而且因其采用高精度时间测量芯片TDC-GP2进行时间测量,保证了测量的精度。本设计采用时差法原理进行测量流体流速,进而计算出瞬时流量。 论文从流量计的发展历史和背景到超声波流量计的原理、特点以及国内外发展概况,详细地介绍了超声波流量计。另外,论文又详细研究了时差法超声波流量计的理论知识,并在理论基础上研究了超声波流量计的硬件电路与软件部分,其中所用的高精度时间测量芯片TDC-GP2以及单片机STC89C58RD+是本设计的核心部分。本设计成功实现了瞬时流量的测量与辅助功能的实现,有较广阔的研究前景。 绪论 1.1流量计的发展历史与现状概述 数千年前,人们为了适应水利和农业灌溉的需要,就已经开始关注流量测量的问题。流量测量作为人类文明的一种标志,是计量科学技术的组成部分之一,它不仅广泛用于农业和水利,也广泛用于化工、石油、冶金以及人民生活各个领域之中,一直得到世界各国政府和企业的重视,而且重视程度一直在不断加强。 最早的流量测量发生在公元前1000年,古埃及人通过对尼罗河流量的测量来预计当年收成的好坏,古罗马人利用孔板测量的方法在修建引水渠时进行流量测量。而到目前为止,流量计的发展也有了几百年的时间,早在1738年,瑞士人丹尼尔·伯努利以伯努利方程为基础,利用差压法测量水流量;后来意大利人

(完整版)智能垃圾桶检测系统毕业设计

基于物联网技术的垃圾智能管理系统的 设计与实现 摘要 本设计主要以单片机AT89S51为智能控制中心,结合GSM模块、重力检测模块、超声波检测模块及温度检测模块,及其外围辅助电路,构成了一个多种检测功能为一体的多功能垃圾管理系统。首先由各传感器检测重力、高度及温度信号并显示出来,当检测到的信号超出自身的设定值时,将其转化为电信号并传送给单片机处理,再由单片机将电信号传送给GSM模块进行打电话和发短信通知用户。该系统具有轻便灵巧、电路简单易实现,所使用的各类元器件灵敏度较高的特点。利用单片机编程,可使电路功能易于控制,从而实现了识别不同情况下具有智能的垃圾管理系统。 关键词:GSM;单片机;温度模块;超声波检测

Abstract This design mainly intelligent control of the single chip AT89S51 as the center, in combination with the GSM module, gravity detection module, ultrasonic detection module and temperature detection module, and its periphery auxiliary circuit, formed a variety of detection for the integration of multi-functional waste management system. First detected by the sensor of gravity, altitude and temperature signals, when the detected signal is beyond its own value, is transformed into electrical signals and transmitted to the single chip microcomputer processing, again by MCU will be routed to a GSM module calling and texting notifies the user. The system has a lightweight flexible, simple circuit to implement, of the various components used the characteristics of high sensitivity. Microcontroller programming, can make the circuit function is easy to control, so as to realize the recognition of different cases, the waste management system with smart. Key words:GSM; Single chip microcomputer; Temperature module;

CDPSODIS0162009B超声波流量计技术规格书剖析

CDP 油气储运项目设计规定 CDP-S-OD-IS-016-2009/B 输油管道工程 超声波流量计技术规格书 2009-12-18发布 2009-12-21实施 中国石油天然气股份有限公司天然气与管道分公司发布

前言 为了加强设备、材料的采购过程管理,统一油气储运项目设备材料技术规格书的编制格式、主要订货技术要求和技术评分标准,按照中国石油天然气与管道分公司“标准化模块化信息化”设计工作的要求,特编制本技术规格书。 本文件适用于输油管道工程超声波流量计设备的采购。 本文件包括技术条件、数据单和技术评分表三部分内容: ——技术条件部分为各工程项目通用并统一的技术要求;未经发布单位批准,任何单位或个人不得对该部分进行修改; ——数据单是为了统一各工程项目实际使用,在工程项目使用中填入用于订货的参数;工程项目中的数据单应按照建设项目管理程序,经审批后用于订货; ——技术评分表是为了统一招标投标过程中通用技术组评分标准,在工程项目使用中,可根据工程项目特点进行调整、修改,修改后用于工程项目的技术评分表应按照建设项目管理程序,经审批后方可使用。 本文件与《外夹式超声波流量计技术规格书》CDP-S-PC-IS-023-2009/A相比主要变化如下: ——技术规格书分成了技术条件、数据单和技术评分表三个部分。 本文件由中国石油天然气股份有限公司天然气与管道分公司提出并归口管理。 本文件起草单位:中国石油天然气管道工程有限公司 本文件主要起草人:高原、邓东花、梅斌 本文件评审专家组:孙艳国宋进舟徐毅钟小木候旭张火箭蔡浩辉郭绪明 李晓云李红李国海唐仁烈吕秀杰 本文件由中国石油天然气管道工程有限公司负责具体技术内容的解释。 联系人:高原 联系电话: 本文件在执行过程中,如有任何意见和建议,请反馈至: 中国石油天然气管道工程有限公司北京石油咨询中心 地址:北京市宣武区广安门内大街甲311号院中国石油管道大厦9层邮政编码100053 联系人:陈怡静 联系电话: 。

超声波气体流量计基本原理介绍

超声波气体流量计基本原理介绍 超声波流量计一般可分为两大类:传播时间式超声波流量计和多普勒超声波流量计。在含有悬浮粒子的流动流体中,可以利用声学多普勒效应测量多普勒频移来确定媒质流速v,这种方法称为超声波多普勒法。 因为目前市场上的超声气体流量计产品都是传播时间式超声波流量计,所以下文将重点阐述传播时间式超声波流量计的原理。当超声波在流动的媒质中传播时,相对于固定坐标系统,超声波速度与在静止媒质中的传播速度有所不同,其变化值与媒质流速有关。因此根据超声波速度的变化量可以求出媒质的流速,传播时间式超声波流量计就是根据这一原理设计而成的。超声波流量计由两大部分组成:测量变换器部分和电子电路部分。 测量变换器又称为换能器,包括超声波发射器、接收器、声楔以及相应的机械连接组件等。 电子电路包括超声波的发射、接收电路,信号处理电路,流量数据指示或输出电路等。 超声波传播时间法测量流量的原理 时差法是通过测量超声波脉冲顺流和逆流的传播时间差来得到媒质流速的一种方法。参看图1-1,在管道两侧分别装置有两个收发通用型超声波换能器R 和T,管道中的媒质以速度u向前流动。

Fig.1-1管道内流速断面和超声射线的轨迹 图中的两个换能器在发射、接收状态交替工作,当T 发射R 接收时称为顺流发射状态,反之,R 发射T 接收时称为逆流发射状态。设顺流发射时超声脉冲的传播时间为1t ,而逆流发射时超声脉冲的传播时间为2t ,则有 ???????+-=++=τθθτθθcos sin /cos sin /2221u c D t u c D t (1-1) 式中,u 为管道中媒质流速,2c 为超声波在静止媒质中的声速,e c l ττ+=1 12;这里1l 为声楔(O-P)或(B-C)之长度,1c 为超声波在管壁中的声速,1 1c l 为超声脉冲通过声楔的时间,e τ为电路延迟时间。 考虑到一般情况下22c >>2u ,根据1-1式可以得到流速的计算公式: ???? ??-???????+=1222 112sin sin 1t t D c D u θθτ (1-2) 根据1-2式可以得出管道内流体中的声速的计算公式:

相关主题
文本预览
相关文档 最新文档