当前位置:文档之家› 稳定性计算

稳定性计算

稳定性计算
稳定性计算

稳定性计算

在汽车操纵稳定性评价参数中,能作为设计指标的有:

转向特定参数:为使汽车能具有良好的操纵稳定性,汽车应具有一定的不足转向性。通常用在0.4g 侧向加速度的作用下,沿定圆转向时,前后轴侧偏角之差作为评价指标。

车身侧倾角:在0.4g 侧向加速度的作用下,车身的侧倾角不大于6°~7°。 制动点头角:当汽车以0.4g 减速度制动时,车身的点头角不应大于1.5 °。

1.稳定性的计算

1.1 车身的抗侧倾特性计算

1.1.1 前悬架的侧倾角刚度K Φr

不计轮胎刚度,则前、后悬架的侧倾角刚度分别为

K Φ1 =2/121C B = N ·m/rad

K Φ2 =2/222C B = N ·m/rad

式中:C 1—前悬架刚度,C 1= N ·mm

B 1—前悬架左右两钢板弹簧中心距,B 1= mm

C 2—后悬架刚度,C 2= N ·mm

B 2—后悬架左右两钢板弹簧中心距,B 2= mm

1.1.2 整车的侧倾中心及侧倾力臂

a.前悬架:

h 1=r-h 12+h 11+f 01-δ1/2

式中:h 11—前悬架整车侧倾中心

r —车轮滚动半径,r= mm

h 12—前钢板弹簧上平面距车轮中心的向下沉量,h 2= mm

h 11—前钢板弹簧总厚度,h 1= mm

f 01—前钢板弹簧满载弧高,δ1= mm

δ1—主片片厚,δ1= mm

b.后悬架:

h 2=r-h 22+h 21+f 02-δ1/2

式中:h 2—后悬架整车侧倾中心

r—后轮滚动半径,r= mm

h

22—后钢板弹簧上平面距车轮中心的向下沉量,h

2

= mm

h 21—后钢板弹簧总厚度,h

1

= mm

f 01—后钢板弹簧满载弧高,δ

1

= mm

1.1.3侧倾轴线的倾斜角

tgα=( h

2- h

1

)/L =

L—汽车轴距,L= mm

1.1.4侧倾力臂 h=[H-(h

11+X

a

tgα)]cosα=

式中:H—满载质心高度,H= mm

X

a —质心与前轮中心线的距离,X

a

= mm

1.1.5侧倾角由力矩平衡公式:μW (H-h)+W(H-h)θ=( K

Φ2 + KΦ2)θ

得:θ=

μW (H-h)

K

Φ2 + KΦ2- W(H-h)

=

θ—侧倾角

μ—侧向加速度,μ=

W—簧载质量,W = KG

1.1.6稳定性分析结论

一般规定,在0.4g侧向加速度的作用下,车身的侧倾角不大于6°~7°,得出分析结论。

1.2. 汽车行驶时的纵向稳定性

1.2.1计算上坡行驶

满载下滑坡度

tgαmax滑 = X

a

·Φ/(L - Φ·H)

X a —质心与前轮中心线的距离,X

a

= mm

Φ—附着系数,Φ=

L—轴距,L= mm

H—满载质心高度,H= mm αmax滑 = ?

满载绕后轴倾翻坡度:

tgαmax翻= (L- X

)/H =

a

αmax翻= ?

αmax滑<αmax翻,故汽车先滑动不会倾翻。

边坡的稳定性计算方法

边坡稳定性计算方法 目前的边坡的侧压力理论,得出的计算结果,显然与实际情形不符。边坡稳定性计算,有直线法和圆弧法,当然也有抛物线计算方法,这些不同的计算方法,都做了不同的假设条件。 当然这些先辈拿出这些计算方法之前,也曾经困惑,不做假设简化,基本无法计算。而根据各种假设条件,是会得出理论上的结果,但与实际情况又不符。倒是有些后人不管这些假设条件,直接应用其计算结果,把这些和实际不符的公式应用到现有的规范和理论中。 瑞典条分法,其中的一个假设条件破裂面为圆弧,另一个条件为假设的条间土之间,没有相互作用力,这样的话,对每一个土条在滑裂面上进行力学分解,然后求和叠加,最后选取系数最小的滑裂面。从而得出判断结果。其实,那两个假设条件对吗?都不对! 第一、土体的实际滑动破裂面,不是圆弧。第二、假设的条状土之间,会存在粘聚力与摩擦力。边坡的问题看似比较简单,只有少数的几个参数,但是,这几个参数之间,并不是线性相关。对于实际的边坡来讲,虽然用内摩擦角①和粘聚力C来表示,但对于不同的破裂面,破裂面上的作用力,摩擦力和粘聚力,都是破裂面的函数,并不能用线性的方法分别求解叠加,如果是那样,计算就简单多了。 边坡的破裂面不能用简单函数表达,但是,如果不对破裂面作假设,那又无从计算,直线和圆弧,是最简单的曲线,所以基于这两种曲线的假设,是计算的第一步,但由于这种假设与实际不符,结果肯定与实际相差甚远。

条分法的计算,是来源于微积分的数值计算方法,如果条间土之间,存在相互作用力,那对条状土的力学分解,又无法进行下去。 所以才有了圆弧破裂面的假设与忽略条间土的相互作用的假设。 其实先辈拿出这样与实际不符的理论,内心是充满着矛盾的。 实际看到的边坡的滑裂,大多是上部几乎是直线,下部是曲线形状,不能用简单函数表示,所以说,要放弃求解函数表达式的想法。计算还是可以用条分法,但要考虑到条间土的相互作用。 用微分迭代的方法求解,能够得出近似破裂面,如果每次迭代,都趋于收敛,那收敛的曲线,就是最终的破裂面。 参照图3,下面将介绍这种方法的求解步骤。

土坡稳定性计算计算书7.9

土坡稳定性计算书 计算依据: 1、《建筑基坑支护技术规程》JGJ120-2012 2、《建筑施工计算手册》江正荣编著 3、《实用土木工程手册》第三版杨文渊编著 4、《施工现场设施安全设计计算手册》谢建民编著 5、《地基与基础》第三版 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 基本参数: 放坡参数: 荷载参数: 土层参数:

二、计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足≥1.2的要求。

圆弧滑动法示意图 三、计算公式: K sj=∑{c i l i+[ΔG i b i+qb i]cosθi tanφi}/∑[ΔG i b i+qb i]sinθi 式子中: K sj --第j个圆弧滑动体的抗滑力矩与滑动力矩的比值; c i --土层的粘聚力; l i--第i条土条的圆弧长度; ΔG i-第i土条的自重; θi --第i条土中线处法线与铅直线的夹角; φi --土层的内摩擦角; b i --第i条土的宽度; h i --第i条土的平均高度; q --第i条土条土上的均布荷载; 四、计算安全系数: 将数据各参数代入上面的公式,通过循环计算,求得最小的安全系数K sjmin:

计算方法算法的数值稳定性实验报告

专业 序号 姓名 日期 实验1 算法的数值稳定性实验 【实验目的】 1.掌握用MATLAB 语言的编程训练,初步体验算法的软件实现; 2.通过对稳定算法和不稳定算法的结果分析、比较,深入理解算法的数值稳定性及其重要性。 【实验内容】 1.计算积分 ()dx a x x I n ?+=1 0) (n (n=0,1,2......,10) 其中a 为参数,分别对a=0.05及a=15按下列两种方案计算,列出其结果,并对其可靠性,说明原因。 2.方案一 用递推公式 n aI I n 1 1n + -=- (n=1,2,......,10) 递推初值可由积分直接得)1 ( 0a a In I += 3. 方案二 用递推公式 )1 (11-n n I a I n +-= (n=N,N-1,......,1) 根据估计式 ()()()11111+<<++n a I n a n 当1 n a +≥n 或 ()()n 1 111≤<++n I n a 当1 n n a 0+< ≤ 取递推初值为 ()()()() 11212])1(1111[21N +++=++++≈N a a a N a N a I 当1 a +≥ N N 或

()()]1111[21N N a I N +++= 当1 a 0+< ≤N N 计算中取N=13开始 【解】:手工分析怎样求解这题。 【计算机求解】:怎样设计程序?流程图?变量说明?能否将某算法设计成具有形式参数的函数 形式? 【程序如下】: % myexp1_1.m --- 算法的数值稳定性实验 % 见 P11 实验课题(一) % function try_stable global n a N = 20; % 计算 N 个值 a =0.05;%或者a=15 % %-------------------------------------------- % % [方案I] 用递推公式 %I(k) = - a*I(k-1) + 1/k % I0 =log((a+1)/a); % 初值 I = zeros(N,1); % 创建 N x 1 矩阵(即列向量),元素全为零 I(1) =-a*I0+1; for k = 2:N I(k) =-a*I(k-1)+1/k; end % %--------------------------------------------

深基坑边坡稳定性计算书

土坡稳定性计算书 本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m): 1.56 ; 基坑内侧水位到坑顶的距离(m): 14.000 ; 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m)条分块数 0 3.50 3.50 2.00 0.00 1 4.50 4.50 3.00 0.00 2 6.20 6.20 3.00 0.00 荷载参数:

土层参数: 二、计算原理 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第 i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足 >=1.3的要求。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。

挡土墙稳定性验算

附件1 滑坡稳定性及挡土墙稳定性验算 1、滑坡体工况1稳定性计算 计算项目:土层滑坡稳定性计算-自重工况 ------------------------------------------------------------------------ [计算简图] [控制参数]: 采用规范: 通用方法 计算目标: 安全系数计算 滑裂面形状: 圆弧滑动法 不考虑地震 [坡面信息] 坡面线段数10 坡面线号水平投影(m) 竖直投影(m) 超载数 1 0.000 2.320 0 2 9.340 1.780 0

3 3.710 4.880 0 4 3.030 0.700 0 5 3.620 2.000 0 6 3.330 1.000 0 7 0.590 0.800 0 8 2.830 0.200 0 9 3.080 1.000 0 10 9.780 4.000 0 [土层信息] 坡面节点数11 编号X(m) Y(m) 0 0.000 0.000 -1 0.000 2.320 -2 9.340 4.100 -3 13.050 8.980 -4 16.080 9.680 -5 19.700 11.680 -6 23.030 12.680 -7 23.620 13.480 -8 26.450 13.680 -9 29.530 14.680 -10 39.310 18.680 附加节点数8 编号X(m) Y(m) 1 0.000 -0.870 2 7.970 0.000 3 27.620 6.400 4 39.310 8.080 5 4.470 -4.200 6 39.310 0.860 7 6.540 -4.200

稳定性验算

承载能力极限状态 1)根据JTJ250-98《港口工程地基规范》的5.3.2规定,土坡和地基的稳定性验算,其危险滑弧应满足以下承载能力极限状态设计表达式: /Sd Rk R M M γ≤ 式中:Sd M 、Rk M ——分别为作用于危险滑弧面上滑动力矩的设计值和抗滑力矩的标准值; R γ为抗力分项系数。 2)采用简单条分法验算边坡和地基稳定,其抗滑力矩标准值和滑动力矩设计值按下式计算: ()cos tan ()sin Rk ki i ki i ki i ki Sd s ki i ki i M R C L q b W M R q b W α?γα??=+ +?? ??=+?? ∑∑∑ 式中:R ——滑弧半径(m ); s γ——综合分项系数,取1.0; ki W ——永久作用为第i 土条的重力标准值(KN/m ),取均值,零压线以 下用浮重度计算; ki q ——第i 土条顶面作用的可变作用的标准值(kPa ); i b ——第 i 土条宽度(m ); i α——第i 土条滑弧中点切线与水平线的夹角(°); ki ?、ki C ——分别为第i 土条滑动面上的内摩擦角(°)和粘聚力(kPa ) 标准值,取均值; i L ——第 i 土条对应弧长(m )。 3)地基稳定性计算步骤 (1) 确定可能的滑弧圆心范围。通过边坡的中点作垂直线和法线,以坡面中点为圆心,分别以1/4坡长和5/4坡长为半径画同心圆,最危险滑弧圆心即在该4条线所包含的范围内。

(2) 作滑动滑弧。选定某些滑动圆心,作圆与软弱层相切,则与防波堤及土层相交的圆弧即为滑弧。 (3) 进行条分。对滑弧内的土层等进行条分,选择土条的宽度,并且对土条进行编号。 (4) 计算各个土条的自重力。利用公式ki i i i W h b γ=计算各个土条的自重力。 (5) 计算滑弧中点切线与水平线的夹角。作滑弧的中点切线,读出它与水平线之间的夹角,注意滑弧滑动的方向,确定夹角的正负。 (6) 确定土条内滑弧的内摩擦角与粘聚力。对于不同的土层,内摩擦角与粘聚力取均值。 (7) 计算危险弧面上的滑动力矩与抗滑力矩。利用公式计算抗滑力 矩 和 滑 动 力 矩。 抗滑力矩为 ( )c o R k k i i k i i k i i k i M R C L q b W α???= ++ ?? ∑ ∑;而滑动力矩为()sin Sd s ki i ki i M R q b W γα??=+??∑。 确定是否满足要求。利用承载能力极限状态设计表达式/Sd Rk R M M γ≤判断是否满足稳定性的要求。

(完整版)土坡稳定性计算

第九章土坡稳定分析 土坡就是具有倾斜坡面的土体。土坡有天然土坡,也有人工土坡。天然土坡是由于地质作用自然形成的土坡,如山坡、江河的岸坡等;人工土坡是经过人工挖、填的土工建筑物,如基坑、渠道、土坝、路堤等的边坡。本章主要学习目前常用的边坡稳定分析方法,学习要点也是与土的抗剪强度有关的问题。 第一节概述 学习土坡的类型及常见的滑坡现象。 一、无粘性土坡稳定分析 学习两种情况下(全干或全淹没情况、有渗透情况)无粘性土坡稳定分析方法。要求掌握无粘性土坡稳定安全系数的定义及推导过程,坡面有顺坡渗流作用下与全干或全淹没情况相比无粘性土土坡的稳定安全系数有何联系。 二、粘性土坡的稳定分析 学习其整体圆弧法、瑞典条分法、毕肖甫法、普遍条分法、有限元法等方法在粘性土稳定分析中的应用。要求掌握圆弧法进行土坡稳定分析及几种特殊条件下土坡稳定分析计算。 三、边坡稳定分析的总应力法和有效应力法 学习稳定渗流期、施工期、地震期边坡稳定分析方法。 四、土坡稳定分析讨论 学习讨论三个问题:土坡稳定分析中计算方法问题、强度指标的选用问题和容许安全系数问题。 第二节基本概念与基本原理 一、基本概念 1.天然土坡(naturalsoilslope):由长期自然地质营力作用形成的土坡,称为天然土坡。2.人工土坡(artificialsoilslope):人工挖方或填方形成的土坡,称为人工土坡。 3.滑坡(landslide):土坡中一部分土体对另一部分土体产生相对位移,以至丧失原有稳 定性的现象。 4.圆弧滑动法(circleslipmethod):在工程设计中常假定土坡滑动面为圆弧面,建立这一 假定的稳定分析方法,称为圆弧滑动法。它是极限平衡法的一种常用分析方法。 二、基本规律与基本原理 (一)土坡失稳原因分析 土坡的失稳受内部和外部因素制约,当超过土体平衡条件时,土坡便发生失稳现象。1.产生滑动的内部因素主要有: (1)斜坡的土质:各种土质的抗剪强度、抗水能力是不一样的,如钙质或石膏质胶结的土、湿陷性黄土等,遇水后软化,使原来的强度降低很多。 (2)斜坡的土层结构:如在斜坡上堆有较厚的土层,特别是当下伏土层(或岩层)不透水时,容易在交界上发生滑动。 (3)斜坡的外形:突肚形的斜坡由于重力作用,比上陡下缓的凹形坡易于下滑;由于粘性土有粘聚力,当土坡不高时尚可直立,但随时间和气候的变化,也会逐渐塌落。 2.促使滑动的外部因素 (1)降水或地下水的作用:持续的降雨或地下水渗入土层中,使土中含水量增高,土中易溶盐溶解,土质变软,强度降低;还可使土的重度增加,以及孔隙水压力的产生,使土体作用有动、静水压力,促使土体失稳,故设计斜坡应针对这些原因,采用相应的排水措施。(2)振动的作用:如地震的反复作用下,砂土极易发生液化;粘性土,振动时易使土的结

第一性原理计算判断材料稳定性的几种方法

第一性原理计算判断材料稳定性的几种方法 当我们通过一些方法,如:人工设计、机器学习和结构搜索等,设计出一种新材料的时候,首先需要做的一件事情就是去判断这个材料是否稳定。如果这个材料不稳定,那么后续的性能分析就犹如空中楼阁。因此,判断材料是否稳定是材料设计领域中非常关键的一个环节。接下来,我们介绍几种通过第一性原理计算判断材料是否稳定的方法。 1.结合能 结合能是指原子由自由状态形成化合物所释放的能量,一般默认算出来能量越低越稳定。对于简单的二元化合物A m B n(A,B为该化合物中包含的两种元素,m,n为相应原子在化学式中的数目),其结合能可表示为: 其中E(A m B n)为化学式A m B n的能量,E(A)和E(B)分别为自由原子A和B的能量,E b越低,越稳定。 2.形成能 形成能是指由相应单质合成化合物所释放的能量。同样,对于二元化合物A m B n,其形成能可表示为: 其中E(A)和E(B)分别为对应单质A和B归一化后的能量。 用能量判断某一材料稳定性的时候,选择形成能可能更符合实际。因为实验合成某一材料的时候,我们一般使用其组成单质进行合成。如果想进一步判断该材料是处于稳态还是亚稳态,那

么需要用凸包图(convex hull)进行。如图1所示,计算已知稳态A x B y的形成能,构成凸包图(红色虚线),其横轴为B在化学式中所占比例,纵轴为形成能。通过比较考察化合物与红色虚线的相对位置,如果在红色虚线上方则其可能分解(如:图1 插图中的D,将分解为A和B)或处于亚稳态(D的声子谱没有虚频);如果在红色虚线下方(如:图1 插图中的C),则该化合物稳定。 图 1:凸包图用于判断亚稳态和稳态[[1]] 3.声子谱 声子谱是表示组成材料原子的集体振动模式。如果材料的原胞包含n个原子,那么声子谱总共有3n支,其中有3条声学支,3n-3条光学支。声学支表示原胞的整体振动,光学支表示原胞内原子间的相对振动。 计算出的声子谱有虚频,往往表示该材料不稳定。因为

恒智天成安全计算软件土坡稳定性计算

土坡稳定性计算计算书 本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法; 条分块数:50; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m):2.000 基坑内侧水位到坑顶的距离(m):6.000

二、计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。 三、计算公式: 式子中: F s --土坡稳定安全系数; c --土层的粘聚力; l i--第i条土条的圆弧长度; γ --土层的计算重度; θi --第i条土到滑动圆弧圆心与竖直方向的夹角;

φ --土层的内摩擦角; b i --第i条土的宽度; h i --第i条土的平均高度; h1i――第i条土水位以上的高度; h2i――第i条土水位以下的高度; γ' ――第i条土的平均重度的浮重度; q――第i条土条土上的均布荷载; 四、计算安全系数: 将数据各参数代入上面的公式,通过循环计算,求得最小的安全系数Fs: 第1步:安全系数=1.417,标高=-2.000,圆心X=0.962米,圆心Y=1.344米,半径R=3.344米示意图如下:

脚手架稳定性计算

脚手架立杆的稳定性计算 2010-09-12 外脚手架采用双立杆搭设,按照均匀受力计算稳定性。 稳定性计算考虑风荷载,按立杆变截面处和架体底部不同高度分别计算风荷载标准值。风荷载标准值按照以下公式计算 Wk=0.7μz μs ω0 其中ω0 -- 基本风压(kN/m2),按照《建筑结构荷载规范》(GB50009-2001)的规定采用: ω0=0.37kN/m2; μz -- 风荷载高度变化系数,按照《建筑结构荷载规范》(GB50009-2001)的规定采用:μz= 0.74,0.74; μs -- 风荷载体型系数:取值为1.132; 经计算得到,立杆变截面处和架体底部风荷载标准值分别为: Wk1=0.7 ×0.37×0.74×1.132=0.217kN/m2; Wk2=0.7 ×0.37×0.74×1.132=0.217kN/m2; 风荷载设计值产生的立杆段弯矩MW 分别为: Mw1=0.85 ×1.4Wk1Lah2/10=0.85 ×1.4×0.217×1.5×1.82/10=0.125kN?m; Mw2=0.85 ×1.4Wk2Lah2/10=0.85 ×1.4×0.217×1.5×1.82/10=0.125kN?m; 1. 主立杆变截面上部单立杆稳定性计算。 考虑风荷载时,立杆的稳定性计算公式 σ=N/(φA) + MW/W ≤ [f] 立杆的轴心压力设计值:N=Nd=8.487kN; 不考虑风荷载时,立杆的稳定性计算公式 σ=N/(φA)≤ [f] 立杆的轴心压力设计值:N=N'd= 8.991kN; 计算立杆的截面回转半径:i=1.59 cm; 计算长度附加系数参照《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001)表5.3.3得: k=1.155 ; 计算长度系数参照《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001)表5.3.3得:μ=1.5 ;

计算方法算法的数值稳定性实验报告

专业 序号 姓名 日期 实验1算法的数值稳定性实验 【实验目的】 1.掌握用MATLAB 语言的编程训练,初步体验算法的软件实现; 2.通过对稳定算法和不稳定算法的结果分析、比较,深入理解算法的数值稳定性及其重要性。 【实验内容】 1.计算积分 ()dx a x x I n ?+=1 0)(n (n=0,1,2......,10) 其中a 为参数,分别对a=0.05及a=15按下列两种方案计算,列出其结果,并对其可靠性,说明原因。 2.方案一 用递推公式 n aI I n 11n + -=- (n=1,2,......,10) 递推初值可由积分直接得)1(0a a In I += 3. 方案二 用递推公式 )1(11-n n I a I n +-= (n=N,N-1,......,1) 根据估计式 ()()() 11111+<<++n a I n a n 当1n a +≥n 或 ()()n 1111≤<++n I n a 当1 n n a 0+<≤ 取递推初值为 ()()()()11212])1(1111[21N +++=++++≈N a a a N a N a I 当1 a +≥N N 或 ()()]1111[21N N a I N +++= 当1a 0+< ≤N N 计算中取N=13开始 【解】:手工分析怎样求解这题。 【计算机求解】:怎样设计程序?流程图?变量说明?能否将某算法设计成具有形式参数的函数形式? 【程序如下】: % myexp1_1.m --- 算法的数值稳定性实验 % 见 P11 实验课题(一) % function try_stable global n a N = 20; % 计算 N 个值 a =0.05;%或者a=15 % %--------------------------------------------

挖掘机的稳定性计算

第四章 挖掘机的稳定性 区别于部件的稳定性,本章所指的稳定性是指整机的稳定性,包括整机在作业、停车、特定运行工况下的车身稳定性等。挖掘机的稳定性影响到其作业、行使、停放时整机的安全性,并进一步关系到挖掘力的发挥、作业效率、底盘和平台的受力以及回转支承的磨损等,也是相关部件设计计算的依据,但该问题涉及到整机的全部部件的姿态、重量、重心位置和工况的选择,因此分析过程较为复杂。通过查阅各类文献,目前的分析计算还沿用传统的设计思想,其详细内容如下。 §4.1稳定性的概念 倾覆线:从理论上看,倾覆线是指整机在发生倾覆的临界状态时,围绕其转动的一条假想的直线。对于履带式挖掘机,根据工作装置与履带的相对位置分为横向和纵向两种情况进行确定,如图5-1、5-2所示。为便于观察,两图的俯视图斗省去了平台和工作装置。参照图5-1,纵向挖掘是指工作装置平行于履带行走方向的方式,这时的倾覆线取为驱动轮或导向轮的中心在地面上投影的连线即履带的接地长度,如图5-1中的虚线P 1P 2和P 3P 4,在该图的主视图分别用一个小三角的上顶点标记。横向挖掘如图5-2所示,是指工作装置所在平面垂直于履带行走方向的方式,为安全起见,这时的倾覆线取为两侧履带中心对称平面的距离即履带中心距,如图5-2中的虚线P 2P 4和P 1P 3,相应地在主视图中用一个小三角的上顶点标记,图中的符号I 、J 分别表示前后倾覆线的中点。 稳定力矩:对应于不同的倾覆趋势和倾覆线,是指阻止整机发生倾覆的所有力矩之和。 倾覆力矩:对应于不同的倾覆趋势和倾覆线,是指是整机发生倾覆的所有力矩之和。 稳定系数K :用来量化挖掘机稳 定性的参数,是指挖掘机在特定工况下对倾覆线的稳定力矩M 1与倾覆力矩M 2之比,其值应大于1才稳定,对稳定系数的计算通常应考虑风载和坡度的影响,后文将详细介绍。 §4.2稳定系数的计算及稳定性工况的选择 对稳定系数的计算,传统的方法是首先选定一种工况,根据该选定的工况采用数学中的解析方法计算,但这不便于从全局的观点全盘考虑整机的稳定性,为此,本文选择数学中的矢量分析手段,从全局的观点出发,建立任意姿态时的稳定系数计算公式。当任选一个工况及油缸长度和坡度参数时,可以利用计算机很快获得相应的稳定系数,结 果也十分精确。以下是具体过程。 一.建立坐标系 建立如图5-3所示的空间直角坐标系,其中,坐标原点为回转中心线与停机面的交点,z 轴垂直水平面向上为正、y 轴水平向前、x 轴垂直于yz 平面。各部件所受重力及重心位置标示于图中。 二.影响稳定性的因素及其数学表达 如图5-3所示,挖掘机在空间的姿态受以下六个几何参数的影响即铲斗油缸长度、斗杆油缸长度、动臂油缸长度、转台回转角、机身侧倾角和前后倾角。挖掘机的稳定性除受上述几何参数影响外,还有各部件重量G i (i =1~11)、挖掘阻力F W 、行驶时的起、制动加速度、转台的起、制动加速度及机身迎风面积和风载W 等。 图5-1 纵向挖掘 前倾线为P 1P 2,后倾覆线为P 3P 4 图5-2 横向挖掘 前倾线为P 2P 4,后倾覆线为P 1P 3 图5-3 稳定系数计算简图

边坡稳定性计算方法11111

一、边坡稳定性计算方法 在边坡稳定计算方法中,通常采用整体的极限平衡方法来进行分析。根据边坡不同破裂面形状而有不同的分析模式。边坡失稳的破裂面形状按土质和成因不同而不同,粗粒土或砂性土的破裂面多呈直线形;细粒土或粘性土的破裂面多为圆弧形;滑坡的滑动面为不规则的折线或圆弧状。这里将主要介绍边坡稳定性分析的基本原理以及在某些边界条件下边坡稳定的计算理论和方法。 (一)直线破裂面法 所谓直线破裂面是指边坡破坏时其破裂面近似平面,在断面近似直线。为了简 化计算这类边坡稳定性分析采用直线破裂面法。能形成直线破裂面的土类包括:均质砂 性土坡;透水的砂、砾、碎石土;主要由内摩擦角控制强度的填土。 图 9 - 1 为一砂性边坡示意图,坡高 H ,坡角β,土的容重为γ,抗 剪度指标为c、φ。如果倾角α的平面AC面为土坡破坏时的滑动面,则可分析 该滑动体的稳定性。 沿边坡长度方向截取一个单位长度作为平面问题分析。 图9-1 砂性边坡受力示意图已知滑体ABC重 W,滑面的倾角为α,显然,滑面 AC上由滑体的重量W= γ(Δ ABC)产生的下滑力T和由土的抗剪强度产生的抗滑力Tˊ分别为: T=W · sina 和 则此时边坡的稳定程度或安全系数可用抗滑力与下滑力来表示,即 为了保证土坡的稳定性,安全系数F s 值一般不小于 1.25 ,特殊情况下可允许减小到 1.15 。对于C=0 的砂性土坡或是指边坡,其安全系数表达式则变为 从上式可以看出,当α =β时,F s 值最小,说明边坡表面一层土最容易滑动,这时

当 F s =1时,β=φ,表明边坡处于极限平衡状态。此时β角称为休止角,也称安息角。 此外,山区顺层滑坡或坡积层沿着基岩面滑动现象一般也属于平面滑动类型。这类滑坡滑动面的深度与长度之比往往很小。当深长比小 于 0.1时,可以把它当作一个无限边坡进行分析。 图 9-2表示一无限边坡示意图,滑动面位置在坡面下H深度处。取一单位长度的滑动土条 进行分析,作用在滑动面上的剪应力为,在极限平衡状态时,破坏面上的 剪应力等于土的抗剪强度,即 得 式中N s =c/ γ H 称为稳定系数。通过稳定因数可以确定α和φ关系。当c=0 时,即无粘性 土。α =φ,与前述分析相同。 二圆弧条法 根据大量的观测表明,粘性土自然山坡、人工填筑或开挖的边坡在破坏时,破裂面的形状多呈近似的圆弧状。粘性土的抗剪强度包括摩擦强度和粘聚强度两个组成部分。由于粘聚力的存在,粘性土边坡不会像无粘性土坡一样沿坡面表面滑动。根据土体极限平衡理论,可以导出均质粘这坡的滑动面为对数螺线曲面,形状近似于圆柱面。因此,在工程设计中常假定滑动面为圆弧面。建立在这一假定上稳定分析方法称为圆弧滑动法和圆弧条分法。 1. 圆弧滑动法 1915 年瑞典彼得森( K.E.Petterson )用圆弧滑动法分析边坡的稳定性,以后该法在各国得到广泛应用,称为瑞典圆弧法。 图 9 - 3 表示一均质的粘性土坡。AC 为可能的滑动面,O为圆心,R 为半径。假定 边坡破坏时,滑体ABC在自重W 作用下,沿AC绕O 点整体转动。滑动面 AC 上的力 系有:促使边坡滑动的滑动力矩 M s =W · d ;抵抗边坡滑动的抗滑力矩,它应该包括由 粘聚力产生的抗滑力矩M r =c ·AC · R ,此外还应有由摩擦力所产生的抗滑力矩,这里 假定φ= 0 。边坡沿AC的安全系数F s 用作用在 AC面上的抗滑力矩和下滑力矩之比表 示,因此有 这就是整体圆弧滑动计算边坡稳定的公式,它只适用于φ= 0 的情况。 图9-3 边坡整体滑动 2. 瑞典条分法 前述圆弧滑动法中没有考虑滑面上摩擦力的作用,这是由于摩擦力在滑面的不同位置其方向和大小都在改变。为了将圆弧滑动法应用于φ> 0 的粘性土,在圆弧法分析粘性土坡稳定性的基础上,瑞典学者 Fellenius 提出了圆弧条分析法,也称瑞典条分法。条会法就是将滑动土体竖向分成若干土条,把土条当成刚塑体,分别求作用于各土条上的力对圆心的滑动力矩和抗滑力矩,然后按式( 9-5 )求土坡的稳定安全系数。 采用分条法计算边坡的安全系数F ,如图 9 - 4 所示,将滑动土体分成若干土条。土条的宽度越小,计算精度越高,为了避免计算过于繁

用理正计算稳定性

运用《理正岩土边坡稳定性分析》 作定量计算 (整理人:朱冬林,2012-2-21) 1、我目前手上理正岩土的版本为5.11版,有新版本的请踊跃报名,大家共同进步! 2、为什么要用理正岩土边坡稳定性分析? 现在山区公路项目地形条件越来越复杂,对于一些斜坡(指一般自然坡)或边坡(指开挖后的坡体)的稳定性评价是不可避免,比如桥位区沿斜坡布线,桥轴线与坡向大角度相交,自然坡度20~40°,覆盖层比较厚,到底是稳定还是不稳定?会不会有隐患和危险?必将困扰每个勘察技术人员,说它稳定吧,又怕将来出问题,说不稳定,目前又没有出现开裂变形滑动迹象,那在报告中如何评价桥址的安全性?再比如,路线从大型堆积体上经过,究竟稳定性如何评价?仅靠钻探或地质调查无法对其稳定性进行合理评价。这时候,就要辅以定量分析计算来提供证据了。 还有,我们在报告中提路堑边坡的岩土经验参数,常常遭设计诟病,按报告

中提的参数,自然坡都垮得一塌糊涂了,更不要说开挖了。我们在正式报告中提出“问题参数”会大大降低了勘察在设计心目中的光辉(灰)形象。如果我们事先对自然斜坡的横断面进行过初步计算,提出的参数就不会太离谱,必将给设计留下“很专业”的印象。 3、是否好用? 很好用。在保宜项目我一天计算几十个断面,既有效又快。 4、断面图能不能直接从CAD图读入? 可以。只需事先转化为dxf即可(用dxfout命令保存)。对图形的条件是所有的线段都是直线段组成(对于多段线需要炸开,对于样条曲线可以用多段线描一下再炸开即可),另外图形边界要封闭(事先可以用填充命令试一下,看各个区域是否封闭)。注意,图中只能有直线段,不能有其它图元(记得按上面操作完后,全选(Ctrl+A),看“属性”(Ctrl+1),全部为直线,则OK)。 5、下面结合实例讲解计算过程,保证学一遍就上手。 以土质边坡计算为例(最常用) 进入土质边坡稳定性分析程序

钢梁稳定性计算步骤

钢梁整体稳定性验算步骤 1. 根据《钢结构设计规范》(GB 50017-2003)4.2.1条,判断是否可不计算梁的整体稳定性。 2. 如需要计算 2.1 等截面焊接工字形和轧制H 型钢简支梁 b 1 b 1 t 1 t 1 h x x y y b 1b 2t 2x x y y h t 1y (a)双轴对称焊接工字形截面 (b)加强受压翼缘的单轴对称焊接工字形截面 b 1 b 2t 1 x y y (c)加强受拉翼缘的单轴对称焊接工字形截面 t 2 x h b 1b 1t 1 h x x y y (d)轧制H 型钢截面 t 1 1)根据表B.1注1,求ξ。 l 1——H 型钢或等截面工字形简支梁受压翼缘的自由长度,对跨中无侧向支承点的梁,l 1为其跨度;对跨中有侧向支撑点的梁,l 1为受压翼缘侧向支承点间的距离(梁的支座处视为有侧身支承)。

b1——截面宽度。 2)根据表B.1,求βb。 3)根据公式B.1-1注,求I1和I2,求αb。如果αb>0.8,根据表B.1注6,调整βb。 4)根据公式B.1-1注,计算ηb。 5)根据公式B.1-1,计算φb。 6)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。 7)根据公式4.2.2,验算稳定性。 2.2 轧制普通工字钢简支梁 1)根据表B.2选取φb。 2)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。 3)根据公式4.2.2,验算稳定性。 2.3 轧制槽钢简支梁 1)根据公式B.3,计算φb。 2)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。 3)根据公式4.2.2,验算稳定性。 2.4 双轴对称工字形等截面(含H型钢)悬臂梁 1)根据表B.1注1,求ξ。 l1——悬臂梁的悬伸长度。 b1——截面宽度。 2)根据表B.4,求βb。

深基坑边坡稳定性计算书

... . . 土坡稳定性计算书 本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业、《实用土木工程手册》第三版文渊编著人民教同、《地基与基础》第三版中国建筑工业、《土力学》等相关文献进行编制。 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m):1.56; 基坑侧水位到坑顶的距离(m):14.000; 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 条分块数 0 3.50 3.50 2.00 0.00 1 4.50 4.50 3.00 0.00 2 6.20 6.20 3.00 0.00 荷载参数: 土层参数:

序号土名称 土厚 度 (m) 坑壁土的重 度γ(kN/m3) 坑壁土的摩 擦角φ(°) 粘聚力 (kPa) 饱容重 (kN/m3) 1 粉质粘土15 20.5 10 10 20.5 二、计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规》要求,安全系数要满足>=1.3的要求。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规》要求,安全系数要满足>=1.3的要求。 三、计算公式:

稳定性计算计算书

稳定性计算计算书 本计算书主要依据施工图纸及以下规范及参考文献编制:《塔式起重机设计规范》(GB/T13752-1992)、《建筑结构荷载规范》(GB50009-2001)、《建筑安全检查标准》(JGJ59-99)、《建筑施工计算手册》(江正荣编著)等编制。 一、塔吊有荷载时稳定性验算 塔吊有荷载时,计算简图: 塔吊有荷载时,稳定安全系数可按下式验算: 式中K1──塔吊有荷载时稳定安全系数,允许稳定安全系数最小取1.15; G──塔吊自重力(包括配重,压重),G=310.00(kN); c──塔吊重心至旋转中心的距离,c=1.50(m); h o──塔吊重心至支承平面距离, h o=6.00(m); b──塔吊旋转中心至倾覆边缘的距离,b=2.50(m); Q──最大工作荷载,Q=60.00(kN); g──重力加速度(m/s2),取9.81; v──起升速度,v=0.50(m/s); t──制动时间,t=20.00(s);

a──塔吊旋转中心至悬挂物重心的水平距离,a=15.00(m); W1──作用在塔吊上的风力,W1=4.00(kN); W2──作用在荷载上的风力,W2=0.30(kN); P1──自W1作用线至倾覆点的垂直距离,P1=8.00(m); P2──自W2作用线至倾覆点的垂直距离,P2=2.50(m); h──吊杆端部至支承平面的垂直距离,h=30.00m(m); n──塔吊的旋转速度,n=0.60(r/min); H──吊杆端部到重物最低位置时的重心距离,H=28.00(m); α──塔吊的倾斜角(轨道或道路的坡度),α=2.00(度)。 经过计算得到K1=1.506; 由于K1≥1.15,所以当塔吊有荷载时,稳定安全系数满足要求! 二、塔吊无荷载时稳定性验算 塔吊无荷载时,计算简图: 塔吊无荷载时,稳定安全系数可按下式验算: 式中K2──塔吊无荷载时稳定安全系数,允许稳定安全系数最小取1.15; G1──后倾覆点前面塔吊各部分的重力,G1=310.00(kN); c1──G1至旋转中心的距离,c1=3.00(m); b──塔吊旋转中心至倾覆边缘的距离,b=2.00(m);

自动控制原理总结之判断系统稳定性方法

判断系稳定性的方法 一、 稳定性判据(时域) 1、 赫尔维茨判据 系统稳定的充分必要条件:特征方程的各项系数全部为正; 将系统特征方程各项系数排列成如下行列式; 当主行列式及其对角线上的各子行列式均大于零时,即 00 03 1425 3132 3 1211>?>=?>= ?>=?-----------n n n n n n n n n n n n n n a a a a a a a a a a a a a Λ 则方程无正根,系统稳定。 赫尔维茨稳定判据之行列式直接由系数排列而成,规律简单明确,使用也比较方便,但是对六阶以上的系统,很少应用。 例;若已知系统的特征方程为05161882 34=++++s s s s 试判断系统是否稳定。 解:系统特征方程的各项系数均为正数。 根据特征方程,列写系统的赫尔维茨行列式。5181 016800 5 18100168= ? 由△得各阶子行列式;

86900172816 8 518 10 168012818 11680884321>=?=?>==?>== ?>==? 各阶子行列式都大于零,故系统稳定。 2、 劳思判据 (1)劳思判据充要条件: A 、系统特征方程的各项系数均大于零,即a i >0; B 、劳思计算表第一列各项符号皆相同。 满足上述条件则系统稳定,否则系统不稳定,各项符号变化的次数就是不稳定根的数目。 (2)劳思计算表的求法: A 、列写劳思阵列,并将系统特征方程的系数按如下形式排列成列首两行,即: 1 112 124 321343212753116 42w s v s u u s c c c c s b b b b s a a a a s a a a a s n n n n n n n n n n n n M M M M M M ΛΛΛ Λ---------- B 、计算劳思表

第7章 稳定性验算

第七章 稳定性验算 整体稳定问题的实质:由稳定状态到不能保持整体的不稳定状态;有一个很小的干扰力,结构的变形即迅速增大,结构中出现很大的偏心力,产生很大的弯矩,截面应力增加很多,最终使结构丧失承载能力。 注意:截面中存在压应力,就有稳定问题存在!如:轴心受压构件(全截面压应力)、梁(部分压应力)、偏心受压构件(部分压应力)。 局部稳定问题的实质:组成截面的板件尺寸很大,厚度又相对很薄,可能在构件发生整体失稳前,各自先发生屈曲,即板件偏离原来的平衡位置发生波状鼓曲,部分板件因局部屈曲退出受力,使其他板件受力增加,截面可能变为不对称,导致构件较早地丧失承载力。 注意:热轧型钢不必验算局部稳定! 第一节 轴心受压构件的整体稳定和局部稳定 一、轴心受压构件的整体稳定 注意:轴心受拉构件不用计算整体稳定和局部稳定! 轴心受压构件往往发生整体失稳现象,而且是突然地发生,危害较大。构件由直杆的稳定状态到不能保持整体的不稳定状态;有一个很小的干扰力,结构的弯曲变形即迅速增大,结构中出现很大的偏心力,产生很大的弯矩,截面应力增加很多,最终使结构丧失承载能力。这种现象就叫做构件的弯曲失稳或弯曲屈曲。不同的截面形式,会发生不同的屈曲形式:工字形、箱形可能发生弯曲屈曲,十字形可能发生扭转屈曲;单轴对称的截面如T 形、Π形、角钢可能发生弯曲扭转屈曲;工程上认为构件的截面尺寸较厚,主要发生弯曲屈曲。 弹性理想轴心受压构件两端铰接的临界力叫做欧拉临界力: 2222//λππEA l EI N cr == (7-1) 推导如下:临界状态下:微弯时截面C 处的内外力矩平衡方程为: 0/22=+Ny dz y EId (7-2) 令EI N k /2 =,则: 0/222=+y k dz y d (7-3) 解得: kz B kz A y cos sin += (7-4) 边界条件为:z=0和l 处y=0; 则B=0,Asinkl=0,微弯时πn kl kl A ==∴≠,0sin 0 最小临界力时取n=1,l k /π=, 故 2 2 2 2 //λππEA l EI N cr == (7-5) 其它支承情况时欧拉临界力为: 2222/)/(λπμπEA l EI N cr == (7-6) 欧拉临界应力为: 22/λπσE cr = (7-7) 实际上轴心受压杆件存在着各种缺陷:残余应力、初始弯曲、初始偏心等。此时的极限承载力N u , y u Af N /=?叫整体稳定系数。 残余应力的分布:见P104、P157,残余应力的存在使构件受力时过早地进入了弹塑性受力状态,使屈

相关主题
文本预览
相关文档 最新文档