当前位置:文档之家› 第四章 横断面设计

第四章 横断面设计

第四章 横断面设计
第四章 横断面设计

第四章横断面设计

道路的横断面,是指中线上各点的法向切面,它是由横断面设计线和地面线所构成的。

道路横断面组成

公路横断面组成

公路横断面的组成和各部分的尺寸要根据公路的功能、公路等级、交通量、服务水平、设计速度、

地形条件等因素确定。在保证必要的通行能力和交通安全与畅通的前提下,尽量做到用地省、投

资少,使道路发挥其最大的经济效益与社会效益。

1.路幅的构成

路幅是指公路路基顶面两路肩外侧边缘之间的部分。

等级高、交通量大的公路(如高速公路,一级公路),通常是将上、下行车辆分开。分隔的方式有

两种:一种是用分隔带分隔,另一种是将上、下行车道放在不同的平面上加以分隔。前者称作整

体式断面,后者称作分离式断面。整体式断面包括行车

道、中间带(中央分隔带及左侧路缘带)、路肩(硬路肩及

土路肩)以及紧急停车带、爬坡车道、变速车道等;分

离式断面包括行车道、路肩(硬路肩及土路肩)以及紧急

停车带、爬坡车道、变速车道等。

二、三、四级公路的路基横断面包括行车道、路肩以及

错车道等。二级公路位于中、小城市城乡结合部、混合

交通量大的连接线路段,实行快、慢车道分开行驶时,可根据当地经

验加宽右侧硬路肩。

高速公路、一级公路根据地形、地物等情况,其路基横断面型式可分

段采用整体式或分离式断面。在山岭、丘陵地段或地形受制约地段,

图二、三、四级公路横断面当采用整体式断面而工程量过大时,宜采用分离式断面。

二、三、四级公路均为双车道公路,应采用整体式断面。

2.路幅的布置类型

1)单幅双车道:单幅双车道公路指的是整体式的供双向行车的双车道公路。二级路、三级路和

一部分四级路均属这一类。这类公路适应的交通量范围大,最高达15000辆/昼夜。设计速度可

从20km/h至80km/h。

2)双幅多车道:四车道、六车道和更多车道的公路,中间一般都设分隔带或做成分离式路基而

构成“双幅”路。有些分离式路基为了利用地形或处于风景区等原因甚至作成两条独立的单向行

车的道路。

3)单车道:对交通量小、地形复杂、工程艰巨的山区公路或地方性道路,可采用单车道,我国“标准”中规定的四级公路路基宽度为,车道宽度为者就是属于此类。此类公路虽然交通量很小,

但仍然会出现错车和超车。当四级公路采用单车道时,应设错车道。设置错车道路段的路基宽度

不小于m,错车道的间距应根据错车时间、视距、交通量等情况决定。错车的位置至少可以看

到相邻两个错车道的情况。

城市道路横断面组成

城市道路在行车道断面上,供汽车、无轨电车、摩托车等机动车行驶的部分称为机动车道;供自

行车、三轮车、板车等非机动车行驶的部分称为非机动车道。此外还有供行人步行使用的人行道

和分隔各种车道(或人行道)的分隔带及绿带。

城市道路各组成部分相互联系和影响,其位置的安排和宽度的确定必须首先保证车辆和行人的安

全畅通,同时要与道路两侧的各种建筑物及自然景观相协调,并能满足地面、地下排水和各种管

线埋设的要求。横断面设计应注意近期与远期相结合,使近期工程成为远期工程的组成部分,并预留管线位置。路面宽度及高度均应有发展余地。 1.布置类型

1)单幅路:单幅路俗称“一块板”断面,各种车辆在车道上混合行驶。

划出快、慢车行驶分车线,快车和机动车辆在中间行驶,慢车和非机动车靠两侧行驶。 不划分车线,车道的使用可以在不影响安全的条件下予以调整。

2)双幅路:双幅路俗称“两块板”断面。在车道中心用分隔带或分隔墩将车行道分为两半,上、下行车辆分向行驶。各自再根据需要决定是否划分快、慢车道。

三幅路:三幅路俗称“三块板”断面。中间为双向行驶的机动车车道,两侧为靠右侧行驶的非机动车车道。

四幅路:四幅路俗称“四块板”断面。在三幅路的基础上,再将中间机动车车道分隔为两半分向行驶。

车道宽度

车道宽度的确定

车道是指专为纵向排列、安全顺适地通行车辆为目的而设置的公路带状部分。所谓车道宽度是为了交通上的安全和行车上的顺适,根据汽车大小、车速高低而确定的各种车辆以不同速度行驶时所需的宽度。行车道的宽度要根据车辆最大宽度、加上错车、超车所必须的余宽来确定。 1.一般双车道公路车道宽度的确定

双车道公路有两条车道,车道宽度包括汽车宽度和应满足错车、超车行驶所必须的余宽。汽车宽度取载重汽车车箱的总宽度,为。余宽是指对向行驶时两车主箱之间的安全间隙、汽车轮胎至路面边缘的安全距离,如图所示。双车道公路每一条单向行驶的车道宽度可用下式计算: y x

c a B +++=

2

2单 两条车道:y x c a B 2+++=双 式中:a ——车箱宽度,m ; c ——汽车轮距,m ; x ——两车箱安全间隙,m ;

y ——轮胎与路面边缘之间的安全距离,m 。

根据大量实验观测,得出计算z ,y 的经验公式为

黑龙江省交通部门1970年通过对270余次错车资料分析得出:

)(01.051.021V V x ++=

)(014.079.0221V V y x ++=+ () 式中:(21V V +)——错车速度,km/h 。

从式可知车道的富裕宽度与车速有关,此外还与路侧的环境、司机心理、车辆状况等有关。当设计速度为较高时,取一条车道的宽度为是合适的。对车速较低、交通量不大的公路可取较小的宽度。

表 车 道 宽 度

设 计 速 度(km/h ) 120 100 80 60 40 30 20

车 道 宽 度(m )

(单车道时为 )

注:高速公路为八车道,当设置左侧硬路肩时,内侧车道宽度可采用。

高速公路、一级公路各路段的车道数应根据设计交通量、设计速度、采用的服务水平确定。高速公路、一级公路的车道数为四车道以上时,应按双数增加。

图 双车道公路的车道宽度

二级、三级公路应是双车道。二级公路混合交通量大,非汽车交通对汽车运行影响较大时,可划线分快、慢车道(慢车道即利用硬路肩及加固土路肩的宽度),这种公路仍属双车道范畴。 2.有中央分隔带的行车道宽度

高速公路、一级公路有四条以上的车道,应满足车辆并列行驶所需的宽度,一般设置中央分隔带。分隔带两侧的行车道只有同向行驶的汽车,如图所示。车速、交通组成和大型车混入率对行车道宽度的确定有较大影响。根据实地观测宽度 ,得出下列关系: 56.00103.01+=v S () 49.1)(000066.02122+-=V V D ()

46.00103.02+=V M ()

则单侧行车道宽度:21a a M D S B ++++= () 式中:21,a a ——汽车后轮外缘间距;普通车:1a =,大型车:2a =。

“标准”中设计速度从120km/h 至60km/h ,每条车道宽度均采用。高速公路为八车道,当设置左侧硬路肩时,内侧车道宽度可采用。

平曲线加宽及其过渡

1.加宽值的计算

汽车行驶在曲线上,各轮轨迹半径不同,其中以后内轮轨迹半径最小,且偏向曲线内侧,故曲线内侧应增加路面宽度,以确保曲线上行车的顺适与安全;另外汽车行驶在横向力较大的弯道上会有一定的横向摆动,也应增加路面的宽度。 1)车身与公路轴线倾斜的加宽值

普通载重汽车,可由图所示的几何关系求得一条车道的加宽值: 221A R K R -=+ )(11K R R e +-=

代入上式,得 A R A R A A R A R A R R A R R e ++=----=--=3

423422

2

182)82(

上式第二项以后的数值极小,可省略不计,故一条车道的加宽为:

R

A e 22

1= ()

式中:A ——汽车后轴至前保险杠的距离,m ;

R ——圆曲线半径,m 。 2)摆动加宽值

据实测汽车转弯摆动加宽与车速有关,一个车道摆动加宽值计算经验公式为 R

V e 05.02=

()

式中:V ——汽车转弯时车速,km/h 。

这两种加宽值之和即为弯道的加宽值(均按一条车道计算,多车道公路加宽值计算方法与之相似)。则一条车道的加宽值为 R

V R A e 05.022+= ()

3)平曲线的加宽

《公路路线设计规范》规定,平曲线半径等于或小于250m 时,应在平曲线内侧加宽。双车道路

图有中央分割带的行车道

图 普通汽车的加宽

面的加宽值见表。四级公路和山岭重丘区的三级公路采用第1类加宽值;其余各级公路采用第3类加宽值。对不经常通行集装箱运输半挂车的公路,可采用第2类加宽值。

单车道公路路面加宽值按表列数值折半,由三条以上车道组成的行车道,其路面的加宽值应另行计算。对于分道行驶的公路,若平曲线半径较小,其内侧车道的加宽应大于外侧车道的加宽值,设计时应通过计算,确定其差值。

《城市道路设计规范》规定,圆曲线半径小于或等于250m 时,应在圆曲线内侧加宽,每条车道加宽值见表加宽的过渡 1)加宽缓和段及其长度

平曲线半径等于或小于250m 时,应在平曲线内侧加宽。一般在弯道内侧圆曲线范围内设置全加宽。为了使路面和路基均匀变化,设置一段从加宽值为零逐渐加宽到全加宽的过渡段,称之为加宽缓和段。平曲线内无回旋线时,路面由直线上的正常宽度过渡到曲线上设置了加宽的宽度,需设置加宽缓和段。设置回旋线或超高缓和段时,加宽缓和段的长度应采用与回旋线或超高缓和段长度相同的数值,布设在加宽缓和段上,路面具有逐渐变化的宽度。不设回旋线或超高缓和段时,加宽缓和段长度应按渐变率为1:15且不小于10m 的设置要求。 2)加宽过渡的设置方法

加宽过渡的设置根据道路性质和等级可采用不同的方法。 (1)按比例过渡

二、三、四级公路,在加宽缓和段全长范围内按其长度成比例逐渐加宽,如图所示。加宽缓和段内任意点的加宽值为

kb b x = L

L k x

=

() 式中:x L ——任意点距缓和曲线起点的距离,m ;

L ——加宽缓和段长,m ;

b ——圆曲线上的全加宽,m ;

x b ——加宽缓和段上任一点的加宽值,m 。

按比例过渡简单易操作,但经加宽以后的路面内侧与行车轨迹不符,缓和段的起终点出现破折,于路容也不美观。

(2)高等级公路加宽缓和段

高速公路、一级公路以及对路容有要求的二级公路,设置加宽缓和段时,为使路面加宽后的边缘线圆滑、顺适,一般情况下应采用高次抛物线的形式过渡,即采用式(3-19)计算加宽缓和段上任一点的加宽值为:

b k k b x )34(43-= ()

用这种方法处理后的路面,内侧边缘圆滑、美观,适用于各级公路。 (3)回旋线过渡

在缓和曲线上插入回旋线,这样不但中线上有回旋线,而且加宽后的路面边线也是回旋线,与行车轨迹相符,保证了行车的顺适与线性的美观。它可用于下列路段: ①位于大城市近郊的路段。

②桥梁、高架桥、挡土墙、隧道等构造物处。 ③设置各种安全防护设施的地段。

(4)插入二次抛物线过渡:对于设有缓和曲线的公路弯道,按上述第一种方法处理以后的加宽缓和段起终点其曲率并不连续。为了弥补这一缺陷,可以在ZH (HZ )和HY (YH )点处各插入一条二次抛物线。插入以后,缓和段的长度有

所增加,路容有所改进。

路肩、中间带与人行道

路肩的作用及其宽度

路肩是位于行车道外缘至路基边缘,具有一定宽度的带状结构部分。路肩通常包括路缘带(高速公路和一级公路才设置)、硬路肩、土路肩三部分组成,如图 所示。各级公路都要设置路肩。路肩的作用如下:

(1)供发生故障的车辆临时停车。

(2)由于路肩紧靠在路面的两侧设置,保护行车道等主要结构的稳定。

(3)提供侧向余宽,能增进驾驶的安全和舒适感。 (4)作为道路养护操作的工作场地。 (5)为设置路上设施提供位置。

硬路肩是指进行了铺装的路肩,它可以承受汽车荷载的作用力,在混

合交通的公路上便于非机动车、行人通行。在填方路段,为使路肩能汇集路面积水,在路肩边缘应设置路缘石。土路肩是指不加铺装的土质路肩,它起保护路面和路基的作用,并提供侧向余宽。 考虑我国土地的利用情况和路肩的功能,在满足路肩功能最低需要的条件下,原则上尽量采用较窄的路肩,充分挖掘路肩的作用。

表 各级公路路肩宽度

设 计 速 度(km/h)

高速公路、一级公路 二级公路、三级公路、四级公路 120 100 80 60 80 60 40 30 20 右侧硬路肩宽度 (m )

一般值 —

最小值 土 路 肩 宽度(m )

一般值

(双车道)

(单车道)

最小值

注:“一般值”为正常情况下的采用值;“最小值”为条件受限制时,经技术经济论证后可采用的值。

(1)高速和一级公路应在右侧硬路肩宽度内设右侧路缘带,其宽度为。

(2)设计速度为120km/h 的四车道高速公路,宜采用的右侧硬路肩;六车道、八车道高速公路,宜采用的右侧硬路肩。

(3)高速公路、一级公路采用分离式断面时,应设置左侧硬路肩,其宽度应符合表规定。

表 分离式断面高速公路、一级公路左侧路肩宽度

设 计 速 度(km/h ) 120 100 80 60 左侧硬路肩宽度(m ) 左侧土路肩宽度(m )

(4)八车道高速公路应设置左侧硬路肩,其宽度宜采用。

(5)高速公路、一级公路的右侧硬路肩宽度小于时,应设置紧急停车带。紧急停车带宽度应为,有效长度不应小于30m ,间距不宜大于500m 。

(6)高速公路、一级公路的互通式立体交叉、服务区、停车区、公共汽车停靠站、管理与养护设施等的出入口处,应设置加、减速车道。加、减速车道的宽度应为或。

(7)高速公路、一级公路、二级公路的连续上坡路段,载重汽车影响其通行能力与运行安全时,宜设置爬坡车道。爬坡车道宽度应为。

第 16讲:2学时

图 路肩的组成

(8)连续长陡下坡路段,宜设置避险车道。避险车道宽度不应小于。

(9)四级公路采用路基时,应在驾驶人员能看到相邻两点的适当位置设置错车道,设置错车道路段的路基宽度不应小于。

在路肩上设置路用设施时,不得侵入该等级公路的建筑限界以内。 分隔带的作用及其宽度 1.中间带

“标准”规定, 高速公路和一级公路整体式断面必须设置中间带。中间带由两条左侧路缘带和中央分隔带组成,如图所示,其作用如下:

(1)分隔往返车流。既可避免因快车驶人对向行车道造成严重的交通事故,又能减少公路中心线的交通阻力,从而提高通行能力。

(2)可作设置公路标志牌及其他交通管理设施的场地,也可作行人的安全岛。 (3)设置一定宽度的中间带并种植花草灌木或设置防眩网,可防止对向车辆灯光眩目,还可起

到美化路容和环境的作用。

(4)设于分隔带两侧的路缘带,由于有一定宽度且颜色醒目,既引导驾驶员视线,又增加了行车所必须的侧向余宽,从而提高行车的安全性和舒适性。

宽中间带的作用明显,但投资和占地多,不易采用,我国原则上均采用窄分隔带,构造上高出车道表面,分隔带一般用路缘石围砌,高出路面10~20cm 。

中间带的宽度是根据行车带以外的侧向余宽,防止驶入对向行车带的护栏、种植、防眩网、交叉公路的桥墩等所需的设置带宽度而定的。

设施带是分车带内设置防护栅、标志、绿化等地带.

表 中 间 带 宽 度

设计速度(km/h ) 120 100 80 60 中央分隔带宽度(m )

一般值 最小值 左侧路缘带宽度(m )

一般值 最小值 中 间 带 宽 度(m )

一般值

最小值

注:“一般值”为正常情况下的采用值;“最小值”为条件受限制时,经技术经济论证后可采用的值。

路缘带是路肩或中间带的组成部分,与行车道连接,用行车道的外侧标线或不同的路面颜色来表示。路缘带主要起诱导驾驶员视线和分担侧向余宽的作用,以利于行车安全。

中间带的宽度一般情况下应保持等宽,若需要变宽时,在宽度变化的地点,应设置过渡段。过渡段以设在回旋线范围内为宜,其长度应与回旋线长度相等。宽度大于的中间带过渡段,以设在半径较大的平曲线路段为宜。

为了便于养护作业和某些车辆在必要时驶向反向车道,中央分隔带应按一定距离设置开口部。开口部一般情况下以每2km 的间距设置为宜,太密将会造成交通的紊乱。城市道路可根据横向交通(车辆和行人)的需要设置。

中央分隔带的开口应设置在通视良好的路段,若在曲线上开口,其曲线半径宜大于700m 。在互通式立体交叉、隧道、特大桥、服务区等设施的前后必须设置开口。

图 中间带的组成

图 宽度大于的中间带过渡

图 中间带开口

图 平(或凹)中央分隔带

中央分隔带的表面形式有凹形和凸形两种(见图、图,前者用于宽度大于的宽中间带,后者用于宽度不大于的窄中间带。宽度大于的,一般植草皮,栽灌木,宽度不大于的可铺面封闭。2.两侧带

布置在横断面两侧的分车带叫两侧带,其作用与中间带相同,只是设

置的位置不同而已。

两侧带常用于城市道路的横断面设计中,它可以分隔快车道与慢车

道、机动车道与非机动车道、车行道与人行道等。

两侧带的最小宽度规定为~。在北方寒冷积雪地区,在满足最小宽度

的前提下,还应考虑能否满足临时堆放积雪的要求。

公路路基宽度

各级公路路基宽度为车道宽度与路肩宽度之和,当设有中间带、加减速车道、爬坡车道、紧急停车带、避险车道、错车道等时,应计入这些部分的宽度。各级公路路基宽度应符合表规定。

表各级公路路基宽度

公路等级高速公路、一级公路

设计速度(km/h)1201008060

车道数864864644

路基

宽度(m)一般值

最小值—————

公路等级二级公路、三级公路、四级公路

设计速度(km/h)8060403020

车道数22222或1

路基宽度(m)一般值

双车道(单车道)最小值———

二级公路因交通量、交通组成等需要设置慢车道的路段,设计速度为80km/h的二级公路路基宽度可采用。设计速度为60km/h时其路基宽度可采用。

四级公路应采用双车道路基宽。交通量小的路段,可采用单车道路基宽。

爬坡车道

爬坡车道是陡坡路段正线行车道外侧增设的供载重车行驶的专用车道。

1.设置爬坡车道的条件

我国《规范》规定:高速公路、一级公路纵坡长度受限制的路段,应对载重汽车上坡行驶速度的降低值和设计通行能力进行验算,符合下列情况之一者,可在上坡方向行车道右侧设置爬坡车道:

(1)沿上坡方向载重汽车的行驶速度降低到表的允许最低速度以下时,可设置爬坡车道。

(2)上坡路段的设计通行能力小于设计小时交通量时,应设置爬坡车道。

对需设置爬坡车道的路段,应与改善正线纵坡不设爬坡车道的方案进行技术经济比较;对隧道、大桥、高架构造物及深挖路段,当因设置爬坡车道使工程费用增加很大时,经论证爬坡车道可以缩短或不设;对双向六车道高速公路可不另设爬坡车道,将外侧车道作为爬坡车道使用。

表上坡方向允许最低速度

设计速度(km/h)1201008060

容许最低速度(km/h)60555040

图凸形中央分隔带

2. 横断面组成

爬坡车道设于上坡方向正线行车道右侧,如图 所示。爬坡车道的宽度一般为 ,包括设于其左侧路缘 带的宽度 。

爬坡车道的路肩和正线一样仍然由硬路肩和土路肩组成。但由于爬坡车道上行驶速度较低,其硬路肩宽度可以不按正线的安全标准要求设计,一般为 。而土路肩宽度以按正线要求设计为宜。 窄路肩不能提供停车使用,在长而连续的爬坡车道路段上,其右侧应按规定设置紧急停车带。 3.平面布置与长度

爬坡车道的平面布置如图 所示。其总长度由起点处渐变段长度 L l 、爬坡车道的长度L 和终点处附加长度L 2组成。 ' 「

|J

起点处渐变段长度L 1用来使正线车辆驶离正线

而进入爬坡车道,其长度一般取 45m 。爬坡车道的长度L ,一般应根据所设计的纵断面线形,通过加、减速行程图绘制出载重车行驶速度曲线,找出小于允许最低速度的路段,从而得到需设爬坡车道的路段。

爬坡车道终点处附加长度L 2用来供车辆驶人正线前加速至允许最低车速所需长度。其值与附加段的纵坡度有关,见表规定,该附加长度包括终点渐变段长度60m 在内。

爬坡车道起、终点的具体位置除按上述方法确定外,还应考虑与线形的关系。通常应设在通视条件良好,容易辨认并与正线连接顺适的地点。

表 爬坡车道终点处附加长度

附加段的纵坡(%) 下坡 平坡 上坡 附加长度(m )

150

200

250

300

350

400

道路路拱、边沟、边坡

道路路拱

为了利于路面横向排水,将路面做成由中央向两侧倾斜的拱形,称为路拱。其倾斜的大小以百分率表示。 1. 路拱横坡度

路拱对排水有利但对行车不利。路拱坡度所产生的水平分力增加了行车的不平稳,同时也给乘客以不舒适的感觉,而且当车辆在有水或潮湿的路面上制动时还会增加侧向滑移的危险。为此,对路拱大小的采用及形状的设计应兼顾两方面的影响。对于不同类型的路面,由于其表面的平整度和透水性不同,再考虑当地的自然条件选用不同的路拱坡度,选用表 规定的数值。

表 路拱坡度

路面类型

路拱坡度(%) 沥青混凝土、水泥混凝土 1~2 其他沥青路面 ~ 半整齐块石 2~3 碎、砾石

图 爬坡车道横断面组成

图 爬坡车道的平面布置

低级路面3~4

(1)高速公路、一级公路整体式路基的路拱宜采用双向路拱坡度,由路中央向两侧倾斜。位于

中等强度降雨地区时,路拱坡度宜为2%;位于降雨强度较大地区时,路拱坡度可适当增大。

(2)高速公路、一级公路分离式路基的路拱,宜采用单向横坡,并向路基外侧倾斜,也可采用

双向路拱坡度。积雪、冰冻地区,宜采用双向路拱坡度。

(3)六车道、八车道高速公路,六车道一级公路,当超高过渡段的路拱坡度过于平缓时,可设

置两个路拱。

(4)二级公路、三级公路、四级公路的路拱应采用双向路拱坡度,由路中央向两侧倾斜。路拱

坡度应根据路面类型和当地自然条件确定,但不应小于%。

2.路拱的形式:抛物线形

直线接抛物线形

折线形

3.硬路肩、土路肩的横坡

(1)直线路段的硬路肩应设置向外倾斜的横坡,其坡度值应与车道横坡值相同。路线纵坡平缓,

且设置拦水带时,其横坡值宜采用3%-4%。

(2)曲线路段内、外侧硬路肩横坡的横坡值及其方向:当曲线超高小于或等于5%时,其横坡值和

方向应与相邻车道相同;当曲线超高大于5%时,其横坡值应不大于5%,且方向相同。

(3)硬路肩的横坡应随邻近车道的横坡一同过渡,其过渡段的纵向渐变率应控制在小于1/150至

大于1/330之间。

(4)土路肩的横坡:位于直线路段或曲线路段内侧,且车道或硬路肩的横坡值大于或等于3%时,

土路肩的横坡应与车道或硬路肩横坡值相同;小于3%时,土路肩的横坡应比车道或硬路肩的横

坡值大1%或2%。位于曲线路段外侧的土路肩横坡,应采用3%或4%的反向横坡值。

(5)大中桥梁、隧道区段的硬路肩横坡值,应与车道相同。

习题:试拟定高速公路(设计速度120km/h)的四、六、八车道各组成部分的尺寸,并绘制草图。

道路路拱、边沟、边坡

曲线超高

1.超高及其作用

为抵消车辆在曲线路段上行驶时所产生的离心力,将路面做成外侧高于内侧的单向横坡的形式,

这就是曲线上的超高。合理地设置超高,可以全部或部分抵消离心力,提高汽车行驶在曲线上的

稳定性与舒适性。

各级道路圆曲线部分最大超高值规定见表和表。超高值的大小与设计速度、半径、路面类型、当

地的自然条件等因素有关,设计时可根据半径大小等条件参照表确定具体超高的采用值。

表公路最大超高值

公路等级高速公路一二三四

一般地区108

积雪、严寒地区6

2.超高的过渡

1)无中间带道路的超高过渡

无中间带的道路行车道,无论是双车道还是单车道,在直线路段的横断面

均为以中线为脊向两侧倾斜的路拱。路面要由双向倾斜的路拱形式过渡到

图超高横坡度等于路拱坡度的旋转具有超高的单向倾斜的超高形式,外侧须逐渐抬高,在抬高过程中,行车

道外侧是绕中线旋转的,若超高横坡度等于路拱坡度,则直至与内侧横坡相等为止,如图所示。

当超高坡度大于路拱坡度时,可分别采用如下三种过渡方式:

①绕未加宽前的内侧车道边缘旋转。先将外侧车道绕路中线旋转,待达到与内侧车道构成单向横坡后,整个断面再绕未加宽前的内侧车道边缘旋转,直至超高横坡值,如图 (a)所示。有利于路基纵向排水,一般新建工程多用此法。

②绕中线旋转。先将外侧车道绕路中线旋转,待达到与内侧车道构成单向横坡后,整个断面绕中线旋转,直至超高横坡度。多用于旧路改建工程。

③绕外边缘旋转。先将外侧车道绕外边缘旋转,与此同时,内侧车道随中线的降低而相应降低,待达到单向横坡后,整个断面仍绕外侧车道边缘旋转,直至超高横坡度。是一种比较特殊的设计,仅用于某些为改善路容的地点。

上述各种方法中,绕边线旋转,由于行车道内侧不降低,绕中线旋转可保持中线标高不变,且在超高坡度一定的情况下,外侧边缘的抬高值较小,而绕外侧边线旋转 2)有中间带公路的超高过渡

①绕中间带的中心线旋转。先将外侧行车道绕中间带的中心旋转,待达到与内侧行车道构成单向横坡后,整个断面一同绕中心线旋转,直至超高横坡度值。此时中央分隔带呈倾斜状,如图所示。中间带宽度较窄的(≤可采用。

②绕中央分隔带边缘旋转。将两侧行车道分别绕中央分隔带边缘旋转,使之各自成为独立的单向超高断面。此时中央分隔带维持原水平状态,如图所示。各种中间带宽度的都可以采用。 ③绕各自行车道中线旋转。将两侧行车道分别绕各自的中心线旋转,使之各自成为独立的单向超高断面。此时中央分隔带两边缘分别升高与降低而成为倾斜断面,如图所示。对于车道数大于4条的公路可采用。 3.超高缓和段长度

为了行车的舒适、路容的美观和排水的通畅,必须设置一定长度的超高缓和段,超高的过渡则是在超高缓和段全长范围内进行的, 双车道公路超高缓和段长计算公式:

p

L i

c ?=

β

式中:c L ——超高缓和段长,m ;

β——旋转轴至行车道(设路缘带时为路缘带)外侧边缘宽度,m ; i ?——超高坡度与路拱坡度的代数差,%;

p ——超高渐变率,即旋转轴线与行车道(设路缘带时为路缘带)外侧边缘线之间的相对坡度,其

值可按表 确定。

表 超高渐变率

设计速度(km/h ) 超高旋转轴位置 120 中线 边轴 100 1/250 1/200 80 1/225 1/175 60 1/200 1/150 60 1/175 1/125 40 1/150 1/100 30 1/125 1/75 20

1/100

1/50

根据式 计算超高缓和段长度应凑成5m 的整倍数,并不小于10m 的长度。多车道公路的超高缓和段长度,视车道数按上式计算之值乘以下列系数: 从旋转轴至行车带边缘的距离 系数

2车道 3车道

从利于排除路面降水考虑,横坡度由2%(或%)过渡到0%路段的超高渐变率不得小于1/330。则超高的过渡可仅在回旋线某一区段内进行或调整由横坡度2%(或%)过渡到0%路段的长度。 四级公路可不设缓和曲线,但圆曲线上如有超高,则应设置超高缓和段。超高的过渡在超高缓和段的全长上进行。

4.横断面上的超高值的计算 1)超高值的计算

在公路工程施工中,路面的超高横坡即正常路拱横坡是不便于用坡度值来控制,而是用路中线及路基、路面边缘相对于路基设计高程的相对高差来控制的。因此,在设计中为便于施工,应计算出路线上任意位置的路基设计高程与路肩及路中线的高差。所谓超高值就是指设置超高后路中线、路面边缘及路肩边缘等计算点与路基设计高程的高差。 (1)路线设计高程

新建公路的路线设计高程:高速公路和一级公路(整体式路基)采用中央分隔带的外侧边缘高程;二、三、四级公路采用路基外边缘高程;设置超高、加宽地段为超高、加宽前的路基设计高程;对于改建公路一般按新建公路规定办理,也可视具体情况而采用行车道中线标高。

高速公路和一级公路整体式路基以中央分隔带中心线为平面设计线,而分离式路基则一般采用行车道中心线为平面设计线。 (2)超高值计算方法

计算路线上任意桩点的超高值时,须注意计算点在平曲线上的位置。因为圆曲线与超高缓和段上的超高不同,圆曲线上超高值是固定值,但在缓和段是的超高值是渐变的,必须分别计算超高值。 双坡阶段长度x 0的计算(以绕路面内边线旋转为例):

按照超高过渡要求,路面外边线的高度在超高缓和段内是与离开起点的距离成比例增加的,可推得

Lc i i x h

G

=

0 当Lc 很长时(在缓和曲线全长范围内设置超高),双坡阶段的渐变率p 1有可能小于%, 即0

1x B

i p G =

≤。这不利于路面横向排水,故应限制x 0的长度,可按如下两种方法确定: ①超高过渡在回旋线全长范围内进行(Lc =Ls ):

B i B

i p B i x G G G 330003.010=== 超高过渡在回旋线部分长度范围内进行(Lc

(新《规范》推荐) 则超高缓和段长度为

B i B i i i

x i i L h G G

h G h c 3303300=?==

这时双坡阶段长度x 0按式计算。 表 双车道公路绕路面内边线旋转超高值计算公式

超高位置

超高值计算公式

路肩内边缘

路中线

路肩外边缘

双坡阶段x ≤x 0 J x cx i b h -="

G G J cx i B i b h 2

'

+

=

G cx Bi x x

h 0

=

纵断面设计要点

第五节纵断面设计要点 教学目的:掌握纵坡设计要点和设计方法步骤 重点难点:纵坡设计方法与步骤 经济点 教学方法:课堂讲授+多媒体 教学课时:2课时 教学过程: Ⅰ复习提问 1.常见的平纵线形组合方式 2.平曲线和竖曲线组合时的一般要求是什么? Ⅱ导入新课 前面讲解了纵断面图的基本组成,纵坡大小的选择,坡长以及平纵线形组合的相关内容,在这些基础上,进入纵断面设计的学习。纵断面设计时要注意对前面只知识的综合应用。Ⅲ讲解新课 一、纵断面设计要点 1.纵断面设计的主要内容: 根据公路等级、沿线自然条件和构造物控制标高等,确定路线合适的标高、各坡段的纵坡度和坡长,并设计竖曲线。 2.基本要求: 纵坡均匀平顺、起伏和缓、坡长和竖曲线长短适当、平面与纵面组合设计协调、以及填挖经济、平衡 (一)设计标高的控制 1、平原微丘区,主要由保证路基稳定的最小填土高度控制。 为了保证路基的稳定性,最小填土高度为60-80公分,一般高速公路一级公路最少80公分,不管是填方段还是挖方段。 2、丘陵地区,设计标高主要是保证填挖平衡、降低工程造价。 3、山岭区设计标高主要由纵坡度和坡长控制。 4、沿河线设计标高主要由洪水位控制,要高出设计洪水位0.5米。 5、高、一、二公路的最小净空高度为5米,三、四级公路为4.5米,考虑将来可能变化, 净空高应预留0.2米。 天桥标志牌 6、人行通道和农用车辆通道的净空最小值分别为2.2和2.7米。 7、公路越铁路时,路线桥下净空应符合现行铁路部门净空高度要求。 8、电力线、地下设施、水运航道地段,也应满足最小净高高度要求。 (二)关于纵坡极限值的运用 1.纵坡的极限值,设计时不可轻易采用,应留有余地。 2.在受限制较严的地带,可有条件地使用纵坡极限值。 3.纵坡应力求平缓,但为了路面和边沟排水,最小纵坡不应低于0.3%~0.5%。 (三)关于最小纵坡 1.坡长不宜过短,以不小于设计速度9秒的行程为宜。 2.对连续起伏的路段,坡度应尽量小,一般可争取到竖曲线最小长度的-5倍。 (四)各种地形条件下的纵坡设计 1、各级公路的最大纵坡值及陡坡限制坡长,一般不轻易采用,而应适当留有余地。 2、平原微丘区纵坡应均匀平缓,丘陵区的纵坡应避免过分迁就地形而使路线起伏过大。 3、山岭重丘区的沿河线,应尽量采用平缓的纵坡,坡长不宜过短,纵坡不宜大于6%。

纵断面设计教案

授课时间2009年3月27日1,2节 授课 方式 课堂授课 授课 学时 2学时 授课 题目 第12讲:竖曲线 目的与要求: 1. 了解竖曲线的作用、线形; 2.掌握竖曲线计算方法; 3. 掌握竖曲线最小半径计算方法。 重点:1.竖曲线计算方法; 2. 竖曲线最小半径计算方法。 难点:1.竖曲线最小半径计算方法 授课内容摘要: 第4章纵断面设计 4.3 竖曲线 竖曲线的作用及线形;竖曲线要素的计算公式;竖曲线的最小长度和最小半径;逐桩设计高程计算。 参考文献:1.《公路工程技术标准》JTG B01-2003 2.《公路路线设计规范》JTG D20-2006 3.《道路勘测设计》. 张雨化主编,人民交通出版社出版 教具课件PPT课件 习题 作业 作业:习题4-2,4-3 课后小结: No. 12

4.3 竖曲线 第12讲:2学时 4.3.1 竖曲线的作用及线形 定义:纵断面上两个坡段的转折处,为了便于行车所设置的一段曲线。 变坡点:相邻两条坡度线的交点。 变坡角:相邻两条坡度线的坡角差,通常用坡度值之差代替,用ω表示,即 ω=α2-α1≈tgα2- tgα1=i2-i1 竖曲线的作用: (1)其缓冲作用:以平缓曲线取代折线可消除汽车在变坡点的突变。 (2)保证公路纵向的行车视距: 凸形:纵坡变化大时,盲区较大。 凹形:下穿式立体交叉的下线。 (3)将竖曲线与平曲线恰当组合,有利于路面排水和改善行车的视线诱导和舒 适感。 竖曲线线形:圆曲线 二次抛物线 《规范》规定采用二次抛物线。 要求:抛物线纵轴保持直立,且与两相邻纵坡线相切。一般情况下,竖曲线在 变坡点两侧是不对称的,但两切线长保持相等。 由于在纵断面上只计水平距离和竖直高度,斜线不计角度而计坡度。因此,竖 曲线的切线长与曲线长是其在水平面上的投影,切线支距是竖直的高程差,相邻两 坡度线的交角用坡度差表示。

第三章_纵断面设计

第三章纵断面设计 3.1 设计原则 沿着道路中线竖直剖切然后展开即为路线纵断面。由于自然因素的影响以及经济性要求,路线纵断面总是一条有起伏的空间线。纵断面的设计是根据汽车的动力特性、道路等级、当地的自然地理条件以及工程经济性等,研究起伏空间线几何构成的大小及长度,以便达到行车安全迅速、运输经济合理以及乘客感觉舒适的目的。所以在进行纵断面设计时要考虑的主要因素是:满足道路等级要求的行驶速度、运输的经济性、行车的安全性。 3.1.1道路纵断面设计原则如下 1、纵断面线形应与地形相适应,线形设计应平顺、圆滑、视觉连续,保证行驶安全。 2、为保证行车安全、舒适、纵坡宜缓顺,起伏不宜频繁。 3、纵坡设计应考虑填挖平衡,并利用挖方就近作为填方,以减轻对自然地面横坡与景观的影响。 4、相邻纵坡之代数差较小时,应采用大的竖曲线半径。 5、连续上坡(或下坡)路段,应符合平均纵坡的规定并采用运行速度对通行能力与行车安全进行检验。 6、路线交叉处前后的纵坡应平衡。 7、位于积雪或冰冻地区的公路,应避免采用陡坡。 3.1.2纵坡设计标准 一、道路最大纵坡限制 道路最大纵坡限制表表3-1 《标准》规定: 1、设计速度为120 km/h、100 km/h、80 km/h的高速公路受地形条件或其他特殊情况限制是,经技术经济论证,最大纵坡值可增加1﹪。 2、公路改建中,设计速度为40 km/h、30 km/h、20 km/h的利用原有公路的路段,经技术经济论证,最大纵坡之可增加1﹪。 二、道路纵坡长度限制 设计纵坡度大于表3-2所列推荐值时,可按表3-1的规定限制坡长。设计纵坡度超过5%,坡长超过表3-1规定值时,应设纵坡缓和段。缓和段的坡度为3%。 1、最大坡长限制理由 长距离的陡坡对汽车行驶不利。连续的上坡发动机过热影响机械效率,使行驶条件恶化,下坡则因制动频繁而危及行车安全。 2、最大坡长的规定见下表

公路竖曲线计算

竖曲线及平纵线形组合设计 (纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。) 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22= (二)竖曲线要素计算公式

竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω 3、竖曲线切线长: T= T A =T B ≈ L/2 =2 ωR 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22= 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ; R —为竖曲线的半径,m 。 二、竖曲线的最小半径 (一)竖曲线最小半径的确定 1.凸形竖曲线极限最小半径确定考虑因素 (1)缓和冲击 汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。 (2)经行时间不宜过短

第五章-高速公路纵断面设计复习课程

第五章高速公路纵断面设计 第一节概述 定义:沿着道路中线竖向剖面的展开图即为路线纵断面。 纵断面设计:在路线纵断面图上研究路线线位高度及坡度变化情况的过程。 任务:研究纵断面线形的几何构成及其大小与长度。 依据:汽车的动力特性、道路等级、当地的自然地理条件以及工程经济性等。 路线纵断面图构成: 地面线:它是根据中线上各桩点的高程而点绘的一条不规则的折线; 设计线:路线上各点路基设计高程的连续。 地面高程:中线上地面点高程。 设计高程:一般公路,路基未设加宽超高前的路肩边缘的高程。 设分隔带公路,一般为分隔带外边缘。 路基高度:横断面上设计高程与地面高程之高差。 路堤:设计高程大于地面高程。 路堑:设计高程小于地面高程。 纵断面设计内容:坡度及坡长、竖曲线 第二节纵坡及坡长设计 一、纵坡设计的一般要求 1.纵坡设计必须满足《标准》的各项规定。 2.为保证车辆能以一定速度安全顺适地行驶,纵坡应具有一定的平顺性,起伏不宜过大和过于频繁。 尽量避免采用极限纵坡值。 合理安排缓和坡段,不宜连续采用极限长度的陡坡夹最短长度的缓坡。 连续上坡或下坡路段,应避免设置反坡段。 越岭线哑口附近的纵坡应尽量缓一些。 3.纵坡设计应对沿线地面、地下管线、地质、水文、气候和排水等综合考虑,视具体情况加以处理,以保证道路的稳定与通畅 4.一般情况下山岭重丘区纵坡设计应考虑填挖平衡,尽量使挖方运作就近路段填方,以减少借方和废方,降低造价和节省用地。——即纵向填挖平衡设计。 5.平原微丘区地下水埋深较浅,或池塘、湖泊分布较广,纵坡除应满足最小纵坡要求外,还应满足最小填上高度要求,保证路基稳定。——即包线设计。 6.对连接段纵坡,如大、中桥引道及隧道两端接线等,纵坡应和缓、避免产生突变。交叉处前后的纵坡应平缓一些, 7.在实地调查基础上,充分考虑通道、农田水利等方面的要求。 二、最大纵坡 最大纵坡:是指在纵坡设计时各级道路允许使用的最大坡度值。 影响因素: 汽车的动力特性:汽车在规定速度下的爬坡能力。 道路等级:等级高,行驶速度大,要求坡度阻力尽量小。 自然条件:海拔高程、气候(积雪寒冷等)。 纵坡度大小的优劣: 坡度大:行车困难:上坡速度低,下坡较危险。

纵断面设计——竖曲线设计

纵断面设计——竖曲线设计 纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i1 和i2,则相邻两坡度的代数差即转坡角为ω= i1-i2 ,其中i1、i2为本身之值,当上坡时取正值,下坡时取负值。 当i1- i2为正值时,则为凸形竖曲线。当i1 - i2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: 若取抛物线参数为竖曲线的半径,则有: (二)竖曲线要素计算公式 竖曲线计算图示 1、切线上任意点与竖曲线间的竖距通过推导可得: 2、竖曲线曲线长:L = Rω 3、竖曲线切线长:T= TA =TB ≈ L/2 = 4、竖曲线的外距:E = ⑤竖曲线上任意点至相应切线的距离: 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m; R—为竖曲线的半径,m。 二、竖曲线的最小半径 (一)竖曲线最小半径的确定 1.凸形竖曲线极限最小半径确定考虑因素 (1)缓和冲击 汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。 (2)经行时间不宜过短 当竖曲线两端直线坡段的坡度差很小时,即使竖曲线半径较大,竖曲线长度也有可能较短,此时汽车在竖曲线段倏忽而过,冲击增大,乘客不适;从视觉上考虑也会感到线形突然转折。因此,汽车在凸形竖曲线上行驶的时间不能太短,通常控制汽车在凸形竖曲线上行驶时间不得小于3秒钟。 (3)满足视距的要求 汽车行驶在凸形竖曲线上,如果竖曲线半径太小,会阻挡司机的视线。为了行车安全,对凸形竖曲线的最小半径和最小长度应加以限制。 2.凹形竖曲线极限最小半径确定考虑因素 (1)缓和冲击: 在凹形竖曲线上行驶重量增大;半径越小,离心力越大;当重量变化程度达到一定时,就会影响到旅客的舒适性,同时也会影响到汽车的悬挂系统。 (2)前灯照射距离要求

纵断面计算题

第三章纵断面设计 思考题 1.纵断面设计成果包括哪些内容 2.简述纵坡设计的步骤; 3.竖曲线上的设计高如何计算 4.如何进行平、纵组合 5. 习题 一、填空题 1.在公路路线纵断面图上,有两条主要的线:一条是_____;另一条是___________。 2.纵断面设计就是根据汽车的_________、__________、___________和__________,以及当地气候、地形、地物、地质、水文、土质条件、排水要求、工程量等来研究这条空间线形的纵坡布置。 3.纵断面的设计线是由_________和____________组成的。 4.纵坡度表征匀坡路段纵坡度的大小,它是以路线________和__________之间的百分数来量度的,即i=h/l(%)。 5.理想的纵坡应当________平缓,各种车辆都能最大限度以接近__________速度行驶。6.汽车在公路上行驶,要受到_______阻力、________阻力、__________阻力和________阻力等四种行车阻力的作用。 7.最大纵坡的确定主要根据汽车的_______、__________、__________,并要保证________________。 8.最小坡长通常以计算行车速度行驶__________的行程来作规定。 9.设置爬坡车道的目的主要是为了提高高速公路和一级公路的________,以免影响_________的车辆行驶。 10.纵断面线型的布置包括_______的控制,__________和_________的决定。 11.纵断面图上设计标高指的是____________的设计标高。 12.转坡点是相邻纵坡设计线的___________,两转坡点之间的水平距离称为___________。13.调整纵坡线的方法有抬高、降低、_________、__________纵坡线和__________纵坡度等。 14.凸形竖曲线的最小长度和半径主要根据___________和____________来选取其中较大者。15.凹形竖曲线的最小长度和半径主要根据_________和_________来选取其中较大者。16.纵断面设计图反映路线所经中心________和________之间的关系。 17.竖曲线范围内的设计标高必须改正,按公式h=l2/2R计算,l代表距________的距离,竖曲线上任一点l值在转坡点前从竖曲线_______标起,在转坡点后从竖曲线__________标起。 18.凸形竖曲线的标高改正值为__________,凹形竖曲线为_________;设计标高=未设竖曲线的标高________________。 19.当路面为表处(_f=,解放牌汽车用Ⅲ档,以30km/h不减速行驶(D=时,可爬升的最大纵坡为____________。 20.在确定竖曲线半径大小时,《规范》规定当条件受限制时,方可采用_________最小值,

路线纵断面设计

路线纵断面设计 1、假定条件 1.1 该地区为丘陵地形,地表主要为草植被覆盖; 1.2 植被下面为第四系松散堆积物覆盖,以灰黑、灰白泥岩、粉砂岩、泥质沙岩为主。厚度在6.6~31米之间。 1.3 本区属于自然区Ⅰ类划分,即大陆性亚寒带气候,降水主要集中在7、8、9月份。雨季中湿状态的临界高度为84cm,4、5月份发生雪融期潮湿状态的临界高度为56cm。 2、设计要求 2.1 根据平面定线的结果结合本次给定的条件设计两个断链之间的纵断面图; 2.2 根据地面平曲线设计起点和中点的纵断面,选择填方材料并说明理由;2.3 绘图比例尺纵坐标为1:100,横坐标为1:5000,用A3纸绘制; 2.4 规范设计格式、设计步骤、设计内容; 2.5 所需材料:第一次的作业A3纸 笔记、参考书(露天矿线路工程、张达贤)。 3、纵断面设计原则 3.1 纵断面设计应服从上位依据(总规、控规、可研、初设等作业批准的高程),根据所处的工作阶段取得可靠地定线依据; 3.2 满足纵断面设计的技术标准,满足等级要求; 衡; 3.4 路基稳定,路基最小填土高度为84cm; 3.5 保证市政管线的埋设、使用。管线覆土最小厚度0.7m。有时排水管控制了道路高度。 4、设计步骤 4.1 准备工作 在平面路线图上标注里程桩和百米标及其所处高程。 本次设计总里程1575.2m,跨高程3.27m;共设置15个百米桩、27个里程桩,其中K0 K1 K2 K4 K6 K7 K8 K10 K12 K13 K15 K16 K18 K19 K20 K22 K24 K25 K26为整桩,K3 K5 K9 K11 K14 K17 K19 K21 K23 K27为特殊加点桩。 4.2 标注特殊控制点 1)路线起、终点,引起地形起伏大的变坡点; 2)标注控制点:影响纵坡设计的高程控制点(用高程表示) 3)线路的起始点、导向线交点、地形边坡点、竖曲线的起始点(竖曲线的ZY-YZ)。 4)平面圆曲线的ZY-YZ点。 采用定直线等分定理将控制点、里程桩、变坡点、起终点、百米标的高程反映到纵断面图上。 4.3 试坡 Liumr

道路竖曲线计算

道路竖曲线计算 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

第二节 竖曲线设计 纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22 = (二)竖曲线要素计算公式

竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112 li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω 3、竖曲线切线长: T= T A =T B ≈ L/2 = 2 ω R 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22 = 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ; R —为竖曲线的半径,m 。 二、竖曲线的最小半径 (一)竖曲线最小半径的确定 1.凸形竖曲线极限最小半径确定考虑因素 (1)缓和冲击 汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。 (2)经行时间不宜过短

竖曲线计算范例

第8讲 课 题:第三节 竖曲线 第四节 公路平、纵线形组合设计 教学内容:理解竖曲线最小半径的确定;能正确设置竖曲线;掌握竖曲线的要素计算、竖曲线与路基设计标高的计算;能正确进行平、纵线形的组合设计。 重 点:1、竖曲线最小半径与最小长度的确定;2、竖曲线的设置; 3、平、纵线形的组合设计。 难 点:竖曲线与路基设计标高的计算;平、纵线形的组合设计。 第三节 竖曲线设计 纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22 = (二)竖曲线要素计算公式

竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112 li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω 3、竖曲线切线长: T= T A =T B ≈ L/2 = 2 ω R 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22 = 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ; R —为竖曲线的半径,m 。 二、竖曲线的最小半径 (一)竖曲线最小半径的确定 1.凸形竖曲线极限最小半径确定考虑因素 (1)缓和冲击 汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。 (2)经行时间不宜过短 当竖曲线两端直线坡段的坡度差很小时,即使竖曲线半径较大,竖曲线长度也有可能较短,此时汽车在竖曲线段倏忽而过,冲击增大,乘客不适;从视觉上考虑也会感到线形突然

高等级道路竖曲线的计算方法

高速公路竖曲线计算方法 【摘要】本文从竖曲线的严密计算公式入手,推导竖曲线上点的设计高程和里程的精确计算方法。分析和比较了近似公式和严密公式的差别及对设计高 程和里程的影响。在道路勘测设计中用本方法可取得精确、方便、迅速的效果, 建议取代传统的近似方法。 一、引言 在传统的道路纵断面设计中,竖曲线元素及对应桩号里程和设计高程均采用 近似公式计算,在低等级道路及计算工具很落后的时代曾起到过很大的作用。 但是随着高级道路的快速发展,道路竖曲线半径的不断加大,设计和施工的精度要求越来越高,因此,对勘测设计工作提出了很高的要求。采用近似的方法进 行勘测设计已难以满足高精度、高效灵活的要求。为此本文给出了实用、精确的竖曲线计算公式,以解决实际工作中存在的问题。 二、计算原理 1. 近似计算公式 如图1所示,设道路纵坡的变坡点为I,其设计高程为H I,里程为D I,两侧的纵坡度分别为i1、i2,竖曲线设计半径为R,竖曲线各元素的近似计算公式如下:

图 1 2. 精确计算公式 如图2所示,在图中建立以水平距离为横坐标轴d,铅垂线为纵坐标轴H′的dOH′直角坐标系,A点的坐标为(d A,0),Z点的坐标为(0,H Z′),竖曲线各元素的精确计算公式如下: α1=arctani 1 (1) α2=arctani 2 (2) ω=α1-α2(3) T=Rtan(4) E=R(sec-1) (5) d I=Tcosα1 (6) d A=Rsinα1 (7) H Z′=Rcosα1 (8) 竖曲线在直角坐标系中的方程为: (d-d A)2+H′2=R2 (9)

由式(9)可推算出竖曲线上任一与Z点的里程差为d的点的纵坐标值H′,则 0≤d≤dY (10) 并可立即推算点的设计高程和里程: H=H′-ΔH (11) D=D Z+d (D Z=D I-d I) (12) 式中,α1,α2分别为纵坡线与水平线的夹角;ω为变坡角;Τ为切线长;Ε为外矢距;d I为纵坡变坡点I与Z点的里程差;d A为竖圆曲线圆心A与Z点的里程差;H′为竖圆曲线上任一点的纵坐标值;d为竖圆曲线上任一点与Z点的里程差;H为竖圆曲线上任一点的设计高程;ΔH=H′Z-H Z为Z点纵坐标值与Z 点设计高程之差(H Z=H I-d I.i1);D为竖曲线上任一点的里程。 由式(10)可知,当d=d A时,则里程D N=D Z+d A的N点为竖圆曲线的变坡点, 其高程H N=H N′-ΔH=R-ΔH=max,N点在现场施工中具有很重要的指导意义。 三、计算实例 某山岭重丘的二级公路的纵坡变坡点I,其设计高程H I=68.410 m,里程D I

公路竖曲线计算

公路竖曲线计算

————————————————————————————————作者:————————————————————————————————日期:

课 题:第三节 竖曲线 第四节 公路平、纵线形组合设计 教学内容:理解竖曲线最小半径的确定;能正确设置竖曲线;掌握竖曲线的要素计算、竖曲线与路基设计标高的计算;能正确进行平、纵线形的组合设计。 重 点:1、竖曲线最小半径与最小长度的确定;2、竖曲线的设置; 3、平、纵线形的组合设计。 难 点:竖曲线与路基设计标高的计算;平、纵线形的组合设计。 第三节 竖曲线设计 纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22 = (二)竖曲线要素计算公式 竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112 li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω 3、竖曲线切线长: T= T A =T B ≈ L/2 = 2 ω R 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22 = 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m; R —为竖曲线的半径,m 。

纵断面设计方法与步骤

纵断面设计方法与步骤 1.准备工作 纵坡设计前,应根据中桩和水准记录点绘出路线纵断面图的地面线,绘出平面直线、平曲线示意图,写出每个中桩的桩号和地面标高以及沿线土壤地质说明资料,并熟悉和掌握全线有关勘测设计资料,领会设计意图和要求。 2.标注控制点 所谓控制点,就是指影响纵坡设计的高程控制点。“控制点”可分为两类: 一类是属于控制性的“控制点”,控制路线纵坡设计时必须通过它或限制从其上方或下方通过。这类控制点主要有: ①路线起、终点;②越岭哑口;③重要桥涵;④最小填土高度;⑤最大挖深;⑥沿溪线的洪水位;⑦隧道进出口;⑧平面交叉和立体交叉点;⑨铁路道口;⑩城镇规划控制标高以及受其它因素限制路线必须

通过的标高控制点等。 第二类是属于参考性的“控制点”,叫经济点。对于山岭重丘区的公路,除应标出控制性质的“控制点”以外,还应考虑各横断面上横向填挖基本平衡的经济点,以降低工程造价。横断面上的经济点有以下三种情况: 1)当地面横坡不大时,可在中桩地面标高上下找到填方和挖方基本平衡的标高,纵坡通过此标高时,在该横断面上挖方数量基本等于填方数量。该标高为其经济点,如图a)。 2)当地面横坡较陡时,填方往往不宜填稳,有时坡脚伸得较远,采用多挖少填甚至全部挖出路基的方法比砌石护坡经济,这时多挖少填或全挖路基的标高为经济点,如图b)。 3)当地面横坡很陡,无法填方时,需砌筑挡土墙,此时宁愿全部挖出路基或深挖,该全部挖出或深挖路基的标高为其经济点,如图c)。 当地面横坡很陡,必须作挡土墙时,当采用某一设计标高使该断面按1m长度计施工的土石方与挡土墙费用总和最省,该标高为其经济点。设计时“经济点”通常用“路基横断面透明模板”来确定,如下图所示。

纵断面设计说明

第3章路线纵断面设计 纵断面线形设计主要是解决公路线形在纵断面上的位置、形状和尺寸问题,具体内容包括纵坡设计和竖曲线设计两项。纵断面设计应根据公路的性质、任务、等级和地形地物、地质等情况,考虑路基排水等的要求,对纵坡的大小、长短、前后纵坡情况、竖曲线半径大小以及与平曲线线形组合关系进行设计。 3.1本路段纵断面概况 《公路工程技术标准》JTG B01-2003对纵坡所作规定如下: 1.最小坡长:150 m 2.最大纵坡:6.0% 3.纵坡长度限制:i=3% 最大坡长1200m i=4% 最大坡长1000m i=5% 最大坡长800m i=6% 最大坡长600m 4.竖曲线最小半径和最小长度: 凸形竖曲线半径(m):一般值:2000 极限值:1400 凹形竖曲线半径(m): 一般值:1500 极限值:1000 竖曲线最小长度(m): 50 当连续上坡(或下坡)时,应在不大于上述最大坡长所规定的纵坡长度范围内设置缓和坡段。缓和坡段的纵坡应不大于3%,其长度应符合上述规定。 长路堑路段及其它横向排水不畅的路段,均应采用不小于0.3%的坡。 本路段共设变坡点3个,最大纵坡-4.54%,最小纵坡 0.52%,两个凹形竖曲线及一个凸型曲线,半径均满足要求。 3.2纵坡设计 3.2.1设计的基本原则 1.纵坡设计必须满足《标准》的有关规定,一般不轻易采用极限值。

2.纵坡应力求平缓,避免连续陡坡,过长陡坡和反坡。 3.纵面线形应连续、平顺、均衡,并重视纵面线形的组合,在纵面线形的组合上应注意以下几点: (1)在短距离内应避免线形起伏过于频繁,由于纵面线形连续起伏使纵面线形发生中断,视距不良。 (2)避免“凹陷”路段,使驾驶员视觉不适,产生莫测感,影响行车速度和安全。 (3)在较长的连续上坡路段,宜将最陡的纵坡放在底部,接近顶部的纵坡宜放缓。 (4)纵坡变化小时,宜采用较大的竖曲线半径。 (5)纵面设计时应注意与平面线形相协调,尽量作到“平包竖”,“竖包圆”。 4. 纵坡设计应争取填挖平衡,尽量做到利用挖方作就近填方,以减少借方和废方。节省土石方数量,降低过程造价。 3.2.2纵坡设计步骤 1.加桩及地面标高的读取 关于地面高程的读取,采用等高线内插法读取,结果保留一位小数。 2.点绘地面线 根据各中桩所对应的地面高程,在规定图纸或计算机上点绘地面线,具体采用的比例分别为:横向(里程方向) 1:2000 ,纵向(高程方向) 1:200。同一张图纸中可以采用不同的高程坐标系,以有利于绘图。绘出平面直线、曲线示意图,写出每个中桩的桩号和地面高程、设计高程、填挖高、坡度、坡长、以及土壤地质说明。 3. 标注纵断面控制点 本路段的主要控制点有:起点、终点、两座中桥。在起点和终点处的填挖值均为0。 4. 试坡 按满足控制点,照顾经济点的原则,用三角板推平行线的办法,移动坡度线,反复试坡,对各种可能的坡度线方案进行比较,最后确定既符合标准、又能保证控制点要求,而且土石方量最省的坡度线,将其延长交出变坡点的位置。 5. 调坡 将试坡线与选线时所考虑的坡度进行比较,两者基本相符。根据初定变坡点的位置,详细检查设计最大纵坡,坡长限制,纵坡折减以及平纵线形组合是否符合技术标准要求,特别是注意陡坡与平曲线、桥头接线等的地方是否一致,如不符合,将对其进行修正和调整,同时考虑选线的意图。

竖曲线计算实例

第二节 竖曲线设计 纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22= (二)竖曲线要素计算公式 竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112 li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω

3、竖曲线切线长: T= T A =T B ≈ L/2 = 2 ω R 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22 = 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ; R —为竖曲线的半径,m 。 二、竖曲线的最小半径 (一)竖曲线最小半径的确定 1.凸形竖曲线极限最小半径确定考虑因素 (1)缓和冲击 汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。 (2)经行时间不宜过短 当竖曲线两端直线坡段的坡度差很小时,即使竖曲线半径较大,竖曲线长度也有可能较短,此时汽车在竖曲线段倏忽而过,冲击增大,乘客不适;从视觉上考虑也会感到线形突然转折。因此,汽车在凸形竖曲线上行驶的时间不能太短,通常控制汽车在凸形竖曲线上行驶时间不得小于3秒钟。 (3)满足视距的要求 汽车行驶在凸形竖曲线上,如果竖曲线半径太小,会阻挡司机的视线。为了行车安全,对凸形竖曲线的最小半径和最小长度应加以限制。 2.凹形竖曲线极限最小半径确定考虑因素 (1)缓和冲击: 在凹形竖曲线上行驶重量增大;半径越小,离心力越大;当重量变化程度达到一定时,就会影响到旅客的舒适性,同时也会影响到汽车的悬挂系统。 (2)前灯照射距离要求 对地形起伏较大地区的路段,在夜间行车时,若半径过小,前灯照射距离过短,影响行车安 全和速度;在高速公路及城市道路上有许多跨线桥、门式交通标志及广告宣传牌等,如果它们正好处在凹形竖曲线上方,也会影响驾驶员的视线。 (3)跨线桥下视距要求 为保证汽车穿过跨线桥时有足够的视距,汽车行驶在凹形竖曲线上时,应对竖曲线最小半径加以限制。

第四章-纵断面设计

第四章纵断面设计 一、填空题 1、在公路路线纵断面图上,有两条主要的线:一条是();另一条是()。 2、纵断面的设计线是由()和()组成的。 3、纵坡度表征匀坡路段纵坡度的大小,它是以路线()和()之比的百分数来度量的。 4、新建公路路基设计标高即纵断面图上设计标高是指:高速、一级公路为 ()标高;二、三、四级公路为()标高。 5、纵断面线型的布置包括()的控制,()和()的决定。 6、缓和坡段的纵坡不应大于(),且坡长不得()最小坡长的规定值。 7、二、三、四级公路越岭路线的平均坡度,一般使以接近()和 ()为宜,并注意任何相连3KM路段的平均纵坡不宜大于 ()。 8、转坡点是相邻纵坡设计线的(),两坡转点之间的距离称为 ()。 9、在凸形竖曲线的顶部或凹形竖曲线的底部应避免插入()平曲线,或将这些顶点作为反向平曲线的()。 10、纵断面设计的最后成果,主要反映在路线()图和 ()表上。 二、选择题 1、二、三、四级公路的路基设计标高一般是指()。 A 路基中线标高 B 路面边缘标高 C 路基边缘标高 D路基坡角标高 2、设有中间带的高速公路和一级公路,其路基设计标高为()。 A 路面中线标高 B 路面边缘标高 C 路缘带外侧边缘标高 D 中央分隔带外侧边缘标高

3、凸形竖曲线最小长度和最小半径地确定,主要根据()来选取其中较大值。 A 行程时间,离心力和视距 B 行车时间和离心 力 C 行车时间和视距 D 视距和理性加速度 4、竖曲线起终点对应的里程桩号之差为竖曲线的()。 A切线长 B 切曲差 C 曲线长 5、平原微丘区一级公路合成坡度的限制值为10%,设计中某一路段,按平曲线半径设置超高横坡度达到10%则此路段纵坡度只能用到( ). A 0% B 0.3% C 2% D3% 6、最大纵坡的限制主要是考虑()时汽车行驶的安全。 A 上坡 B 下坡 C 平坡 7、确定路线最小纵坡的依据是()。 A 汽车动力性能 B 公路等级 C 自然因素 D 排水要求 8、公路的最小坡长通常是以设计车速行驶()的行程来规定的。 A 3-6s B 6-9s C 9-15s D 15-20s 9、在平原区,纵断面设计标高的控制主要取决于()。 A 路基最小填土高度 B 土石方填挖平衡 C 最小纵坡和坡长 D 路基设计洪水频率 10、在纵坡设计中,转坡点桩号应设在()的整数倍桩号处。 A 5m B 10m C 20m D 50m 11、《公路工程技术标准》规定,公路竖曲线采用()。 A 二次抛物线 B 三次抛物线 C 回旋曲线 D 双曲线 12、路基设计表是汇集了路线()设计成果。 A 平面 B 纵断面 C 横断面 D 平、纵、横 三、名称解释 1.公路的纵坡度

路线纵断面设计

路线纵断面设计 路线纵断面:同一曲面沿道路中线竖直剖切,展开成的平面。 1、假定条件 1.1、该地区为丘陵地区,地表主要为全区覆盖的草植被。植被下部为第四季松 散堆积物覆盖,以灰黑、灰白泥岩、粉砂岩、泥质砂岩为主,厚度在6.6m-31m 之间。 1.2、本区属于公路自然区I类2级划分,即大陆性亚寒带气候,降雨主要集中 在7、8、9月,表现中湿状态的临界高度为84cm;4、5月份为雪融期,产生潮湿临界厚度为56cm。 2、设计要求 2.1、根据地面平曲线设计起点和中点的纵断面图,选择填方材料并说明理由。 2.2、绘图比例尺纵坐标为1:200,横坐标为1:2000,用B4纸绘制。 2.3、规范设计格式、设计步骤、设计内容。 3、纵断面设计的原则 3.1、纵断面设计应服从上位依据(总规、控规、可研、初设等业已批准的高程), 根据所处的工作阶段取得可靠的定线依据; 3.2、满足纵断面设计的技术标准,满足等级要求; 3.3、纵断面线形平顺,坡段平缓,起伏小、少; 3.4、填挖少,工程量省,填挖基本平衡; 3.5、路基稳定; 3.6、基本满足沿途道路控制标高。道路控制标高是: ①起点、终点、沿途街坊地面、交叉口、出入口、广场、建筑物地坪、铁 路道口、桥涵; ②由设计洪水位确定的路面高程、桥面高程; ③通航河流要满足桥下净空高度的要求; ④旧路改造时的原有路面高程; ⑤垭口。 3.7、路基最小填土高度; 3.8、保证市政管线的埋设、使用。管线覆土最小厚度0.7m。有时排水管控制了 道路高程。 4、设计步骤 4.1、准备工作 在平面路线图上标注里程桩和百米标及其所处高程。 本次设计总里程540.78m,跨高程3.29m;共设置5个百米标、17个里程桩,其中k0、k1、k3、k8、k9、k14为整桩,k2、k4、k5、k6、k7、k10、k11、k12、k13、k15、k16为特殊点加桩。

公路纵断面设计

公路纵断面设计 一、概述 1.纵断面设计定义 沿道路中心线纵向垂直剖切的一个立面。它表达了道路沿线起伏变化的状况。道路纵断面设计主要是根据道路的性质和等级,汽车类型和行驶性能,沿线地形、地物的状况,当地气候、水文、土质的条件以及排水的要求,具体确定纵坡的大小和各点的标高。为了适应行车的要求,各级公路和城市道路中的快速路、主干路及相邻坡度代数差大于1%的其他道路,在纵坡变更处均应设置竖曲线,因而,道路纵断面设计线是由直线和竖曲线所组成。 在纵断面图上,通过路中线的原地面上各桩点的高程,称为地面标高,相邻地面标高的起伏折线的连线,称为地面线。设计公路的路基边缘相邻标高的连线,称为设计线,设计线上表示路基边缘各点的标高,称为设计标高。在同一横断面上设计标高与地面标高之差,称为施工高度。当设计线在地面线以上时,路基构成填方路堤;当设计线在地面线以下时,路基构成挖方路堑。施工高度的大小直接反映了路堤的高度和路堑的深度。 2.纵断面设计原则 2.1设计原则 (1)纵坡设计必须符合《公路工程技术标准》中有关纵坡的各项规定,如各级公路的最大纵坡,按排水要求的最小纵坡等。 (2)为保证汽车以一定的车速安全顺利地通过,纵坡应具有一定的平顺性。 (3)对沿线的自然条件,应作通盘研究,依据不同的具体情况分别处理,使公路畅通和稳定。 (4)按路线起伏综合考虑农田水利方面的特殊要求。 (5)在水文条件不良或地下水位很高的路段,应考虑适当的路基高度。 (6)在保证路基的强度和稳定的前提下,争取填挖平衡,节省土石方及其他工程量,降低工程造价。 (7)考虑到今后公路改建时,尽量利用原有路面作为新路面的基层或面层的下层。 (8)纵坡设计应与平面设计密切配合协调。

城市道路设计规范

1.1道路几何设计《城市道路设计规范》CJJ37—90 1.0.3 在道路设计中应考虑残疾人的使用要求。 2.1.2除快速路外,每类道路按照所在城市的规模、设计交通量、地形等分为 I、II、III。大城市应采用各类道路中的I级标准;中等城市应采用II级标准;小城市应采用III级标准。有特殊情况需变更级别时,应做技术经济论证,报规划审批部门批准。 2.2.1计算行车速度的规定见表2.2.1。当旧路改建有特殊困难,如商业街、文化街等。经技术经济比较认为合理时,可适当降低计算行车速度,但应考虑夜间行车安全。 2.4.1城市道路建筑限界见图2.4.1。顶角抹角宽度应与机动车道侧向净宽一致。最小净高见表2.4.1。建筑限界内不得有任何物体侵入。

2.5.1道路交通量达到饱和状态时的设计年限规定如下:快速路、主干路为 20a,次干路为15a;支路为10~15a。(代表年) 2.5.2路面结构达到临界状态的设计年限规定如下: 二、沥青混凝土路面,沥青碎石路面与沥青贯入式碎(砾)石路面为15a。支路修筑沥青混凝土等高级路面时,可采用10a。 三、沥青表面处治路面为8a。 四、粒料路面为5a。 2.8.1地震区的道路工程及重要的附属构筑物应按国家规定工程所在地区的设防烈度,进行抗震设防。 4.3.2快速路应设中间分车带,不得采用双黄线。 4.5.2路侧带各组成部分的宽度确定如下: 一、人行道宽度必须满足行人通行的安全和顺畅。 5.1.3道路的圆曲线半径应采用大于或等于表5.1.3规定的不设超高最小半径值。 5.1.6圆曲线半径小于表5.1.3中不设超高最小半径时,在圆曲线范围内应设超高。 5.1.9圆曲线半径小于或等于250m时,应在圆曲线内侧按表5.1.9的规定加宽。

相关主题
文本预览
相关文档 最新文档