当前位置:文档之家› 经典 初中数学三角形专题训练及例题解析

经典 初中数学三角形专题训练及例题解析

经典 初中数学三角形专题训练及例题解析
经典 初中数学三角形专题训练及例题解析

知识点梳理

考点一、三角形

1、三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.

2、三角形的分类.

??

???钝角三角形直角三角形锐角三角形

???????)

(等边三角形等腰三角形不等边三角形

3、三角形的三边关系:

三角形任意两边之和大于第三边,任意两边之差小于第三边. 4、三角形的重要线段

①三角形的中线:顶点与对边中点的连线,三条中线交点叫重心

②三角形的角平分线:内角平分线与对边相交,顶点和交点间的线段,三个角的角平分线的交点叫内心 ③三角形的高:顶点向对边作垂线,顶点和垂足间的线段.三条高的交点叫垂心(分锐角三角形,钝角三角形和直角三角形的交点的位置不同)

5、三角形具有稳定性

6、三角形的内角和定理及性质 定理:三角形的内角和等于180°. 推论1:直角三角形的两个锐角互补。

推论2:三角形的一个外角等于不相邻的两个内角的和。 推论3:三角形的一个外角大于与它不相邻的任何一个内角。

7、多边形的外角和恒为360° 8、多边形及多边形的对角线

①正多边形:各个角都相等,各条边都相等的多边形叫做正多边形.

②凸凹多边形:画出多边形的任何一条边所在的直线,若整个图形都在这条直线的同一侧,这样的多边形称为凸多边形;,若整个多边形不都在这条直线的同一侧,称这样的多边形为凹多边形。

③多边形的对角线的条数:

A.从n 边形的一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。

B.n 边形共有

2

)

3(-n n 条对角线。 9、边形的内角和公式及外角和

①多边形的内角和等于(n-2)×180°(n ≥3)。 ②多边形的外角和等于360°。 10、平面镶嵌及平面镶嵌的条件。

①平面镶嵌:用形状相同或不同的图形封闭平面,把平面的一部分既无缝隙,又不重叠地全部覆盖。 ②平面镶嵌的条件:有公共顶点、公共边;在一个顶点处各多边形的内角和为360°。 考点二、全等三角形

三角形 (按角分)

三角形 (按边分)

1、全等三角形的概念

能够完全重合的两个三角形叫做全等三角形。。

2、三角形全等的判定

三角形全等的判定定理:

(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。

直角三角形全等的判定:

对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)

3、全等变换

只改变图形的位置,不改变其形状大小的图形变换叫做全等变换。

全等变换包括一下三种:

(1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。

(2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。

(3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。

考点三、等腰三角形

1、等腰三角形的性质

(1)等腰三角形的性质定理及推论:

定理:等腰三角形的两个底角相等(简称:等边对等角)

推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。

推论2:等边三角形的各个角都相等,并且每个角都等于60°。

2、三角形中的中位线

连接三角形两边中点的线段叫做三角形的中位线。

(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。

(2)要会区别三角形中线与中位线。

三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。

三角形中位线定理的作用:

位置关系:可以证明两条直线平行。

数量关系:可以证明线段的倍分关系。

常用结论:任一个三角形都有三条中位线,由此有:

结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。

结论2:三条中位线将原三角形分割成四个全等的三角形。

结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。

结论4:三角形一条中线和与它相交的中位线互相平分。

结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。

考点四、直角三角形

1、直角三角形的两个锐角互余

2、在直角三角形中,30°角所对的直角边等于斜边的一半。

3、直角三角形斜边上的中线等于斜边的一半

4直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 5、摄影定理

在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项

∠ACB=90°

BD AD CD ?=2

? AB AD AC ?=2

CD ⊥AB AB BD BC ?=2 6、常用关系式

由三角形面积公式可得: AB ?CD=AC ?BC

经典例题解析:

例1.如图,BP 平分∠FBC ,CP 平分∠ECB ,∠A=40°求∠BPC 的度数。 分析:可以利用三角形外角的性质及三角形的内角和求解。

解:∵∠1=)4(21∠+∠A )3(2

1

2∠+∠=∠A

∵)21(180∠+∠-?=∠BPC ?=∠40A

∴(()111804)322BPC A A ??∠=?-∠+∠+∠+∠????

()?

=?+?-?=70401802

1

180 例2.如图,求∠A+∠C+∠3+∠F 的度数。

分析:由已知∠B=30°,∠G=80°, ∠BDF=130°,利用四边形内角和,求出 ∠3的度数,再计算要求的值。

解:∵四边形内角和为(4-2)×180°=360°

∴∠3=360°-30°-80°-130°=120°

又∵∠A ∠C ∠F 是三角形的内角 ∴∠A+∠C+∠F+∠3=180°+120°=300°

例3.已知一个多边形的每个外角都是其相邻内角度数的4

1,求这个多边形的边数。

分析:每一个外角的度数都是其相邻内角度数的4

1,而每个外角与其相邻的内角的度数之和为180°。

解:设此多边形的外角为x ,则内角的度数为4x

418036*********

x x x n +=?=?

?

∴=

=?

则解得边数即这个多边形的边数为

例4.用正三角形、正方形和正六边形能否进行镶嵌?

分析:可以进行镶嵌的条件是:一个顶点处各个内角和为360° 解:正三角形的内角为?60 正方形的内角为?90

正六边形的内角为?120

∴可以镶嵌。一个顶点处有1个正三角形、2个正方形和1个正六边形。

例5.如图,在△ABC 中,∠ACB=60°,∠BAC=75°,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 交于H ,则∠CHD=

解:在△ABC

中,三边的高交于一点,所以

CF ⊥AB , ∵∠BAC=75°,且CF ⊥AB ,∴∠ACF=15°, ∵∠ACB=60°,∴∠BCF=45° 在△CDH 中,

三内角之和为180°, ∴∠CHD=45°, 故答案为∠CHD=45°.

点评:考查三角形中,三条边的高交于一点,且内角和为180°.

例6.如图,AD、AM、AH分别△ABC的角平分线、中线和高.

(1)因为AD是△ABC的角平分线,所以∠ =∠ = 1/2∠;

(2)因为AM是△ABC的中线,所以 = = ;

(3)因为AH是△ABC的高,所以∠ =∠ =90°.

分析:(1)根据三角形角平分线的定义知:角平分线平分该角;

(2)根据三角形的中线的定义知:中线平分该中线所在的线段;

(3)根据三角形的高的定义知,高与高所在的直线垂直.

解答:解:(1)∵AD是△ABC的角平分线,

∴∠BAD=∠CAD=1/2∠BAC;

(2)∵AM是△ABC的中线,

∴BM=CM=1/2BC;

(3)∵AH是△ABC的高,∴AH⊥BC,

∴∠AHB=∠AHC=90°;

故答案是:(1)BAD、CAD、BAC;(2)BM、CM、BC;(3)AHB、AHC.

例8.如图,AP平分∠BAC交BC于点P,∠ABC=90°,且PB=3cm,AC=8cm,则△APC

的面积是 cm2.

解:∵AP平分∠BAC交BC于点P,∠ABC=90°,PB=3cm,∴点P到AC的距离等于3,∵

AC=8cm,∴△APC的面积=8×3÷2=12cm2.

例9. 已知:点P是等边⊿ABC内的一点,∠BPC=150°,PB=2,PC=3,求P A的长。

分析:将⊿BAP绕点B顺时针方向旋转60°至⊿BCD,即可证得⊿BPD为等边三角形,⊿PCD为直角三角形。

解:∵BC=BA,

∴将⊿BAP绕点B顺时针方向旋转60°,使BA与BC重合,得⊿BCD,连结PD。∴BD=BP=2,P A=DC。∴⊿BPD是等边三角形。∴∠BPD=60°。

∴∠DPC=∠BPC-∠BPD=150°-60°=90°。

∴DC

=P A=DC=13。

例10. 两个全等的含30o,60o角的三角板ADE和ABC如图所示放置,E,A,C三点在一条直线上,连接BD,取BD的中点M,连结ME,MC。试判断△EMC是什么样的三角形,并说明理由。

分析:判断一个三角形的形状,可以结合所给出的图形作出假设,或许是等腰三角形。这样就可以转化为另一个问题:尝试去证明EM=MC,要证线段相等可以寻找全等三角形来解决,然而图中没有形状大小一样的两个三角形。这时思考的问题就可以转化为这样一个新问题:如何构造一对全等三角形?根据已知点M是直角三角形斜边的中点,产生联想:直角三角形斜边上的中点是斜边的一半,得:MD=MB=MA。连结M A 后,可以证明△MDE≌△MAC。

答:△EMC是等腰直角三角形。

证明:连接AM,由题意得,

DE=AC,AD=AB,∠DAE+∠BAC=90o。∴∠DAB=90o。

∴△DAB为等腰直角三角形。

又∵MD=MB,

∴MA=MD=MB,AM⊥DB,∠MAD=∠M AB=45o。

∴∠MDE=∠MAC=105o,∠DMA=90o。

∴△MDE≌△MAC。

∴∠DME=∠AMC,ME=MC。

又∠DME+∠EMA=90o,

∴∠AMC+∠EMA=90o。

∴MC⊥EM。

∴△EMC是等腰直角三角形。

说明:构造全等三角形是解决这个问题的关键,那么构造全等又如何进行的呢?对条件的充分认识和对知识点的联想可以找到添加辅助线的途径。构造过程中要不断地转化问题或转化思维的角度。会转化,善于转化,

更能体现思维的灵活性。在问题中创设以三角板为情境也是考题的一个热点。

例11.如图,等腰直角三角形ABC 中,∠ACB =90°,AD 为腰CB 上的中线,CE ⊥AD 交AB 于E .求证∠CDA =∠EDB .

提示:

作CF ⊥AB 于F ,则∠ACF =45°, 在△ABC 中,∠ACB =90°,CE ⊥AD ,

于是,由∠ACG =∠B =45°,AB =AC ,

且易证∠1=∠2,

由此得△AGC ≌△CEB (ASA ).

再由CD =DB ,CG =BE ,∠GCD =∠B , 又可得△CGD ≌△BED (SAS ),

则可证∠CDA =∠EDB .

例12.如图,△ABC 中,∠1=∠2,∠3=∠4,∠5=∠6.∠A =60°.求∠ECF 、∠FEC 的度数. 略解:因为 ∠A =60°,

所以 ∠2+∠3=2

1

(180°-60°)=60°;

又因为 B 、C 、D 是直线, 所以 ∠4+∠5=90°;

于是 ∠FEC =∠2+∠3=60°,

∠FCE =∠4+∠5=90°, ∠FEC =60°.

例13. 在Rt △ABC 中,∠A =90°,CE 是角平分线,和高AD 相交于F ,作FG ∥BC 交AB 于G ,求证:AE =BG .

略解:作EH ⊥BC 于H ,

由于E 是角平分线上的点,可证 AE =EH ;

且又由 ∠AEC =∠B +∠ECB =∠CAD +∠ECA =∠AFE 可证 AE =AF ,

于是由 AF =EH ,∠AFG =∠EHB =90°,∠B =∠AGF . 可得 △AFG ≌△EHB ; 所以 AG =EB ,

即 AE +EG =BG +GE , 所以 AE =BG .

反馈练习

1 2

A

B F C

D

E A B

C D F

G E 1 2 3 4 5

6

C H

2.如图,△ABC中,∠ABC=∠BAC=45°,点P在AB上,AD⊥CP,BE⊥CP,垂足分别

3.(2009?宜宾)已知:如图,四边形ABCD是菱形,过AB的中点E作AC的垂线EF,交AD于点M,交CD的

延长线于点F.(1)则AM

DM;(2)若

4.已知BD ,CE 是△ABC 的两条高,M 、N 分别为BC 、DE 的中点,勇敢猜一猜:

5.如图,一块长方体砖宽AN=5cm ,长ND=10cm ,CD 上的点B

距地面的高BD=8cm ,地面上A 处的一只蚂蚁到B

6、已知:如图,P 是正方形ABCD 内点,∠P AD =∠PDA =150.

求证:△PBC 是正三角形.

7、已知:P 是边长为1的正方形

ABCD 内的一点,求PA +PB +PC 的最小值.

A P

C

D

B

三角形中作辅助线的常用方法举例

常见辅助线的作法有以下几种:

1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”.

2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”. 3) 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知

识点常常是角平分线的性质定理或逆定理.

4) 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”

5) 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,

再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.

特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.

一、在利用三角形三边关系证明线段不等关系时,若直接证不出来,可连接两点或延长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明,如:

例1:已知如图1-1:D 、E 为△ABC 内两点,求证:AB +AC >BD +DE +CE. 证明:(法一)将DE 两边延长分别交AB 、AC 于M 、N , 在△AMN 中,AM +AN > MD +DE +NE;(1) 在△BDM 中,MB +MD >BD ; (2) 在△CEN 中,CN +NE >CE ; (3) 由(1)+(2)+(3)得:

AM +AN +MB +MD +CN +NE >MD +DE +NE +BD +CE ∴AB +AC >BD +DE +EC

A B

C

D E N M 1

1-图A B

C

D E

F G 2

1-图

(法二:)如图1-2,延长BD交 AC于F,延长CE交BF于G,

在△ABF和△GFC和△GDE中有:

AB+AF> BD+DG+GF (三角形两边之和大于第三边)(1)

GF+FC>GE+CE(同上) (2)

DG+GE>DE(同上) (3)

由(1)+(2)+(3)得:

AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE

∴AB+AC>BD+DE+EC。

二、在利用三角形的外角大于任何和它不相邻的内角时如直接证不出来时,可连接两点或延长某边,

构造三角形,使求证的大角在某个三角形的外角的位置上,小角处于这个三角形的内角位置上,再利用外角定理:

2-1:已知D为△ABC内的任一点,求证:∠BDC>∠BAC。

因为∠BDC与∠BAC不在同一个三角形中,没有直接的联系,可适当添加辅助线构造新的三角形,使∠BDC处于BAC处于在内角的位置;

证法一:延长BD交AC于点E,这时∠BDC是△EDC的外角,

∴∠BDC>∠DEC,同理∠DEC>∠BAC,∴∠BDC>∠BAC

证法二:连接AD,并延长交BC于F

∵∠BDF是△ABD的外角

∴∠BDF>∠BAD,同理,∠CDF>∠CAD

∴∠BDF+∠CDF>∠BAD+∠CAD

即:∠BDC>∠BAC。

注意:利用三角形外角定理证明不等关系时,通常将大角放在某三角形的外角位置上,小角放在这个三角形的内角位置上,再利用不等式性质证明。

三、有角平分线时,通常在角的两边截取相等的线段,构造全等三角形,如:

3-1:已知AD为△ABC的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF。

BE+CF>EF ,可利用三角形三边关系定理证明,须把BE,CF,EF移到同一个三角形中,而由已知∠1=∠24,可在角的两边截取相等的线段,利用三角形全等对应边相等,把EN,FN,EF移到同一个三角形中。

证明:在DA上截取DN=DB,连接NE,NF,则DN=DC,

在△DBE和△DNE中:

?

?

?

?

?

=

=

=

)

(

)

(2

1

)

(

公共边

已知

辅助线的作法

ED

ED

DB

DN

∴△DBE≌△DNE (SAS)

∴BE=NE(全等三角形对应边相等)

同理可得:CF=NF

在△EFN中EN+FN>EF(三角形两边之和大于第三边)

∴BE+CF>EF。

注意:当证题有角平分线时,常可考虑在角的两边截取相等的线段,构造全等三角形,然后用全等三角形的性质得到对应元素相等。

四、有以线段中点为端点的线段时,常延长加倍此线段,构造全等三角形。

例如:如图4-1:AD为△ABC的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF

证明:延长ED至M,使DM=DE,连接

CM,MF。在△BDE和△CDM中,

?

?

?

?

?

=

=

=

)

(

)

(

1

)

(

辅助线的作法

对顶角相等

中点的定义

MD

ED

CDM

CD

BD

∴△BDE≌△CDM (SAS)

又∵∠1=∠2,∠3=∠4 (已知)

∠1+∠2+∠3+∠4=180°(平角的定义)

∴∠3+∠2=90°

A

B C

D

E

F

G

1

2-

A

B

C

D

E F

N

1

3-

1

234

1

4-

A

B

C

D

E F

M

1

23

4

即:∠EDF =90°

∴∠FDM =∠EDF =90° 在△EDF 和△MDF 中

∵??

???=∠=∠=)()()(公共边已证辅助线的作法DF DF FDM EDF MD ED

∴△EDF ≌△MDF (SAS )

∴EF =MF (全等三角形对应边相等)

∵在△CMF 中,CF +CM >MF (三角形两边之和大于第三边) ∴BE +CF >EF

FD ,证法同上。

5-1:AD 为 △ABC 的中线,求证:AB +AC >2AD 。

要证AB +AC >2AD ,由图想到: AB +BD >AD,AC +CD >AD ,所以有AB +AC + BD +CD >AD +AD =2AD ,左边比要证CD ,故不能直接证出此题,而由2AD 想到要构造2AD ,即加倍中线,把所要证的线段转移到同一个三角形中去。

证明:延长AD 至E ,使DE=AD ,连接BE ,则AE =2AD ∵AD 为△ABC 的中线 (已知) ∴BD =CD (中线定义) 在△ACD 和△EBD 中

??

???=∠=∠=)(

)()(辅助线的作法对顶角相等已证ED AD EDB ADC CD BD

∴△ACD ≌△EBD (SAS )

∴BE =CA (全等三角形对应边相等)

∵在△ABE 中有:AB +BE >AE (三角形两边之和大于第三边) 分别以AB

边、AC 边为直角边各向形外作等

六、截长补短法作辅助线。

例如:已知如图6-1:在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上任一点。 AB -AC >PB -PC 。

AB -AC >PB -PC ,想到利用三角形三边关系定理证之,因为欲证的是线从而想到构造第三边AB -AC ,故可在AB 上截取AN 等于AC ,得AB -AC =BN , 再连接PN ,则PC =PN ,又在△PNB 中,PB -PN <BN ,

即:AB -AC >PB -PC 。 证明:(截长法)

在AB 上截取AN =AC 连接PN , 在△APN 和△APC 中

∵??

???=∠=∠=)()(21)(公共边已知辅助线的作法AP AP AC AN ∴△APN ≌△APC (SAS )

∴PC =PN (全等三角形对应边相等)

∵在△BPN 中,有 PB -PN <BN (三角形两边之差小于第三边) ∴BP -PC <AB -AC 证明:(补短法) 延长AC 至M ,使AM =AB ,连接PM , 在△ABP 和△AMP 中

∵ ??

???=∠=∠=)

()

(21)

(公共边已知辅助线的作法AP AP AM AB ∴△ABP ≌△AMP (SAS )

A B

C

D

E 1

5-图A

B C D

E F

2

5-图A B

C

D

N M

P 1

6-图12

∴PB=PM (全等三角形对应边相等)

又∵在△PCM中有:CM>PM-PC(三角形两边之差小于第三边) ∴AB-AC>PB-PC。

七、延长已知边构造三角形:

7-1:已知AC=BD,AD⊥AC于A ,BC⊥BD于B,求证:AD=BC

AD=BC,先证分别含有AD,BC的三角形全等,有几种方案:△ADC与△BCD,△AOD与△BOC,△ABD与△BAC,

证明:分别延长DA,CB,它们的延长交于E点,

∵AD⊥AC BC⊥BD (已知)

∴∠CAE=∠DBE =90°(垂直的定义)

在△DBE与△CAE中

?

?

?

?

?

=

=

=

)

(

)

(

)

(

已知

已证

公共角

AC

BD

CAE

DBE

E

E

∴△DBE≌△CAE (AAS)

∴ED=

EC EB=EA (全等三角形对应边相等)

∴ED-EA=EC-EB

即:AD=BC。

(当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件。)

八、连接四边形的对角线,把四边形的问题转化成为三角形来解决。

8-1:AB∥CD,AD∥BC 求证:AB=CD。

AC(或BD)

∥CD AD∥BC (已知)

∴∠1=∠2,∠3=∠4 (两直线平行,内错角相等)

在△ABC与△CDA中

?

?

?

?

?

=

=

=

)

(4

3

)

(

)

(2

1

已证

公共边

已证

CA

AC

∴△ABC≌△CDA (ASA)

∴AB=CD(全等三角形对应边相等)

九、有和角平分线垂直的线段时,通常把这条线段延长。

9-1:在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD的延长于E 。求证:BD=2CE 要证BD=2CE,想到要构造线段2CE,同时CE与∠ABC的平分线垂直,想到要将其延长。

BA,CE交于点F。

BE⊥CF (已知)

∴∠BEF=∠BEC=90°(垂直的定义)

在△BEF与△BEC中,

?

?

?

?

?

=

=

=

)

(

)

(

)

(2

1

已证

公共边

已知

BEC

BEF

BE

BE

∴△BEF≌△BEC(ASA)∴CE=FE=

2

1

CF (全等三角形对应边相等)∵∠BAC=90° BE⊥CF (已知)

∴∠BAC=∠CAF=90°∠1+∠BDA=90°∠1+∠BFC=90°

∴∠BDA=∠BFC

在△ABD与△ACF中

?

?

?

?

?

=

=

)

(

)

(

)

(

已知

已证

已证

AC

AB

BFC

BDA

CAF

BAC

∴△ABD≌△ACF (AAS)∴BD=CF (全等三角形对应边相等)∴BD=2CE

十、连接已知点,构造全等三角形。

1

9-

D

C

B

A E

F

1

2

A

B C

D

1

8-

1

2

3

4

A B

C

D

E

1

7-

O

例如:已知:如图10-1;AC 、BD 相交于O 点,且AB =DC ,AC =BD ,求证:∠A =∠D 。

分析:要证∠A =∠D ,可证它们所在的三角形△ABO 和△DCO 全等,而只有AB =DC 和对顶角两个条件,差一个条件,,难以证其全等,只有另寻其它的三角形全等,由AB =DC ,AC =BD ,若连接BC ,则△ABC 和△DCB 全等,所以,证得∠A =∠D 。

证明:连接BC ,在△ABC 和△DCB 中

∵ ??

??

?===)()()

(公共边已知已知CB BC DB AC DC AB ∴△ABC ≌△DCB (SSS)

∴∠A =∠D (全等三角形对应边相等)

十一、取线段中点构造全等三有形。

例如:如图11-1:AB =DC ,∠A =∠D 求证:∠ABC =∠DCB 。

分析:由AB =DC ,∠A =∠D ,想到如取AD 的中点N ,连接NB ,NC ,再由SAS 公理有△ABN ≌△DCN ,故BN =CN ,∠ABN =∠DCN 。下面只需证∠NBC =∠NCB ,再取BC 的中点M ,连接MN ,则由SSS 公理有△NBM ≌△NCM ,所以∠NBC =∠NCB 。问题得证。

证明:取AD ,BC 的中点N 、M ,连接NB ,NM ,NC 。则AN=DN ,BM=CM ,在△ABN 和△DCN 中 ∵ ??

???=∠=∠=)()

()

(已知已知辅助线的作法DC AB D A DN AN ∴△ABN ≌△DCN (SAS )

∴∠ABN =∠DCN NB =NC (全等三角形对应边、角相等)

在△NBM 与△NCM 中

∵??

???)()()

(公共边=辅助线的作法=已证=NM NM CM BM NC NB

∴△NMB ≌△NCM ,(SSS) ∴∠NBC =∠NCB (全等三角形对应角相等)∴∠NBC +∠ABN =∠NCB +

∠DCN

即∠ABC =∠DCB 。

D C B A 1

10-图O 111-图D C B A M N

相似三角形经典大题(含答案)

相似三角形经典大题解析 1.如图,已知一个三角形纸片ABC ,B C 边的长为8,B C 边上的高为6,B ∠和C ∠都为锐角,M 为A B 一动点(点M 与点A B 、不重合),过点M 作M N B C ∥,交A C 于点N ,在A M N △中,设M N 的长为x ,M N 上的高为h . (1)请你用含x 的代数式表示h . (2)将AMN △沿M N 折叠,使A M N △落在四边形B C N M 所在平面,设点A 落在平面的点为1A ,1A M N △与四边形B C N M 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少? 【答案】解:(1)M N B C ∥ A M N A B C ∴△∽△ 68 h x ∴= 34 x h ∴= (2)1AM N A M N △≌△ 1A M N ∴△的边M N 上的高为h , ①当点1A 落在四边形B C N M 内或B C 边上时, 1A M N y S =△= 2 11332 2 4 8 M N h x x x = = ·· (04x <≤) ②当1A 落在四边形B C N M 外时,如下图(48)x <<, 设1A EF △的边E F 上的高为1h , 则132662h h x =-= - 11EF M N A EF A M N ∴ ∥△∽△ 11A M N ABC A EF ABC ∴ △∽△△∽△

12 16A EF S h S ??= ??? △△ABC 168242 A B C S = ??= △ 2 2 3632241224 62EF x S x x ?? - ?∴==?=-+ ? ??? 1△A 112 223 3912241224828A M N A EF y S S x x x x x ??=-= --+=-+- ??? △△ 所以 2 91224 (48)8 y x x x =- +-<< 综上所述:当04x <≤时,2 38 y x =,取4x =,6y =最大 当48x <<时,2 912248 y x x =-+-, 取163 x = ,8y =最大 86> ∴当163 x = 时,y 最大,8y =最大 M N C B E F A A 1

等腰三角形典型例题练习(含答案)

等腰三角形典型例题练习 一.选择题(共2小题) 1.如图,∠C=90°,AD 平分∠BAC 交BC 于D ,若BC=5cm ,BD=3cm , 则点D 到AB 的距离为( ) 2.如图,已知C 是线段AB 上的任意一点(端点除外),分别以AC 、BC 为边并且在AB 的同一侧作等边△ACD 和等边△BCE ,连接AE 交CD 于M ,连接BD 交CE 于N .给出以下三个结论: ①AE=BD ②CN=CM ③MN ∥AB 其中正确结论的个数是( ) 二.填空题(共1小题) 3.如图,在正三角形ABC 中,D ,E ,F 分别是BC ,AC ,AB 上的点,DE ⊥AC ,EF ⊥AB ,FD ⊥BC ,则△DEF 的面积与△ABC 的面积之比等于_________ . 三.解答题(共15小题) 4.在△ABC 中,AD 是∠BAC 的平分线,E 、F 分别为AB 、AC 上的点,且 ∠EDF+∠EAF=180°,求证DE=DF . 5.在△ABC 中,∠ABC 、∠ACB 的平分线相交于点O ,过点O 作DE ∥BC ,分别交AB 、AC 于点D 、E .请说明DE=BD+EC . 6.已知:如图,D 是△ABC 的BC 边上的中点,DE ⊥AB ,DF ⊥ AC , 垂足分别为 E ,F ,且DE=DF .请判断△ABC 是什么三角形?并说明理由. 7.如图,△ABC 是等边三角形,BD 是AC 边上的高,延长BC 至E ,使CE=CD .连接DE . (1)∠E 等于多少度? (2)△DBE 是什么三角形?为什么? 8.如图,在△ABC 中,∠ACB=90°,CD 是AB 边上的高,∠A=30°.求证:AB=4BD . 9.如图,△ABC 中,AB=AC ,点D 、E 分别在AB 、AC 的延长线上,且BD=CE ,DE 与BC 相交于点F .求证:DF=EF . A . 5cm B . 3cm C . 2cm D . 不能确定 A . 0 B . 1 C . 2 D . 3

三角形经典习题(必看)

三角形复习卷 一、选择题 1.一个三角形的两边长分别是2cm 和9cm ,第三边的长是一个奇数,则第三边长为( ) A 、5cm B 、7cm C 、9cm D 、11cm 2. 1.在下列条件中:①∠A+∠B=∠C ,②∠A∶∠B∶∠C=2∶3∶4,③∠A=90°-∠B ,④∠A=∠B= 2 1 ∠C 中,能确定△ABC 是直角三角形的条件有( ) A 、1个; B 、2个; C 、3个; D 、4个 3.对于三角形的内角,下列判断中不正确的是( ); A.至少有两个锐角 B.最多有一个直角 C.必有一个角大于600 D.至少有一个角不小600 4. 如图,∠BAC=90°,AD⊥BC,则图中互余的角有( ) A 、2对; B 、3对; C 、4对; D 、5对; 5. 下列说法错误的是( ) A. 三角形三条中线交于三角形内一点; B. 三角形三条角平分线交于三角形内一点 C. 三角形三条高交于三角形内一点; D. 三角形的中线、角平分线、高都是线段 6、一个三角形的两个内角分别为55°和65°,这个三角形的外角不可能是( ) A 、115° B、120° C、125° D、130° 7、如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,且CD 、BE 相交于一点P ,若∠A=50°,则∠BPC=( ) A 、150° B、130° C、120° D、100° 8、7.一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是( ) A.5 B.6 C.7 D.8 9如图,在△ABC 中,AD 是角平分线,AE 是高,已知∠BAC=2∠B,∠B=2∠DAE,那么∠ACB 为( )A. 80° B. 72° C. 48° D. 36° 10.在△ABC 中,∠A=2∠B=4∠C ,则△ABC 为( ) A.锐角三角形 B.钝角三角形 C.直角三角形 D.都有可能 11.直角三角形两锐角的平分线相交所夹的钝角为( ) A 、125° B 、135° C 、145° D 、150° 12.等腰△ABC 的底边为5cm ,一腰上的中线把周长分为差为3cm 的两部分,则△ABC 的腰长是( )cm 。 A B C D E P 第7题 第9题

(完整版)解直角三角形超经典例题讲解

课 题 解直角三角形 授课时间: 备课时间: 教学目标 1. 了解勾股定理 2. 了解三角函数的概念 3. 学会解直角三角形 重点、难点 三角函数的应用及解直角三角形 考点及考试要求 各考点 教学方法:讲授法 教学内容 (一)知识点(概念)梳理 考点一、直角三角形的性质 1、直角三角形的两个锐角互余 可表示如下:∠C=90°?∠A+∠B=90° 2、在直角三角形中,30°角所对的直角边等于斜边的一半。 ∠A=30° 可表示如下: ?BC= 2 1AB ∠C=90° 3、直角三角形斜边上的中线等于斜边的一半 ∠ACB=90° 可表示如下: ?CD=2 1 AB=BD=AD D 为AB 的中点 4、勾股定理 直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即2 2 2 c b a =+ 5、摄影定理 在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项 ∠ACB=90° BD AD CD ?=2 ? AB AD AC ?=2 CD ⊥AB AB BD BC ?=2 6、常用关系式 由三角形面积公式可得: AB ?CD=AC ?BC 7.图中角α可以看作是点A 的 角 也可看作是点B 的 角; (1)

9、(1)坡度(或坡比)是坡面的 铅直 高度(h )和水平长度(l )的比。 记作i,即i = l h ; (2)坡角——坡面与水平面的夹角。记作α,有i =l h =tan α (3)坡度与坡角的关系:坡度越大,坡角α就越 大 ,坡面就越 陡 考点二、直角三角形的判定 1、有一个角是直角的三角形是直角三角形。 2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 3、勾股定理的逆定理 如果三角形的三边长a ,b ,c 有关系2 2 2 c b a =+,那么这个三角形是直角三角形。 考点三、锐角三角函数的概念 1、如图,在△ABC 中,∠C=90° ①锐角A 的对边与斜边的比叫做∠A 的正弦,记为sinA ,即 c a sin =∠= 斜边的对边A A ②锐角A 的邻边与斜边的比叫做∠A 的余弦,记为cosA ,即 c b cos =∠= 斜边的邻边A A ③锐角A 的对边与邻边的比叫做∠A 的正切,记为tanA ,即 b a tan =∠∠= 的邻边的对边A A A ④锐角A 的邻边与对边的比叫做∠A 的余切,记为cotA ,即a b cot =∠∠=的对边的邻边A A A 2、锐角三角函数的概念 锐角A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数 3、一些特殊角的三角函数值 三角函数 0° 30° 45° 60° 90° sinα 21 22 23 1 cos α 1 23 2 2 21 0 tan α 0 33 1 3 不存在 cot α 不存在 3 1 3 3 0 4、各锐角三角函数之间的关系 (1)互余关系 sinA=cos(90°—A),cosA=sin(90°—A) tanA=cot(90°—A),cotA=tan(90°—A) (2)平方关系 1cos sin 22=+A A (3)倒数关系 tanA ?tan(90°—A)=1

相似三角形压轴经典大题(含答案)

相似三角形压轴经典大题解析 1.如图,已知一个三角形纸片ABC ,BC 边的长为8,BC 边上的高为6,B ∠和C ∠都为锐角,M 为AB 一动点(点M 与点A B 、不重合),过点M 作MN BC ∥,交AC 于点N ,在AMN △中,设MN 的长为x ,MN 上的高为h . (1)请你用含x 的代数式表示h . (2)将AMN △沿MN 折叠,使AMN △落在四边形BCNM 所在平面,设点A 落在平面的点为1A , 1A MN △与四边形BCNM 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少? 【答案】解:(1) MN BC ∥ AMN ABC ∴△∽△ 68 h x ∴= 34 x h ∴= (2)1AMN A MN △≌△ 1A MN ∴△的边MN 上的高为h , ①当点1A 落在四边形BCNM 内或BC 边上时, 1A MN y S =△=211332248MN h x x x ==··(04x <≤) ②当1A 落在四边形BCNM 外时,如下图(48)x <<, 设1A EF △的边EF 上的高为1h , 则13 2662 h h x =-= - 11EF MN A EF A MN ∴∥△∽△ 11A MN ABC A EF ABC ∴△∽△△∽△

12 16A EF S h S ??= ??? △△ABC 1 68242 ABC S =??=△ 2 2 363224122 462EF x S x x ??- ?∴==?=-+ ? ? ?? 1△A 1122233912241224828A MN A EF y S S x x x x x ?? =-= --+=-+- ??? △△ 所以 2 91224(48)8 y x x x =- +-<< 综上所述:当04x <≤时,2 38 y x =,取4x =,6y =最大 当48x <<时,2 912248 y x x =-+-, 取16 3x = ,8y =最大 86> ∴当16 3 x =时,y 最大,8y =最大 2.如图,抛物线经过(40)(10)(02)A B C -,,,,,三点. (1)求出抛物线的解析式; (2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由; M N C B E F A A 1

初三数学解直角三角形的应用题

解直角三角形应用题 考点一、直角三角形的性质 1、直角三角形的两个锐角互余 可表示如下:∠C=90°?∠A+∠B=90° 2、在直角三角形中,30°角所对的直角边等于斜边的一半。 ∠A=30° 可表示如下: ?BC= 2 1AB ∠C=90° 3、直角三角形斜边上的中线等于斜边的一半 ∠ACB=90° 可表示如下: ?CD=2 1 AB=BD=AD D 为AB 的中点 4、勾股定理 直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即2 2 2 c b a =+ 5、摄影定理 在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项 ∠ACB=90° BD AD CD ?=2 ? AB AD AC ?=2 CD ⊥AB AB BD BC ?=2 6、常用关系式 由三角形面积公式可得: AB ?CD=AC ?BC 考点二、直角三角形的判定 (3~5分) 1、有一个角是直角的三角形是直角三角形。 2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 3、勾股定理的逆定理 如果三角形的三边长a ,b ,c 有关系2 2 2 c b a =+,那么这个三角形是直角三角形。 考点三、锐角三角函数的概念 (3~8分) 1、如图,在△ABC 中,∠C=90° ①锐角A 的对边与斜边的比叫做∠A 的正弦,记为sinA ,即 c a sin =∠= 斜边的对边A A ②锐角A 的邻边与斜边的比叫做∠A 的余弦,记为cosA ,即 c b cos =∠= 斜边的邻边A A ③锐角A 的对边与邻边的比叫做∠A 的正切,记为tanA ,即b a tan =∠∠= 的邻边的对边A A A

相似三角形典型模型及例题

1:相似三角形模型 一:相似三角形判定的基本模型 (一)A 字型、反A 字型(斜A 字型) A B C D E C B A D E (平行) (不平行) (二)8字型、反8字型 J O A D B C A B C D (蝴蝶型) (平行) (不平行) (三)母子型 A B C D C A D (四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示:

(五)一线三直角型: 三直角相似可以看着是“一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下: 当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似,这往往是很多压轴题的突破口,进而将三角型的条件进行转化。 (六)双垂型: C A D 二:相似三角形判定的变化模型 旋转型:由A字型旋转得到8字型拓展 C B E D A 共享性 一线三等角的变形 G A B C E F

一线三直角的变形 2:相似三角形典型例题 (1)母子型相似三角形 例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ?=2 . 例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠. 求证:(1)DA DE DB ?=2 ; (2)DAC DCE ∠=∠. 例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ?=2 . 1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ?=2 . 2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延 A C D E B

等腰三角形经典练习题(有难度)

等腰三角形练习题 一、计算题: 1. 如图,△ABC 中,AB=AC,BC=BD,AD=DE=EB 求∠A 的度数 设∠ABD 为x,则∠A 为2x 由8x=180° 得∠A=2x=45° 2.如图,CA=CB,DF=DB,AE=AD 求∠A 的度数 设∠A 为x, 由5x=180° 得∠A=36° 3. 如图,△ABC 中,AB=AC ,D 在BC 上,DE ⊥AB 于E ,DF ⊥BC 交AC 于点F ,若∠EDF=70°, 求∠AFD 的度数 ∠AFD=160° C F D A B

4. 如图,△ABC 中,AB=AC,BC=BD=ED=EA 求∠A 的度数 设∠A 为x ∠A= 7 180 5. 如图,△ABC 中,AB=AC ,D 在BC 上, ∠BAD=30°,在AC 上取点E ,使AE=AD, 求∠EDC 的度数 设∠ADE 为x ∠EDC=∠AED -∠C=15 B A B 2x x -15°

6. 如图,△ABC 中,∠C=90°,D 为AB 上一点,作DE ⊥BC 于E ,若BE=AC,BD=21,DE+BC=1, 求∠ABC 的度数 延长DE 到点F,使EF=BC 可证得:△ABC ≌△BFE 所以∠1=∠F 由∠2+∠F=90°, 得∠1+∠F=90° 在Rt △DBF 中, BD=2 1,DF=1 所以∠F =∠1=30° 7. 如图,△ABC 中,AD 平分∠BAC ,若AC=AB+BD 求∠B :∠C 的值 在AC 上取一点E,使AE=AB 可证△ABD ≌△ADE 所以∠B=∠AED 由AC=AB+BD,得DE=EC, 所以∠AED=2∠C 故∠B :∠C=2:1 F A B C D E

三角形经典题50道附答案解析

1. 已知:AB=4,AC=2,D 是BC 中点,111749AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4 即4-2<2AD <4+2 1<AD <3 ∴AD=2 2. 已知:D 是AB 中点,∠ACB=90°,求证:1 2CD AB 延长CD 与P ,使D 为CP 中点。连接AP,BP ∵DP=DC,DA=DB ∴ACBP 为平行四边形 又∠ACB=90 ∴平行四边形ACBP 为矩形 ∴AB=CP=1/2AB 3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 A D B C

证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF ∴ 三角形BCF 全等于三角形EDF(边角边) ∴ BF=EF,∠CBF=∠DEF 连接BE 在三角形BEF 中,BF=EF ∴ ∠EBF=∠BEF 。 ∵ ∠ABC=∠AED 。 ∴ ∠ABE=∠AEB 。 ∴ AB=AE 。 在三角形ABF 和三角形AEF 中 AB=AE,BF=EF, ∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴ 三角形ABF 和三角形AEF 全等。 ∴ ∠BAF=∠EAF (∠1=∠2)。 4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 过C 作CG ∥EF 交AD 的延长线于点G CG ∥EF ,可得,∠EFD =CGD DE =DC ∠FDE =∠GDC (对顶角) ∴△EFD ≌△CGD EF =CG B A C D F 2 1 E

解直角三角形知识点及典型例题

解直角三角形 本章知识结构梳理 一、锐角三角函数 1、梯子越陡——倾斜角_____ 倾斜角越大——铅直高度与梯子的比_____ 倾斜角越大——水平宽度与梯子的比_____ 倾斜角越大——铅直高度与水平宽度的比____ 2、直角三角形AB 1C 1 和直角三角形ABC 有什么关系? 边之间的关系呢? 3、三角函数定义: 注意:sinA ,cosA ,tanA 都是一个完整的符号,单独的sin ,cos ,tan 是没有意义的,其中A 前面的“∠”一般省略不写 例1、把Rt △ABC 各边的长度都扩大3倍得Rt △A ′B ′C ′,那么锐角A ,A ′的余弦值的关系为( ) A .cosA=cosA ′ B .cosA=3cosA ′ C .3cosA=cosA ′ D .不能确定 例2、在△ABC 中,∠C=90°,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,则下列各项中正确的是( ) A .a=c ·sin B B .a=c ·cosB C .a=c ·tanB D .以上均不正确 例3、在Rt △ABC 中,∠C=90°,cosA= 23 ,则tanB 等于( ) 锐角三角函数 1锐角三角函数的定义 ⑴、正弦; ⑵、余弦; ⑶、正切。 2、30°、45°、60°特殊角的三角函数值。 3、各锐角三角函数间关系 ⑴、定义; ⑵、直角三角形的依据 ⑶、解直角三角形的应用。 ①、三边间关系; ②、锐角间关系; ③、边角间关系。

A . 35 B .3 C .2 5 D . 2 例4、已知:α是锐角,tan α= 7 24 ,则sin α=_____,cos α=_______. 4、取值范围:0<sinA <1,0<cosA <1,tanA >0 解直角三角形的知识在生活和生产中有广泛的应用,如在测量高度、距离、角度,确定方案时常用到解直角三角形。解这类题关键是把实际问题转化为数学问题,常通过作辅助线构造直角三角形来解决。 坡度(坡比) 方向角度 俯角仰角 例6、如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB ?的值. 例7、如图,∠C=90°,∠DBC=30°,AB=BD ,根据此图求tan15°的值.

相似三角形经典题型

相似三角形知识点与经典题型 知识点1 有关相似形的概念 (1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形. (2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数). 知识点2 比例线段的相关概念 (1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是 n m b a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。 (2)在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段. 注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:a d c b =. ②()a c a b c d b d ==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、 d 叫比例后项,d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。 (3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =?,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 2 1 5-=≈0.618AB .即 512AC BC AB AC -== 简记为:51 2 -长短==全长 注:黄金三角形:顶角是360的等腰三角形。黄金矩形:宽与长的比等于黄金数的矩形 知识点3 比例的性质(注意性质立的条件:分母不能为0) (1) 基本性质: ①bc ad d c b a =?=::;②2::a b b c b a c =?=?. 注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除 了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=. (2) 更比性质(交换比例的内项或外项):()() ()a b c d a c d c b d b a d b c a ?=?? ?=?=?? ?=?? , 交换内项,交换外项. 同时交换内外项 (3)反比性质(把比的前项、后项交换): a c b d b d a c =?=.

解直角三角形练习题(一)及答案

解直角三角形 一、选择题 1、如图,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长 线上的D ′处,那么tan ∠BAD ′等于( ) (A).1 (B).2 (C). 2 2 (D).22 2、如果α是锐角,且5 4 cos = α,那么αsin 的值是( ). (A ) 259 (B ) 54 (C )53 (D )25 16 3、等腰三角形底边长为10㎝,周长为36cm ,那么底角的余弦等于( ). (A ) 513 (B ) 1213 (C )10 13 (D )512 4、. 以下不能构成三角形三边长的数组是 ( ) (A )(1,3,2) (B )(3,4,5) (C )(3,4,5) (D )(32,42,52) 5、在Rt △ABC 中,∠C =90°,下列式子中正确的是( ). (A )B A sin sin = (B )B A cos sin = (C )B A tan tan = (D )B A cot cot = 6、在矩形ABCD 中,DE ⊥AC 于E ,设∠ADE=α,且5 3 cos =α, AB = 4, 则AD 的长为( ). (A )3 (B ) 316 (C )320 (D )5 16 7、某市在“旧城改造”中计划在一 块如图所示的三角形空地上种植某种草皮以美 化环境,已知这种草皮每平方米a 元,则购买这种草皮至少要( ). (A )450a 元 (B )225a 元 (C )150a 元 (D )300a 元 8、已知α为锐角,tan (90°-α)=3,则α的度数为( ) (A )30° (B )45° (C )60° (D )75° 9、在△ABC 中,∠C =90°,BC =5,AB =13,则sin A 的值是( ) (A )13 5 (B )1312 (C )125 (D )512 A B C D E ?15020米30米

三角形培优经典题型

《三角形》练习题 班级_________ 姓名__________ 分数__________一、选择题(每题4分) 1.等腰三角形的两边长分别是3和7,那么它的周长是() A、13 B、16 C、17 D、13或17 2、如图1,图中三角形的个数为() A.17 B.18 C.19 D.20 3、在△ABC中,∠A-∠C=25°,∠B-∠A=10°,则∠B=() A、28° B、35° C、15° D、21° 4、如图2,在△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于D点, ∠A=50°,则∠D=() A.15°B.20°C.25°D.30° 5、已知一个多边形的每一个内角都等于135°,则这个多边形是() A. 五边形 B. 六边形 C. 七边形 D. 八边形 6、如图3,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°, 则∠P的度数为() A.15°B.20°C.25°D.30° 7、一个多边形截去一个内角后,形成另一个多边形,它的内角和为2520°, 则原来多边形的边数不可能是() A、15条 B、16条 C、17条 D、18条 8、已知三条线段分别是a、b、c且a<b<c(a、b、c均为整数), 若c=6,则线段a、b、c能组成三角形的个数为() A、3个 B、4个 C、5个 D、6个

图1 图2 图3 二、填空题(每题4分) 9、若△ABC的三边长分别是4,X,9,则X的取值范围是_____, 周长L的取值范围是_____;当周长为奇数时,X=_____ 10、一条线段的长为a,若要使3a—l,4a+1,12-a这三条线段组成一个三角形,则a 的取值范围__________. 11、等腰三角形一腰上的中线把这个等腰三角形的周长分成12和10两部分, 则此等腰三角形的腰长是_____ 12、如图4,小亮从A点出发,沿直线前进100m后向左转30°,再沿直线前进100m, 又向左转30°,…照这样走下去,他第一次回到出发地A点时,一共走了________m 13、如图5,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,S△ABC=12, 则S△ADF -S△BEF=_____. 14、如图6,∠A+∠B+∠C+∠D+∠E+∠F的度数是______° 15、如图7,DC平分∠AD B,E C平分∠AEB,若∠DAE=α, ∠D BE=β,则∠D CE=______ (用α、β表示). 16、如图8,DO平分∠CDA,BO平分∠CBA,∠A=20°,∠C=30°,∠O=______°.

《解直角三角形》典型例题

《解直角三角形》典型例题 例1 在Rt △ABC 中,∠C=90°,∠B=60°,a=4,解这个三角形. 分析 本题实际上是要求∠A 、b 、c 的值.可根据直角三角形中各元素间的关系解决. 解 (1) ; (2)由a b B = tan ,知 ; (3)由c a B = cos ,知860cos 4 cos =? == B a c . 说明 此题还可用其他方法求b 和c . 例 2在Rt △ABC 中, ∠C=90°,∠A=30°,3=b ,解这个三角形. 解法一 ∵ ∴ 设 ,则 由勾股定理,得 ∴ . ∴ . 解法二 13 3 330tan =? =?=b a 说明 本题考查含特殊角的直角三角形的解法,它可以用目前所学的解直角三角形的方法,也可以用以前学的性质解题. 例 3 设 中, 于D ,若 ,解三 角形ABC .

分析“解三角形ABC”就是求出的全部未知元素.本题CD不是 的边,所以应先从Rt入手. 解在Rt中,有: 在Rt中,有 说明(1)应熟练使用三角函数基本关系式的变形,如: (2)平面几何中有关直角三角形的定理也可以结合使用,本例中 “”就是利用“对30°角的直角边等于斜边的一半”这一定理.事实上,还可以用面积公式求出AB的值: 所以解直角三角形问题,应开阔思路,运用多种工具. 例4在中,,求. 分析(1)求三角形的面积一方面可以根据面积公式求出底和底上的高的长,也可以根据其中规则面积的和或差; (2)不是直角三角形,可构造直角三角形求解.

解如图所示,作交CB的延长线于H,于是在Rt△ACH中,有 ,且有 ; 在中,,且 , ∴; 于是,有 , 则有 说明还可以这样求:

初三数学相似三角形典型例题(含标准答案)

初三数学相似三角形典型例题(含答案)

————————————————————————————————作者:————————————————————————————————日期:

初三数学相似三角形 (一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是: 1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。 2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。 3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。 4. 能熟练运用相似三角形的有关概念解决实际问题 本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。 本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。 相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。 (二)重要知识点介绍: 1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b c d a b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。 把线段AB 分成两条线段AC 和BC ,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。 2. 比例性质: ①基本性质:a b c d ad bc =?= ②合比性质:±±a b c d a b b c d d =?= ③等比性质: ……≠……a b c d m n b d n a c m b d n a b ===+++?++++++=()0

等腰三角形知识点+经典例题

第一讲等腰三角形 【要点梳理】 要点一、等腰三角形的定义 1.等腰三角形 有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一 边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角. 如图所示,在△ABC中,AB=AC,△ABC是等腰三角形,其中AB、AC 为腰,BC为底边,∠A是顶角,∠B、∠C是底角. 2.等腰三角形的作法 已知线段a,b(如图).用直尺和圆规作等腰三角形ABC,使AB=AC=b,BC=a. 作法:1.作线段BC=a; 2.分别以B,C为圆心,以b为半径画弧,两弧 相交于点A; 3.连接AB,AC. △ABC为所求作的等腰三角形 3.等腰三角形的对称性 (1)等腰三角形是轴对称图形; (2)∠B=∠C; (3)BD=CD,AD为底边上的中线. (4)∠ADB=∠ADC=90°,AD为底边上的高线. 结论:等腰三角形是轴对称图形,顶角平分线(底边上的高线或中线)所在的直线是它的对称轴. 4.等边三角形 三条边都相等的三角形叫做等边三角形.也称为正三角形.等边三角形是一类特殊的等腰三角形,有三条对称轴,每个角的平分线(底边上的高线或中线)所在的直线就是它的对称轴. 要点诠释:(1)等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A =180°-2∠B,∠B=∠C=180 2A ?-∠. (2)等边三角形与等腰三角形的关系:等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形. 要点二、等腰三角形的性质 1.等腰三角形的性质 性质1:等腰三角形的两个底角相等,简称“在同一个三角形中,等边对等角”. 推论:等边三角形的三个内角都相等,并且每个内角都等于60°. 性质2:等腰三角形的顶角平分线、底边上中线和高线互相重合.简称“等腰三角形三线合一”. 2.等腰三角形中重要线段的性质 等腰三角形的两底角的平分线(两腰上的高、两腰上的中线)相等. 要点诠释:这条性质,还可以推广到一下结论: (1)等腰三角形底边上的高上任一点到两腰的距离相等。

全等三角形经典例题整理

全等三角形的典型习题 一、全等在特殊图形中的运用 1、如图,等边△ABC 中,D 、E 分别是AB 、CA 上的动点,AD =CE ,试求∠DFB 的度数. 2、如下图所示,等边△ABC 中,D 、E 、F 是AB 、BC 、CA 上动点,AD =BE =CF ,试判断△DEF 的形状. 3、如图,△ABC 和△ADE 都是等边三角形,线段BE 、CD 相交于点H ,线段BE 、AC 相交于点G ,线段BE 、CD 相交于点H .请你解决以下问题: (1) 试说明BE =CD 的理由; (2) 试求BE 和CD 的夹角∠FHE 的度数 A A

C B Ex1、如下图所示,△ABC 和△ADE 都是等边三角形,且点B 、A 、D 在同一直线上,AC 、BE 相交于点G ,AE 、CD 相交于点F ,试说明AG =AF 的理由. Ex2、如图,四边形ABCD 与BEFG 都是正方形,AG 、CE 相交于点O ,AG 、BC 相交于点M ,BG 、CE 相交于点N ,请你猜测AG 与CE 的关系(数量关系和位置关系)并说明理由. 4、△ABC 是等腰直角三角形,AB =AC ,∠BAC =90°,∠B =∠C =45°,D 是底边BC 的中点,DE ⊥DF ,试用两种不同的方法说明BE 、CF 、EF 为边长的三角形是直角三角形。 A

二.证明全等常用方法(截长发或补短法) 5、如图所示,在△ABC 中,∠ABC =2∠C ,∠BAC 的平分线交BC 于点D .请你试说明AB +BD =AC 的理由. Ex1,∠C +∠D =180°,∠1=∠2,∠3=∠4.试用截长法说明AD +BC =AB . Ex2、五边形ABCDE 中,AB =AE,∠BAC +∠DAE =∠CAD,∠ABC +∠AED =180°,连结AC ,AD .请你用补短法说明BC +DE =CD .(也可用截长法, 自己考虑) 6、如图,正方形ABCD 中,E 是AB 上的点,F 是BC 上的点,且∠EDF =45°.请你试用补短法说明AE +CF =EF . B B F C

相似三角形典型例题精选

相似三角形的判定与性质综合运用经典题型 考点一:相似三角形的判定与性质: 例1、如图,△PCD是等边三角形,A、C、D、B在同一直线上,且∠APB=120°. 求证:⑴△PAC∽△BPD;⑵ CD2 =AC·BD. 例2、如图,在等腰△ABC中, ∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B、C 重合),在AC上取一点E,使∠ADE=45° (1)求证:△ ABD∽△DCE; (2)设BD=x,AE=y,求y关于x函数关系式及自变量x值范围,并求出当x为何值时AE 取得最小值? (3)在AC上是否存在点E,使得△ADE为等腰三角形若存在,求AE的长;若不存在,请说明理由 例3、如图所示,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B: 1)求证:△ADF∽△DEC; 2)若AB=4,3 3 AD,AE=3,求AF的长。 A B C D F

考点二:射影定理: 例4、如图,在RtΔABC中,∠ACB=90°,CD⊥AB于D,CD=4cm,AD=8cm,求AC、BC及BD的长。 例5、如图,已知正方形ABCD,E是AB的中点,F是AD上的一点,且AF= 1 4 AD,EG⊥CF于点G, (1)求证:△AEF∽△BCE;(2)试说明:EG2=CG·FG. 例6、已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于E,交BC边于F,分别连结AF和CE. (1)求证:四边形AFCE是菱形; (2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长; (3)在线段AC上是否存在一点P,使得2AE2=AC·AP若存在,请说明点P的位置,并予以证明;若不存在,请说明理由. A B C D E F G

(完整版)解直角三角形练习题(三)及答案

解直角三角形 一、 填空题: 1. 若∠A 是锐角,cosA = 2 3 ,则∠A = 。 2. 在△ABC 中,∠C =90°,若tanA =2 1 ,则sinA = ; 3. 求值:1sin 60cos 4522 ?? ?+2sin30°-tan60°+cot45=__________。 4. 在倾斜角为30°的山坡上种树,要求相邻两棵树间的水平距离为3米,那么,相邻两棵 树间的斜坡距离为 米。 5. 已知等腰三角形的周长为20,某一内角的余弦值为3 2,那么该 等腰三角形的腰长等于 。 6. 如图:某同学用一个有60°角的直角三角板估测学校旗杆AB 的高度,他将60°角的直角边水平放在1.5米高的支架CD 上,三角板的斜边与旗杆的顶点在同一直线上,他又量得D 、B 的距离为5米,则旗杆AB 的高度约为 米。(精确到1米, 3取1.732) 7. 如图,△ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,且BE =2AE ,已知 AD =33,tan ∠BCE = 3 3,那么CE = 。 8. 正方形ABCD 的边长为1。如果将线段BD 绕着点B 旋转后,点D 落在BC 延长线上的点D '处,那么tan ∠BA D '= 。 二、选择题 1. 在△ABC 中,已知AC =3、BC =4、AB =5,那么下列结论成立的是( ) A 、SinA = 45 B 、cosA =53 C 、tanA =43 D 、cotA =5 4 2. 在△ABC 中,AB =AC =3,BC =2,则6cosB 等于 ( ) (A )3 (B )2 (C )33 (D ) 32 3. 为测楼房BC 的高,在距楼房30米的A 处,测得楼顶B 的仰角 为α,则楼房BC 的高为( ) E D C B A 四川03/3 D A B C α

相似三角形经典题(含答案)

相似三角形经典习题 例1 从下面这些三角形中,选出相似的三角形. 例2 已知:如图, ABCD 中,2:1:=EB AE ,求AEF ?与CDF ?的周长的比,如果2cm 6=?AEF S ,求CDF S ?. 例3 如图,已知ABD ?∽ACE ?,求证:ABC ?∽ADE ?. 例4 下列命题中哪些是正确的,哪些是错误的? (1)所有的直角三角形都相似. (2)所有的等腰三角形都相似. (3)所有的等腰直角三角形都相似. (4)所有的等边三角形都相似. 例5 如图,D 点是ABC ?的边AC 上的一点,过D 点画线段DE ,使点E 在ABC ?的边上,并且点D 、点E 和ABC ?的一个顶点组成的小三角形与ABC ?相似.尽可能多地画出满足条件的图形,并说明线段DE 的画法. 例6 如图,一人拿着一支刻有厘米分画的小尺,站在距电线杆约30米的地方,把手臂向前伸直,小尺竖直,看到尺上约12个分画恰好遮住电线杆,已知手臂长约60厘米,求电线杆的高.

例7 如图,小明为了测量一高楼MN 的高,在离N 点20m 的A 处放了一个平面镜,小明沿NA 后退到C 点,正好从镜中看到楼顶M 点,若5.1=AC m ,小明的眼睛离地面的高度为1.6m ,请你帮助小明计算一下楼房的高度(精确到0.1m ). 例8 格点图中的两个三角形是否是相似三角形,说明理由. 例9 根据下列各组条件,判定ABC ?和C B A '''?是否相似,并说明理由: (1),cm 4,cm 5.2,cm 5.3===CA BC AB cm 28,cm 5.17,cm 5.24=''=''=''A C C B B A . (2)?='∠?='∠?=∠?=∠35,44,104,35A C B A . (3)?='∠=''=''?=∠==48,3.1,5.1,48,6.2,3B C B B A B BC AB . 例10 如图,下列每个图形中,存不存在相似的三角形,如果存在,把它们用字母表示出来,并简要说明识别的根据. 例11 已知:如图,在ABC ?中,BD A AC AB ,36,?=∠=是角平分线,试利用三角形相似的关系说明AC DC AD ?=2 .

相关主题
文本预览
相关文档 最新文档