当前位置:文档之家› 核糖体

核糖体

核糖体
核糖体

1.真核生物有三种RNA聚合酶,其中聚合酶Ⅲ转录。

2.原核和真核生物的mRNA至少有三种差别:①_;②;③

3.组成真核生物核糖体大亚基的rRNA有三种,分别是:、、。

4.原核生物和真核生物的核糖体分别是70S和80S,而叶绿体的核糖体是,线粒体的核糖体则是。

5.在蛋白质合成过程中,rRNA是蛋白质合成的,tRNA是按密码子转运氨基酸

的,而核糖体则是蛋白质合成的。

6.细胞核内不能合成蛋白质,因此,构成细胞核的蛋白质(包括酶)主要由合成,并通过引导进入细胞核。

7.RNA编辑是指在的引导下,在水平上改变

8.原核生物线粒体核糖体的两个亚基的沉降系数分别是和。

9.核糖体两个亚基的聚合和解离与Mg2+浓度有很大的关系,当Mg2+浓度小于时, 70S 的核糖体要解离;当Mg2+浓度大于时,两个核糖体聚合成 100S的二聚体。

10.70S核糖体中具有催化活性的RNA是。

11.在蛋白质的合成过程中mRNA起到的作用,即根据mRNA中密码子的指令将合成多肽链中氨基酸按相应顺序连接起来,密码子决定了多肽链合成的起始

位置和其上的氨基酸顺序。然而mRNA的密码子不能直接识别氨基酸,所以氨基酸必须先与相应的tRNA结合形成,才能运到核糖体上。tRNA以其

识别mRNA密码子,将相应的氨基酸转运到核糖体上进行蛋白质合成。因此,通过密码子才能翻译出mRNA上的遗传信息,翻译过程中需要既能携带氨基酸又能识别密码子的tRNA作为连接器,将氨基酸转运到相应密码子的位置,完成蛋白质合成。

12.蛋白酶体既存在于细胞核中,又存在于胞质溶胶中,是溶酶体外的,由10~20个不同的亚基组成结构,显示多种肽酶的活性,能够从碱性、酸性和中性氨基酸的端水解多种与连接的蛋白质底物。蛋白酶体对蛋白质的降解是与环境隔离的。主要降解两种类型的蛋白质:一类是,另一类就是。蛋白酶体对蛋白质的降解通过介导。是由76个氨基酸残基组成的小肽,它的作用主要是识别要被降解的蛋白质,然后将这种蛋白质送入蛋白酶体的圆桶中进行降解。蛋白酶体对蛋白质的降解作用分为两个过程:①对被降解的蛋白质进行标记,由完成;②蛋白酶解作用,由催化。蛋白酶体存在于所有细胞中,其活性受素的调节。

二、判断题

1.原核生物和真核生物的核糖体都是在胞质溶胶中装配的。

2.原核生物的核糖体与玉米叶绿体的核糖体极为相似,相互交换亚基后仍具有功能,但与线粒体核糖体相互交换亚基不再起作用。

3.原核生物和真核生物核糖体的亚基虽然不同,但两者形成的杂交核糖体仍能进行蛋白质合成。

4.细胞内一种蛋白质总量是否处于稳定状态,取决于其合成速率、催化活性以及降解速率。

5.反义RNA既能通过与mRNA互补来抑制mRNA的翻译,也能通过本身具有的核酶作用来降解mRNA达到抑制mRNA翻译的目的。

6.mRNA的合成是从DNA模板链的3’末端向5’末端方向移动进行,而翻译过程则是从mRNA 模板的5’端向3’末端进行。

7.氯霉素是一种蛋白质合成抑制剂,可抑制细胞质核糖体上的蛋白质合成。

8.单个核糖体的大小亚基总是结合在一起,核糖体之间从不交换亚基。

9.核糖体是由单层膜包裹的胞质细胞器。

10.放线菌酮可特异性地抑制核糖体的蛋白质合成。

11.因为DNA的两条链是互补的,所以给定基因的mRNA能以任一链为模板会成。

12.原核生物核糖体的大亚基可以与真核生物核糖体的小亚基重组。

13.ribozyme(核酶)的化学本质是RNA,但具有酶的活性,专司切割RNA。

14.核糖体60s亚基上的5SrRNA不是在核仁中合成的。

16.所有的mRNA折叠成翻译所要求的独特三维结构。

17.真核生物的18s、28s和5S的rRNA属于同一个转录单位,先转录成一个45s的前体,然后边加工边装配核糖体的大、小两个亚基。

18.反义RNA是特定靶基因互补链反向转录的产物。

19.单一核糖体只能合成一种类型的蛋白质。

20.氯霉素可以抑制70s核糖体上的肽基转移酶,阻止肽链的形成。

21.核糖体成熟的大小亚基常游离于细胞质中,当大亚基与mRNA结合后,小亚基才结合形成成熟的核糖体。

22.核糖体的大小亚基常游离于细胞质中,以各自单体的形式存在。

23.核糖体在自我装配过程中,不需要其他分子的参与,但需要能量供给。

24.原核细胞中的核糖体都是70s的,而真核细胞中的核糖体都是80s的。

25.核糖体属于异质性的细胞器。

26.核糖体存在于一切细胞内。

27.以多聚核糖体的形式进行多肽合成,对mRNA的利用及对其浓度的调控更为经济有效。

28.与RNA相比,蛋白质能更为有效地催化多种生化反应。

29.在核糖体的结合位点上甚至可能在催化作用中,rRNA的作用要比核糖休蛋白更重要。

30.蛋白质结合到rRNA上具有先后层次性。

三、选择题

1.真核生物核糖体的()是在核仁中合成的。

A.28S、18S、5.8S rRNA

B.28S、18S、5S rRNA

C. 28S、5S、5.8S rRNA

D. 5S、18S、5.8S rRNA

2.核糖体上有A、P、E三个功能位点,下述说法中,除()外都是正确的n

A.A位点的A字母是氨酰tRNA的简称,该位点又叫受位

B.P位点的P字母是肽酰tRNA的简称,该位点又叫供位

C.A、P位点参与肽键的形成和转移

D.A、E位点参与肽键的形成和转移

3.下列关于真核生物核糖体RNA基因在染色体上排列顺序正确的一个是()

A.18S-28S-5.8S

B.28S-18S-5S

C.18S-5.8S-28S

D.28S-5.8S-18S

4.下列蛋白质中,属于膜结合核糖体合成的有()。

A.FOF1 ATP酶复合体

B.细胞质膜通道蛋白

C.16S核糖体亚基蛋白

D.参与三羧酸循环的酶

5.在下列rRNA中,()具有核酶的活性。

A.28S rRNA

B.23S rRNA

C.16s rRNA

D.5.8S rRNA

6.在下列核糖体重组实验中,能够获得有功能核糖体的实验是()。

A.从不同种细菌中分离的 30S核糖体小亚基的 rRNA和蛋白质重组

B.将线粒体小亚基的rRNA与细菌的小亚基蛋白质重组

C.将原核生物核糖体小亚基的rRNA与真核生物核糖体小亚基蛋白质重组

D.将叶绿体核糖体小亚基的rRNA与真核生物小亚某蛋白质重组

7.下列关于核糖体肽酸转移酶活性的叙述正确的是()。

A.肽酰转移酶的活性存在于核糖体大亚基中(50s或60S)

B.帮助将肽链的C端从肽酸一tRNA转到A位点上氨酸tRNA的N端

C.通过氨酸-tRNA的脱乙酸作用,帮助氨酸 tRNA的 N端从A位点移至 P位点中肽酰tRNA的C端

D.水解GTP以促进核糖体的转位

8.下列哪些发现支持了核糖体RNA具有催化活性的观点?( )

A.rRNA的碱基序列是高度保守的,而核糖体蛋白的氨基酸序列则不是

B.具有抗药性的细菌在rRNA上有碱基替换,但在核糖体蛋白上却没有氨基酸的替换

C.肽基转移酶反应对核酸酶是敏感的

D.上述所有均是

9.下列哪种证据支持原始生命的形成无须DNA和酶的存在?( )

A.RNA可编码遗传信息,并有催化剂作用

B.DNA和酶仅存在于高度进化的细胞中

C.高等生物的细胞缺乏RNA

D.所有上述原因

10.ribozyme()。

A.具有核酸酶的活性

B.具有DNA酶的活性

C.具有蛋白酶的活性

D.不具有任何酶的活性

11.核糖体的E位点是()。

A.真核mRNA加工位点

B.tRNA离开原核生物核糖体的位点

C.核糖体中受EcoRI限制的位点

D.电化学电势驱动转运的位点

12.在下列核糖体的杂交中,()的杂交可得到有功能的核糖体。

A.50S(原核生物)+ 40S(真核生物)

B.50S(原核生物)+ 30S(叶绿体)

C.60S(真核生物)+ 30S(原核生物)

D.60S(真核生物)+ 30S(叶绿体)

13.氨酸tRNA参与多少种核糖核昔酸三联体的翻译?( )

A.1

B.2

C.3

D.20

E.61

14.下述对50S核糖体亚基上的 23S rRNA的功能描述中,()项是不正确的

A.提供A结合位点

B.提供P结合位点

C.具有肽基转移酶的活性

D.具有GTPase的活性

L5.原核细胞和真核细胞核糖体沉降系数分别为()。

A.30s和 50s

B.40s和 6Ds

C.50s和 60s

D.70s和 80s

16.蛋白质合成中首先与mRNA分子结合的是()。

A.小亚基

B.大亚基

C.成熟核糖体

D.多聚核糖体

17.真核细胞80s核糖体大小两个亚基沉降系数分别为()。

A.40s和 50s

B.40s和 60s

C.50s和 60s

D.70s和 80s

18.核糖体的重组装是()。

A.自我装配过程

B.由rRNA组织的顺序装配过程

C.由r蛋白介导的自主装配过程

19.在核糖体中具有肽酰转移酶的活性的结构成分主要是()。

A.rRNA

B.r蛋白

C.tRNA

D.EF-Tu

20.核糖体中在进化上最保守的成分是()。

A.rRNA

B.r蛋白

C.L蛋白

D.S蛋白

四、问答题

1.比较原核生物和真核生物核糖体的分子组成。

2.首个被发现的核酶是什么?它的主要功能是什么?

1.原核和真核生物核糖体在生物发生上有何不同?

2.用于转录的RNA聚合酶能用来合成复制所需的RNA引物吗?

3.讨论关于真核与原核细胞中翻译起始的主要区别。

4.真核与原核核糖体的主要区别是什么?

5.说明核糖体上四个主要活性位点及在核糖体功能中的作用。

6.核糖体的重组实验结果说明了什么?

7.下述哪种突变可能对生物体造成危害?试解释。

A.在靠近编码序列的尾部插入单个核音酸;

B.在靠近编码序列的起始处移走单个核着酸;

C.在编码序列中部有 3个连续核着酸缺失;

D.在编码序列中部有4个连续核音酸缺失;

E.在编码序列中部用一个核音酸替换另一个。

8.细胞质中进行的蛋白质合成分别是在游离核糖体和膜结合核糖体上完成的,请说明两者有

什么不同?。

9.说明真核细胞80S核糖体的发生过程,并指出各部分的来源。

10.简述核糖体r蛋白在进化上的特性。

11.r蛋白的主要功能。

12.核糖体的大小亚单位在蛋白质合成过程前后的装配和解离有何生物学意义?

13.试述核糖体的组装过程。

14.核糖体上的GTPase相关位点有哪些?

15.rRNA在核糖体中的主要作用有哪些?

16.氯霉素等抗生素具有广谱杀菌作用的原因是什么?

17.试述RNA在生命起源中的地位。

18.试述蛋白质合成的大体过程。

五、实验设计题

1.如何证明23SrRNA具有肽酰转移酶的活性?

六、名词解释

1. ribosome protein r蛋白

2.ribozyme核酶

3.Polyribosome多聚核糖体

4.ribosome核糖体

细胞免疫学论文

【摘要】作为一种具有靶向性的生物大分子,单克隆抗体始终是人们关注 的热点之一,被广泛用于治疗肿瘤、病毒感染和抗移植排斥等。但鼠源单克隆 抗体的临床应用受限于诱导产生人抗鼠抗体、肿瘤渗入量低、亲和力低和半衰 期短等。随着分子生物学技术的发展及其向各学科的渗透,通过基因操作技术 对抗体进行改造,可使其适用于多种疾病的治疗。抗体人源化已经成为治疗性 抗体的发展趋势,同时各种抗体衍生物也不断涌现,它们从不同角度克服了抗 体本身的应用局限,也为治疗人类疾病提供了利器。本文简要介绍上述技术的 基本原理、特点和治疗性抗体的研究进展。 【关键词】人--鼠嵌合抗体生物导弹人源化抗体双特异性抗体 【正文】 一、治疗性抗体技术的研究背景 2000年前,人们将自白喉杆菌培养上清液中分离到的可溶性毒素注入马体内,发现得到的抗血清可以治疗白喉,这是第一个用抗体治疗疾病的例子。随 着免疫学和分子生物学技术的发展,以及抗体基因结构的阐明,DNA 重组技术 开始被用于抗体的改造,人们可以根据需要对以往的鼠抗体进行相应的改造, 以消除抗体应用的不利性状或增加新的生物学功能,还可用新的技术重新制备 各种形式的重组抗体,标志着基因工程抗体时代的来临。自第一个基因工程抗体———人--鼠嵌合抗体于1984 年诞生以来,新型基因工程抗体不断出现,包括人源化抗体、单价小分子抗体(Fab、单链抗体、单域抗体等)、多价小分子 抗体(双链抗体、三链抗体、微型抗体等)、某些特殊类型的抗体(双特异抗体、抗原化抗体、细胞内抗体等)及抗体融合蛋白(免疫毒素、免疫黏连素等)等。用于制备新型抗体的噬菌体抗体库技术成为继杂交瘤技术之后生命科学研究中 又一突破性进展。在噬菌体抗体库的基础上,近年来又发展了核糖体展示抗体 库技术,利用核糖体展示技术筛选抗体的整个过程均在体外进行,不经过大肠 杆菌转化步骤,因此可以构建高容量、高质量的抗体库,更易于筛选高亲和力 抗体和利用体外进行的方法对抗体性状进行改造,核糖体展示抗体库技术代表 了抗体工程的未来发展趋势。 二、各种抗体治疗作用的机理与应用 2.1 抗体的基本组成 抗体的基本单位是由4 条肽链组成的对称结构,包括2 条相同的重链和2 条相同的轻链。重链和轻链分别由可变区和恒定区组成。可变区中的互补决定区与抗体和抗原结合的多样性直接有关,而恒定区的结构与抗体的生物学活性 相关。在少数情况下,抗体与抗原结合后可以对机体直接起保护作用,如用抗 体中和毒素的毒性,但在多数情况下需要通过效应功能灭活或清除外来抗原。

高级分子遗传学复习提纲

高级分子遗传学复习题 1、概念解释: PDT 噬菌体展示技术(phage displayed technology,PDT)是将外源蛋白或多肽与噬菌体外壳蛋白融合,展示在噬菌体表面并保持特定的空间构象,利用特异性亲和作用以筛选特异性蛋白或多肽的一项新技术。该技术将基因型与表型、分子结合活性与噬菌体的可扩增性结合在一起,是一种高效的筛选新技术。目前已成功应用于抗原表位分析,单抗筛选,蛋白质功能拮抗多肽或模拟多肽的确定等。 DNA shuffling 将不同品系具有不同突变位点的基因(1~6kb)或同一家族的基因混合,用DNase I酶切构成随机DNA 片段库(Pool)。用此库样品为模板、以小分子引物进行PCR扩增,一些随机模板得到扩增,由于片段间存在同源性,在退火过程中常出现模板转换(switch),从而有可能出现集多种突变点于一个基因上的DNA分子,可从多种多样的重组分子中筛选出有用基因。 卫星RNA(satellite RNA) 类病毒(viroids)和拟病毒(virusoids)中类病毒是有侵染性并能独立作用的RNA分子,没有任何蛋白质外壳。拟病毒在构成上与类病毒类似,但是被植物病毒包装,与一个病毒基因组包被在一起。拟病毒不能独立复制,需要病毒帮助其复制。有时拟病毒又称为卫星RNA(satellite RNA)。 交换固定(crossover fixation) 指某一基因簇中的突变通过不等交换趋向扩展到整个基因簇的现象。结果突变的基因要么被淘汰,要么占据全部原来相同基因的位置。 分子伴侣(chaperone) 一种能诱导靶蛋白质形成特定构象使其正确组装的蛋白质。 空转反应(idling reaction) 当空载tRNA进入A位点时,核糖体产生pppGpp 和ppGpp, 诱发应急型反应。 AARS:(氨酰-tRNA合成酶) 催化氨基酸和tRNA2‘或3’-OH共价连接的酶。根据氨基酸序列,可将AARS分为I、II型两组。I 型:Arg、Gln、Glu、Ile、Leu、Trp、Tyr、Val、Cys-RS,其余为II型。I 型RS含有HIGH签名序列(His-Ile-Gly-His)和KMSKS(Lys-Met-Ser-Lys-Ser)序列,使AA结合在3'A的2'-OH上,可以在2'、3'之间移动。II型RS无签名序列,而有3个保守基序。 RNAi/RNAq(RNA干扰、RNA压制) 转录后基因沉默广泛存在于各种生物中,在植物中被称为转录后基因沉默(PTGS),在动物中被称为RNA 干扰(RNA interference, RNAi),在真菌中则被称为RNA压制(RNA quelling,RNAq)。尽管叫法不同,但都具有相似机制,都启动一种特殊的RNA降解过程。 酸性面条(negative noodle)

2009年诺贝尔化学奖成果简介

2009年诺贝尔化学奖成果简介 摘要:主要介绍了2009年诺贝尔化学奖得主文卡特拉曼•拉马克里希南、托马斯•施泰茨和阿达•约纳特在有关核糖体结构和功能领域的研究成果,并阐述其现实意义和发展前景。 关键词核糖体晶体结构抗生素生理功能蛋白质 瑞典皇家科学院2009年10月7日宣布,将本年度诺贝尔化学奖授予美国科学家文卡特拉曼•拉马克里希南(Venkatraman Ramakrishnan)、美国科学家托马斯•施泰茨(Thomas A. Steitz)和以色列女科学家阿达•约纳特(Ada E. Yonath),以表彰他们在核糖体结构和功能研究领域作出的突出贡献。他们以较高的分辨率确定了核糖体的结构以及它在原子水平上的功能机理,并通过建立3D模型展示不同抗生素与核糖体的结合。本文主要介绍该项研究成果,并阐述其现实意义和发展前景。 1 核糖体简介 蛋白质生物合成是把储存在DNA分子上的遗传信息“翻译”成有各种生物功能蛋白质的复杂过程。所有有机体中,DNA的转录都是在RNA聚合酶的作用下传递给mRNA,而mRNA的翻译过程则需要在核糖体这个平台的作用下进行【1】。 1.1 核糖体的组成 细菌(70S)核糖体包含了一大一小2个亚基(30S,50S),S表示超离心沉降系数。30S亚基由大约20个不同的蛋白质与16S rRNA(含有1600个核苷酸)组成;50S 大亚基由大约33个不同的蛋白质、23S rRNA(含有2900个核苷酸)和5S rRNA(含有120个核苷酸)组成。尽管真核生物的核糖体比原核生物的更大更复杂,但核糖体的总体结构却相似【2】。对于tRNA,核糖体有3个结合位点:A位点、P位点和E位点(见图1)。而mRNA定位于30S亚基颈部的通道上,在新生肽链的延伸过程中它以梯状排列的方式穿过通道。 1.2 核糖体的功能 核糖体可以看成为一个多肽合成酶体系,而底物便是氨基酰tRNA。核糖体对底物的识别就是氨基酰tRNA与核糖体的结合及解码过程,肽键的形成与肽基移位(peptidyltransfer)就是核糖体的催化过程【3】。 核糖体能够催化与共价键有关的2个化学反应:终止时候肽键的形成和酯键的水解。而在蛋白质延伸和终止的过程中存在一个准确度的问题,就是指在蛋白质的延伸阶段,核糖体必须有效选择与一个氨基酸编码中A位点密码子(有义密码

抗体药物的研究现状和发展趋势

一、研究现状 1.抗体研究发展历程 抗体作为药物用于人类疾病的治疗拥有很长历史。但整个抗体药物的发展却并非一帆风顺,而是在曲折中前进。第一代抗体药物源于动物多价抗血清,主要用于一些细菌感染性疾病的早期被动免疫治疗。虽然具有一定的疗效,但异源性蛋白引起的较强的人体免疫反应限制了这类药物的应用,因而逐渐被抗生素类药物所代替。第二代抗体药物是利用杂交瘤技术制备的单克隆抗体及其衍生物。单克隆抗体由于具有良好的均一性和高度的特异性,因而在实验研究和疾病诊断中得到了广泛应用。 单抗最早被用于疾病治疗是在1982年,美国斯坦福医学中心Levy等人利用制备的抗独特型单抗治疗B细胞淋巴瘤,治疗后患者病情缓解,瘤体消失,这使人们对抗体药物产生了极大的期望。1986年,美国FDA批准了世界上第一个单抗治疗性药物——抗CD3单抗OKT3进入市场,用于器官移植时的抗排斥反应。此时抗体药物的研制和应用达到了顶点。随着使用单抗进行治疗的病例数的增加,鼠单抗用于人体的毒副作用也越来越明显。同时一些抗肿瘤单抗未显示出理想效果。人们的热情开始下降。到20世纪90年代初,抗内毒素单抗用于治疗脓毒败血症失败使得抗体药物的研究进入低谷。由于大多数单抗均为鼠源性,在人体内反复应用会引起人抗鼠抗体(HAMA)反应,从而降低疗效,甚至可引起过敏反应。因此,一方面在给药途径上改进,如使用片段抗体、交联同位素、局部用药等使鼠源性抗体用量减少,也增强了疗效;另一方面,积极发展基因工程抗体和人源抗体。 近年来,随着免疫学和分子生物学技术的发展以及抗体基因结构的阐明,DNA 重组技术开始用于抗体的改造,人们可以根据需要对以往的鼠抗体进行相应的改造以消除抗体应用不利性状或增加新的生物学功能,还可用新的技术重新制备各种形式的重组抗体。抗体药物的研发进入了第三代,即基因工程抗体时代。与第二代单抗相比,基因工程抗体具有如下优点:①通过基因工程技术的改造,可以

抗体药物现状与产业发展前景

抗体药物现状与产业发展前景 陈志南 国家“863”计划生物工程主题专家组 抗体系指机体在抗原性物质的刺激下所产生的一种免疫球蛋白(主要由淋巴细胞所产生),因其能与细菌、病毒或毒素等异源性物质结合而发挥预防、治疗疾病作用。近年,抗体类药物以其高特异性、有效性和安全性正在发展成为国际药品市场上一大类新型诊断和治疗剂。 1. 抗体药物的发展历程 抗体作为药物用于人类疾病的治疗拥有很长历史。但整个抗体药物的发展却并非一帆风顺,而是在曲折中前进(图1)。第一代抗体药物源于动物多价抗血清,主要用于一些细菌感染性疾病的早期被动免疫治疗。虽然具有一定的疗效,但异源性蛋白引起的较强的人体免疫反应限制了这类药物的应用,因而逐渐被抗生素类药物所代替。 第二代抗体药物是利用杂交瘤技术制备的单克隆抗体及其衍生物。单克隆抗体由于具有良好的均一性和高度的特异性,因而在实验研究和疾病诊断中得到了广泛应用。单抗最早被用于疾病治疗是在1 982年,美国斯坦福医学中心Levy等人利用制备的抗独特型单抗治疗B细胞淋巴瘤,治疗后患者病情缓解,瘤体消失,这使人们对抗体药物产生了极大的期望。1986年,美国FDA批准了世界上第一个单抗治疗性药物——抗CD3单抗OKT3进入市场,用于器官移植时的抗排斥反应。此时抗体药物的研制和应用达到了顶点。随着使用单抗进

行治疗的病例数的增加,鼠单抗用于人体的毒副作用也越来越明显。同时一些抗肿瘤单抗未显示出理想效果。人们的热情开始下降。到2 0世纪90年代初,抗内毒素单抗用于治疗脓毒败血症失败使得抗体药物的研究进入低谷。由于大多数单抗均为鼠源性,在人体内反复应用会引起人抗鼠抗体(HAMA)反应,从而降低疗效,甚至可引起过敏反应。因此,一方面在给药途径上改进,如使用片段抗体、交联同位素、局部用药等使鼠源性抗体用量减少,也增强了疗效;另一方面,积极发展基因工程抗体和人源抗体。 近年来,随着免疫学和分子生物学技术的发展以及抗体基因结构的阐明,DNA重组技术开始用于抗体的改造,人们可以根据需要对以往的鼠抗体进行相应的改造以消除抗体应用不利性状或增加新的生 物学功能,还可用新的技术重新制备各种形式的重组抗体。抗体药物的研发进入了第三代,即基因工程抗体时代。与第二代单抗相比,基因工程抗体具有如下优点:①通过基因工程技术的改造,可以降低甚至消除人体对抗体的排斥反应;②基因工程抗体的分子量较小,可以部分降低抗体的鼠源性,更有利于穿透血管壁,进入病灶的核心部位; ③根据治疗的需要,制备新型抗体;④可以采用原核细胞、真核细胞和植物等多种表达形式,大量表达抗体分子,大大降低了生产成本。 自从1984年第一个基因工程抗体人-鼠嵌合抗体诞生以来,新型基因工程抗体不断出现,如人源化抗体、单价小分子抗体(Fab、单链抗体、单域抗体、超变区多肽等)、多价小分子抗体(双链抗体,三链抗体,微型抗体)、某些特殊类型抗体(双特异抗体、抗原化抗

单克隆抗体制备技术的最新进展及应用

单克隆抗体制备技术的最新进展及应用 作者姓名:程鹏王彤 指导教师:王国卿 单位名称:生物研究所 专业名称:生物工程 东北大学 2013年6月

单克隆抗体制备技术的最新进展及应用 摘要 单克隆抗体技术是现代生命科学研究的重要工具,其在基因和蛋白质的结构与功能研究方面有着不可或缺的作用, 在人类和动植物的免疫学诊断方面至今仍有着无可代替的重要作用。本论文综述了单克隆抗体的制备技术,包括嵌合抗体、噬菌体展示技术、核糖体展示技术、基因工程抗体等。这些技术将有效解决单克隆抗体的鼠源性等问题。最后对单克隆抗体在临床医学和疾病的诊断与治疗等领域的广阔应用前景及存在的不足作了概述。 关键词:单克隆抗体;人源抗体;制备技术;应用

目录 单克隆抗体制备技术的最新进展及应用.......................................................................................... I I 摘要 ......................................................................................................................................... I I 第一章引言 .. (1) 第二章单克隆抗体制备技术 (3) 2.1嵌合单克隆抗体抗体 (3) 2.2噬菌体展示技术 (3) 2.3核糖体展示技术 (4) 2.4RNA-多肽融合技术 (4) 2.5转基因小鼠制备全人抗体 (5) 第三章单克隆抗体的应用 (6) 3.1单克隆抗体在预防方面应用 (6) 3.2单克隆抗体在预防方面应用 (6) 3.2.1 作为免疫抑制剂 (6) 3.2.2 作为生物治疗的导向武器即所谓的“生物导弹” (7) 3.3 单克隆抗体在蛋白提纯中的应用 (7) 3.4 单克隆抗体在临床诊断及检测中的应用 (8) 第四章结束语 (10) 第五章展望 (11) 注释 (12) 参考文献 (13)

人源化抗体的研究进展

人源化抗体的研究进展 摘要:单克隆抗体的问世使得人们对于一种新的治疗疾病的药物充满期待,然而鼠源性抗体往往会受到人体免疫系统的排斥,因而抗体的人源化已成为治疗性抗体的发展趋势。用人抗体取代鼠抗体,是克服鼠单抗临床应用障碍的关键。随着分子生物学研究的深入和一些技术的突破,抗体人源化技术日益成熟。大量人源化抗体已经被广泛应用于临床试验和应用。本文主要介绍了目前人源化抗体构建的三种方法:嵌合、重构和表面重塑,并对人源化抗体的未来发展趋势进行了展望。 关键字:基因工程抗体人源化 1 基因工程抗体简介 基因工程抗体(genetically engineered antibod2ies ,GEAb)是按人工设计所重新组装的新型抗体分子,它既保留或增加了天然抗体的特异性和生物学活性,又去除或减少了无关结构,降低或基本消除抗体的免疫原性,使抗体人源化,并改善抗体的药物动力学,具有生产简单,价格低廉,容易获得稀有抗体的优点,具有广阔的临床应用前景。其主要技术原理是:首先从杂交瘤或免疫脾细胞、外周血淋巴细胞等提取mRNA,逆转录成cDNA,再经PCR分别扩增出抗体的重链及轻链基因,按一定的方式将两者连接克隆到表达载体中,并在适当的宿主细胞(如大肠杆菌、CHO细胞、酵母细胞、植物细胞及昆虫细胞等)中表达并折叠成有功能的抗体分子,筛选出高表达细胞株,再用亲和层折等手段纯化抗体片段[1]。 1984年,Morrison等首次报道人鼠嵌合抗体在骨髓瘤成功表达,标志着基因工程抗体的诞生。1986年,Jones等人源化抗体构建和表达成功。1988年,Skerra 等第一次证明抗体的F ab和F v片段可以在大肠杆菌(E。coli)中正确地装配成保持原抗体特异性的小分子抗体。1989年,Huse等用外分泌型载体构建成功小鼠抗体库,利用抗体库技术获得了全人源化的抗体。1994年,德国基因工程抗体研究小组成功地将基因工程抗体在培养细胞中表达,抗体释放到组织培养液中,获得了较高的抗体产量[2]。 抗体药物的最大特征在于它识别抗原的高度专一性。本文主要介绍人源化抗体的发展历程与研究进展。近几年来随着鼠单抗人源化技术越来越成熟大量的人源性单抗被用于临床治疗肿瘤研究,并取得一定进展,由于其具有高效、低毒、病人不易产生抗药性等优点,同时又克服鼠单抗半衰期短、反复应用会引进病人的等缺点,人源性单抗已成为继手术切除、放疗及化疗后又一治疗肿瘤的药物[3]。 2 人源化抗体的发展 早在一个世纪前,Paul Ehrlich就把抗体形容为“魔弹”,1975年杂交瘤技术建立以后,大量制备含有相同抗原决定簇的单克隆抗体成为可能,从而使“魔弹”进入了临床试验阶段[4]。1982年,当Philip Karr将第一株抗独特型单抗(anti-1d)应用于B细胞淋巴瘤的临床治疗并取得成功之后[5],治疗性抗体的研究很快成为

核糖体习题

第十章核糖体 本章目标 1.掌握核糖体的种类,形态结构及生理功能。 2.掌握蛋白质合成的基本过程。 3. 一、选择题 (一)A型题 1.细胞中合成蛋白质的场所是 A.溶酶体B.滑面内质网C.细胞核D.核糖体E.细胞质 2.游离于细胞质中的核糖体,主要合成 A.外输性蛋白质B.溶酶体内蛋白C.细胞本身所需的结构蛋白 D.膜骨架蛋白E.细胞外基质的蛋白质 3.组成核糖体的核糖核酸为 A.mRNA B.tRNA C.rRNA D.sRNA E.以上都不是 4.真核细胞质中核糖体的大小亚基分别为60S和40S,其完整的核糖体颗粒为A.100S B.80S C.70S D.120S E.90S 5.下列哪一结构中不含核糖体 A.细菌B.线粒体C.精子D.癌细胞E.神经细胞 6.在蛋白质合成的过程中,肽键的形成是在核糖体的哪一部位 A.供体部位B.受体部位C.肽基转移酶位D.GTP酶活性部位 E.小亚基 7.肽基转移酶存在于 A.核糖体的大亚基中B.核糖体的小亚基中C.mRNA分子内 D.tRNA分子内E.细胞质中 8.核糖体小亚基结合到mRNA上时,所需要的起始因子是 A.IF l B.IF2C.IF3D.Tu E.Ts 9.在蛋白质合成的过程中,氨酰tRNA进入核糖体的哪一部位 A.供体部位B.受体部位C.肽转移酶中心D.GTP酶部位 E.以上都不是 10.在蛋白质合成过程中,tRNA的功能是 A.提供合成的场所B.起合成模板的作用C.提供能量来源 D.与tRNA的反密码相识别E.运输氨基酸 11.真核细胞核糖体小亚基中所含rRNA的大小为 A.28S B.23S C.18S D.16S E.5S 12.在蛋白质合成过程中,mRNA的功能是 A.起串连核糖体作用B.起合成模板的作用C.起激活因子作用D.识别反密码E.起延伸肽链作用 13.肝细胞合成血浆蛋白的结构是 A.线粒体B.粗面内质网C.高尔基复合体D.核糖体E.扁平囊泡

3.2细胞内物质的合成

课题第二节细胞内物质的合成 教学重点1.核糖体和内质网的形态、分类和功能 2.物质在细胞内的合成 教学难点物质在细胞内的合成 教学目标知识目标 1.知道核糖体和内质网形态结构、分类、组成成分、分布特点尤其是分类与功 能 2.简述物质在细胞内的合成过程 能力目标 1.学会应用构建生物模型的方法加强对抽象结构和概念的理解 2.培养学生的观察能力、思维能力. 情感目标 1.通过结构与功能相适应的生物学思想,加强对唯物主义、辨证观的树立和培养 2. 通过核糖体和内质网及高尔基体对蛋白质合成的协作,加强同学们对团队的 认识,加强集体意识和合作精神 法制渗透 教学方法讲授法、直观教具法课时安排 1 教学内容教学过程个人教学札记 一、核糖体与内质网的结构导入:植物细胞中的叶绿体能够利用太阳光能,把水和二氧化碳等无机小分子合成淀粉等有机物。同样,细胞还能将从外界吸收来的其他小分子物质,如氨基酸、胆固醇等合成“建造”细胞及生物体的蛋白质、脂质等生物大分子。那么,细胞内的哪些结构能担任此重任呢?生物大分子在细胞内又是怎样合成的呢?今天我们就来学习生物大分子蛋白质和脂质等的合成及运输过程。(出题)第二节细胞内物质的合成 引导学生看细胞结构图片,充分利用教材这个最重要的教学资源和学生的经验,关键要给学生解释清楚很大部分物质是生物细胞合成的! 1.线粒体是细胞进行有氧呼吸的主要场所。又称"动力车间"。细胞生命活动所需的能量,大约95%来自线粒体。 2. 中心体与低等植物细胞、动物细胞有丝分裂有关。 3.核糖体是“生产蛋白质的机器”,有的依附在内质网上称为附着核糖体,有的游离分布在细胞质中称为游离核糖体。 4.内质网是由膜连接而成的网状结构,是细胞内蛋白质的合成和加工,以及脂质合成的“车间”。 5.高尔基体对来自内质网的蛋白质加工,分类和包装的“车间”及“发送站”。 6.溶酶体分解衰老,损伤的细胞器,吞噬并杀死入侵的病毒或细菌。 7.液泡是调节细胞内的环境,使植物细胞保持坚挺的细胞器。含

细胞生物学核糖体的结构及功能

第十一章核糖体 一、核糖体的结构及功能 核糖体是体积较小的无膜包围的细胞器,在光镜下看不到。1958年才把这种含有大量RNA的能合成蛋白质的关键装置定名为核糖核蛋白体ribosome,简称为核糖体。 (一)核糖体的一般性质 1、存在与分布 核糖体存在一切生物的细胞中,包括真核细胞和原核细胞。这是有别于其它细胞器的特点。在真核细胞中,有些核糖体是游离分布在细胞质基质中,也有许多是附着在rER膜及核膜外表。此外,还有核糖体是分布在线粒体和叶绿体的基质中。在原核细胞内,大量核糖体游离在细胞质中,也有的附着在质膜内侧面。细菌的核糖体占总重量的25—30%。 2、形态和大小 一般直径为25—30nm,由大、小两亚单位构成,通常是以大亚单位附在内质网膜或核膜外表。当进行蛋白质合成时,小亚单位先接触mRNA才与大亚单位结合,而合成完毕后又自行解离分开。另外,多个核糖体还可由mRNA串联成多聚核糖体,每个多聚核糖体往往由5-6个核糖体串成,但也有多至50个以上的(例如肌细胞中合成肌球蛋白的多聚核糖体是由60—80个串联而成)。 3.数量和分类 细胞中的核糖体数量多少不一。一般来说,增殖速度快的细胞中偏多,分泌蛋白质的分泌细胞中也较多。例如分泌胆汁的肝细胞中为6×106个,大肠杆菌中为1500—15000个。在不同类型生物细胞之中,核糖体大小及组分都有一定差

异。一般可分为两大类:80S型和70S型。 大亚单位60S 真核生物核糖体80S 小亚单位40S 大亚单位50S 原核生物核糖体70S 小亚单位30S (“S”是沉降系数的衡量单位。大、小亚单位组成核糖体,并非由其两者的S值直接相加,这是因为S值变化其实是与颗粒的体积及形状相关的。) 叶绿体中的核糖体与原核生物的相似,而线粒体中的核糖体则较小且多变,例如哺乳动物的线粒体核糖体是55S,但一般仍将它们都划分到原核生物的70S型。 (二)核糖体的化学组成 主要组分是r蛋白和rRNA,极少或无脂类。70S型核糖体之中,r蛋白: rRNA约1 : 2 ;而在80S型核糖体之中,r蛋白: rRNA约1 : 1 。 核糖 体来源核糖体 大亚 单位 小亚 单位 rRNA r蛋白数量 大亚单位 小亚 单位 大亚 单位 小亚 单位 真核细 胞原核细胞线粒体80S 70S 55S 60S 50S 35S 40S 30S 25S 28S+5S+5.8S 23S+5S 21S+5S 18S 16S 12S 49 31 - 33 21 - 70S和80S型核糖体都含有5S rRNA,其结构大小十分接近,都由120或121个核苷酸组成。这表明古核生物、原核生物和真核生物在进化上的亲缘关系,它是残存在生物体

抗体药物地研究现状和发展趋势

抗体药物的研究现状和发展趋势 一、研究现状 1.抗体研究发展历程 抗体作为药物用于人类疾病的治疗拥有很长历史。但整个抗体药物的发展却并非一帆风顺,而是在曲折中前进。第一代抗体药物源于动物多价抗血清,主要用于一些细菌感染性疾病的早期被动免疫治疗。虽然具有一定的疗效,但异源性蛋白引起的较强的人体免疫反应限制了这类药物的应用,因而逐渐被抗生素类药物所代替。第二代抗体药物是利用杂交瘤技术制备的单克隆抗体及其衍生物。单克隆抗体由于具有良好的均一性和高度的特异性,因而在实验研究和疾病诊断中得到了广泛应用。 单抗最早被用于疾病治疗是在1982年,美国斯坦福医学中心Levy等人利用制备的抗独特型单抗治疗B细胞淋巴瘤,治疗后患者病情缓解,瘤体消失,这使人们对抗体药物产生了极大的期望。1986年,美国FDA批准了世界上第一个单抗治疗性药物——抗CD3单抗OKT3进入市场,用于器官移植时的抗排斥反应。此时抗体药物的研制和应用达到了顶点。随着使用单抗进行治疗的病例数的增加,鼠单抗用于人体的毒副作用也越来越明显。同时一些抗肿瘤单抗未显示出理想效果。人们的热情开始下降。到20世纪90年代初,抗毒素单抗用于治疗脓毒败血症失败使得抗体药物的研究进入低谷。由于大多数单抗均为鼠源性,在人体反复应用会引起人抗鼠抗体(HAMA)反应,从而降低疗效,甚至可引起过敏反应。因此,一方面在给药途径上改进,如使用片段抗体、交联同位素、局部用药等使鼠源性抗体用量减少,也增强了疗效;另一方面,积极发展基因工程抗体和人源抗体。 近年来,随着免疫学和分子生物学技术的发展以及抗体基因结构的阐明,DNA 重组技术开始用于抗体的改造,人们可以根据需要对以往的鼠抗体进行相应的改造以消除抗体应用不利性状或增加新的生物学功能,还可用新的技术重新制备各种形式的重组抗体。抗体药物的研发进入了第三代,即基因工程抗体时代。与第二代单抗相比,基因工程抗体具有如下优点:①通过基因工程技术的改造,可以降低甚至消除人体对抗体的排斥反应;②基因工程抗体的分子量较小,可以部分

抗体制备方法的研究进展

4 Guy J Hallman,Paisan Loaharanu.Generic Ionizing Rad-i ation Quarantine Treatments Agai nst Fruit Fli es(Diptera: T ephritidae)Proposed.Journal of Economic Entomoloy, 2002,95(5):893~901 5 Peter A Follett and Suzanne S Sanxter.Hot Water Immer-sion to Ens ure Quarantine Securi ty for Cryptophle bia spp. (L epidoptera:Tortricidae)in Lychee and Longan Export-ed from Hawaii.Stored-Product and Uarantine Entomolo-gy,S tord-Product And Uarantine Entomology,2001,94 (5):1292~1295 抗体制备方法的研究进展 邵碧英 (福建出入境检验检疫局 福州 350001) 由于抗体的反应特异性,抗体的应用广泛,不仅是细菌、病毒、外源蛋白等的诊断和检测试剂,而且还是人和动物某些疾病的诊断试剂和有效治疗药物。抗体制备方法经历了常规血清技术、杂交瘤技术、基因工程抗体技术及抗体库技术,本文将分别阐述。 1 常规血清技术 常规的抗体制备包括抗原的制备、免疫动物、抗血清制备及特异抗体纯化等步骤。获得的抗体是针对多个不同抗原决定簇的抗体混合物,因此称之为多克隆抗体,简称多抗。制备抗体,关键是获得高产量、高纯度的抗原。抗原的获得方法有以下几种。 1 1 抗原提取剂 若抗原易获得,或易提纯,则可采用抗原提取剂制备抗体。以制备病原体的抗体为例,若以整个病原体作为抗原,只需对其进行分离、纯化,而以其某部分如菌丝可溶性蛋白、病毒的外壳蛋白等作为抗原,则要采用相应的提取方法。低分子量物质需与大的载体偶联后才可形成完全抗原。陈京等[1]将提纯的番茄环斑病毒、烟草环斑病毒和南芥菜花叶病毒分别免疫兔子,制备的抗血清用于3种病毒的检测。陈松等[2]将从苏云金杆菌菌体中提取的Bt蛋白作为抗原,制备的抗血清用于检测转基因棉花中的Bt蛋白。氯霉素(GAP)是小分子物质,石德时等[3]将GAP 和牛血清白蛋白偶联作为抗原制备了抗血清,用于检测动物性食品中的GAP残留。 1 2 人工合成的多肽 若目的蛋白的氨基酸序列已经清楚或可从相应的核苷酸序列推导,则可合成短肽,与载体蛋白偶联后作为抗原。许家喜等[4]在计算机辅助下根据外源基因cDNA序列预测出蛋白抗原位点肽,人工合成后制成复合抗原,免疫家兔后获得特异性抗体,用于测定转基因植物中外源基因的表达产物。 1 3 基因工程抗原 若病原体难培养或抗原不易提取,则可采用基因工程抗原,制备的一般程序是:克隆抗原基因,构建表达载体,转化受体,使抗原基因得到表达,表达产物经适当纯化即可作为抗原。制备基因工程抗原,关键是选择适当的表达系统。表达系统有以下几种。 1 3 1 原核细胞表达系统:原核细胞表达系统有大肠杆菌、枯草杆菌、链霉菌、蓝细菌等,既可表达原核基因,又可表达真核基因。其中,大肠杆菌最常用,具有经济、易操作、研究和生产周期较短等优点。 1 3 2 真核微生物表达系统:真核微生物表 292 收稿日期:2003-02-20

高中一年级生物必修一知识点总结(全)

高一生物必修一复习提纲 第一章走进细胞 第一节从生物圈到细胞 1.细胞是生物体结构和功能的基本单位.生命活动是建立在细胞的基础上的. ●无细胞结构的病毒必需寄生在活细胞中才能生存. ●单细胞生物(如:草履虫),单个细胞即能完成整个的生物体全部生命活动. ●多细胞生物的个体,以人为例,起源于一个单细胞:受精卵,经过细胞的不断分裂与分化,形成一个多细胞共同维系的生物个体. 2.细胞是最基本的生命系统. 最大的生命系统是:生物圈。 生命系统结构层次:细胞组织器官系统个体种群群落生态系统生物圈 第二节细胞的多样性与统一性 一.细胞的多样性与统一性 1.细胞的统一性: 细胞膜,细胞质,细胞质中都有核糖体.主要遗传物质都是DNA. 2.细胞的多样性: 大小,细胞核,细胞质中的细胞器,包含的生物类群等均不同. 根据细胞有无以核膜为界限的细胞核,把细胞分为真核细胞和原核细胞两大类. 这两类细胞分别构成了两大类生物:原核生物和真核生物. ●常见的细菌有: 乳酸菌,大肠杆菌,根瘤菌,霍乱杆菌,炭疽杆菌. ●常见的蓝藻有: 颤藻,发菜,念珠藻,蓝球藻. ●常见的真菌有: 酵母菌. 二:细胞学说建立(德科学家:施旺,施莱登) 细胞学说说明细胞的统一性和生物体结构的统一性。 1、细胞是一个有机体,一切动植物都由细胞发育而来,并由细胞和细胞产物所组成。 2、细胞是一个相对独立的单位,既有它自己的生命,又对与其他细胞共同组成的整体的生命起作用。 3、新细胞可以从老细胞中产生。 第二章: 组成细胞的分子. 第一节: 组成细胞的元素与化合物 一: 元素 组成细胞的主要元素是: C H O N P S 基本元素是: C H O N 最基本元素: C 组成细胞的元素常见的有20多种,根据含量的不同分为: 大量元素和微量元素. 大量元素: C H O N P S K Ca Mg 微量元素: Fe Mn Zn Cu B Mo 生物与无机自然界的统一性与差异性. 元素种类基本相同,元素含量大不相同. 占细胞鲜重最大的元素是: O 占细胞干重最大的元素: C 二:组成细胞的化合物: 无机化合物:水,无机盐细胞中含量最大的化合物或无机化合物: 水 有机化合物:糖类,脂质,蛋白质,核酸. 细胞中含量最大的有机化合物或细胞中干重含量最大的化合物:蛋白质。. 三: 化合物的鉴定: 鉴定原理: 某些化学试剂能与生物组织中的有关有机化合物发生特定的颜色反应. 还原性糖: 斐林试剂 0.1g/ml NaOH 0.05g/ml CuSO4 甲乙溶液先混合再与还原性糖溶液反应生成砖红色沉淀. (葡萄糖,果糖,麦芽糖) 注:蔗糖是典型的非还原性糖,不能用于该实验。 蛋白质: 双缩脲试剂 0.1g/ml NaOH 0.01g/ml CuSO4 先加入A液再加入B液. 成紫色反应。 脂肪: 丹Ⅲ(橘黄色)丹Ⅳ(红色)

核糖体

1.真核生物有三种RNA聚合酶,其中聚合酶Ⅲ转录。 2.原核和真核生物的mRNA至少有三种差别:①_;②;③ 3.组成真核生物核糖体大亚基的rRNA有三种,分别是:、、。 4.原核生物和真核生物的核糖体分别是70S和80S,而叶绿体的核糖体是,线粒体的核糖体则是。 5.在蛋白质合成过程中,rRNA是蛋白质合成的,tRNA是按密码子转运氨基酸 的,而核糖体则是蛋白质合成的。 6.细胞核内不能合成蛋白质,因此,构成细胞核的蛋白质(包括酶)主要由合成,并通过引导进入细胞核。 7.RNA编辑是指在的引导下,在水平上改变 8.原核生物线粒体核糖体的两个亚基的沉降系数分别是和。 9.核糖体两个亚基的聚合和解离与Mg2+浓度有很大的关系,当Mg2+浓度小于时, 70S 的核糖体要解离;当Mg2+浓度大于时,两个核糖体聚合成 100S的二聚体。 10.70S核糖体中具有催化活性的RNA是。 11.在蛋白质的合成过程中mRNA起到的作用,即根据mRNA中密码子的指令将合成多肽链中氨基酸按相应顺序连接起来,密码子决定了多肽链合成的起始 位置和其上的氨基酸顺序。然而mRNA的密码子不能直接识别氨基酸,所以氨基酸必须先与相应的tRNA结合形成,才能运到核糖体上。tRNA以其 识别mRNA密码子,将相应的氨基酸转运到核糖体上进行蛋白质合成。因此,通过密码子才能翻译出mRNA上的遗传信息,翻译过程中需要既能携带氨基酸又能识别密码子的tRNA作为连接器,将氨基酸转运到相应密码子的位置,完成蛋白质合成。 12.蛋白酶体既存在于细胞核中,又存在于胞质溶胶中,是溶酶体外的,由10~20个不同的亚基组成结构,显示多种肽酶的活性,能够从碱性、酸性和中性氨基酸的端水解多种与连接的蛋白质底物。蛋白酶体对蛋白质的降解是与环境隔离的。主要降解两种类型的蛋白质:一类是,另一类就是。蛋白酶体对蛋白质的降解通过介导。是由76个氨基酸残基组成的小肽,它的作用主要是识别要被降解的蛋白质,然后将这种蛋白质送入蛋白酶体的圆桶中进行降解。蛋白酶体对蛋白质的降解作用分为两个过程:①对被降解的蛋白质进行标记,由完成;②蛋白酶解作用,由催化。蛋白酶体存在于所有细胞中,其活性受素的调节。

抗体库筛选技术介绍

抗体库筛选技术介绍 导读 自从噬菌体展示技术于1985年创立以来,细胞生物学、免疫学、蛋白质工程以及医药行业等领域深受影响。它从根本上了改变了传统的单抗制备流程(杂交瘤技间接术),宣告在体外改良抗体的特异性以及进行亲和力成熟。随着该技术的不断发展,继而出现了核糖体展示、mRNA展示、细菌展示和酵母展示等多种展示技术。这篇文章主要以噬菌体展示抗体库为例,来介绍抗体库的筛选技术。 抗体库的筛选是指从抗体库中筛选出针对某一抗原的特异性抗体,是获得高亲和力抗体过程中的关键环节。 那什么是抗体库呢?通过PCR和DNA重组技术克隆人类或者动物体内全套抗体可变区基因(关于抗体的具体结构详见抗体的基本结构),并通过展示技术进行表达,得到的全套抗体基因表达文库即为抗体库。 图1、抗体库克隆的抗体基因片段(SCFV)

图2、噬菌体展示抗体库构建流程 由于单抗性质的千差万别,抗体库的筛选需要根据不同的单抗制定严格的筛选条件,优化筛选方法,因此抗体库的筛选技术一直处于发展和改进的状态,根据出现时间的先后,主要分为经典筛选法和新型筛选法。 1、经典筛选法 经典筛选法主要包括固相筛选法和液相筛选法,适合针对性质明确并且可纯化的抗原进行抗体筛选。 固相筛选法是通过包被在酶标板或者免疫试管等固相介质上的抗原富集高亲和性的噬菌体;液相筛选法是将生物素化的抗原包被在与亲和素偶联的磁珠或琼脂糖上,通过磁珠富集能与抗原特异性结合的噬菌体抗体,再通过洗涤、洗脱、回收等步骤。如此反复筛选数次,可得到高亲和性的噬菌体。这两种方法可通过添加脱脂牛奶或者BSA来减少非特异性结合。

2、新型筛选法 对于抗原无法提纯或者性质不明确的情况(如癌细胞表面受体),或者经典筛选过程可能造成抗原失活的情况,需要开发新的筛选方法。目前的新型筛选法主要有细胞筛选法、组织切片或体内筛选法、选择感染筛选法和蛋白质芯片筛选法等。 细胞筛选法: 细胞筛选能维持抗原和抗体的天然构象,因此在对肿瘤细胞筛选方面应用较多,该技术还适合于细胞表面受体筛选和抗原鉴定等。但是细胞筛选存在一定的难度,由于细胞膜表面成分复杂,增加了非特异性的结合,筛选的轮次过多又容易丢失特异性结合的抗体。为了减少非特异性结合,细胞筛选法发展出了扣除筛选、竞争筛选和内化筛选等方法。 扣除筛选是通过将抗原阴性细胞在筛选前或筛选后与抗体库结合,从而起到减少非特异性结合。 内化筛选的原理是一些与细胞表面抗原结合的抗体会进入细胞内,因此可以通过细胞的内化来进行抗体筛选。具体操作是先用抗原阴性细胞对待筛抗体库进行扣除筛选,再将抗体库与抗原阳性细胞一起孵育,洗去细胞膜表面结合的抗体,裂解细胞获得细胞内的特异性结合抗体,随后进行扩增与下一轮筛选。 竞争筛选是将过量阴性和阳性抗原同抗体库一起孵育,而针对阳性细胞的回收方法的不同,竞争筛选又分为荧光激活细胞分离法(fluorescently-actiscvated cell sorting, FACS)和免疫磁性细胞分离法(immolunomagnetic cell separation methods)。FACS法是将能待筛抗体标记上荧光素,洗涤,再通过流式细胞仪进行分选。

核糖体

核糖体 科技名词定义 中文名称: 核糖体 英文名称: ribosome 定义: 生物体的细胞器,是蛋白质合成的场所,通过信使核糖核酸与携带氨基酸的转移核糖核酸的相互作用合成蛋白质。由大小亚基组成。 应用学科: 生物化学与分子生物学(一级学科);核酸与基因(二级学科) 以上内容由全国科学技术名词审定委员会审定公布 求助编辑百科名片 核糖体在细胞内的位置 核糖体(Ribosome),细胞器的一种,为椭球形的粒状小体。在1953年由Ribinson和Broun 用电镜观察植物细胞时发现胞质中存在一种颗粒物质。1955年Palade在动物细胞中也看到同样的颗粒,进一步研究了这些颗粒的化学成份和结构。1958年Roberts根据化学成份命名为核糖核蛋白体,简称核糖体,又称核蛋白体。核糖体除哺乳类成熟的红细胞外,一切活细胞(真核细胞、原核细胞)中均有,它是进行蛋白质合成的重要细胞器,在快速增殖、分泌功能旺盛的细胞中尤其多。 目录 定义 结构 核糖体蛋白 形成 构成核糖体的蛋白质 测定技术 核糖体分类 按核糖体存在的部位 按存在的生物类型 原核细胞的核糖体 真核细胞的核糖体 按在细胞中的分布分类 超微结构 理化特性 核糖体与蛋白质生物合成 (一)蛋白质合成的细胞内定位 (二)蛋白质生物合成的简要过程 蛋白质生物合成过程可分成三个阶段

1.氨基酸的激活和转运 2.在多聚核糖体上的mRNA分子上形成多肽链 3.信号学说:Signal hypothesi 异常改变和功能抑制 定义 结构 核糖体蛋白 形成 构成核糖体的蛋白质 测定技术 核糖体分类 按核糖体存在的部位 按存在的生物类型 原核细胞的核糖体 真核细胞的核糖体 按在细胞中的分布分类 超微结构 理化特性 核糖体与蛋白质生物合成 (一)蛋白质合成的细胞内定位 (二)蛋白质生物合成的简要过程 蛋白质生物合成过程可分成三个阶段 1.氨基酸的激活和转运 2.在多聚核糖体上的mRNA分子上形成多肽链 3.信号学说:Signal hypothesi 异常改变和功能抑制 展开 编辑本段定义 核糖体是细胞内一种核糖核蛋白颗粒(ribonucleoprotein particle),主要由RNA(rRNA)和蛋白质构成,其惟一功能是按照mRNA的指令将氨基酸合成蛋白质多肽链,所以核糖体是细胞内蛋白质合成的分子机器。 编辑本段结构 核糖体无膜结构,主要由蛋白质(40%)和RNA(60%)构成。核糖体按沉降系数分为两类,一类(70S)存在于细菌等原核生物中,另一类(80S)存在于真核细胞的细胞质中。他们有的漂浮在细胞内,有的结集在一起。

核糖体

第十一章核糖体 选择题 1.组成核糖体的核糖核酸为 A.mRNA B.tRNA C.rRNA D.sRNA 2.真核细胞质中核糖体的大小亚基分别为60S和40S,其完整的核糖体颗粒为 A.100S B.80S C.70S D.90S 3.在蛋白质合成的过程中,肽键的形成是在核糖体的哪一部位 A.供体部位 B.受体部位 C.肽基转移酶位 D.GTP酶活性部位 4.影响核糖体大小亚基结合的金属离子为 A.Ca2+ B.Na+ C.K+ D.Mg2+ 5.肽基转移酶存在于 A.核糖体的大亚基中 B.核糖体的小亚基中 C.mRNA分子内 D.tRNA分子内 6.遗传密码子是指 A.DNA分子上每3个相邻的碱基 B.rRNA分子上每3个相邻的碱基 C.tRNA分子上每3个相邻的碱基 D.mRNA分子上每3个相邻的碱基 7.一个tRNA上的反密码子是UAC,与其相对应的mRNA密码子是 A.CAC B.AUG C.TUG D.ATG 8.以mRNA为模板合成蛋白质的过程称为 A.转录 B.转化 C.翻译 D.复制 9.在蛋白质合成的过程中,氨酰tRNA进入核糖体的哪一部位 A.供体部位 B.受体部位 C.肽转移酶中心 D.GTP酶部位 10.在蛋白质合成过程中,tRNA的功能是 A.提供合成的场所 B.起合成模板的作用 C.与tRNA的反密码相识别 D.运输氨基酸 11.游离于细胞质中的核糖体,主要合成 A.外输性蛋白质 B.溶酶体内蛋白 C.细胞本身所需的结构蛋白 D.高尔基复合体内蛋白 12.参与蛋白质合成的酶是 A.羧基肽酶 B.谷氨酰氨合成酶 C.肽基转移酶 D.连接酶 13.细胞的蛋白合成时,氨基酸活化所需的能源是 A.ATP B.ADP C.GTP D.cAMP 14.真核细胞核糖体小亚基中所含rRNA的大小为

核糖体的研究综述

核糖体的研究综述 安钰坤 摘要:核糖体是细胞内一种核糖核蛋白颗粒,主要由RNA(rRNA)和蛋白质构成,其惟一功能是按照mRNA的指令将氨基酸合成蛋白质多肽链,核糖体是细胞内蛋白质合成的分子机器。核糖体的研究对生物生存、繁殖、发育和遗传均是十分重要的。对核糖体的研究是近年来生命科学研究的热点,本文综述了核糖体的研究现状。 关键字:核糖体,蛋白质,亚基 1.核糖体的发现与功能 核糖体是由罗马尼亚籍细胞生物学家乔治·埃米尔·帕拉德(George Emil Palade)用电子显微镜于1955年在哺乳类与禽类动物细胞中首次发现的,他将这种新细胞器描述为密集的微粒或颗粒[1]。一年之后,A. J. Hodge等人在多种植物的体细胞中也发现了核糖体,可是当时人们仍无法将微粒体中的核糖体完全区分开来。后来,乔治·帕拉德以及阿尔伯特·克劳德和克里斯汀·德·迪夫因发现核糖体于1974年被授于诺贝尔生理学或医学奖。虽然核糖体作为一种细胞器在20世纪50年代初期已被发现,但对这种细胞器仍没有统一的命名。直到1958年,科学家理查德·B·罗伯茨才推荐人们使用“核糖体”一词。(图1为典型的细胞图解) Figure 1:典型的细胞图解,其中显示了几种主要细胞器及一些重要细胞结构:1.核仁2.细胞核3.核糖体4.囊泡 5.糙面内质网6.高尔基体7.细胞骨架8.光面内质网9.线粒体10.液 泡11.细胞质12.溶酶体13.中心粒 核糖体是细胞内一种核糖核蛋白颗粒(ribonucleoprotein particle),主要由RNA(rRNA)和蛋白质构成,其惟一功能是按照mRNA的指令将氨基酸合成蛋白质多肽链。因此核糖体是细胞不可缺少的基本结构,存在于所有细胞中。核糖体往往并不是单个独立地执行功能,而是由多个核糖体串连在一条mRNA分子上高效地进行肽键的合成。这种具有特殊功能与形态的核糖体与mRNA的聚合

相关主题
文本预览
相关文档 最新文档