当前位置:文档之家› 光刻技术研究

光刻技术研究

光刻技术研究
光刻技术研究

编号:

河南大学2010届本科毕业论文

光刻技术研究

论文作者姓名:张永攀

作者学号:1023009650

所在学院:物理院

所学专业:电子信息科学与技术

导师姓名:谷城

导师职称:讲师

2014 年 4 月 25 日

光刻技术研究

摘要

光刻技术是集成电路制造中至关重要的一环,同时光刻技术的发展速度也在一定程度上决定了集成电路更新换代的周期,因此对光刻技术的研究对于集成电路的发展进程就显得尤为关键。本文首先讲述了光刻技术的含义以及它在集成电路制造工艺中的作用和地位,给读者一个直观的感受,然后具体介绍了光刻技术主要用到的设备和材料并且一一阐释了光刻的每个步骤,并结合每个步骤探讨未来可能会出现改进的地方,最后从理论和可实现性两方面结合自己的理解预测未来光刻技术的走向,试着找到最有可能实现大规模生产的新的工艺技术。

关键词:光刻技术,重要作用,流程,发展方向

Abstract

Lithography is a vital part of the integrated circuit , at the same time, the speed of the development of lithography technology determines the integrated circuit upgrade cycle to a certain extent, so studying lithography process is particularly critical in the development of integrated circuit. First, this article tells us the definition of lithography and its role and status in the integrated circuit process to give the readers an intuitive feeling, then it introduced equipment and materials of lithography in detail and illustrates the each step of lithography, then combined with the steps to explore where it can be improved. Finally, from the two aspects of theory and reality it predicts the future lithography combined with own understanding, and try to find the new technology which most likely to achieve mass production.

Keywords: Lithography,important role, process, direction

1、绪论 (6)

1.1集成电路 (6)

1.2光刻 (7)

2、光刻技术的实现 (8)

2.1光刻所需的设备和材料 (8)

2.1.1 硅 (8)

2.1.2光刻机 (9)

2.2光刻技术的操作流程 (11)

2.2.1硅片清洗烘干 (11)

2.2.2涂底 (11)

2.2.3旋转涂胶 (11)

2.2.4软烘 (11)

2.2.5边缘光刻胶的去除 (11)

2.2.6对准 (11)

2.2.7曝光 (11)

2.2.8后烘 (12)

2.2.9显影 (12)

2.2.10硬烘 (13)

3、光刻技术的具体应用(以N阱CMOS工艺为例) (13)

3.1 N阱制作 (13)

3.1.1.在p衬底上进行n阱注入 (13)

3.1.2.曝光 (14)

3.1.3,n阱注入 (15)

3.2.有源区的形成 (15)

3.3,生成多晶栅 (16)

4、光刻技术面临的挑战 (21)

4.1 光学光刻的物理极限 (21)

4.1.1降低工艺因子K1 (21)

4.1.2 提高数值孔径 (21)

4.1.3 缩短曝光波长 (21)

5、结论 (22)

6、参考文献 (22)

7、致谢 (22)

1、绪论

集成电路(integrated circuit)是一种微型电子器件或部件,它不仅在工、民用电子设备如收录机、电视机、计算机等方面得到广泛的应用,同时在军事、通讯、遥控等方面也得到广泛的应用。集成电路制造时利用研磨、抛光、氧化、扩散、光刻、外延生长、蒸发等一整套平面工艺技术,把一个电路中所需的晶体管、二极管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构。其中光刻技术是集成电路制造中最关键的,因为光刻确定了器件的关键尺寸,而尺寸又是集成电路中最重要的参数之一。

1.1集成电路

集成电路是微电子领域发展过程中的一个里程碑。其发明者为杰克·基尔比(基于锗的集成电路)和罗伯特·诺伊思(基于硅的集成电路)。当今半导体工业大多数应用的是基于硅的集成电路。

集成电路或称微电路(microcircuit)、微芯片(microchip)、芯片(chip)在电子学中是一种把电路(主要包括半导体装置,也包括被动元件等)小型化的方式,并通常制造在半导体晶圆表面上。它具有体积小,重量轻,引出线和焊接点少,寿命长,可靠性高,性能好等优点,同时成本低,便于大规模生产。用集成电路来装配电子设备,其装配密度比晶体管可提高几十倍至几千倍,设备的稳定工作时间也可大大提高。

图1.1集成电路

集成电路,又称为IC,按其功能、结构的不同,可以分为模拟集成电路、数字集成电路和

数/模混合集成电路三大类。模拟集成电路又称线性电路,用来产生、放大和处理各种模拟

信号(指幅度随时间变化的信号。例如半导体收音机的音频信号、录放机的磁带信号等),其输入信号和输出信号成比例关系。而数字集成电路用来产生、放大和处理各种数字信号(指在时间上和幅度上离散取值的信号。例如3G手机、数码相机、电脑CPU、数字电视的

逻辑控制和重放的音频信号和视频信号)。

1.2光刻

在晶圆的制造过程中,晶体三极管、二极管、电容、电阻和金属层的各种物理部件在晶圆

表面或表层内构成。这些部件是每次在一个掩膜层上生成的,并且结合生成薄膜及去除特

定部分,通过光刻工艺过程,最终在晶圆上保留特征图形的部分。光刻生产的目标是根据

电路设计的要求,生成尺寸精确的特征图形,并且在晶圆表面的位置正确且与其它部件的

关联正确。光刻过程中的错误可造成图形歪曲或套准不好,最终可转化为对器件的电特性

产生影响。图形的错位也会导致类似的不良结果。光刻工艺中的另一个问题是缺陷。光刻

是高科技版本的照相术,只不过是在难以置信的微小尺寸下完成。在制程中的污染物会造

成缺陷。事实上由于光刻在晶圆生产过程中要完成5层至20层或更多,所以污染问题将会放大。光刻过程中的错误可造成图形歪曲或套准不好,最终可转化为对器件的电特性产生

影响。随着电子产业的技术进步和发展,光刻技术及其应用已经远远超出了传统意义上的

范畴,如上所述,它几乎包括和覆盖了所有微细图形的传递、微细图形的加工和微细图形

的形成过程,而随着芯片集成度越来越高,尺寸越来越小,对光刻技术的要求也就越来越高,因此光刻技术的发展在整个集成电路领域内中就显得就至关重要了,近年来也出现了

很多新的光刻技术,如193nm浸入式技术、157nm极短紫外光刻(EUV)、电子束投影光刻(EPL)、纳米压印光刻等,但由于技术或成本等原因的限制,目前还不能应用于大规模生产。

2、光刻技术的实现

2.1光刻所需的设备和材料

2.1.1 硅

我们都知道,硅广泛存在于我们日常生活中最常见的沙子中,可以说是却之不尽用之不竭的。不过不是随便抓一把沙子就可以做原料的,一定要精挑细选,从中提取出最最纯净的

硅原料才行。首先,硅原料要进行化学提纯,这一步骤使其达到可供半导体工业使用的原

料级别。而为了使这些硅原料能够满足集成电路制造的加工需要,还必须将其整形,这一

步是通过溶化硅原料,然后将液态硅注入大型高温石英容器而完成的。而后,将原料进行

高温溶化。中学化学课上我们学到过,许多固体内部原子是晶体结构,硅也是如此。为了

达到高性能处理器的要求,整块硅原料必须高度纯净,及单晶硅。然后从高温容器中采用

旋转拉伸的方式将硅原料取出,此时一个圆柱体的硅锭就产生了。然后通过切片,腐蚀,清洗等一系列步骤,最终得到可用于集成电路制造的硅片。

2.1.2光刻机

高端的投影式光刻机可分为步进投影和扫描投影光刻机两种,分辨率通常在几十纳米至几微米之间,高端光刻机号称世界上最精密的仪器,世界上已有7000万美金的光刻机。高端光刻机堪称现代光学工业之花,其制造难度之大,全世界只有少数几家公司能够制造。生产线和研发用的低端光刻机为接近、接触式光刻机,分辨率通常在数微米以上。

图2.1 光刻机——型号(Model): ABM/6/350/NUV/DCCD/M 光刻机一般根据操作的简便性分为三种,手动、半自动、全自动。手动:指的是对准的调节方式,是通过手调旋钮改变它的X轴,Y轴和thita角度来完成对准,对准精度可想而知不高了;半自动:指的是对准可以通过电动轴根据CCD的进行定位调谐;自动:指的是从基板的上载下载,曝光时长和循环都是通过程序控制,自动光刻机主要是满足工厂对于处理量的需要。光源是光刻机最核心的部分。常见光源分为:紫外光(UV),g线:

436nm;i线:365nm,深紫外光(DUV),KrF 准分子激光:248 nm, ArF 准分子激光:

193 nm,极紫外光(EUV),10 ~ 15 nm。

光刻机对光源系统的要求

a.有适当的波长。波长越短,可曝光的特征尺寸就越小;波长越短,就表示光刻的刀锋越

锋利,刻蚀对于精度控制要求越高,因为衍射现象会更严重。

b.有足够的能量。能量越大,曝光时间就越短;

c.曝光能量必须均匀地分布在曝光区。一般采用光的均匀度或者叫不均匀度光的平行度

等概念来衡量光是否均匀分布;

常用的紫外光光源是高压弧光灯(高压汞灯),高压汞灯有许多尖锐的光谱线,经过滤光

后使用其中的g 线(436 nm)或i 线(365 nm)。对于波长更短的深紫外光光源,可以使用准分子激光。例如KrF 准分子激光(248 nm)、ArF 准分子激光(193 nm)和F2准分

子激光(157 nm)等。

光刻机的主要性能指标有:支持基片的尺寸范围,分辨率、对准精度、曝光方式、光源波长、光强均匀性、生产效率等。分辨率是对光刻工艺加工可以达到的最细线条精度的一种

描述方式。光刻的分辨率受受光源衍射的限制,所以与光源、光刻系统、光刻胶和工艺等各

方面的限制。对准精度是在多层曝光时层间图案的定位精度。曝光方式分为接触接近式、

投影式和直写式。曝光光源波长为紫外、深紫外和极紫外区域,光源有汞灯,准分子激光

器等。

2.1.3光刻胶

光刻胶是由感光树脂、增感剂(见光谱增感染料)和溶剂三种主要成分组成的对光敏感的混合液体。根据其化学反应机理和显影原理,可分负性胶和正性胶两类。光照后形成不可

溶物质的是负性胶;反之,对某些溶剂是不可溶的,经光照后变成可溶物质的即为正性胶。

图2.2 光刻胶的作用

2.2光刻技术的操作流程

一般的光刻工艺要经历硅片表面清洗烘干、涂底、旋涂光刻胶、软烘、对准曝光、后烘、显影、硬烘、刻蚀、检测等工序。

2.2.1硅片清洗烘干

方法:湿法清洗+去离子水冲洗+脱水烘焙(热板150~250C,1~2分钟,氮气保护)

目的:a、除去表面的污染物(颗粒、有机物、工艺残余、可动离子);b、除去水蒸气,

使基底表面由亲水性变为憎水性,增强表面的黏附性

2.2.2涂底

方法:a、气相成底膜的热板涂底。HMDS蒸气淀积,200~250C,30秒钟;优点:涂底均匀、避免颗粒污染;b、旋转涂底。缺点:颗粒污染、涂底不均匀、HMDS用量大。

目的:使表面具有疏水性,增强基底表面与光刻胶的黏附性。

2.2.3旋转涂胶

方法:a、静态涂胶(Static)。硅片静止时,滴胶、加速旋转、甩胶、挥发溶剂(原光刻

胶的溶剂约占65~85%,旋涂后约占10~20%);b、动态(Dynamic)。低速旋转

(500rpm_rotation per minute)、滴胶、加速旋转(3000rpm)、甩胶、挥发溶剂。决定

光刻胶涂胶厚度的关键参数:光刻胶的黏度(Viscosity),黏度越低,光刻胶的厚度越薄;旋转速度,速度越快,厚度越薄;影响光刻胶均匀性的参数:旋转加速度,加速越快越均匀;与旋转加速的时间点有关。一般旋涂光刻胶的厚度与曝光的光源波长有关。

2.2.4软烘

方法:真空热板,85~120C,30~60秒;

目的:除去溶剂(4~7%);增强黏附性;释放光刻胶膜内的应力;防止光刻胶玷污设备;

2.2.5边缘光刻胶的去除

光刻胶涂覆后,在硅片边缘的正反两面都会有光刻胶的堆积。边缘的光刻胶一般涂布不均匀,不能得到很好的图形,而且容易发生剥离(Peeling)而影响其它部分的图形。所以需

要去除。

方法:a、化学的方法(Chemical EBR)。软烘后,用PGMEA或EGMEA去边溶剂,喷

出少量在正反面边缘处,并小心控制不要到达光刻胶有效区域;b、光学方法(Optical EBR)。即硅片边缘曝光(WEE,Wafer Edge Exposure)。在完成图形的曝光后,用激

光曝光硅片边缘,然后在显影或特殊溶剂中溶解;

2.2.6对准

对准方法:a、预对准,通过硅片上的notch或者flat进行激光自动对准;b、通过对准标

志(Align Mark),位于切割槽(Scribe Line)上。另外层间对准,即套刻精度(Overlay),保证图形与硅片上已经存在的图形之间的对准。

2.2.7曝光

曝光中最重要的两个参数是:曝光能量(Energy)和焦距(Focus)。如果能量和焦

距调整不好,就不能得到要求的分辨率和大小的图形。表现为图形的关键尺寸超出要求的

范围。曝光方法:

a、接触式曝光(Contact Printing)。掩膜板直接与光刻胶层接触。曝光出来的图形与掩

膜板上的图形分辨率相当,设备简单。缺点:光刻胶污染掩膜板;掩膜板的磨损,寿命很

低(只能使用5~25次);1970前使用,分辨率〉0.5μm。

b、接近式曝光(Proximity Printing)。掩膜板与光刻胶层的略微分开,大约为10~50μm。可以避免与光刻胶直接接触而引起的掩膜板损伤。但是同时引入了衍射效应,降低了分辨率。1970后适用,但是其最大分辨率仅为2~4μm。

c、投影式曝光(Projection Printing)。在掩膜板与光刻胶之间使用透镜聚集光实现曝光。一般掩膜板的尺寸会以需要转移图形的4倍制作。优点:提高了分辨率;掩膜板的制作更

加容易;掩膜板上的缺陷影响减小。

在曝光过程中,需要对不同的参数和可能缺陷进行跟踪和控制,会用到检测控制芯片

/控片(Monitor Chip)。根据不同的检测控制对象,可以分为以下几种:a、颗粒控片(Particle MC):用于芯片上微小颗粒的监控,使用前其颗粒数应小于10颗;b、卡盘颗

粒控片(Chuck Particle MC):测试光刻机上的卡盘平坦度的专用芯片,其平坦度要求非

常高;c、焦距控片(Focus MC):作为光刻机监控焦距监控;d、关键尺寸控片

(Critical Dimension MC):用于光刻区关键尺寸稳定性的监控;e、光刻胶厚度控片(PhotoResist Thickness MC):光刻胶厚度测量;f、光刻缺陷控片(PDM,Photo Defect Monitor):光刻胶缺陷监控。

2.2.8后烘

方法:热板,110~130C,1分钟。

目的:a、减少驻波效应;b、激发化学增强光刻胶的PAG产生的酸与光刻胶上的保护基

团发生反应并移除基团使之能溶解于显影液。

2.2.9显影

方法:a、整盒硅片浸没式显影(Batch Development)。缺点:显影液消耗很大;显影的

均匀性差;b、连续喷雾显影(Continuous Spray Development)/自动旋转显影(Auto-rotation Development)。一个或多个喷嘴喷洒显影液在硅片表面,同时硅片低速旋转(100~500rpm)。喷嘴喷雾模式和硅片旋转速度是实现硅片间溶解率和均匀性的可重复

性的关键调节参数。c、水坑(旋覆浸没)式显影(Puddle Development)。喷覆足够

(不能太多,最小化背面湿度)的显影液到硅片表面,并形成水坑形状(显影液的流动保

持较低,以减少边缘显影速率的变化)。硅片固定或慢慢旋转。一般采用多次旋覆显影液:第一次涂覆、保持10~30秒、去除;第二次涂覆、保持、去除。然后用去离子水冲洗

(去除硅片两面的所有化学品)并旋转甩干。优点:显影液用量少;硅片显影均匀;最小

化了温度梯度。

显影中的常见问题:a、显影不完全(Incomplete Development)。表面还残留有光刻胶。显影液不足造成;b、显影不够(Under Development)。显影的侧壁不垂直,由显影时间不足造成;c、过度显影(Over Development)。靠近表面的光刻胶被显影液过度溶解,

形成台阶。显影时间太长。

2.2.10硬烘

方法:热板,100~130C(略高于玻璃化温度Tg),1~2分钟。

目的:a、完全蒸发掉光刻胶里面的溶剂(以免在污染后续的离子注入环境,例如DNQ酚

醛树脂光刻胶中的氮会引起光刻胶局部爆裂);b、坚膜,以提高光刻胶在离子注入或刻

蚀中保护下表面的能力;c、进一步增强光刻胶与硅片表面之间的黏附性;d、进一步减少

驻波效应(Standing Wave Effect)。

3、光刻技术的具体应用(以N阱CMOS工艺为例)

N阱CMOS工艺平面图如下图:

图3.1

3.1 N阱制作

3.1.1.在p衬底上进行n阱注入

3.1.2.曝光

3.3

图3.4 3.1.3,n阱注入

3.5

图3.6 3.2.有源区的形成

图3.7

3.3,生成多晶栅

3.9

图3.10

3.4.源/漏注入

图3.11

图3.12

3.5.接触、金属化、及保护层

3.13

图3.14最终结果如下:

光刻技术

职大09微电子 光刻技术 摘要:光刻(photoetching)是通过一系列生产步骤将晶圆表面薄膜的特定部分除去的工艺,在此之后,晶圆表面会留下带有微图形结构的薄膜。被除去的部分可能形状是薄膜内的孔或是残留的岛状部分。 关键词:光刻胶;曝光;烘焙;显影;前景 Abstract: photoetching lithography (is) through a series of steps will produce wafer surface film of certain parts of the process, remove after this, wafer surface will stay with the film structure. The part can be eliminated within the aperture shape is thin film or residual island. Keywords: the photoresist, Exposure; Bake; Enhancement; prospects

目录 第一章绪论 (2) 第二章光刻技术的原理 (3) 第三章光刻技术的工艺过程 (4) 1基本光刻工艺流程—从表面准备到曝光 (4) 1.1光刻十步法 (4) 1.2基本的光刻胶化学物理属性 (4) 1.2.1组成 (4) 1.2.2光刻胶的表现要素 (4) 1.2.3正胶和负胶的比较 (5) 1.2.4光刻胶的物理属性 (5) 1.3光刻工艺剖析 (5) 1.3.1表面准备 (5) 1.3.2涂光刻胶 (5) 1.3.3软烘焙 (6) 1.3.4对准和曝光(A&E) (6) 2基本光刻工艺流程—从曝光到最终检验 (6) 2.1显影 (6) 2.1.1负光刻胶显影 (6) 2.1.2正光刻胶显影 (7) 2.1.3湿法显影 (7) 2.1.4干法(或等离子)显影 (7) 2.2硬烘焙 (7) 2.3显影检验(develop inspect DI) (7) 2.3.1检验方法 (8) 2.3.2显影检验拒收的原因 (8) 2.4刻蚀 (8) 2.4.1湿法刻蚀 (8) 2.4.2干法刻蚀(dry etching) (9) 2.5光刻胶的去除 (10) 2.6最终目检 (10) 第四章光刻技术的发展与现状 (11) 1 .EUV 光刻技术 (11) 2 .PREVAIL 光刻技术 (12) 3.纳米压印光刻技术 (12) 4.展望 (14) 参考文献15

光刻技术及其应用的状况和未来发展

光刻技术及其应用的状况和未来发展 光刻技术及其应用的状况和未来发展1 引言 光刻技术作为半导体及其相关产业发展和进步的关键技术之一,一方面在过去的几十年中发挥了重大作用;另一方面,随着光刻技术在应用中技术问题的增多、用户对应用本身需求的提高和光刻技术进步滞后于其他技术的进步凸显等等,寻找解决技术障碍的新方案、寻找COO更加低的技术和找到下一俩代可行的技术路径,去支持产业的进步也显得非常紧迫,备受人们的关注。就像ITRS对未来技术路径的修订一样,上世纪基本上3~5年修正一次,而进入本世纪后,基本上每年都有修正和新的版本出现,这充分说明了光刻技术的重要性和对产业进步的影响。如图1所示,是基于2005年ITRS对未来几种可能光刻技术方案的预测。也正是基于这一点,新一轮技术和市场的竞争正在如火如荼的展开,大量的研发和开发资金投入到了这场竞赛中。因此,正确把握光刻技术发展的主流十分重要,不仅可以节省时间和金钱,同时可以缩短和用户使用之间的周期、缩短开发投入的回报时间,因为光刻技术开发的投入比较庞大。 2 光刻技术的纷争及其应用状况 众说周知,电子产业发展的主流和不可阻挡的趋势是"轻、薄、短、小",这给光刻技术提出的技术方向是不断提高其分辨率,即提高可以完成转印图形或者加工图形的最小间距或者宽度,以满足产业发展的需求;另一方面,光刻工艺在整个工艺过程中的多次性使得光刻技术的稳定性、可靠性和工艺成品率对产品的质量、良率和成本有着重要的影响,这也要求光刻技术在满足技术需求的前提下,具有较低的COO和COC。因此,光刻技术的纷争主要是厂家可以提供给用户什么样分辨率和产能的设备及其相关的技术。 以Photons为光源的光刻技术 2.1 以Photons为光源的光刻技术 在光刻技术的研究和开发中,以光子为基础的光刻技术种类很多,但产业化前景较好的主要是紫外(UV)光刻技术、深紫外(DUV)光刻技术、极紫外(EUV)光刻技术和X射线(X-ray)光刻技术。不但取得了很大成就,而且是目前产业中使用最多的技术,特别是前两种技术,在半导体工业的进步中,起到了重要作用。 紫外光刻技术是以高压和超高压汞(Hg)或者汞-氙(Hg-Xe)弧灯在近紫外(350~450nm)的3条光强很强的光谱(g、h、i线)线,特别是波长为365nm的i线为光源,配合使用像离轴照明技术(OAI)、移相掩模技术(PSM)、光学接近矫正技术(OPC)等等,可为0.35~0.25μm的大生产提供成熟的技术支持和设备保障,在目前任何一家FAB中,此类设备和技术会占整个光刻技术至少50%的份额;同时,还覆盖了低端和特殊领域对光刻技术的要求。光学系统的结构方面,有全反射式(Catoptrics)投影光学系统、折反射式(Catadioptrics)系统和折射式(Dioptrics)系统等,如图2所示。主要供应商是众所周知的ASML、NIKON、CANON、ULTRATECH 和SUSS MICROTECH等等。系统的类型方面,ASML以提供前工程的l:4步进扫描系统为主,分辨率覆盖0.5~0.25μm:NIKON以提供前工程的1:5步进重复系统和LCD的1:1步进重复系统为主,分辨率覆盖0.8~0.35μm和2~0.8μm;CANON以提供前工程的1:4步进重复系统和LCD的1:1步进重复系统为主,分辨率也覆盖0.8~0.35μm和1~0.8μm;ULTRATECH以提供低端前工程的1:5步进重复系统和特殊用途(先进封装/MEMS/,薄膜磁头等等)的1:1步进重复系统为主;而SUSS MICTOTECH以提供低端前工程的l:1接触/接近式系统和特殊用途(先进封装/MEMS/HDI等等)的1:1接触/接近式系为主。另外,在这个领域的系统供应商还有USHlO、TAMARACK和EV Group等。 深紫外技术

激光技术的发展及应用论文

激光技术的发展及应用 引言 随着激光技术的飞速发展和广泛应用激光已成为工业生产,科学探测和现代军事战争中极为重要的工具。总结了激光技术在工业生产,军事,国防,医疗等行业中的应用,提出激光技术应用领域的发展趋势。 “激光”一词是“LASER”的意译。LASER原是Light amplificati on by stimulated emissi on of radiation取字头组合而成的专门名词,在我国曾被翻译成“莱塞”、“光激射器” 、“光受激辐射放大器”等。激光具有普通光源发出的光的所有光学特性,是上世纪 60 年代所诞生和发展起来的新技术。1964年,钱学森院士提议取名为“激光”,既反映了“受激辐射”的科学内涵,又表明它是一种很强烈的新光源,贴切、传神而又简洁,得到我国科学界的一致认同并沿用至今。 激光不是普通的光,其特性是任何光都无法比拟的。激光能量密度高,其亮度比太阳表面还高数百亿倍;[1]激光方向性强,其发散度仅为毫弧度量级,所以用途非常广泛。由于激光的优异特性,使激光在工业生产,科技探测,军事等方面得到了广泛应用,激光渗透到社会的各个行业,而且发展潜力还非常大,激光也成为了当代科学发展最快的科学领域之一。 一、激光发展史 激光技术的启蒙研究发展就完全印证了上面的话。最早对激光做出理论研究的人是爱因斯坦,1916年爱因斯坦提出受激辐射的概念,即处于高能级的原子受外来光子作用,当外来光子的频率与其跃迁频率恰好一致时,原子就会从高能级跃迁到低能级,并发射与外来光子完全相同的另一光子,新发出的光子不仅在

频率方面与外来光子相一致,而且在发射方向、偏振态以及位相等方面均与外来光子相一致,因此,受激辐射具有相干性;在发生受激辐射时,一个光子变成了两个光子,利用这个特点,可实现光放大,并且能够得到自然条件下得不到的相干光. 受激辐射提出后,陆续有科学家进行研究。如1916-1930年间拉登堡及其合作者对氖的色散的研究并于1933年绘制出色散系数随放电带电流密度变化的曲线。1940年法布里坎特首先注意到了负吸收现象。这一阶段发展并不迅速。到了第二次世界大战之后,1947年兰姆和雷瑟夫指出通过粒子数反转可以受激辐射,从此激光理论的研究开始突破。1952年帕塞尔及其合作者实现了粒子数反转,观察到了负吸收现象。第二年,韦伯产生了利用受激辐射诱发原子或分子,从而放大电磁波的思想,进而提出了微波辐射器的原理。1957年斯科威尔实现了固体顺磁微波激射器。既然微波可以激发受激辐射,那么红外乃至可见光等也应该可以。1958年汤斯和肖洛发表了著名的“红外与光学激射器”一文,1959年汤斯提出了建造红宝石激光器的建议。终于1960年由休斯航空公司的莱曼建造出第一部可用的激光装置。(我国第一台红宝石激光器于15个月后的1961年8月建成。)从此人类拥有了激光这一利器。 由于生产技术不成熟,激光技术产生之初并未有太多实际用途。后虽有切割,光束武器等应用,但又受制于制造成本高昂和气候条件复杂等。几十年来各方面工程师和专家一直努力改进创新激光技术及应用,随着激光技术的发展成熟,今天,它已经广泛地应用于生产生活的各方面。 二、激光的特点及激光器 激光的特点主要有四点,一是方向性好,激光束偏离轴线的发散角往往非常小,甚至可以用来测量地球到月球的精确距离(发射到38万公里外的月球形成的光斑直径不超过一公里);二是亮度高,激光功率在空间高度集中,亮度是普通太阳光的百万倍;三是单色性好,比如氪激光的波长范围只有4.7微埃,比原来个公认单色性最好的氪灯高出数个数量级;四是相干性好,激光器输出的光子频率、偏振、相位和传播方向都完全一致,这使得很多光学实验的精度大大提高。

为提高成品率改善光刻工艺的一些方法讲解

为提高成品率改善光刻工艺的一些方法 作者:伍强詹思诚华虹 NEC 电子有限公司 引言 当最小线宽(Critical Dimension, CD) 和对准精度的变化大到一定程度,成品率将受到影响。在前道(Front-End-of-the-Line, FEOL),诸如绝缘层和门电路层,最小线宽的变化会影响到晶体管的电学特征,如关闭电流Ioff 和漏极饱和电流Idsat。对0.13微米及以下,由于短通道效应(Short Channel Effect) 变得明显,阈值电压Vt也会随线宽的变化而波动。如果门电路层的线宽偏小,关闭电流会明显变大,使芯片功耗大幅度增加,甚至出故障。对准精度的不高会让漏电流显著增加。在后道(Back-End-of-the-Line, BEOL),不完美的最小线宽和对准精度的控制会导致接触电阻的升高或者其他可能的工艺问题,如金属线的腐蚀。所以,对如何针对日益缩小的制造线宽在成本允许下提升光刻工艺对最小线宽和对准精度的控制是至关重要的。从180 纳米产品开始,光学近距效应变得显著,其表现在明显的二维效应,如,线端缩短(Line End Shortening)和方角钝化(Corner Rounding)。除了二维的效应之外,在一维,线宽随空间周期的变化会变得对部分相干性(Partial Coherence) 敏感。尽管在0.18 微米,基于一些简单规则的光学近距修正和一些曝光条件的优化已经可以满足对线宽的控制要求,在0.13 微米,更加复杂的基于模型的光学近距修正变的不可缺少。 除了对线宽的控制以外,很多0.18 微米及以下的芯片设计对对准精度的要求也越来越严。不超过60 纳米的对准精度对绝大多数光刻机来讲是轻而易举的。但是40 到50 纳米的对准精度就显得困难许多,而且还有可能受某些工艺,如化学机械抛光 (Chemical-Mechanical Polishing, CMP) 的影响。20 到30 纳米的对准精度将是几乎所有光刻机能达到的极限。在这样紧的规格下,成功的对准将依赖于对准记号的质量. 先进光刻工艺中对线宽的控制 化学增幅光刻胶(Chemically Amplified Resist, CAR) 的使用改变了光刻学。化学增幅,或利用光致酸进行催化反应的引入不仅实现了更好的成像形貌和反应对比度,而且还提高了胶的灵敏度和机器产能[1]。但是尽管这样的扩散可以改善对焦深度(Depth of Focus, DOF) 和图形边缘的粗糙程度,实现这种催化反应所需要的在曝光后的烘烤(俗称后烘)(Post Exposure Bake, PEB)过程中的酸的随机扩散会损伤成像对比度[2]。在0.13 微米及以下工艺,传统上的黑白(Binary),或者铬-玻璃(Chrome-on-Glass, COG) 掩膜板已经不能满足对门电路的线宽控制要求。透射减幅的相移掩膜板(Attenuated Phase Shifting Mask, Att-PSM) 成为130 纳米和90 纳米工艺的标准配置。在65 纳米节点,甚至透射减幅的相移掩膜板也不能给门电路产生足够的成像对比度。在这种情况下,对160 纳米至200 纳米的空间周期,只有使用193 纳米浸没(Immersion) 光刻技术或者交替相移掩膜板(Alternating Phase Shifting Mask, Alt-PSM) 才能满足对门电路最小线宽控制的

激光光刻技术的研究与发展

第41卷第5期红外与激光工程2012年5月Vol.41No.5Infrared and Laser Engineering May.2012 激光光刻技术的研究与发展 邓常猛1,2,耿永友1,吴谊群1,3 (1.中国科学院上海光学精密机械研究所中国科学院强激光材料重点实验室,上海201800; 2.中国科学院研究生院,北京100049; 3.功能无机材料化学省部共建教育部重点实验室(黑龙江大学),黑龙江哈尔滨150080) 摘要:光刻技术作为制备半导体器件的关键技术之一将制约着半导体行业的发展和半导体器件的性能。随着半导体工业的发展,集成电路的特征尺寸越来越小,光刻技术将面临新的挑战。分析了激光光刻技术,包括投影式光刻和激光无掩膜光刻技术的研究现状,着重介绍了极紫外光刻(EUVL)作为下一代光刻技术的发展前景和技术难点、激光无掩膜光刻技术的发展,特别是激光近场扫描光刻、激光干涉光刻、激光非线性光刻等新技术的最新进展及其在高分辨率纳米加工领域的应用前景。 关键词:投影式光刻;无掩膜光刻;发展趋势 中图分类号:TN305.7文献标志码:A文章编号:1007-2276(2012)05-1223-09 Research development of laser lithography technology Deng Changmeng1,2,Geng Yongyou1,Wu Yiqun1,3 (1.Key Laboratory of Material Science and Technology for High Power Lasers,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Shanghai201800,China;2.Graduate University of the Chinese Academy of Sciences,Beijing100049,China;3.Key Laboratory of Functional Inorganic Material Chemistry(Heilongjiang University), Ministry of Education,Harbin150080,China) Abstract:Lithography technology,as one of the key technologies in the manufacture of semiconductor devices,has played an important role in the development of semiconductor industry.As the critical dimension of integrated circuit is decreased to smaller and smaller,lithography technology will face new challenges.In this review,the progress and status on laser lithography were presented,including projection lithography and laser maskless lithography.The foreground and technology challenges of extreme ultraviolet lithography(EUVL),which was considered to be the next generation lithography,were analyzed.The progress and application prospect in high-resolution nano lithography patterning of laser maskless lithography,especially of near-field scanning optical microscopy,laser interference and nonlinearity lithography etc,were discussed. Key words:projection lithography;maskless lithography;development trend 收稿日期:2011-09-05;修订日期:2011-10-03 基金项目:国家自然科学基金(60977004,50872139) 作者简介:邓常猛(1985-),男,博士生,主要从事光刻技术和光刻材料方面的研究。Email:chmdeng@https://www.doczj.com/doc/9017038513.html, 导师简介:吴谊群(1957-),女,研究员,博士生导师,主要从事高密度光存储和光电子学功能材料方面的研究。Email:yqwu@https://www.doczj.com/doc/9017038513.html,

光刻技术新进展

光刻技术新进展 刘泽文李志坚 一、引言 目前,集成电路已经从60年代的每个芯片上仅几十个器件发展到现在的每个芯片上可包含约10亿个器件,其增长过程遵从一个我们称之为摩尔定律的规律,即集成度每3年提高4倍。这一增长速度不仅导致了半导体市场在过去30年中以平均每年约15%的速度增长,而且对现代经济、国防和社会也产生了巨大的影响。集成电路之所以能飞速发展,光刻技术的支持起到了极为关键的作用。因为它直接决定了单个器件的物理尺寸。每个新一代集成电路的出现,总是以光刻所获得的线宽为主要技术标志。光刻技术的不断发展从三个方面为集成电路技术的进步提供了保证:其一是大面积均匀曝光,在同一块硅片上同时作出大量器件和芯片,保证了批量化的生产水平;其二是图形线宽不断缩小,使用权集成度不断提高,生产成本持续下降;其三,由于线宽的缩小,器件的运行速度越来越快,使用权集成电路的性能不断提高。随着集成度的提高,光刻技术所面临的困难也越来越多。 二、当前光刻技术的主要研究领域及进展 1999年初,0.18微米工艺的深紫外线(DUV)光刻机已相继投放市场,用于 1G位DRAM生产。根据当前的技术发展情况,光学光刻用于2003年前后的0.13微米将没有问题。而在2006年用到的0.1微米特征线宽则有可能是光学光刻的一个技术极限,被称为0.1微米难关。如何在光源、材料、物理方法等方面取得突破,攻克这一难关并为0.07,0.05微米工艺开辟道路是光刻技术和相应基础研究领域的共同课题。

在0.1微米之后用于替代光学光刻的所谓下一代光刻技术(NGL)主要有极紫外、X射线、电子束的离子束光刻。由于光学光刻的不断突破,它们一直处于"候选者"的地位,并形成竞争态势。这些技术能否在生产中取得应用,取决于它们的技术成熟程度、设备成本、生产效率等。下面我们就各种光刻技术进展情况作进一步介绍。 1.光学光刻 光学光刻是通过光学系统以投影方法将掩模上的大规模集成电路器件的结 构图形"刻"在涂有光刻胶的硅片上,限制光刻所能获得的最小特征尺寸直接与光刻系统所能获得的分辨率直接相关,而减小光源的波长是提高分辨率的最有效途径。因此,开发新型短波长光源光刻机一直是国际上的研究热点。目前,商品化光刻机的光源波长已经从过去的汞灯光源紫外光波段进入到深紫外波段(DUV),如用于0.25微米技术的KrF准分子激光(波长为248纳米)和用于0.18微米技术的ArF准分子激光(波长为193纳米)。 除此之外,利用光的干涉特性,采用各种波前技术优化工艺参数也是提高光刻分辨率的重要手段。这些技术是运用电磁理论结合光刻实际对曝光成像进行深入的分析所取得的突破。其中有移相掩膜、离轴照明技术、邻近效应校正等。运用这些技术,可在目前的技术水平上获得更高分辨率的光刻图形。如1999年初Canon公司推出的FPA-1000ASI扫描步进机,该机的光源为193纳米ArF,通过采用波前技术,可在300毫米硅片上实现0.13微米光刻线宽。 光刻技术包括光刻机、掩模、光刻胶等一系列技术,涉及光、机、电、物理、化学、材料等多个研究领域。目前科学家正在探索更短波长的F2激光(波长为157纳米)光刻技术。由于大量的光吸收,获得用于光刻系统的新型光学及掩模衬底材料是该波段技术的主要困 难。

光刻工艺的研究

毕业设计(论文)报告题目光刻工艺的研究 系别尚德光伏学院 专业微电子技术(液晶显示技术与应用) 班级0902 学生姓名赵俊 学号090425 指导教师丁兰 2012年4月

光刻工艺的研究 摘要:光刻工艺是半导体制造中最为重要的工艺步骤之一。最重要的光刻工艺是在晶圆便面建立图形复制到硅片上,为下一步进行刻蚀或者离子注入工序做好准备。最后的步骤则是光刻胶的显影到最终检验。本文主要介绍了传统光刻技术和高级光刻工艺。开始介绍了光刻工艺的概述,以及光刻蚀工艺的概况。系统介绍了关于光刻蚀和光刻胶的内容,包括光刻胶的组成及正负胶的比较。然后以传统的十步法分类解析其内容,系统的介绍了这十步流程,然后介绍了光刻质量的分析方法。最后为了展望未来光刻工艺的前景,本文又介绍了高级光刻工艺技术,先是提出集成电路中存在的问题,然后介绍了两种新型的光刻工艺技术,进一步深化我们对于光刻工艺的新技术、新工艺的认识。 关键词:光刻胶、曝光、最终检验、前景

Semiconductor Lithography Technology Abstract:Lithography is one of the most important process in semiconductor manufacturing steps.Photolithography process is the most important established copy the graphic to the silicon wafer surface,ready for etching or ion implantation process to be done https://www.doczj.com/doc/9017038513.html,st step is photoresist developer to the ultimate test.This article primarily describes traditional lithography and advanced Photolithography process. Start the overview of lithography,etching and lithography profiles.Corrosion system introduced on the lithography and photoresists,including composition of the photoresist and positive and negative comparison of rubber.And then the traditional ten-step classification analysis of their content,describes the ten steps of system processes and describes quality analysis method of lithography.Finally in order to look to the future prospects of lithography,this article also describes advanced lithography technology,first raised problems in the integrated circuit,and then introduced the two new lithography technology,further deepening our awareness of new technology and new process of Photolithography process. Key Words:Photoresist、Exposure、Final testing、Prospects

光刻技术及其应用的现状及展望

光刻技术及其应用的现状与展望

1 引言 光刻技术作为半导体及其相关产业发展和进步的关键技术之一,一方面在过去的几十年中发挥了重大作用;另一方面,随着光刻技术在应用术问题的增多、用户对应用本身需求的提高和光刻技术进步滞后于其他技术的进步凸显等等,寻找解决技术障碍的新方案、寻找COO更加低的技术和找到下一俩代可行的技术路径,去支持产业的进步也显得非常紧迫,备受人们的关注。就像ITRS对未来技术路径的修订一样,上世纪基本上3~5年修正一次,而进入本世纪后,基本上每年都有修正和新的版本出现,这充分说明了光刻技术的重要性和对产业进步的影响。2005年ITRS对未来几种可能光刻技术方案进行预测。也正是基于这一点,新一轮技术和市场的竞争正在如火如荼的展开,大量的研发和开发资金投入到了这场竞赛中。因此,正确把握光刻技术发展的主流十分重要,不仅可以节省时间和金钱,同时可以缩短和用户使用之间的周期、缩短开发投入的回报时间,因为光刻技术开发的投入比较庞大。 2 光刻技术的现状及其应用状况

众说周知,电子产业发展的主流和不可阻挡的趋势是“轻、薄、短、小”,这给光刻技术提出的技术方向是不断提高其分辨率,即提高可以完成转印图形或者加工图形的最小间距或者宽度,以满足产业发展的需求;另一方面,光刻工艺在整个工艺过程中的多次性使得光刻技术的稳定性、可靠性和工艺成品率对产品的质量、良率和成本有着重要的影响,这也要求光刻技术在满足技术需求的前提下,具有较低的COO和COC。因此,光刻技术的纷争主要是厂家可以提供给用户什么样分辨率和产能的设备及其相关的技术。 2.1 以Photons为光源的光刻技术 在光刻技术的研究和开发中,以光子为基础的光刻技术种类很多,但产业化前景较好的主要是紫外(UV)光刻技术、深紫外(DUV)光刻技术、极紫外(EUV)光刻技术和X射线(X-ray)光刻技术。不但取得了很大成就,而且是目前产业中使用最多的技术,特别是前两种技术,在半导体工业的进步中,起到了重要作用。 紫外光刻技术是以高压和超高压汞(Hg)或者汞-氙(Hg-Xe)弧灯在近紫外(350~450nm)的3条光强很强的光谱(g、h、i线)线,特别是波长为365nm的i线为光源,配合使用像离轴照明技术(OAI)、移相掩模技术(PSM)、光学接近矫正技术(OPC)等等,可为0.35~0.25μm的大生产提供成熟的技术支持和设备保障,在目前任何一家FAB中,此类设备和技术会占整个光刻技术至少50%的份额;同时,还覆盖了低端和特殊领域对光刻技术的要求。光学系统的结构方面,有全反射式(Catoptrics)投影光学系统、折反射式(Catadioptrics)系统和折射式(Dioptrics)系统等。主要供应商是众所周知的ASML、NIKON、CANON、ULTRATECH和SUSS MICROTECH等等。系统的类型方面,ASML以提供前工

提高多晶Si薄膜太阳电池转换效率的途径

提高多晶S i薄膜太阳电池转换效率的途径 Prepared on 22 November 2020

本文由【】搜集整理。免费提供海量教学资料、行业资料、范文模板、应用文书、考试学习和社会经济等w o r d文档“微纳电子技术”2008年第4期 专家论坛 187-提高多晶Si薄膜太阳电池转换效率的途径 纳米器件与技术 193-小尺寸超高频双极晶体管工艺及特性模拟 198-单电子晶体管的蒙特卡罗模拟及宏观建模 纳米材料与结构 205-腐蚀法制备绒面ZnO透明导电薄膜 209-Bi2O3/TiO2纳米复合物的微波合成及光催化性质MEMS器件与技术 214-基于MEMS技术的微波滤波器研究进展 219-新型三轴MEMS热对流加速度传感器的研究 显微、测量、微细加工技术与设备 222-纳米光刻对准方法及其原理 231-变温腐蚀法制备纳米光纤探针 235-一维纳米结构的拉伸力学测试 240-Si 基GaN薄膜的制备方法及结构表征 ======================================= 专家论坛 187-提高多晶Si薄膜太阳电池转换效率的途径 彭英才1,2,姚国晓3,马蕾1,王侠1 (1. 河北大学电子信息工程学院,河北保定071002; 2. 中国科学院半导体研究所半导体材料科学重点实验室,北京 100083; 3. 中国天威英利新能源有限公司,河北保定071051)

摘要:多晶Si薄膜对可见光进行有效地吸收、光照稳定性好、制作成本低,被公认为是高效率和低成本的光伏器件材料。以提高多晶Si薄膜太阳电池转换效率为主线,介绍了增大晶粒尺寸以增加载流子迁移率、进行表面和体内钝化以减少复合中心、设计p-I-n结构以增加光收集效率、制作绒面结构以提高对入射光的吸收效果、改进电池结构以谋求最大效率等工艺措施;综述了近5年来多晶Si薄膜电池在材料生长、结构制备和性能参数方面取得的最新进展,并对其发展前景做了预测。 关键词:多晶Si薄膜;大晶粒;氢钝化;p-I-n结构;太阳电池;转换效率纳米器件与技术 193-小尺寸超高频双极晶体管工艺及特性模拟 赵守磊,李惠军,吴胜龙,刘岩 (山东大学孟尧微电子研发中心,济南250100) 摘要:基于通信系统中射频电路设计的特殊要求,对小尺寸(基区宽度低于100 nm)、超高频(特征频率高于15 GHz)双极晶体管工艺制程和器件的物理特性进行了模拟,为工艺线流片进行可行性研究。该器件采用BiCMOS制程结构实现,在对小尺寸、超高频双极性器件物理模型进行详尽分析的基础上,实现了该器件工艺级(Sentaurus Process)及器件物理特性级(Sentaurus Device)的仿真,提出TCAD工艺及器件的一体化设计方案。模拟结果表明,在高频指标参数 17GHz下,所得β值接近于80,满足设计要求。 关键词:小尺寸;双极器件;频率特性;工艺仿真;特性模拟 198-单电子晶体管的蒙特卡罗模拟及宏观建模 孙海定,江建军 (华中科技大学电子科学与技术系,武汉430074) 摘要:以单电子晶体管为研究对象,系统阐述了库仑阻塞、库仑台阶、单电子隧穿等物理现象的产生机理。微观模拟与宏观建模相结合,着重介绍了如何用蒙特卡罗方法和Matlab相结合对上述各种物理现象进行数值模拟,同时对单电子晶体管进行宏观电路等效,用一些常用元器件进行宏观建模。采用强大的模拟集成电路软件Hspice进行分析模拟,大大减少了计算及仿真时间。通过分析比较,两者曲线得到了较好的吻合,直观地反映了单电子晶体管的电学特性,为进一步研究复杂系统提供了理论依据。

软光刻技术的研究现状

大连理工大学研究生试卷 系别:机械工程学院 课程名称:微制造与微机械电子系统 学号: 姓名: 考试时间:2015年1 月15日

PDMS软光刻技术的研究现状 摘要:软光刻技术作为一种新型的微图形复制技术,和传统的光刻技术相比,软光刻技术更加灵活,而且 有许多技术方面的优势。软光刻技术已经广泛应用于光学、生物技术、微电子、传感器以及微全分析系统 的加工诸领域,并且取得了一定的进展。本文,从软光刻技术的原理、分类、国内外以及我们实验室的应 用上来说明软光刻技术的研究现状,是一种很有发展的重要光刻技术。 关键词:软光刻技术研究现状应用 Research Status of PDMS Soft Lithography Abstract:Soft lithography technology as a new type of micro-replication technology graphics, and compared to conventional lithographic techniques, soft lithography technology is more flexible and has many technical advantages. Soft lithography technology has been widely used in optical processing areas such as biotechnology, microelectronics, sensors and micro total analysis system, and has made some progress. In this paper, the principle soft lithography techniques, classification, abroad and in our lab up on the status of the application of soft lithography, photolithography technique is a very important development. Keywords:Soft lithography technologyResearch StatusApplication 1. 软光刻技术概况 20世纪90年代末,一种新的微图形复制技术脱颖而出。该技术用弹性模(大多为PDMS 材料制作)替代传统光刻技术中使用的硬模来产生微结构或者微模具,被称作软光刻技术[1]。软光刻技术作为一种新型的微图形复制技术,和传统的光刻技术相比,软光刻技术更加灵活,而且有许多技术方面的优势,主要有:能制造复杂的多层结构或者三维结构,甚至能在不规则曲面上来制作模具,而且不受材料和化学表面的限制;能突破光刻技术100nm 的限制,实现更为精细的微加工等。此外,它所需设备比较简单,进而在制作成本上也比以前的光刻技术更经济使用。在普通的实验室环境下就能应用,因此软光刻是一种便宜、方便、适于实验室使用的技术。 目前,软光刻技术已经广泛应用于光学、生物技术、微电子、传感器以及微全分析系统的加工诸领域,并且取得了一定的进展。 1.1 软光刻技术的分类 软光刻的核心技术是制作弹性模印章(elastomeric stamp)。通过光刻蚀和模塑的方法,可以快速、高效的获得这种印章。PDMS,即聚二甲基硅氧烷,是软光刻中最常用的弹性模印章制作材料,在设计过程中应该注意防止在PDMS弹性模上产生缺陷,此外,由于PDMS 材料的弹性,过大的深宽比也会导致弹性模结构的倒塌。软光刻的关键技术包括:毛细管成模(micromolding in capillaries,MIMIC)、再铸模(replica molding,REM)、微接触印刷(microcontact printing,uCP)、溶剂辅助成模(solventassistedmicromolding,SAMIM)、

光刻工艺流程及未来发展方向

集成电路制造工艺 光刻工艺流程 作者:张少军 陕西国防工业职业技术学院电子信息学院电子****班 24 号 710300 摘要:摘要:光刻(photoetching)是通过一系列生产步骤将晶圆表面薄膜的特定部分除去 的工艺,在此之后,晶圆表面会留下带有微图形结构的薄膜。被除去的部分可能形状是薄膜内的孔或是残留的岛状部分。 关键词:光刻胶;曝光;烘焙;显影;前景 Abstract: photoetching lithography (is) through a series of steps will produce wafer surface film of certain parts of the process, remove after this, wafer surface will stay with the film structure. The part can be eliminated within the aperture shape is thin film or residual island. Keywords: the photoresist, Exposure; Bake; Enhancement; prospects 基本光刻工艺流程— 1 基本光刻工艺流程—从表面准备到曝光 1.1 光刻十步法 表面准备—涂光刻胶—软烘焙—对准和曝光—显影—硬烘焙—显影目测—刻蚀—光刻胶去除—最终目检。 1.2 基本的光刻胶化学物理属性 1.2.1 组成聚合物+溶剂+感光剂+添加剂,普通应用的光刻胶被设计成与紫外线和激光反应,它们称为光学光刻胶(optical resist),还

光刻技术研究

编号: 河南大学2010届本科毕业论文 光刻技术研究 论文作者姓名:张永攀 作者学号:1023009650 所在学院:物理院 所学专业:电子信息科学与技术 导师姓名:谷城 导师职称:讲师 2014 年 4 月 25 日

光刻技术研究 摘要 光刻技术是集成电路制造中至关重要的一环,同时光刻技术的发展速度也在一定程度上决定了集成电路更新换代的周期,因此对光刻技术的研究对于集成电路的发展进程就显得尤为关键。本文首先讲述了光刻技术的含义以及它在集成电路制造工艺中的作用和地位,给读者一个直观的感受,然后具体介绍了光刻技术主要用到的设备和材料并且一一阐释了光刻的每个步骤,并结合每个步骤探讨未来可能会出现改进的地方,最后从理论和可实现性两方面结合自己的理解预测未来光刻技术的走向,试着找到最有可能实现大规模生产的新的工艺技术。 关键词:光刻技术,重要作用,流程,发展方向

Abstract Lithography is a vital part of the integrated circuit , at the same time, the speed of the development of lithography technology determines the integrated circuit upgrade cycle to a certain extent, so studying lithography process is particularly critical in the development of integrated circuit. First, this article tells us the definition of lithography and its role and status in the integrated circuit process to give the readers an intuitive feeling, then it introduced equipment and materials of lithography in detail and illustrates the each step of lithography, then combined with the steps to explore where it can be improved. Finally, from the two aspects of theory and reality it predicts the future lithography combined with own understanding, and try to find the new technology which most likely to achieve mass production. Keywords: Lithography,important role, process, direction

UV压印光刻刻蚀工艺研究

https://www.doczj.com/doc/9017038513.html, UV压印光刻刻蚀工艺研究 史永胜, 丁玉成, 卢秉恒, 刘红忠 (西安交通大学机械制造系统工程国家重点实验室, 710049, 西安) 摘 要:针对UV压印光刻和传统光学光刻不同的技术特点,提出压印光刻刻蚀工艺路线。本文对反应离子刻 蚀和感应耦合等离子体刻蚀技术对阻蚀胶残留膜刻蚀进行了比较实验,确定了在第一步刻蚀中的刻蚀方式选择,并分析了压印光刻阻蚀膜残膜的反应离子刻蚀原理,通过对刻蚀诸参数如反应压力、气体流量、射频功 率的调节获得了稳定的刻蚀速率及优异的各向异性。并对第二步刻蚀进行了深入的理论分析和大量的实验研究,保证了刻蚀图形的质量。 关键词:UV压印二步刻蚀反应离子刻蚀阻蚀胶残留膜感应耦合等离子体刻蚀 1.引 言 随着技术的不断发展与进步,集成电路制造工艺已经进入100nm以下的技术节点[1,2],各大光刻机制造商 曝光出几十纳米特征线宽的新闻时见报端。在特征尺寸进入100nm以下时,由于衍射现象的存在和光学透镜 系统值数孔径的物理极限的限制,传统光学曝光技术的缺陷十分明显,光刻机制造商运用各种新技术来克服 这些困难,并取得了一定的成绩,但是昂贵的光学系统却使得这些新技术缺乏吸引力。 于是各种下一代光刻技术NGL(Next Generation Lithography)应运而生。NGL主要包括极紫外光刻EUVL、 X射线光刻XRL、电子束投影光刻IBPL和压印光刻。 压印光刻将传统的模具复型原理应用到微观制造领域,通过阻蚀胶的受力变形来实现图形化,因此分辨 率不受光的衍射,阻蚀胶表面光反射、阻蚀胶内部光散射、衬底材料反射和显影剂等制约传统光学曝光的因 素的影响,可以突破光学曝光的分辨率极限。因此压印光刻技术一出现就因分辨率高,成本低,产能大的优 势成为NGL技术中最为潜力的竞争者之一[3,4,5]。 ITRS明确把压印光刻(imprint lithography)列入最有竞争力的集成电路制造技术路线图,而且压印光刻 技术是作为32nm和22nm节点技术的候选。目前普林斯顿大学已经利用LADI(激光辅助压印)技术复制出6nm 尺寸的结构[6]。 在针对压印光刻技术的研究中,各研究者大多针对压印过程的实现展开研究,以期获得更小的线宽,更 适用于压印技术的各种材料和设备平台,而把后续的刻蚀工艺作为传统的集成电路制造中的简单兼容技术而 少去研究。 但事实上,由于压印光刻技术在原理上与光学光刻的不同,所采用材料要求上的差别,导致刻蚀工艺与 光学光刻相比,有很大的独立性。 本文针对压印光刻刻蚀工艺做了深入的理论分析与实验研究,揭示了压印光刻刻蚀工艺与传统光学曝光 刻蚀工艺原理上的区别,比较了各种刻蚀方式的优缺点,确定了刻蚀工艺路线,并得出了满意的实验结果。2.压印光刻刻蚀原理 压印光刻由于原理上的不同使得整个工艺路线与光学光刻相比有很大的独立性,如下图1所示 作者简介:史永胜(1981~),男. 博士生. 基金项目:国家自然科学基金(50505037), 国家973重点基础研究发展计划(2003CB716203),国家自然科学基金资助项目(50275118)资助

相关主题
文本预览
相关文档 最新文档