当前位置:文档之家› 常见起重机事故类型通用版

常见起重机事故类型通用版

常见起重机事故类型通用版
常见起重机事故类型通用版

安全管理编号:YTO-FS-PD914

常见起重机事故类型通用版

In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities.

标准/ 权威/ 规范/ 实用

Authoritative And Practical Standards

常见起重机事故类型通用版

使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。

一失落事故

起重机失落事故是指起重作业中,吊载、吊具等重物从空中坠落所造成的人身伤亡和设备毁坏的事故。

失落事故是起重机械事故中最常见的,也较为严重的。

常见的失落事故有以下几种类型:

1 脱绳事故

脱绳事故是指重物从捆绑的吊装绳索中脱落溃散发生的伤亡毁坏事故。

造成脱绳事故的主要原因是重物的捆绑方法与要领不当,造成重物滑脱;吊装重心选择不当,造成偏载起吊或吊装中心不稳造成重物脱落;吊载遭到碰撞、冲击、振动等而摇摆不定,造成重物失落等。

2 脱钩事故

脱钩事故是指重物、吊装绳或专用吊具从吊钩钩口脱出而引起的重物失落事故。

造成脱钩事故的主要原因是吊钩缺少护钩装置,护钩

保护装置机能失效,吊装方法不当及吊钩钩口变形引起开口过大等原因所致。

3 断绳事故

造成起升绳破断的主要原因多为超载起吊拉断钢丝绳;起升限位开关失灵造成过卷拉断钢丝绳、斜吊、斜拉造成乱绳挤伤切断钢丝绳;钢丝绳因长期使用又缺乏维护保养造成疲劳变形,磨损损伤等达到或超过报废标准仍然适用等造成的破断事故。

造成吊装绳破断的主要原因多为吊装角度太大(120○),使用吊装绳抗拉强度超过限值而拉断吊装钢丝绳,品种规格选择不当,或仍使用已达到报废标准的钢丝绳捆绑、吊装重物,造成吊装绳破断。吊装绳与重物之间接触无垫片等保护措施,因而造成菱角割断钢丝绳而出现吊装绳破断事故。

4 吊钩破断事故

吊钩破断事故是指吊钩断裂造成的重物失落事故。

造成吊钩破断事故原因多为吊钩材质有缺陷,吊钩因长期磨损断面减小已达到报废极限标准却仍然使用,或经常超载使用造成疲劳破坏以致于断裂破坏。

起重机械失落事故主要是发生在起升机构取物缠绕系统中,除了脱绳、脱钩、断绳和断钩外,每根起升钢丝绳两端的固定也十分重要,如钢丝绳在卷筒上的极限安全圈

是否能保证在2圈以上,是否有下降限位保护,钢丝绳在卷筒装置上的压板固定及楔块固定结构是否安全合理。另外钢丝绳脱槽(脱离卷筒绳槽)或脱轮(脱离滑轮)事故也会发生失落事故。

二挤伤事故

挤伤事故是指在起重作业中,作业人员被挤压在二个物体之间,所造成的挤伤、压伤、击伤等人身伤亡事故。

造成伤亡事故的主要原因是起重作业现场缺少安全监督指挥管理人员,现场从事吊装作业和其他作业人员缺乏安全意识或从事野蛮操作等人为因素所致。发生挤伤事故多为吊装作业人员和合从事检修维护人员。

挤伤事故多发生在以下作业条件之下:

1 吊具或吊载与地面物体之间的挤伤事故

车间、仓库等室内场所,地面作业人员处于大型吊具或吊臂与机器设备、土建墙壁、牛腿立柱等障碍物之间的狭窄场所。

2 升降设备的挤伤事故

电梯、升降货梯,建筑升降机等的维修人员或操作人员,不遵守操作规程,发生被挤压在轿厢、吊笼与井壁、井架之间造成挤伤的事故灾害也时有发生。

3 机体与建筑物间的挤伤事故

这类事故多发生在高空从事桥式类型起重机维护检修

人员中,被挤压在起重机端梁与支承承轨梁的立柱或墙壁之间,或在高空承轨梁侧通道通过时被运行的起重机撞击击伤。

4 机体旋转击伤事故

这类事故多发生在野外作业的汽车起重机、轮胎起重机和履带起重机等作业中。

5 翻转作业中的撞伤事故

从事吊装司索、翻转、倒个等作业时,由于吊装方法不合理,装卡不牢,捆绑不当,吊具选择不合理,重物倾斜下坠,吊装选位不佳,指挥及操作人员站位不好,司机误操作等原因造成吊装失稳,吊载摆动冲击等均会造成翻转作业中的砸、撞、碰、击、挤、压等各种伤亡事故,这种类型事故在挤压事故灾害中尤为突出。

三坠落事故

坠落事故主要是指从事起重作业的人员,从起重机体等高空处发生向下坠落至地面的摔伤事故。

常见的坠落事故有以下几类:

1 从机体上滑落摔伤事故

这类事故多发生在高空的起重机上进行维护、检修作业中,检修作业人员缺乏安全意识,抱着侥幸心理不穿戴安全带,由于脚下滑动、障碍物绊倒或起重机突然起重造成晃动,使作业人员失稳从高空坠落于地面而摔伤。

2 机体撞击坠落事故

这类事故多发生在检修作业中,因缺乏严格的现场安全监督制度,检修人员遭到其他作业的起重机端梁获悬臂撞击,从高空坠落摔伤。

3 维修工具零部件坠落砸伤事故

在高空起重机上从事检修作业中,常常因不小心,使维修更换的零部件或维护检修工具从起重机机体上滑落,造成砸伤地面作业人员和机器设备等事故。

四触电事故

触电事故是指从事起重操作和检修作业人员,由于触电遭到电击所发生的伤亡事故。

触电事故按室内外不同场合不同起重机类型可分为以下二大类。

1 室内作业的触电事故

室内起重机的动力电源是电击事故的根源。

2 室外作业的触电事故

在室外施工现场从事起重运输作业的自行式起重机、塔式起重机、汽车起重机、轮胎起重机和履带式起重机越来越多,虽然这些起重机的动力源非典礼,但出现触电事故并不见得少。这主要是在作业现场往往有裸露的高压输电线,由于现场安全指挥监督混乱,常有自行式起重机的

悬臂或起升钢丝绳摆动触及高压线使集体导电,进而造成操作人员或吊装司索人员间接遭到高压电线中的高压电击伤。

五机体毁坏事故

机体毁坏事故是指起重机因超载失稳等产生机体断裂、倾翻造成集体严重损坏及人身伤亡的事故。常见机体毁坏事故有以下几种类型:

1 断臂事故

各种类型的悬臂起重机,由于悬臂设计不合理,制造装配有缺陷以及长期使用已有疲劳破坏隐患,一旦超载起吊就有可能造成断臂或悬臂严重变形等机毁事故。

2 倾翻事故

倾翻事故是自行式起重机的常见事故,自行式起重机倾翻事故大多是由起重机作业前支承不当,如野外作业场地支承基础松软、起重机支腿未能全部伸出、起重量限制器或力矩限制器等安全装置动作失灵、悬臂深长与规定起重量不符,超载起吊等因素都会造成自行式悬臂起重机倾翻事故。

3 机体摔伤事故

无车轮止垫或无固定锚链等,或者上述安全设施机能失效,当遇到强风吹击时往往会造成起重机被大风吹跑、

吹倒,甚至从栈桥上翻落造成严重的机体摔毁事故。

4 相互撞毁事故

在同一跨中的多台桥式类型起重机由于相互之间无缓冲撞保护措施,或缓冲碰撞保护设施毁坏失效,难免要有起重机相互碰撞致伤。还有在野外作业的多台悬臂起重机群众,悬臂旋转作业中也难免相互撞击而出现碰撞事故

该位置可输入公司/组织对应的名字地址

The Name Of The Organization Can Be Entered In This Location

流动式起重机常见故障及排除示范文本

流动式起重机常见故障及排除示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

流动式起重机常见故障及排除示范文本使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 流动式起重机作业的环境是多种多样的,大多数条件是 较恶劣的,作业中出现的故障也是多种多样的,有的故障是属 于设备的设计、制造上的原因引起的,有的则是由于使用、 操作不当造成的,而大量故障则是由于使用一段时间后,由经 常性的疲劳、磨损造成的。 一、应急措施 (一) 起升机构失灵,吊物不能放下 当条件允许时,可以慢落吊臂使被吊物体落地。在不能 使用上述方法时,可缓慢松开制动器,使卷筒慢慢放下吊物。 必要时还应松开起升马达的进油和回油接头。 (二) 变幅机构失灵,吊譬落不下来 一旦出现这种状态时应首先放下吊物,然后将变幅油缸

的上腔接头拧松,再将下腔的管接头略微拧松,使油液从松动处缓慢排出,吊臂靠自重可自行缓慢落下。 (三) 伸缩机构失灵,吊臂不能缩回 处理方法与变幅机构失灵处理方法相同,但在拧松管接头前应将吊臂仰起到吊臂的最大仰角位置。 (四) 支腿不能回收 松开液压锁的紧固螺钉,拧松支腿油缸的上、下腔管接头,抬起支腿即可。 二、常见故障及排除方法 表1至表7是流动式起重机各机构或系统常见故障及排除方法,供使用中参考。 请在此位置输入品牌名/标语/slogan Please Enter The Brand Name / Slogan / Slogan In This Position, Such As Foonsion

吊装事故案例分析及常见事故原因分析

吊装事故案例分析及常见事故原因分析 4月19日,四川宜宾某工地发生一起重吊装事故,吊车在吊物时,从数十米高桥梁上坠下。 经了解,现场疑似有多人受伤,事故原因待进一步调查。 我们往往忽视了汽车吊的安全管理,但汽车吊跟塔吊一样,出事就是大事! 吊车十大事故原因: 吊车的安全事故每月每周甚至每天都有发生,有时可能就发生在我们身边。所以,小编列出一个“吊车事故十大原因”,希望大家能对这些吊装事故原因引起重视! 1 超载 超载是目前吊车行业“最常见”的违规操作,也是引发翻车的高危因素。 在实际工作中由于对所吊物品的重量估计不清,或对安全问题不够重视而超载起吊,使起重机失去平衡而翻车。 前方超载

后方超载 2支腿 长期以来,吊车支腿下陷事故频繁发生。 这类事故的根本原因是:支腿接触的地面软硬不一,造成支腿不均匀下陷。常见的容易造成支腿下陷的地面有:回填土、碎石地、泥地、地形边缘、排水渠等空心场地,甚至水泥地也会常有下陷情况发生。 预防支腿下陷的主要实施如下: 支腿必需支承在平坦而坚实的地面上,一般应使用枕木、钢板。 支腿不能支承在挖方地基附近,防止滑坡 支腿不能支承在各种埋设物(地下管道,地下工程的出入口处)上,防止塌陷。 3回转过快 吊车在起吊物品之初,一般不会翻车,翻车常发生在回转过程中。这是因为回转会产生离心力,回转越快,离心力越大且方向倾斜,效果等同于超载+歪拉斜吊,十分危险。因此,各位吊友要注意回转速度不应过快。

图为:某厂内试车时,客户回转过快,砝码拉翻吊车 4变幅、伸缩臂操作程序错误 在起吊过程中,如果操作伸臂或趴臂,就会容易发生翻车。因为趴臂和伸臂,都是在给吊车增加负重,是在作“加法”,如果在此之前吊车已经满负荷,继续作“加法”则可能瞬间超载翻车。 5超速转弯 由于吊车重心比一般汽车重心高,若转弯行驶速度太高,也会发生翻车。 6转盘链接螺栓断裂 例如,某年在某建筑工地,发生一起汽车式起重机翻车事故把一名挂钩工人砸死,检查事故原因是转盘连接螺栓连接连续被切断,造成上车翻倒事故。因此连续螺栓必需安全可靠,保证满足强度要求。 7吊车折臂事故 “折臂”事故多是由于起重臂小幅度仰角过大,再加上惯性的作用,使起重臂折臂。起升绳超卷扬或变幅机构超过行

桥式起重机的常见故障及排除方法

桥式起重机的常见故障及排除方法 下面就从机械、电气和金属结构三个方面阐述桥式起重机的常见故障及排除方法。 一、机械传动方面的常见故障 1、制动器刹车不灵、制动力矩小,起升机构发生溜钩现象;在运行机构中发生溜车现象。其原因分析及其解决方法叙述于后: (1) 制动轮表面有油污、摩擦系数减小导致制动力矩减小故刹不住车。可用煤油或汽油将表面油污清洗干净即可解决。 (2) 制动瓦衬磨损严重、铆钉裸露,制动时铆钉与制动轮表面接触,不但降低制动力矩刹不住车而且又拉伤制动轮表面,危害较大。更换制动瓦衬即可。 (3) 主弹簧调整不当、张力小而导致制动力矩减小、刹不住车而产生溜车或溜钩现象。重新调整制动器使其主弹簧张力增大。 (4) 主弹簧疲劳、材料老化或产生裂纹、无弹力、张力显著减小而刹不住车。应更换新弹簧并调整之。 (5) 制动器安装不当、其制动架与制动轮不同心或偏斜而导致溜钩或溜车现象。通常先把制动器闸架地脚螺栓松开,然后将制动器调紧,使闸瓦抱紧制动轮,这时再将悬浮的制动器闸架底部间隙填实,然后再紧固地脚固定螺栓,即可达到二者同心。 (6) 电磁铁冲程调整不当或长行程制动电磁铁水平杆下面有支承物,导致刹不住车。通常重新调整磁铁冲程或去掉支承物即可解决。 (7)液压推动器的叶轮转动不灵活,导致刹车力矩减小。调整叶轮消除卡塞阻力,使叶轮转动滑块即可解决。 2、制动器打不开。导致制动器打不开的原因及排除方法有以下几种: (1) 主弹簧张力过大、电磁铁磁拉力小于主弹簧的张力,故打不开闸,重新

调整制动器,使主弹簧张力减小即可。 (2) 制动器杠杆传动系统有卡住现象,松闸力在传递中受阻,故打不开闸。检查传动系统,消除卡塞现象即可解决。 (3) 制动器制动螺杆弯曲,螺杆头顶碰不到磁铁动铁芯,故无法推开制动闸瓦。拆开制动器,取下螺杆将其调直或更换螺杆即可。 (4) 制动瓦衬胶粘在有污垢的制动轮工作面上。 消除制动轮表面上的污垢即可解决。 (5) 电磁铁线圈被烧毁或其接线折断、制动电磁铁无磁拉力所致。 更换制动线圈或接通线圈接线即可。 (6) 液压推动器的叶轮卡住。 消除叶轮卡塞故障即可。 (7) 线路电压降过大,导致制动电磁铁线圈电压低于额定电压的80%、磁铁磁拉力小于主弹簧的张力,故打不开闸。 消除电压降和原因,恢复正常电压值即可解决。 3、制动器工作时,制动瓦衬发热,“冒烟”,并有烧焦味道产生,瓦衬迅速磨损。 (1) 制动瓦衬与制动轮间的间隙调整不当、间隙过小、工作时瓦衬始终接触制动轮工作面而摩擦生热所致。 重新调整瓦衬与制动轮间的间隙,使其均匀且在工作时完全脱开,不与制动轮接触。 (2) 短行程制动器的副弹簧失效,推不开制动闸瓦,使闸瓦始终贴于制动轮表面上工作,长期摩擦生热所致。 更换副弹簧且重新调整制动器。 (3) 制动器闸架与制动轮不同心,制动瓦边缘与制动轮工作面脱不开而摩擦

吊车事故案例分析(2)

吊车发动机缸体破损原因分析 一、发动机缸体出现破损的原因? 1.发动机缸体出现破损的原因我认为是因为缸体受到外力的作用所致。对于发动机缸体破损、曲轴及轴瓦的烧蚀修理厂要求保险公司赔偿,理由不成立。根据图1、2、3现场照片看此次翻车事故不会造成发动机缸体破损,因为此车作业在路边,吊装物体时车辆失去平衡翻入正在施工的的工地,此工地深挖,吊车翻车时做了180度翻转由吊臂触地支撑悬空在坡壁上,出险车辆没有直接从高空坠落地面,车体各部件除吊臂、转台外车体不会受太大损伤。2.车辆翻倒以后发动机没有熄火,机油倒流导致机油泵不能正常供油,造成轴瓦烧蚀继而发生杵缸(捣缸)物证不支持此说法。车辆发生180度翻转倒置后发动机油底壳中20多升的机油迅速流进曲轴箱内各活塞中,机油进入活塞后通过环槽内回油孔、汽缸壁很快流进燃烧室,发动机在没有机油的情况下、在发动机转速不够的情况下、在油箱倒置油泵不能吸入到油的情况下、在机油注入燃烧室的情况下会很快熄火。翻车发动机几圈运转不会烧蚀曲轴及轴瓦。3.从图4分析:水箱内侧有风扇叶括弧半圈、有偶合器风扇座抵碰的痕迹,印迹十分明显,证明发动机翻车后只有很短暂的运转就停机熄火,否则水箱内侧就会损伤严重,发动机偶合器顶实了水箱。4.从图10、11、14、15分析;首先从发动机缸体破损面分析也不支持是发动机捣缸造成缸体破损;从力学角度分析缸体破损的受力应该是在缸体外则,破损截面是外小内大;从缸内掉落的残骸碎屑分析缸体破损块是掉落在缸内,如果是从

缸内受力曲轴箱内就不会有碎屑,碎屑会掉落在缸体外;从活塞裙破损分析此时的活塞裙刚好运转到此处车辆熄火了,因缸体受损处外力较大捣坏缸体的同时也捣碎了三缸活塞裙,正常设计活塞和缸体之间有一定的运动空间,连杆大头安装在曲轴上,如果连杆螺丝不松、瓦片不脱落、连杆大头不松矿,活塞就不会碰到缸体。5.根据图21、22两张图片不支持车辆倒置曲轴箱内的机油流入燃烧室这一物理现象,这两张图片反映燃烧室内没有进入机油,因为缸盖上2-6缸燃烧室中进、排气门和缸盖很干燥,只有燃烧留下烟尘没有机油进入的痕迹,缸盖中第一缸位置、两个汽门及缸盖燃烧室还有锈迹,物证证明此盖另有来历,有损失失真的现象。 二.按照您的分析结果,提出发动机部分的赔付意见。 综上分析:我个人认为除发动机缸体是受外力、或人为因素的原因所致保险公司不能赔偿。缸内第三缸活塞裙损伤是由于外力作用导致不能赔偿。曲轴及轴瓦发动机短暂几圈运转不会造成如此之损,现有的损失是由于长时间没有保养或机油没有及时更换机油,机油过脏或加注了低质机油所造成。

桥式起重机常见故障分析及处理方法

桥式起重机常见故障分析及处理方法 桥式起重机也叫行车,在运行过程中车轮与轨道常见的故障为车轮的啃道及小车的不等高、打滑。其中造成啃道的原因是多方面的,且啃道的形式是多样的。啃道轻者影响起重机的寿命,重者会造成严重的伤亡事故,因此特种设备管理人员对于啃道要引起足够的重视。造成啃道的主要原因是安装时产生不符合要求误差的、不均匀摩擦及大车传动系统中零件磨损过大、键连接间隙过大造成制动不同步。避免起重机发生啃道的机械故障,在检查过程中要认真、细致地找出啃道的原因,并采取相应的措施。小车车轮的不等高是起重机运行中的极不安全的因素,小车的不等高使小车在运行中一个车轮悬空或轮压太小可能引起小车车 体的震动。造成小车车轮不等高的因素是由多方原因引起的,但是主要原因是安装误差不符合要示求及小车设计本身重量不均匀,因此对小车不等高的故障要全面分析,把小车不等高的问题解决好。大体我觉得起重机在运行过程中由于轨道不清洁、行车工启动过猛、小车轨道不平、车轮出现椭圆、主动轮之间的轮压不等的原因使得小车产生打滑环象,这就要求特种设备管理人员和检修人员在检查过程中一定要认真仔佃,发现问题要及时解决,避免产生小车打滑的现象。 我们车间10T的行车常见的故障:

(1)10t双梁桥式起重机,其电源指示灯亮,操纵联动台指示灯亮,但却 不能启动。经维修人员到现场检查,发现从司机室到走台的安全门没有关上。当维修人员将安全门关好后,起重机的一切操作正常,这就是一种假故障。在起重机的安全保护中,对舱口门、司机室门和检修门上均有一个门开关,当起重机司机或维修人员到到起重机上检修时,必须打开舱口门到起重机走台上,或打开检修门到起重机轨道梁上,这是打开的门上电器开关的常闭触点断开,电气箱的主接触器释放,进而切断起重机电源,使起重机无法启动。同时这种保护使检修人员免桥架上小车滑线带电的威胁,也可防止他人启动开车伤及检修人员。可见安全门开关的保护作用非常必要。 (2)一台10t双梁桥式起重机的供电正常,各安全门关闭完好,但无法启动。经维修人员现场检查,发现起升控制凸轮的零点标志虽在零的位置上,但零位保护触电没有接触上,因为这是一台使用多年的起重机,其触电弹力减弱,产生有时接触不上的假故障。将触电更换为新的,不启动问题得到解决。从凸轮控制器的结构可知,只有在各控制器手柄置于零位时,起升、小车和大车控制器的零位触头才闭合。而在其他任何工作位置(即非零位置)时,都处于断开位置。因此,当任何一控制器手柄不在零位(或零位触电没有闭合)时,起重机主回路就不能接通,起重机也无法启动。这就防止了由于某种原因手柄未回零位,而在置于工作

汽车起重机侧翻事故案例分析

汽车起重机侧翻事故案例分析 1.事故过程简述 2004年,一台LTMl170型汽车式起重机在装卸货物时,由于支腿销子未固定且水平支腿只伸出一半,司机从正后方吊起货物,向侧向回转时,起重机侧翻,造成起重臂严重损伤。 2.事故原因分析 经现场勘察和测量得知:起重机所吊重物并未超过该工况下的额定起重量。但当时由于施工现场的条件限制,操作人员在打支腿时只打了半腿且未固定销子。在支腿没有完全伸开的情况下使用了起重机的原性能表,在吊重从正后方回转到侧向时,由于实际起重力矩超过起重机的“额定起重力矩”(在支腿没有完全伸开的情况下,实际的“额定起重力矩”小于原性能表中的额定起重力矩)造成起重机侧翻、起重臂受损。 3.事故应汲取的教训 这是一起在支腿未完全伸开情况下按原起重性能表进行吊重操作引发的汽车起重机超载倾翻事故。从事故中应汲取以下教训: (1)汽车式起重机的性能曲线是在支腿全伸状态下的额定起重能力。在支腿未完全伸开的情况下,其起重能力小于性能曲线上标示的数值。因此,在进行起重作业时,必须将支腿全部伸开, 支座盘应牢靠地连接在支腿上,支腿应可靠地支承起重机。 (2)起重机的操作人员应该严格按照操作规程操作。在工作场所达不到规定的条件时,应该本着“安全第一”的原则,协调、改善和创造条件,使起重机能够在规程允许的工作条件下运行, 而不能凭主观、凭经验或长官意志,想当然地变更操作要领,违章操作。 4.违反何种标准、规定、规程的有关条款 本事故是由于违反如下条款而造成: (1)《中华人民共和国国家标准——起重机械安全规程》(GB6067-85)之 5.1.2.2司机操作时,应遵守下述要求:h.流动式起重机,工作前应按说明书的要求平整停机场地, 牢固可靠地打好支腿。 (2)《特种设备安全检查条例》(国务院令第373号)之 第四十条特种设备使用单位应当对特种设备作业人员进行特种设备安全教育和培训,保证特种作业人员具备必要的特种设备安全作业知识。特种设备作业人员在作业中应当严格执行特种设备的操作规程和有关的安全规章制度。 (3)《中华人民共和国机械行业标准——汽车式起重机和轮胎式起重机安全规程》(JB8716-1998)之

起重机钢丝绳常见故障分析及预防措施

编号:AQ-JS-05832 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 起重机钢丝绳常见故障分析及 预防措施 Common fault analysis and preventive measures of crane wire rope

起重机钢丝绳常见故障分析及预防 措施 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科 学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 起重机在企业生产过程中给人类带来高效、方便、快捷的同时,因机械的不安全因素,频频发生事故,给国家造成经济损失,给当事人及家属造成痛苦。发生此种事故的主要原因之一是钢丝绳故障。因此,掌握钢丝绳的故障规律及预防措施很有必要。就起重机上使用的钢丝绳而言,规格品种繁多、使用千差万别,但一般随着使用时间的持续,都有可能出现故障。主要故障有以下6种:磨损、疲劳、锈蚀、变形、咬绳、过载。这就要求特种设备管理人员在规范操作人员按章操作的同时,更要重视起重机钢丝绳故障隐患,根据起重机状况制定出周密、可行的预防措施。 一、钢丝绳的特征 钢丝绳是起重机上应用最广泛的绕性物件,它把电动机的旋转

运动变为吊勾的升降运动并承担全部的起升载荷,它卷绕性好,承载能力大,对于冲击载荷的承受能力较强,卷绕过程中平稳、无噪音。 二、钢丝绳的构造和种类 钢丝绳是由许多抗拉强度为120—200kg/mm2的高强度钢丝绕制而成。钢丝绳根据不同的用途,分为单绕、双重绕、三重绕3种。起重机多采用双重绕钢丝绳。钢丝绳按其捻绕方法不同,可分为顺绕钢丝绳(左、右旋)、交绕钢丝绳。 三、钢丝绳故障及预防措施 (一)磨损 钢丝绳在操作时,在机械的、物理的和化学的作用下,其表面也在不断磨损。磨损是钢丝绳最常见的故障。 l.分类 (1)外部磨损 钢丝绳在使用过程中其外周与滑轮槽、卷筒壁、钩头等物体表面接触而引起的磨损属于外部磨损。在外部磨损后绳径将变细,外

1.2起重吊装作业伤害事故案例图解

起重吊装作业伤害事故案例图解 事故图片事故经过及原因分析 某建设公司2000年“11.3”起重吊装伤害事故 刚起吊的F型炉管 即将吊装到位的炉管 伤者被砸地点 事故经过: 2000年11月3日,天津乙烯项目 裂解炉施工现场。原第七工程公 司某起重班指挥30吨塔吊,吊装 F型炉管。因吊点选择在管段中心 线以下,同时未采取防滑措施, 造成起吊后钢丝绳滑动,管段急 速下沉900毫米,在强大外力作 用下,使钢丝绳在卡环处断裂, 钢管坠落。将刚从裂解炉直爬梯 下到地面准备换氩气的电焊工付 某挤压致伤。

卡环与钢丝绳 吊点示意图炉管坠落后现场原因分析: 1、起重工违反吊装规定,选择吊点在管段中心线以下时并未采取防滑措施,致使钢丝绳在卡环处断裂,是造成这起事故的直接原因。 (集团公司的《起重作业安全管理规定》第十条司索人员应遵守以下规定:3、吊物捆绑应牢靠,吊点和吊物的重心应在同一垂直线;……) 2、吊装时未设置警戒区,监护不到位,非相关作业人员违章进入吊装坠落范围。 (集团公司的《起重作业安全管理规定》第七条起重作业前应进行以下项目的安全检查:4、对吊装区域内的安全状况进行检查(包括吊装区域的划定、标识、障碍);……) 反思:我们对每起事故的分析,都尽可能与相关的规范、制度挂上钩,例如与集团公司安全监督管理制度相联系,每条事故原因都能从监督制度中找出解释和正确的做法。

某建设公司2001年“7.29”沧州项目起重吊装伤害事故 事故经过: 2001年7月29日,沧州项目部某 管工班安装一机泵入口管线。在 安装阀门时,管工将2吨倒链悬 挂在4.5米高处的管廊管线上,吊 钩直接钩在阀门法兰的螺栓孔里 提升阀门。吊装前管工通知管线 下清理焊道的焊工刘某离开作业 点。当阀门提升到距地面1.85米 高处的机泵入口管线配对法兰上 方时,焊工刘某看到阀门已就位, 又蹲回原地清理焊口,但管工没 有发现。当阀门被提升到接口法 兰时,倒链下钩架两侧的固定夹 板由于受侧向拉力弯曲变形,倒 链吊钩与下钩架脱落,致使阀门 坠落,手柄将电焊刘某双腿砸折。 倒链下钩架事故原因分析: 1管工违章将倒链吊钩直接钩在阀门法兰的螺栓孔上,倒链吊钩的下钩架侧面夹板卡在阀门法兰的侧面,使倒链吊钩的下钩架与倒链的垂直受力方向形成角度,弯曲变形,连接吊钩与下钩架的销子从弯曲变形的下钩架夹板上脱落,导致倒链下钩架完全散落,造成阀门坠落伤人。 2项目忽视职工技能培训和安全知识教育,对职工习惯性违章视而不见。 3电焊工刘某自保意识差,在吊装作业未结束前,进入吊装作业区,被动造成伤害。

桥式起重机机械故障的预防措施

编号:AQ-JS-04230 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 桥式起重机机械故障的预防措 施 Preventive measures for mechanical failure of bridge crane

桥式起重机机械故障的预防措施 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科 学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 对桥式起重机从吊钩、钢丝绳、减速器齿轮、卷筒及钢丝绳压板、制动器、车轮与轨道及安全附件等7个能引起机械故障的方面进行了分析,提出了预防起重机发生机械故障的措施及建议。 一、吊钩 吊钩是桥式起重机用得最多的取物装置,它承担着吊运的全部载荷,在使用过程中,吊钩一旦损坏断裂易造成重大事故。造成吊钩损坏断裂的原因是由于摩擦及超载使得吊钩产生裂纹、变形、损坏断裂。为防止吊钩出现故障,就要在使用过程中严禁超负荷吊运,在检查过程中要注意吊钩的开口度、危险断面的磨损情况,同时要定期对吊钩进行退火处理,吊钩一旦发现裂纹要按照GB10051-88给予报废,坚决不要对吊钩进行焊补。特种设备管理人员对吊钩的检查要按照GB10051-88的要求判断吊钩是否能够使用。 二、钢丝绳

1故障分析 钢丝绳在运行过程中,每根钢丝绳的受力情况非常复杂,因各钢丝在绳中的位置不同,有的在外层,有的在内层。即使受最简单的拉伸力,每根钢丝绳之间受力分布也不同,此外钢丝绳绕过卷简、滑轮时产生弯曲应力、钢丝与钢丝之间的挤压力等,因此精确计算其受力比较困难,一般采用静力计算法。 钢丝绳中的最大静拉力应满足下式要求: Pmax≤Pd/n 式中:Pmax--钢丝绳作业时可以承受的最大静应力; Pd--钢丝绳的破断应力; n--安全系数。 Pmax=(Q+q)/(aη) 式中:Q--起重机的额定起重量; q--吊钩组重量; a--滑轮组承载的绳分支总数; η--滑轮组的总效率。

起重机械事故案例

起重机事故案例及分析 (初稿)

目录 案例一、铁岭市钢水包整体脱落事故 (3) 案例二架桥机倾覆事故 (7) 案例三、门座式起重机倾覆事故 (11) 案例四龙门起重机倒塌特别重大事故 (15) 案例五、施工升降机事故 (19) 案例六、远安县“ 5?21”较大起重伤害事故 (23) 案例七大风吹袭门机出轨机毁坏起重伤害事故. (26) 案例八邯郸崇利制钢“ 9 ? 11 ”起重伤害事故 (27) 案例九载荷脱出坠落造成伤亡 (30) 案例十载荷坠落造成伤亡 (31) 案例十一大港金属结构厂李XX死亡事故 (33) 案例十二违章指挥引发的事故 (37) 案例十三:上海某船厂717 事故 (38) 案例十四5.30 事件 (38) 案例十五京沪高铁2009.8.19 事故 (39) 案例十六, 山东一起起重机事故 (41) 案例十七江苏某船厂一台900 吨门式起重机事故. (43) 案例十八塔机变幅失控事故 (44) 案例十九长沙市“上海城”升降机坠落特大事故. (46) 案例二十吊钩冲顶坠落事故 (48)

案例一、铁岭市钢水包整体脱落事故 2007年4月18日7时53分,辽宁铁岭市清河特殊钢有限公司发生钢水包整体脱落事故。起重机械在吊运60t钢水包过程中倾覆,钢水涌向一个工作间,造成正在开班前会的32人死亡,6人重伤, 直接经济损失866.2万元。 图1.1事故现场图片

图1.2事故现场惨烈场面 图1.3事发惨烈现场

1.事故的直接原因: 炼钢车间吊运钢水包的起重机主钩在下降作业时,控制回路中的一个联锁常闭辅助触点锈蚀断开,致使驱动电动机失电;电气系统设计缺陷,制动器未能自动抱闸,导致钢水包失控下坠;制动器制动力矩严重不足,未能有效阻止钢水包继续失控下坠,钢水包撞击浇注台车后落地 倾覆,钢水涌向被错误选定为班前会地点的工具间 11抚有水的料直春黑为上Wsets ft 2*3 3交舉班竄氏竝+人芳 2輩总卓此M H■密fl*K漁卅正 图1.4钢水包脱落示意图(转自新京报)

桥式起重机机械故障的预防措施实用版

YF-ED-J6914 可按资料类型定义编号 桥式起重机机械故障的预防措施实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

桥式起重机机械故障的预防措施 实用版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 对桥式起重机从吊钩、钢丝绳、减速器齿 轮、卷筒及钢丝绳压板、制动器、车轮与轨道 及安全附件等7个能引起机械故障的方面进行 了分析,提出了预防起重机发生机械故障的措 施及建议。 一、吊钩 吊钩是桥式起重机用得最多的取物装置, 它承担着吊运的全部载荷,在使用过程中,吊 钩一旦损坏断裂易造成重大事故。造成吊钩损 坏断裂的原因是由于摩擦及超载使得吊钩产生

裂纹、变形、损坏断裂。为防止吊钩出现故障,就要在使用过程中严禁超负荷吊运,在检查过程中要注意吊钩的开口度、危险断面的磨损情况,同时要定期对吊钩进行退火处理,吊钩一旦发现裂纹要按照GB10051-88给予报废,坚决不要对吊钩进行焊补。特种设备管理人员对吊钩的检查要按照GB10051-88的要求判断吊钩是否能够使用。 二、钢丝绳 1 故障分析 钢丝绳在运行过程中,每根钢丝绳的受力情况非常复杂,因各钢丝在绳中的位置不同,有的在外层,有的在内层。即使受最简单的拉伸力,每根钢丝绳之间受力分布也不同,此外钢丝绳绕过卷简、滑轮时产生弯曲应力、钢丝

桥式起重机常见的故障及排除方法

桥式起重机常见的故障 及排除方法 Last revised by LE LE in 2021

桥式起重机常见的故障及排除方法 下面就从机械、电气和金属结构三方面阐述桥式起重机常见的故障及排除方法。 一、机械传动方面的常见故障 1、制动器刹车不灵、制动力矩小,起升结构发生溜钩现象;在运行机构中发生溜 车现象。其原因分析及其解决方法叙述于后: (1)制动轮表面有油污,摩擦系数减小导致制动力矩减小故刹不住车。可用煤油或者汽油将表面油污清洗干净即可解决。 (2)制动瓦衬磨损严重、铆钉裸露,制动时铆钉与制动表面相接触。不但降低制动力矩刹不住车而且又拉伤制动轮表面。危害较大。更换制动瓦衬即可。 (3)主弹簧调整不当、张力小而导致制动力矩减小、刹不住车而产生溜车或溜钩现象。重新调整制动器使其主弹簧张力增大。 (4)主弹簧疲劳,材料老化或产生裂纹、无弹力、张力显着减小而刹不住车。应更换新弹簧并调整之。 (5)制动器安装不当、其制动架与制动轮不同心或偏斜而导致溜钩或溜车现象。 通常先把制动器闸架地脚螺丝松开,然后将制动器调紧,使闸瓦抱紧制动 轮,这时再将悬浮的制动器闸架底部间隙填实,然后再紧固地脚固定螺丝, 即可达到二者同心。 (6)电磁铁冲程调整不当或长行程制动电磁铁水平杆下面有支承物,导致刹不住车。通常重新调整磁铁冲程或去掉支承物即可解决。 (7)液压推动器的轮叶转动不灵活,导致刹车力矩减小。调整叶轮消除卡塞阻力,使叶轮转动滑块即可解决。 2、制动器打不开。导致制动器打不开的原因及其排除方法有以下几种: (1)主张力弹簧张力过大、电磁铁拉力小于主张力弹簧的张力,故打不开闸,重新调整制动器,使主弹簧张力减小即可。 (2)制动器杠杆传动系统有卡住现象,松闸力在传递中受阻,故打不开闸。检查传动系统,消除卡塞现象即可解决。 (3)制动器制动螺杆弯曲,螺杆头顶碰不到磁铁动铁芯,故无法推开制动闸瓦。 拆开制动器,取下螺杆将其调直或更换螺杆即可。

吊车事故案例分析(1)

案例分析 报案号:RDZA201132080000011181 标的车型:福田牌BJ4253SNFKB 出险经过说明:车辆下坡时刹车失控,驾驶员冲上减速坡后车辆侧翻。补充说明:车主曾经在购买标的车不久后由于缸体存在缺陷由厂家更换过缸体,行驶证载明的发动机号与发动机铭牌上一致,发动机为机械喷油式柴油机。 案件思考:修理厂提出由于翻车后机油蹿缸致使发动机产生“飞车”现象无法熄火,发动机维持在较高转速下工作,曲柄连杆机构及各摩擦副在高温、缺乏润滑的情况下出现磨损烧蚀,要求更换曲轴、大小瓦、凸轮轴、正时齿轮、连杆、挺杆、挺柱、缸盖、活塞环、飞轮等配件。在定损、核损过程中,出险地定损员观点如下:(原文) 1、本车侧翻,会造成机油泵吸不上机油,机油温度又高,粘度下降,大部分机油会流入汽缸,而且部分机油会沿着汽缸壁窜入燃烧室,很可能使发动机产生‘飞车’现象。而所谓‘飞车’现象是指发动机转速高于发动机标定转速。或瞬时功率大于额定功率。也就是说发动机转速失控,想灭车也灭不了。机油窜入燃烧室,粘度又低温度高,就会和柴油一起混合成可燃混合气一起燃烧,燃烧后,燃烧室内的温度和压力就会大于正常燃烧时燃烧室内的温度和压力。使发动机产生‘飞车’。发动机一但产生‘飞车’后,瞬时功率大于额定功率。迫使发动机强行运动。发动机在失控高速运转情况下,尽管时间短。就会导致发动机

内部零件严重损毁,如抱轴、拉缸、烧瓦、曲轴轴径表面烧灼、退火、缸盖烧蚀、连杆短裂、夯缸等重要机件的损坏。 2、凸轮轴轴颈表面蓝色痕迹为缺乏润滑所导致高温烧蚀,进而发生的“退火”现象; 3、发动机在缺乏润滑油的情况下强行运转,曲轴正时齿轮带动凸轮轴正时齿轮运动,由于运动阻力大,导致凸轮轴和凸轮轴正时齿轮产生相对微动而使凸轮轴正时齿轮连接螺栓发生扭切而断裂,导致凸轮轴前端变形与凸轮轴正时齿轮产生间隙,致使发动机工作时间发生变化,导致顶杆弯曲; 4、由于主油道先到主轴颈,后到连杆轴颈,因此连杆轴颈缺乏润滑油比主轴颈严重,所以大瓦磨损轻微而小瓦几乎烧蚀。 请问以上观点是否成立?请结合事故照片进行分析,并给出赔付意见。 事故照片:

起重机械常见故障原因分析及处理

起重机械常见故障原因分析及处理 摘要:起重机是现代机械化生产的重要传输设备,能够满足大型、重型货物的升降运输需要。随着国内工业经济的逐渐发展,各种形式的起重机设备得到了广泛运用,显著降低了人工操作的难度。由于起重机具备体积大、结构多、操作难等特点,其在使用过程中容易出现故障问题,从而引发安全意外事故。针对这一点,本文首先介绍了起重机械使用过程中的不安全应诉,然后主要分析了起重机安全故障的原因、分析、处理方法以及一些改进措施。 关键词:起重机械;安全故障;改进; 起重机械是指用于垂直升降或者垂直升降并水平移动重物的机电设备,其范围规定为额定起重量大于或者等于0.5t的升降机;额定起重量大于或者等于1t,且提升高度大于或者等于2m的起重机和承重形式固定的电动葫芦等。在企业里运用较为平凡的主要有电动葫芦、单梁桥式起重机及双梁桥式起重机。一般情况下生产型企业运用起重机械主要是在检修的时候辅助使用,且运行环境较恶劣,使用率不高,但是故障率较高,据统计,检修用起重机械每年平均的使用次数约为6次,但是发生故障为1.2次,从而影响检修进度、增加维修费用及成本,且对检修时的安全埋下了极大的隐患。因此,判断起重机械的故障原因并采取有效的的措施预防其故障的发生就显得尤为重要。 1.起重机械使用过程中存在的不安全因素 近几年,国家对特种设备的安全很重视,先后制定了《特种设备安全监察条例》、《起重机械安全监察规定》等多项法规、标准,加强了对起重机械的监察管理工作,有效地控制了事故发生。但由于种种原因,起重机械仍然存在许多不安全因素,起重机械存在的不安全因素主要有以下几点: 1.1人为因素 由人为因素引起的起重机械事故较多,主要表现在:

起重伤害事故案例分析

起重伤害事故案例分析 1.起重伤害简述 起重伤害 起重伤害事故是指在进行各种起重作业(包括吊运、安装、检修、试验)中发生的重物(包括吊具、吊重或吊臂)坠落、夹挤、物体打击、起重机倾翻、触电等事故。适用于统计各种起重作业引起的伤害。起重作业包括:桥式起重机、龙门起重机、门座起重机、搭式起重机、悬臂起重机、桅杆起重机、铁路起重机、汽车吊、电动葫芦、千斤顶等作业。如:起重作业时,脱钩砸人,钢丝绳断裂抽人,移动吊物撞人,钢丝绳刮人,滑车碰人等伤害;包括起重设备在使用和安装过程中的倾翻事故及提升设备过卷、蹲罐等事故。 起重事故的危害 根据不完全统计,在事故多发的特殊工种作业种,起重作业事故的起数高,事故后果严重,重伤、死亡人数比例大,已引起有关方面的高度重视。 起重作业的特点 (1)吊物具有很高的势能 (2)起重作业是多种运动的组合 (3)作业范围大 (4)多人配合的群体作业 (5)作业条件复杂多变

起重伤害事故的直接原因 (1)起重机的不安全状态 首先是设计不规范带来的风险,其次是制造缺陷,诸如选材不当,加工质量问题、安装缺陷等,使带有隐患的设备投入使用。 (2)人的不安全行为 人的行为受到生理、心理和综合素质等多中因素的影响,其表现是多种多样的。操作技能不熟练,缺少必要的安全教育和培训;非司机操作,无证上岗;违章违纪蛮干,不良操作习惯;判断操作失误,指挥信号不明确,起重司机和起重工作配合不协调等。 (3)环境因素 超过安全极限或卫生标准的不良环境,室外起重机受到气候条件的影响,直接影响人的操作意识水平,使失误机会增多,身体健康受到损伤。 2事故的预防 (1)在日常工作中,指定专门人员对吊索、索具进行定期保养、维护。清理绳端断丝、绳股断裂、由绳芯损坏而引起的绳径减小、外部及内部磨损、外部及内部腐蚀、严重变形的吊索。检查吊带应无烧伤、褪色、打节、断裂等,完好无损,确保标识和标牌清晰可读。吊钩应有制造单位的合格证等技术证明文件,方能接收、使用。检验合格的吊钩,应在低应力区作出不易磨灭的标记。标记内容至少应包括:额定起重量、厂标或厂名、标验标志。并建立设备维护和保养档案。 (2)建立合格的存储地点,分区放置吊索、吊具。预防因错拿吊索、吊具而发生事故。

桥式起重机车轮与轨道常见机械事故障分析及预防措施

仅供参考[整理] 安全管理文书 桥式起重机车轮与轨道常见机械事故障分析及预防 措施 日期:__________________ 单位:__________________ 第1 页共3 页

仅供参考[整理] 桥式起重机车轮与轨道常见机械事故障分析及预防措施起重机在运行过程中车轮与轨道常见的故障为车轮的啃道及小车 的不等高、打滑。其中造成啃道的原因是多方面的,且啃道的形式是多样的。啃道轻者影响起重机的寿命,重者会造成严重的伤亡事故,因此特种设备管理人员对于啃道要引起足够的重视。造成啃道的主要原因是安装时产生不符合要求误差的、不均匀摩擦及大车传动系统中零件磨损过大、键连接间隙过大造成制动不同步。 因此各单位的特种设备主管部门在安装、维修起重机时一定要找有资质的单位进行安装、维修,从而保证设备安全及运行寿命;同时特种设备管理人员要加强平时的检查管理,避免起重机发生啃道的机械故障,在检查过程中要认真、细致地找出啃道的原因,并采取相应的措施。小车车轮的不等高是起重机运行中的极不安全的因素,小车的不等高使小车在运行中一个车轮悬空或轮压太小可能引起小车车体的震动。造成小车车轮不等高的因素是由多方原因引起的,但是主要原因是安装误差不符合要示求及小车设计本身重量不均匀,因此对小车不等高的故障要全面分析,把小车不等高的问题解决好。 起重机在运行过程中由于轨道不清洁、启动过猛、小车轨道不平、车轮出现椭圆、主动轮之间的轮压不等的原因使得小车产生打滑环象,这就要求特种设备管理人员在检查过程中一定要认真仔佃,发现问题要及时解决,避免产生小车打滑的现象。 第 2 页共 3 页

仅供参考[整理] 安全管理文书 整理范文,仅供参考! 日期:__________________ 单位:__________________ 第3 页共3 页

吊车倾斜事故报告

吊车倾斜事故调查报告 一、事故发生时间:2017年6月19日上午13时40分左右。 二、事故发生的工程名称:中天未来方舟D4组团1、2号楼钢连廊组装项目。 三、事故发生的地点:中天未来方舟D4组团1、2号楼之间。 四、事故发生的企业:中建四局安装公司贵州分公司。 五、起重设备名称:长江牌50吨吊车。 六、起重设备使用性质:临时租用。 七、事故原因: 吊车安放在1、2号楼间1层东北面出来1米的位置进行装吊,将一根自重约为1.3吨的钢廊从吊车的东北面旋转至吊车的西南面时,吊物(勾机)随吊臂的变幅继续延伸往吊车西南方向的时候,吊车车头突然翘起,操作人员失控,导致吊车发生倾斜,吊车大臂横搭在西南方向防护围墙上。 八、人员伤亡情况: 由于吊装周边设置了禁区,加之吊车倾斜是在同一水平面,所以,此次没有出现任何伤亡事故。 九、机械设备损伤程度: 1、吊车大臂中部微变形,副臂脱落; 2、吊车后脚支撑变形。 十、事故发生后采取的措施及事故控制的情况: 1、事故发生后,现场安全员、施工员立即向项目经理报告,项目经理接到报告后,立即实施《中天未来方舟项目施工事故应急救援预案》,组织安全领导小组的相关人员及时赶到案发现场进行排险,疏散周边施工人员,用警戒带隔离危险区,检查现场是否有伤亡现象,保护现场;

2、现场安全主管付俊一边指挥排险,一边向甲方工程部和监理公司相关领导报告,并及时通知吊装公司领导前来处理; 5、吊装公司领导接到通知后,立即赶到现场协商救援。并调动两台80吨的吊车前来协助救援,经过近7个小时的努力,侧翻吊车终于在当日21时20分平安扶正到地面上。 十一、事故原因分析: 1、吊车司机违规作业,没有严格使用力矩限制器,重量限制器等安全装置,所以导致吊车发生侧翻; 2、吊车司机违反了操作规程,在起吊时,没有平地进行试吊,造成在吊车失稳时无法控制和挽救。 十二、预防事故重复发生的措施: 1、租用吊车,首先要求车主提供有效证件,如:吊车营业执照和资质,特殊操作人员资格证书,安全吊装许可证、起重设备产权书,起重设备出厂证书和合格证等,否则拒绝租用; 2、吊车4个支撑点,必须安置在坚固的地面上,并垫上不少于一平方米面积的钢板和枕木; 3、要求司机在起吊前,严格检查力矩限制器和重量限制器装置是否生效; 4、现场安全员对吊物使用的钢丝绳必须严格检查是否有破损的现象; 5、项目部对租用的吊车司机,必须作口头和书面安全技术交底; 6、吊装作业,必须编制吊装方案拨并经相关部门审批合格后,方能进行操作。 十三、事故责任分析和对责任者处理意见: 1、吊车司机违反了操作规程,吊装公司对此次事故负全责。

起重机三大构件常见问题及其安全使用(最新版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 起重机三大构件常见问题及其安 全使用(最新版)

起重机三大构件常见问题及其安全使用(最 新版) 导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 起重机的三大构件是指吊钩、钢丝绳与制动器。这三大构件一旦出现问题,极易造成吊物坠落,甚至造成严重的伤亡事故。 吊钩常见的问题主要是千斤绳脱钩,也就是当物体捆绑不好,千斤绳间的夹角超过120度,或吊运中钩侧向被碰,重物底部受搁时千斤绳会从钩中拽出。另外,由于吊钩系用灰铸铁或铸钢件材料制造,其脆性大,不耐碰,易破裂,因此,在吊物过程中,如果场地窄小或者操作者操作时大意,滑轮会因碰撞而受损。一旦滑轮受损,其轮缘破口会造成对钢丝绳的切割,甚至切断钢丝绳而引发事故。如果操作者未及时给吊钩滑轮加油,滑轮可因转动不灵活而导致槽底磨损量超标,久之,滑轮会半裂开来,吊钩就会在运行中发行事故。不仅如此,当槽底磨损量增大时,会使得钢丝绳嵌入量国中深,增大磨擦阻力,从而导致钢丝绳嵌入量加深,增大阻力,从而导致钢丝拉毛而加速报废。

桥式起重机常见的故障及排除方法

桥式起重机常见的故障及排除方法 下面就从机械、电气和金属结构三方面阐述桥式起重机常见的故障及排除方法。 一、机械传动方面的常见故障 1、制动器刹车不灵、制动力矩小,起升结构发生溜钩现象;在运行机构中发生 溜车现象。其原因分析及其解决方法叙述于后: (1)制动轮表面有油污,摩擦系数减小导致制动力矩减小故刹不住车。可用煤油或者汽油将表面油污清洗干净即可解决。 (2)制动瓦衬磨损严重、铆钉裸露,制动时铆钉与制动表面相接触。不但降低制动力矩刹不住车而且又拉伤制动轮表面。危害较大。更换制动瓦衬即可。 (3)主弹簧调整不当、张力小而导致制动力矩减小、刹不住车而产生溜车或溜钩现象。重新调整制动器使其主弹簧张力增大。 (4)主弹簧疲劳,材料老化或产生裂纹、无弹力、张力显著减小而刹不住车。应更换新弹簧并调整之。 (5)制动器安装不当、其制动架与制动轮不同心或偏斜而导致溜钩或溜车现象。通常先把制动器闸架地脚螺丝松开,然后将制动器调紧,使闸瓦抱紧制动轮,这 时再将悬浮的制动器闸架底部间隙填实,然后再紧固地脚固定螺丝,即可达到 二者同心。 (6)电磁铁冲程调整不当或长行程制动电磁铁水平杆下面有支承物,导致刹不住车。 通常重新调整磁铁冲程或去掉支承物即可解决。 (7)液压推动器的轮叶转动不灵活,导致刹车力矩减小。调整叶轮消除卡塞阻力,使叶轮转动滑块即可解决。 2、制动器打不开。导致制动器打不开的原因及其排除方法有以下几种: (1)主张力弹簧张力过大、电磁铁拉力小于主张力弹簧的张力,故打不开闸,重新调整制动器,使主弹簧张力减小即可。 (2)制动器杠杆传动系统有卡住现象,松闸力在传递中受阻,故打不开闸。检查传动系统,消除卡塞现象即可解决。 (3)制动器制动螺杆弯曲,螺杆头顶碰不到磁铁动铁芯,故无法推开制动闸瓦。拆开制动器,取下螺杆将其调直或更换螺杆即可。 (4)制动瓦衬胶粘在有污垢的制动轮工作面上。清除制动轮表面上的污垢即可解决。

LNG槽车交通运输事故抢险案例及现场处置方案 讨论稿

LNG槽车交通运输事故抢险案例及现场处置方案 (讨论稿) 近年来,液化天然气(LNG)以槽车道路运输方式发展迅速,成为管道天然气供气的一种有效补充供气方式,扩大了供气范围。但是道路交通事故率普遍较高,加之液化天然气又有易燃易爆的特点,液化天然气槽车运输的安全问题比较突出,本文回顾了三起LNG槽车交通运输事故案例,最后介绍了面对LNG槽车事故的现场应急处置方案。 第一部分 LNG槽车交通运输事故案例 一、阳泉公司“”LNG槽车事故抢险案例 2015年3月25日11时,一辆LNG运输车(车牌号鲁YM320挂)驶经山西省阳泉市太阳高速(S45)盂县南高速出口匝道附近时,发生一起车辆侧翻交通事故,槽车储罐内装有约吨液化天然气。盂县消防支队在了解情况后立即向市政府有关部门报告,并请求支援。 我公司在接到市政府指示后,立即安排部署应急抢险事宜:①通知消防部门对事故现场警戒,疏散现场人员、禁止车辆通行、现场严禁烟火,待现场勘察后再行处置;②立即通知LNG分公司员工紧急集

合待命;③立即组织当班员工对加液车进行倒液,留出空车以备倒液;④立即组织对抢险物资包及相关设施进行检查,包括防冻服、防冻手套、三防鞋、防护面罩、检漏仪、防爆对讲机、阻火帽、发电机及空气呼吸器等;⑤先组织两名抢险人员携带抢险装备赶赴现场,加液车清空后再赴现场备用。 到达现场后,抢险人员先穿戴好抢险装备,携带检漏仪由远及近对事故现场周边进行检测,发现无燃气泄漏。然后对事故车进行勘查,发现槽车储罐前部明显受损变形、后部仓门部分变形,无法打开,经检测槽车后仓及车辆自带LNG钢瓶无天然气泄漏。在关闭LNG钢瓶阀门后,建议消防队用防爆工具打开后仓门,并对车辆电瓶及线路进行拆除。 后仓门打开后,抢险人员再次对事故车进行勘查,发现槽车管路轻微变形但无泄漏,压力表、安全阀未受损,但储罐压力高出正常压力范围。初步判定储罐受损变形,真空度逐步失效。 在现场情况可控的情况下,抢险人员建议路政部门立即调集铲车打通至事故车的通道,调集吊车至事故现场待命,并通知事故单位立即调一台空罐车到现场备用。

相关主题
文本预览
相关文档 最新文档