当前位置:文档之家› 材料成型原理及工艺

材料成型原理及工艺

材料成型原理及工艺
材料成型原理及工艺

材料成型原理及工艺实验指导书

姓名

班级

学号

南京农业大学工学院机械工程系

机械制造教研室

2006年11月

目录

实验一铸造合金流动性测定 (1)

实验二铸造合金热裂倾向测定 (4)

实验三焊接缺陷分析 (6)

实验四铸造合金收缩率的测定 (12)

实验五铸造残余应力测定 (15)

实验一铸造合金流动性测定

一、实验目的

1.了解铸造合金流动性的测定原理、方法及过程;

2.理解影响合金流动性的各种因素。

二、合金流动性测定原理

流动性是铸造合金最主要的铸造性能之一,其影响因素众多:如金属及合金自身的特性、出炉温度、浇注温度、铸型的种类、铸件结构复杂程度、浇注系统设计等,为使其具有可比性,实际中常浇注流动性试样,并按浇出的试样尺寸评价流动性的好坏。

流动性试样按照试样的形状可分

为:螺旋试样,U试样,棒状试样,楔

型试样,球型试样等;按照铸型材料来

分有:砂型和金属型。螺旋试样法应用

比较普遍,其特点是接近生产条件,操

作简便,测量的数值明显。

螺旋试样的基本组成包括:外浇

道,直浇道,内浇道和使合金液沿水平

方向流动的具有倒梯形断面的螺旋线

形沟槽。合金的流动性是以其充满螺旋

形测量沟槽的长度(cm)来确定的。图

1.1为同心三螺旋线测定法试样形状和

尺寸。此法为标准法。同心三螺旋线的

合金流动长度的平均值来测定合金的

流动性,从而提高了测量的精度。也可图1.1 同心三螺旋线测定法试样简

以采用不同心的三螺旋线试样测定,图1.2为不同心三螺旋线测定法试样形状和尺寸,其截面为倒梯形,长度为1500mm,每隔50mm试样模型上有一凸点(便于读数)。分别测量三螺旋线长度取其平均

值来测定合金的流动性。

图1.2 不同心三螺旋线试样示意图

1堤坝式浇口杯2 上砂箱3下砂箱4全压井5螺旋形试样

a缓冲池b直浇口c溢流池d浇口井

三、实验仪器设备及材料

1.合金熔炼:100kW中频感应电炉一台(套),容量为10kg的坩埚、容量为10kg手端包;或电阻炉一台,Al2O3坩埚一个,热电偶、防护用品等。

2.混砂用:SHN型碾轮式混砂机(容量0.1M3)石英砂、膨润土、铸造用煤粉。

3.造型制芯用:铸件模样螺旋型流动试样模样,浇注系统模样,冒口模样,砂箱,模板,芯盒,造型工具。

四、实验步骤

1.用碾砂机混制好型砂、造型、合箱;

2.熔炼铸造合金至预定温度、经必要的炉前处理;

3.浇注前浇口塞堵住直浇口;

4.当浇品杯达到指定温度时拔出浇口塞、让合金液充填砂型,同时记录浇注温度;

5.当合金完全凝固并冷却到试样发黑时打箱,测量螺旋线长度。

五、实验报告要求

1.简述合金流动性的原理及方法。

2.将测量与计算数据以表格列出。

3.分析影响合金流动性的因素。

4.写出实验的体会与疑问。

实验二铸造合金热裂倾向测定

一、实验目的

1.测定铝合金出现热裂时收缩阻力和温度范围;

2.熟悉测定热裂倾向的方法;

3.加深对热裂机理的认识。

二、实验原理

热裂是合金在凝固末期的高温下形成的裂纹。因为合金的线收缩是在完全凝固之前便已开始,此时固态合金已形成完整的骨架,但晶粒之间还有少量液体,故强度、塑性期甚低。若机械应力超过了该温度下合金的强度,便发生热烈。其形状特征是缝隙宽、形状曲折、缝内呈氧化色。其主要影响因素如下:1.合金性质

合金的结晶温度范围愈宽,液、固两相区的绝对收缩量愈大,合金的热裂倾向也就愈大。灰铸铁的球墨铸铁的热裂倾向小,铸钢、铸铝、可锻铸铁的热倾向大。此外,钢铁中含硫愈高,热裂倾向也愈大。

2.铸型阻力

铸型的退让性愈好,机械应力愈小,热裂倾向就愈小。铸型的退让性与型砂、型芯砂粘结剂的种类密切相。如采用有机粘结剂(如植物油

合成树脂等)配制的型砂芯砂,因高温强度低,退让性较粘土砂好。

三、主要仪器及材料

热裂倾向测定仪1台

X—Y函数记录仪1台

晶体管直流稳压电源1套

坩埚电阻炉1台

浇注工具1套

镍铬—镍硅热电偶1套

四、实验内容

测定铝铜合金在同一工艺条件下出现热裂时的收缩阻力及温度,热裂倾向测定

仪如图2.1所示。

图2.1 热裂倾向测定仪示意图

1-机座2-金属型3-热电偶4-测杆5-拉压力传感器

五、实验方法与步骤

1.熔化合金过热到800℃保温,金属型底部用潮模砂造型。

2.金属型置于热裂仪机座上,连好传感器,固定金属型,将热电偶插入铸型。

3.接通电路。调整记录仪表,温度用红笔记录,量程50mV,阻力用蓝笔记录,量程5mV,记录速度3600mm/h。

4.自铸型中间浇入金属液。

5.注意观察试样热节处裂纹的出现及记录仪记录曲线走向和温度。

6.记录实验数据,填写实验报告。

7.

六、实验注意事项

1.自铸型中间浇入金属液时,注意不要溢出。

2.裂纹出现后应立即将测杆与传感器断开,以免过载。

七、实验报告要求

1. 简述实验原理及过程。

2. 整理实验数据,形成实验报告。

实验三焊接缺陷分析

一、实验目的

1.认识焊接气孔和裂纹常见缺陷的基本特征及产生原因;

2.学会焊接气孔和裂纹的检测方法。

二、实验原理

1.气孔和裂纹缺陷的形成及基本特征

1)气孔:在焊接过程中,熔池金属中的气体在金属冷却以前,未能来得及逸出,而在焊缝金属中(内部或表面)所形成的孔穴,称为气孔。位于焊缝表面的气孔称为表面气孔,处于焊缝内部的气孔称为内部气孔。气孔的形状有球状、椭圆形、链状和蜂窝状等,见图3.1。气孔对焊缝的性能有较大的影响,它不仅减小了焊缝的有效工作断面,使焊缝的力学性能下降,还破坏了焊缝金属的致密性,易造成泄漏。在动载荷作用下,还会降低焊缝的疲劳强度。因此,在重要的焊接结构中是不允许气孔特别是链状和蜂窝状气孔存在的。

图3.1 各种气孔

a)表面气孔b)内气孔c)圆形气孔d)椭圆形气孔e)链状气孔f)蜂窝状气孔

2)裂纹:

在焊缝或热影响区因开裂而形成的缝隙称为焊接裂纹。通常把平行于焊缝的裂纹称为纵向裂纹,垂直于焊缝的裂纹称为横向裂纹,在弧坑中的裂纹称为火口裂纹或弧坑裂纹,如图3.2所示。

图3.2 焊接接头裂纹分布形态示意图

1—向裂纹;2—横向裂纹;3—焊根裂纹;4—焊趾裂纹;

5—焊道下裂纹;6—层状撕裂;7—火口裂纹

焊接裂纹是一种危害最大的缺陷,不仅降低焊接接头的强度,还会引起应力集中,使焊接结构承载后造成断裂,使产品报废,甚至会引起严重的事故。根据裂纹产生的条件,裂纹可分为热裂纹、冷裂纹、再热裂纹和层状撕裂四种。各种裂纹的分类及特征见表1.1。

(1)热裂纹

焊接过程中,焊缝和热影响区金属冷却到固相线附近高温区产生的裂纹称为热裂纹。热裂纹一般产生在焊缝的结晶过程中,故又称结晶裂纹或凝固裂纹。在焊缝金属凝固后的冷却过程中还可能继续发展。热裂纹绝大多数产生在焊缝金属中,有的是纵向,有的是横向。发生在弧坑中的热裂纹往往是星状。有时热裂纹也会发展到母材中去。热裂纹的外观特征是或者处在焊缝中心,或者处在焊缝两侧,其方向与焊缝的波纹线相垂直,露在焊缝表面的有明显的锯齿形状。凡是露出焊缝表面的热裂纹,因氧在高温下进入裂纹内部,所以在裂纹断面立即可以发现明显的氧化色彩。

(2)冷裂纹

焊接接头冷却到较低温度(约为200~300℃)时,产生的焊接裂纹叫冷裂纹。冷裂纹主要产生在中碳钢和高强度的低合金钢、中合金钢中。

产生冷裂纹的温度通常在马氏体转变的温度范围内,约为200~300℃。它的产生时间,可以在焊后立即出现,也可以在延迟几小时、几周,甚至更长的时间以后产生,所以冷裂纹又称为延迟裂纹。

冷裂纹大多产生在母材或母材与焊缝交界的熔合线上。最常见的是焊道下裂纹、焊趾裂纹和焊根裂纹。冷裂纹外观特征多数是纵向裂纹,在少数情况下,也可能有横向裂纹。金属表面的冷裂纹断面上,没有明显的氧化色彩,所以裂口发亮。

表1.1各种裂纹的分类及特征

(3)再热裂纹

焊后焊件在一定温度范围内再次加热而产生的裂纹叫再热裂纹。再热裂纹的热影响区,往往都是沿晶界开裂,都在粗大晶粒区,并且是平行于熔合线分布。Cr、Mo、V等合金元素较多时,产生再热裂纹的倾向增大。

(4)层状撕裂

焊接时焊接构件中沿钢板轧层形成的阶梯状的裂纹叫层状撕裂。

防止措施:严格控制钢材的含硫量,在与焊缝相联接的钢材表面预先堆焊几

层低强度焊缝和采用强度等级较低的焊接材料。

2.射线探伤机的工作原理

射线探伤是利用射线可穿透物质和在物质中有衰减的特性来发现缺陷的一种探伤方法。探伤中常用的射线有X射线和放射性同位索的 射线,见图3.3。

图3.3 射线探伤原理

1—射线源2—焊件3—底片

射线通过不同厚度或不同材料时,其衰减不同,因而在底片上产生不同程度的明暗影像,以此来辨别缺陷性质的:母材呈黑色,焊缝呈浅白色,当焊缝中有缺陷时,又出现不同形状、不同深度的暗黑色。

(1)裂纹:裂纹在底片上多呈暗带曲折的波浪形细条纹,有时也呈直线形细纹,轮廓较分明,中部稍宽、两端较尖细,见图3.4。

(2)气孔:手工电弧焊的气孔在底片上多呈黑色圆形或椭圆形,其黑度是中心处较深,并均匀地向边缘减小,形式有密集的、连续的或分散分布的几种。自动焊焊缝中所产生的气孔通常较大,有时直径可达几毫米,黑色也较深,见图3.5。

图3.4 裂纹图3.5气孔

三、主要仪器及材料

1.手弧焊机6~8套

2.射线探伤机1台

3.焊条烘干箱1台

4.暗室冲洗设备1套

5.45钢板(厚4~6mm)若干

6.金相显微镜1台

7.焊条若干

四、实验方法与步骤

1.将两块45钢要焊接的表面清理干净;

2.选择合适的焊接工艺参数与焊条,将两块45钢对接焊接牢;

3.通过宏观金相检验焊缝宏观组织各区域的界限和尺寸以及各种焊接缺陷;4.在指导教师的指导下,按照的操作规程作用射线仪,对焊接接头进行无损检测焊缝的气孔和裂纹缺陷;

5.分析得到的缺陷图谱,确定缺陷类型及特征。

6.记录实验结果,撰写实验报告。

五、实验注意事项

1.射线仪的作用务必在指导教师指导下严格遵守操作规程进行,严禁私自作用射线仪;

2.在开始摄片前,首先接通冷却水,并检查水的流量是否符合要求;

3.检查安全防护装置、屏蔽与接地是否良好;

4.摄片结束后,冷却水及油泵应继续运转10~15min,才能切断电源。

六、预习与思考题

1.什么叫焊接缺陷?常见的焊接缺陷有哪些?它们有何危害?

2.什么叫气孔?防止焊缝中产生气孔的措施有哪些?

3.热裂纹有哪些特点?防止热裂纹的措施有哪些?

4.冷裂纹有哪些特点?防止冷裂纹的措施有哪些?

5.常用的致密性检验方法有哪些?如何进行检验? 6.无损探伤检验方法有哪些?它们的原理及目的是什么?

七、实验报告要求

1、实验目的、实验内容及原理;

2、简述实验过程,按要求撰写实验报告。

实验四 铸造合金收缩率的测定

一、实验目的

1. 通过测定不同成分铸造铝合金的线收缩率和冷却曲线;

2. 掌握测定铸造合金线收缩的方法。

二、实验原理

合金从浇注、凝固直至冷却到室温,其体积或尺寸产生的缩减的现象,称为收缩。收缩是合金的物理特性。收缩给铸造工艺带来许多困难,是多种铸造缺陷产生的根源,因此必须研究合金的收缩规律。合金的收缩经历如下三个阶段:

1. 液态收缩:从浇注凝固开始温度间的收缩。

2. 凝固收缩:从凝固开始温度到凝固终了温度间的收缩。

3. 固态收缩:从凝固终了温度到室温间的收缩。

合金的液态收缩和凝固收缩表现为合金体积的收缩,常用单位体积收缩量来表示。合金的固态收缩不仅引起合金体积上的缩减,同时,更明显地表现在铸件尺寸上的缩减,因此固态收缩常用单位长度上的收缩量来表示,即称为线收缩。线收缩量与铸型型腔长度之比称为合金的线收缩率。

图4.1为测定合金线收缩的装置。将被试验的合金浇入砂型2内。砂型左端有一个固定杆1,合金凝固后此杆为固定端。砂型右端有一个金属杆3浇合在试样内,此端可随试样自由收缩。自由端杆3与滑杆4相连接。滑杆在导轮5上移动,以减小磨擦阻力。滑杆与千分表6接触。试样伸缩时,可以从千分表上读出伸缩的数值。所测得数据可以看成合金的自由线收缩,从而就可算出其自由线收缩率。

合金线收缩率L ε的表达式

%100)(%100100

1

0?-=?-=

t t a L L L L L ε 式中:L a ——合金的收缩系数,1/℃;

0t ——金属线收缩开始温度,℃;

1t ——室温,℃;

0L ——铸型型腔长度,mm ;

1L ——铸件长度mm 。

收缩是铸造合金本身的物理性质,铸件产生裂纹、应力、变形等缺陷与固态收缩有关,且合金的线收缩率是正确制定铸造工艺方法,控制铸件质量有重要依据。

三、实验设备及材料

1. 坩埚电阻炉 1台

2. 铸铁坩埚 1套

3. 浇注工具 1套

4. 自由线收缩仪 1台

5. XWT-264台式自动平衡记录仪 1套

6. 热电偶 1套

7. ZL102、ZL203 若干 四、实验方法与步骤 1. 熔化合金至760℃保温;

2. 造型。将砂型置于线收缩仪机座上,将石英管穿过石墨套塞安于砂型两侧预留孔内适当位置,保证型腔长度200mm ,同时紧固石墨套塞。

图4.1合金线收缩装测定装置简图

1-固定端金属杆 2-砂型 3-自由端金属杆 4-滑杆 5-导轮 6-千分表

3. 连接记录仪与收缩仪导线,调整仪表,位移量转换为电信号后由XWT-264

蓝色记录,量程用0.5V挡,温度用红色记录,量程用50mV挡,记录速度用1200mm/h。

4. 准备就绪后,先开动仪表记录,然后浇注金属液,仪表自动记录温度和位

移量-时间关系曲线,注意观察记录曲线变化。

5. 每隔10s读出千分表上收缩量(从收缩开始计时)。

6. 温度降至200℃,实验结束,关闭仪表,拆下试样,测量长度。

7. 比较记录纸上所记录收缩量与千分表读数,分析实验结果,填写实验报告。

五、实验注意事项

1. 开动仪器前,注意记录仪与位移传感器调零。

2. 安装热电偶接线时注意极性,热电偶从砂型中间预留孔插入。

3. 浇注前测铝液温度不得低于750℃。

六、实验报告要求

1.简述实验原理及实验过程。

2.整理实验数据,撰写实验报告。

3. 分析实验结果,写出实验体会。

实验五铸造残余应力测定

一、实验目的

1.学习测定铸件残余应力的方法;

2.分析件残余应力的产生、发展过程。

二、实验原理

铸件在凝固后的继续冷却过程中,将产生固态收缩。若铸件各部分壁厚不同或因工艺等因素,使各部分不一致或收缩受阻碍,则将产生内应力-----铸造应力。

铸造过程中,由于各种原因,铸件中产生应力几乎是不可避免的。铸造应力对铸件质量影响很大,它是铸件在冷却过程中以及在以后的切削加工过程中或铸件使用过程中产生变形和裂纹的根本原因。在腐蚀介质中使用的铸件还会导致应力腐蚀。

铸造应力按其形成的原因,可以分为机械应力和热应力两类。

1. 机械应力

机械应力也称为收缩应力,是铸件收缩过程中受到机械阻碍而形成的应力。形成的原因很多,如砂型过紧、型砂和芯砂的高温强度太高、退让性差等。

机械应力一般都是拉应力。由于它是在铸件处于弹性状态时产生的应力,因而当形成应力的原因一经消除,如落砂、打断浇冒口系统之后,应力也就随之消失。机械应力是一种临时应力。

2. 热应力

热应力是由于铸件壁厚不均匀,各部分的冷却速度不同,以致在同一时间内铸件各部分的收缩不一致而造成的应力。这种应力一量形成,将一直保留到室温。它是铸件产生变形、开裂的主要原因。所以,设计铸件时,要尽量使各部分的冷却速度一致,实现同时凝固,可减小铸件的热应力。

三、实验设备及器材

1. ZQY铸件应力动态测定仪(如图5.1)1台

2. EX系列台式记录仪1台

3. 坩埚电阻炉浇注工具1套

4. 铝及其合金若干

5. 热电偶1套

四、实验方法及步骤

1. 主机放平,三个测头与传感器用螺母连接上紧,不得有松动。

2. 自硬砂铸型置于托架上,型腔与测头要配合紧密,防止金属液流出。

3. 按图5.2示意图接好连线,传感器电源电压6V。

4. 调整台式记录仪,选1、2笔记录应力,量程用5mV档,零点选在记录纸

中间,3、4笔记录温度,量程50mV。记录速度选择1200mm/h。记下记录笔,打开走纸开关,检查记录是否正常。

5. 上紧机体两侧液压螺栓,使预压力在1500NN以上。

图5.1 ZQY铸件应力动态测定仪

图5.2 铸件残余应力测量接线示意图

6. 打开传感器冷却水,检查所有准备工作是否就绪。

7. 铝合金过热至750℃,用小浇包取出快速浇注。

8. 注意观察记录是否正常以及温度和应力变化情况。

9. 温度降至120℃、电压约5mV,测试结束,关掉记录仪,松开液压螺栓,预

压力减至零,松开测头连接螺母,取下砂型,清理出铸件,观察有无缺陷。

10. 清理实验场地。

五、实验注意事项

1. 铝合金浇注前一定给传感器通冷水,否则会烧坏传感器。

2. 实验过程注意观察传感器输出:Ⅰ404×86 kg/mV,Ⅱ403×24 kg/mV,Ⅲ

409×84 kg/mV。

六、实验报告

1. 简述实验原理及实验过程。

2. 记录并整理实验数据,形成实验报告。

材料成型原理

硕士研究生入学考试《材料成形原理》命题大纲 第一部分考试说明 一、考试性质 《材料成形原理》考试科目是我校为招收材料成形及控制工程、材料加工工程专业硕士研究生而设置的,由我校材料科学与工程学院命题。考试的评价标准是普通高等学校材料成形及控制工程和相近专业优秀本科毕业生能达到的及格或及格以上水平。 二、考试的学科范围 应考范围包括:焊接热源及热过程,熔池凝固及焊缝固态相变,焊接化学冶金,焊接热影响区的组织与性能,焊接缺陷与控制;金属塑性成形的物理基础,应力分析,应变分析,屈服准则,应力应变关系,变形与流动问题,塑性成形力学的工程应用。 三、评价目标 《材料成形原理》是材料成形及控制工程和相关专业重要的专业基础课。本课程考试旨在考查考生是否了解材料成形的基本过程、基本特点、基本概念和基本理论,是否掌握了材料成形的基本原理、基本规律及应用。 四、考试形式与试卷结构 (一) 答卷方式:闭卷,笔试; (二) 答题时间:180分钟; 第二部分考查要点 一、焊接热源及热过程 1、与焊接热过程相关的基本概念 2、熔焊过程温度场 3、焊接热循环 二、熔池凝固及焊缝固态相变 1、焊接熔池凝固特点 2、焊接熔池结晶形态 3、结晶组织的细化 4、焊缝金属的化学成分不均匀性 5、焊缝固态相变 6、焊缝性能的控制 三、焊接化学冶金 1、焊接化学冶金过程的特点 2、焊缝金属与气相的相互作用 3、焊缝金属与熔渣的相互作用 4、焊缝金属的脱氧与脱硫 5、合金过渡 四、焊接热影响区的组织与性能 1、焊接热循环条件下的金属组织转变特点 2、焊接热影响区的组织与性能

五、焊接缺陷与控制 1、焊缝中的夹杂与气孔 2、焊接裂纹 六、金属塑性成形的物理基础 1、冷塑性变形与热塑性变形 2、影响塑性与变形抗力的因素 七、应力分析 1、应力张量的性质 2、点的应力状态与任意斜面上的应力 3、主应力,主切应力,等效应力 4、应力球张量与偏张量 八、应变分析 1、应变张量的性质 2、工程应变、对数应变、真实应变 九、屈服准则 1、Tresca屈服准则与Mises屈服准则 2、屈服轨迹与屈服表面 十、应力应变关系 1、塑性应力应变关系 2、增量理论与全量理论 十一、变形与流动问题 1、影响变形与流动的因素 2、摩擦及其影响 十二、塑性成形力学的工程应用。 1、主应力法的应用 2、滑移线法的应用 2014试题范围:今年的真题跟去年论坛里回忆的真题考的内容有80%都不一样。还是分为必做题和选做题,必做题100分,选做题50分。必做题包括塑性和焊接,选做题塑性焊接二选一。必做题前四题是塑性,后五题为焊接。选做题中:塑性部分是三题计算题,焊接部分有五题,第一题是计算题,后四题为分析简答题。 必做题:塑性考了 1.冷塑性变形对金属组织和性能的影响。2.什么是应力偏张量,应力球张量以及它们的物理意义。 3.考了对数应变和相对应变。4.还考了塑性成形过程中的力学方程。焊接考了 1.结晶裂纹的影响因素,防治措施 2.还考了熔渣的脱氧 3.熔渣的碱度对金属氧化,脱氧等等的影响。其他的忘了,跟去年考的很不一样,好多不会。 选作题;塑性是考了三个计算题,我没注意看,反正考了利用屈服准则来计算,还考了正应力,切应力,主应力的计算。最后一题利用主应力法来计算什么,我选做题选的是焊接,

材料成型原理题库

陶瓷大学材料成型原理题库 热传导:在连续介质内部或相互接触的物体之间不发生相对位移而仅依靠分子及自由电子等微观粒子的热运动来传递热量。 热对流:流体中质点发生相对位移而引起的热量传递过程 热辐射:是物质由于本身温度的原因激发产生电磁波而被另一低温物体吸收后,又重新全部或部分地转变为热能的过程。 均质形核:晶核在一个体系内均匀地分布 凝固:物质由液相转变为固相的过程 过冷度:所谓过冷度是指在一定压力下冷凝水的温度低于相应压力下饱和温度的差值 成分过冷:这种由固-液界面前方溶质再分配引起的过冷,称为成分过冷 偏析:合金在凝固过程中发生化学成分不均匀现象 残余应力:是消除外力或不均匀的温度场等作用后仍留在物体内的自相平衡的内应力 定向凝固原则:定向凝固原则是采取各种措施,保证铸件结构上各部分按距离冒口的距离由远及近,朝冒口方向凝固,冒口本身最后凝固。 屈服准则:是塑性力学基本方程之一,是判断材料从弹性进入塑性状态的判据 简单加载;在加载过程中各个应力分量按同一比例增加,应力主轴方向固定不变 滑移线:塑性变形金属表面所呈现的由滑移所形成的条纹 本构关系;应力与应变之间的关系 弥散强化:指一种通过在均匀材料中加入硬质颗粒的一种材料的强化手段 最小阻力定律:塑性变形体内有可能沿不同方向流动的质点只选择阻力最小方向流动的规律 边界摩擦:单分子膜润滑状态下的摩擦 变质处理:在液态金属中添加少量的物质,以改善晶粒形核绿的工艺 孕育处理;抑制柱状晶生长,达到细化晶粒,改善宏观组织的工艺 真实应力:单向拉伸或压缩时作用在试样瞬时横截面上是实际应力 热塑性变形:金属再结晶温度以上的变形 塑性:指金属材料在外力作用下发生变形而不破坏其完整性的能力 塑性加工:使金属在外力作用下产生塑性变形并获得所需形状的一种加工工艺 相变应力:金属在凝固后冷却过程中产生相变而带来的0应力 变形抗力:反应材料抵抗变形的能力 超塑性: 材料在一定内部条件和外部条件下,呈现出异常低的流变应力,异常高的流变性能的现象

材料成型工艺

材料成型工艺 (Material Molding Process) 课程代码:(07310060) 学分:6 学时:90(其中:讲课学时78:实验学时:12) 先修课程:材料成型原理、金属学及热处理、机械设计基础 适用专业与培养计划:材料成型及控制工程专业2012年修订版培养计划 教材:《金属材料液态成型工艺》、贾志宏主编、化学工业出版社、第一版; 《金属材料焊接工艺》、雷玉成主编、化学工业出版社、第一版; 《冲压工艺与模具设计》、姜奎华主编、机械工业出版社、第一版开课学院:材料科学与工程学院 课程网站:(选填) 一、课程性质与教学目标 (一)课程性质与任务(需说明课程对人才培养方面的贡献) 《材料成型工艺》是材料成型及控制工程专业的主干课程之一。该课程主要任务是学习液态成型、塑性成型及焊接成型的工艺原理、方法、特点、质量影响因素及其规律、质量控制、适用范围等。学习过程中侧重于实际经验、工程技术及其理论知识的综合应用。通过系统学习,在掌握成型工艺过程基本规律及其物理本质的基础上,学生能够根据不同的零件需求,灵活选择和全面分析成型工艺、完成合理的工艺设计;同时,针对成型过程中出现的质量问题进行科学分析,找到解决措施,消除和减少工件质量缺陷; 本课程以数学、物理、化学、物理化学、力学、金属学与热处理、材料成型原理等作为理论基础,主要应用物理冶金、化学冶金、成形力学理论,系统阐述金属材料成型工艺过程的相关现象及其影响因素、规律、形成机制;同时,还汇总了大量的工程技术经验和实用技术。 通过本课程的学习,可以为材料成型工艺课程设计、金属综合性实验、毕业设计等后续课程学习奠定必要的基础知识。 (二)课程目标(需包括知识、能力与素质方面的内容,可以分项写,也可以合并写) 1. 掌握铸造成型、冲压成型和焊接成型工艺过程所涉及的主要物理原理; 2. 掌握各种成型方法的工艺特点及应用范围,能够根据实际产品需要选择高效、优质低成本的成型工艺方法;

材料成型原理(上)考试重点复习题

《材料成形原理》阶段测验 (第一章) 班级:姓名:学号成绩: 1、下图中偶分布函数g(r),液体g(r)为c图,晶态固体g(r)为a图,气体g(r)为 b 图。 (a)(b)(c) 2、液态金属是由大量不停“游动”着的原子团簇组成,团簇内为某种有序结构,团簇周围是一些散乱无序的原子。由于“能量起伏”,一部分金属原子(离子)从某个团簇中分化出去,同时又会有另一些原子组合到该团簇中,此起彼伏,不断发生着这样的涨落过程,似乎原子团簇本身在“游动”一样,团簇的尺寸及其内部原子数量都随时间和空间发生着改变,这种现象称为结构起伏。 3、对于液态合金,若同种元素的原子间结合力F(A-A、B-B) 大于异类元素的原子间结合力F(A-B),则形成富A及富B的原子团簇,具有这样的原子团簇的液体仅有“拓扑短程序”;若熔体的异类组元具有负的混合热,往往F(A -B)>F(A-A、B-B),则在液体中形成具有A-B化学键的原子团簇,具有这样的原子团簇的液体同时还有“化学短程序”。 4、液体的原子之间结合力(或原子间结合能U)越大,则内摩擦阻力越大,粘度也就越大。液 体粘度η随原子间结合能U按指数关系增加,即(公式):?? ? ? ? ? = T U T B B k exp k 2 3 τ δ η。 5、加入价电子多的溶质元素,由于造成合金表面双电层的电荷密度大,从而造成对表面压力大,而使整个系统的表面张力增大。 6、铸件的浇注系统静压头H越大,液态金属密度 1 ρ及比热 1 C、合金的结晶潜热H ?越大,浇注温 度 浇 T、铸型温度T型越高,充型能力越强。 7、两相质点间结合力越大,界面能越小,界面张力就越小。两相间的界面张力越大,则润湿角越大,表示两相间润湿性越差。 8、铸件的浇注系统静压头H越大,液态金属密度 1 ρ及比热 1 C、 合金的结晶潜热H ?越小,浇注温度 浇 T、铸型温度T型越高, 充型能力越强。 9、右图为碱金属液态的径向分布函数RDF,请在图中标注液 态K的平均原子间距r1的位置,并以积分面积(涂剖面线)表 达液态K的配位数N1的求法。见图中标注 10、试总结原子间相互作用力、温度、原子间距、表面活性元 素对液态金属的粘度、表面张力的总体规律。(可写于背面)

材料成形原理课后习题解答汇总

材料成型原理 第一章(第二章的内容) 第一部分:液态金属凝固学 1.1 答:(1)纯金属的液态结构是由原子集团、游离原子、空穴或裂纹组成。原子集团的空穴或 裂纹内分布着排列无规则的游离的原子,这样的结构处于瞬息万变的状态,液体内部 存在着能量起伏。 (2)实际的液态合金是由各种成分的原子集团、游离原子、空穴、裂纹、杂质气泡 组成的鱼目混珠的“混浊”液体,也就是说,实际的液态合金除了存在能量起伏外, 还存在结构起伏。 1.2答:液态金属的表面张力是界面张力的一个特例。表面张力对应于液-气的交界面,而 界面张力对应于固-液、液-气、固-固、固-气、液-液、气-气的交界面。 表面张力σ和界面张力ρ的关系如(1)ρ=2σ/r,因表面张力而长生的曲面为球面时,r为球面的半径;(2)ρ=σ(1/r1+1/r2),式中r1、r2分别为曲面的曲率半径。 附加压力是因为液面弯曲后由表面张力引起的。 1.3答:液态金属的流动性和冲型能力都是影响成形产品质量的因素;不同点:流动性是确 定条件下的冲型能力,它是液态金属本身的流动能力,由液态合金的成分、温度、杂 质含量决定,与外界因素无关。而冲型能力首先取决于流动性,同时又与铸件结构、 浇注条件及铸型等条件有关。 提高液态金属的冲型能力的措施: (1)金属性质方面:①改善合金成分;②结晶潜热L要大;③比热、密度、导热系大; ④粘度、表面张力大。 (2)铸型性质方面:①蓄热系数大;②适当提高铸型温度;③提高透气性。 (3)浇注条件方面:①提高浇注温度;②提高浇注压力。 (4)铸件结构方面:①在保证质量的前提下尽可能减小铸件厚度; ②降低结构复杂程度。 1.4 解:浇注模型如下:

华中科技大学-材料成型原理考试重点.

第一篇第一章液态金属的结构和性质 1.凝固不过只是一种相变过程,即物质从液态转变成固态的过程称为凝固。 2.相变不只是发生在固相、液相、气相三相之间,在固相中间也是会有相变,即同素异构转变。 3.对金属晶体加热以后,晶体受热膨胀,若对晶体进一步加热,则达到激活能数值的原子数量也进一步增加。原子离开点阵后,即留下自由点阵—空穴。 空穴的产生,造成局部地区的势垒的减少,使得邻近的原子进入空穴位置,这样就是造成空穴的位移。在熔点附近,空穴数目可以达到原子总数的1%。这样在实际晶体中,除按一定点阵排列外,尚有离位原子与空穴。 当这些原子的数量达到某一数量值时,首先在晶界处的原子跨越势垒而处于激活状态,以致能脱离晶粒的表面而向邻近的晶粒跳跃,导致原有晶粒失去固定形状与尺寸,晶粒间可出现相对流动,称为晶界粘性流动。 液态金属中的原子排列,在几个原子间距的小范围内与固态原子基本一致,而远离原子后就完全不同于固态,这个就称为“近程有序”、“远程无序”。固态的原子为远程有序。 4.在熔点温度的固态变为同温度的液态时,金属要吸收大量的热量,称为熔化潜热。 5.固态金属的加热熔化符合热力学规律:Eq=d(U+pV)=dU+pdV=dH dS=Eq/T,其大小描述了金属由固态变成液态时原子由规则排列变成非规则排列的紊乱程度。 6.熵值变化是系统结构紊乱性变化的量度。 7.液态金属的结构:纯金属结构是由原子集团、游离原子和空穴组成;液态金属的结构是不稳定的,而是处于瞬息万变的状态,这种原子集团与空穴的变化现象称为“结构起伏”,同时还存在大量的能量起伏。

实际液态金属极其复杂,其中包括各种化学成分的原子集团、游离原子、空穴、夹杂物及气泡,是一种“浑浊”的液体。存在温度起伏、结构起伏和成分起伏。 8.液态金属的性质:⑴粘度:实质上就是原子间作用力,影响因素①化学成分 一般的难熔化合物的物体粘度高,而熔点低的共晶成分合金的粘度低;②温度 液态金属的粘度随温度的升高而降低;③非金属夹杂物 液态金属中固态的非金属夹杂物使液态金属的粘度增加,主要是因为夹杂物的存在使液态金属成为不均匀的多相体系,液相流动时的内摩擦力增加所致。意义:①对液态金属净化的影响;上浮的动力F=V(γ1-γ2),半径在0.1cm 以下的球形杂质阻力Fc=6πrνη,由此可知速度,此即斯托克斯公式;②对液态合金流动阻力的影响;当液体以层流方式流动时,阻力系数大,流动阻力大,因此在成型过程中以紊流方式流动最好;③对液态金属中液态合金对流的影响,液态金属在冷却和凝固过程中,由于存在温度差和浓度差而产生浮力,它是液态合金对流的驱动力,当浮力大于或等于粘滞力时则产生对流,粘度越大对流强度越小。 ⑵表面张力液体或固体同空气或真空接触的界面叫表面,一小部分的液体单独在大气中出现时,力图保持球形状态,说明总有一个力的作用使其趋向球状,这个力称为表面张力。 液体内部分子或原子处于力的平衡状态,而表面层上的分子或原子受力不均匀,结果产生指向液体内部的合力,此即表面张力产生的根源。 ΔW=σΔA=ΔGb ,即为单元 面积的自由能,界面能σAB=σA+σB―W AB 影响表面张力的因素①熔点,表面张力的实质是质点间的作用力,故原子间结合力大的物质,其熔点、沸点高,则表面张力往往越大。②温度 大部分金属和合金,如铝、镁,锌等,其表面张力随温度升高而降低,因为温度升高使液体质点间结合力减弱。③溶质元素 溶质元素对表面张力的影响分为两类,使表面张力降低的溶质元素叫做表面活性元素,“活性”之义表面含量大于内部含量,称为正吸附元素;提高表面张力的元素称为非表面活性元素,θ σσσcos Lc Sc SL +=

先进材料成型技术及理论

华中科技大学博士研究生入学考试 《先进材料成形技术与理论》考试大纲 一、《先进材料成形技术及理论》课程概述 编号:MB11001 学时数:40 学分:2.5 教学方式:讲课30、研讨6、实验参观4 二、教学目的与要求: 材料的种类繁多,其加工方法各异,近年来随同科学技术的发展,新材料、材料加工新技术不断出现。本课程将概述材料的分类及其加工方法的选择;重点介绍液态金属精密成形、金属材料塑性精确成形及金属连接成形等研究与应用领域的新技术、新理论;阐述材料加工中的共性与一体化技术。本课程作为材料加工工程专业的学位课,将使研究生对材料加工的新技术与新理论有个全面的了解,引导研究生在大材料学科领域进行思考与分析,为从事材料加工工程技术的研究与发展奠定基础。 三、课程内容: 第一章材料的分类及其加工方法概述 1.1材料的分类及加工方法概述 1.2材料加工方法的选择(不同材料)及不同加工方法的精度比较(同一种材料) 1.3材料加工中的共性(与一体化)技术 1.4材料加工技术的发展趋势 第二章液态金属精密成形理论及应用 2.1 材料液态成形的范畴及概述 2.2 消失模精密铸造原理及应用(原理、关键技术、应用实例、缺陷与防治) 2.3 Corsworth Process新技术(精密砂型铸造:锆英(砂)树脂砂型、电磁浇注、热法旧砂再生) 2.4 半固态铸造成形原理与技术(流变铸造、触变成形、注射成形) 2.5 铝、镁合金的精确成形技术(金属型铸造、压铸、反重力精密铸造、精密熔模铸造等) 2.6 特殊凝固技术(快速凝固、定向凝固、振动凝固) 2.7 金属零件的数字化铸造(铸件三维造型、工艺模拟及优化、样品铸件快速铸造、工业化生产及 其设计) 2.8 高密度粘土砂紧实机理及其成形技术(高压造型、气冲造型、静压造型) 第三章金属材料塑性精密成形工艺及理论 3.1 金属塑性成形种类与概述 3.2金属材料的超塑性及超塑成形(概念、条件、成形工艺) 3.3 复杂零件精密模锻及复杂管件的精密成形(精密模锻、复杂管件成形) 3.4 板料精密成形(精密冲裁、液压胀形、其它板料精密成型) 3.5 板料数字化成形(点(锤)渐进成形、线渐进(快速)成形、无模(面、液压缸作顶模)成形)

材料成型原理习题

(a) (b) (c) (1分)(2分)(2分) (只要画出各实线以及与成份C0间的相对位置即可得分) 4. 什么是焊接热循环?其主要参数有哪些?t8/5和t100各代表什么含义?(5分) 答:在焊接过程中,焊件上某点的温度由低到高,达到最大值后又由高到低随时间的变化,称为焊接热循环。其主要参数有加热速度、最高温度(峰值温度)、相变温度以上的停留时间(高温停留时间)、冷却速度(冷却时间)。 t8/5——代表从800冷却至500的冷却时间;t100——从最高温度冷却至100的冷却时间;评分标准:对焊接热循环,答对“焊件上某点温度随时间变化”即得1分;主要参数每答出1个得0.5分,4个参数全答出得2分;t8/5和t100各1分。 5. 焊接熔池凝固有何特点?其凝固组织形态有哪些?(5分) 答:由于焊接熔池凝固条件有体积小、过热、处于运动状态、熔池界面导热好及冷却速度快○2择优生长,即当最优结晶方向与导热最快方向一致时,晶粒生长最快而优先长大,取向不一致的晶粒被淘汰。 ○3熔池界面各点柱状晶成长的平均速度θ cos ? =v R,v为焊接速度,θ为R与v之间夹角。 焊接熔池凝固组织形态,宏观上看主要是柱状晶和少量等轴晶。微观分析,柱状晶内又有平面晶、包状晶及树枝晶等。 评分标准:第1问若答出联生(外延结晶)、择优成长及θ cos ? =v R,即得满分3分;第2问只要答出(包状晶、平面晶、包状树枝晶、树枝晶)柱状晶之一和等轴晶即得满分2分。 6. 焊接中脱氧反应有哪几种形式?CO2焊应采用什么焊丝?(5分) 答:在焊接中脱氧反应按其方式和特点可分为先期脱氧、沉淀脱氧和扩散脱氧三种。先期脱氧是在药皮加热阶段,固态药皮受热后发生的脱氧反应;沉淀脱氧是在熔滴和熔池阶段,溶解在液态金属中的脱氧剂和FeO直接进行反应,把铁还原,且脱氧产物浮出液态金属的过程,扩散氧化是在液态金属与熔渣的界面上进行的,是以分配定律为理论基础的。 CO2气保焊时,由于气氛的强氧化性,根据锰硅联合脱氧原则,常在焊丝中加入适当比例的锰和硅,可减少焊缝中的氧和夹杂物。如常用H08MnSiA或H08Mn2SiA等。 评分标准:第1问答出先期脱氧、沉淀脱氧及扩散脱氧即可得满分3分;第2问答出锰硅联合脱氧得1分;能写出一种焊丝牌号得1分。 7. 什么是动可容速度场?(3分)

材料成型原理-7 凝固金属的组织结构

液态金属成型原理
0、概论 1、液态金属的结构和性质 2、凝固的热力学基础 3、界面 4、凝固的结晶学基础 5、凝固的传热基础 6、凝固过程的流体流动 7、凝固金属的组织结构 8、凝固过程的缺陷和对策
第七章 凝固金属的组织结构

第七章 凝固金属的组织结构
? 第一节 凝固金属的组织结构 第二节 偏析(Segregation) 第三节 金属凝固组织形态控制
第七章 凝固金属的组织结构
2

一、凝固铸态组织的含义
z 铸态组织,即铸件的晶粒组 织,包括晶粒的形状、尺寸 和取向。广义讲,还包括合 金元素的分布(偏析)和凝 固过程形成的缺陷。
第七章 凝固金属的组织结构
3

二、晶粒组织(Grain Structure)
? 典型铸态组织:表面细晶粒、柱状晶粒、等轴晶粒
z激冷晶区的晶粒细小;
内部等轴晶区 表层急冷晶区
z柱状晶区的晶粒垂直 于型壁排列,且平行 于热流方向.
z内部等轴晶区的晶粒 较为粗大;
中间柱状晶区
第七章 凝固金属的组织结构
4

几种不同类型的铸件宏观组织示意图
(a)只有柱状晶;(b)表面细等轴晶加柱状晶;(c)三个晶区都有;(d)只有等轴晶
第七章 凝固金属的组织结构
5

三、铸态组织形成原因
? 1. 表面细晶粒
z 型壁激冷,大量生核; z 三维散热,生长迅速,
相互抑制; z 生长无方向性。
第七章 凝固金属的组织结构
6

《材料成形原理》重点及答案

一、名词解释 1 表面张力—表面上平行于表面切线方向且各方向大小相等的张力。表面张力是由于物体在表面上的质点受力不均匀所致。 2 粘度-表面上平行于表面切线方向且各方向大小相等的张力。或作用于液体表面的应力τ大小与垂直于该平面方向上的速度梯度dvx/dvy的比例系数。 3 表面自由能(表面能)-为产生新的单位面积表面时系统自由能的增量。 4 液态金属的充型能力-液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力,即液态金属充填铸型的能力。 5 液态金属的流动性-是液态金属的工艺性能之一,与金属的成分、温度、杂质含量及其物理性质有关。 6 铸型的蓄热系数-表示铸型从液态金属吸取并储存在本身中热量的能力。 7 不稳定温度场-温度场不仅在空间上变化,并且也随时间变化的温度场 稳定温度场-不随时间而变的温度场(即温度只是坐标的函数): 8 温度梯度—是指温度随距离的变化率。或沿等温面或等温线某法线方向的温度变化率。 9 溶质平衡分配系数K0—特定温度T*下固相合金成分浓度CS*与液相合金成分CL*达到平衡时的比值。 10 均质形核和异质形核-均质形核(Homogeneous nucleation) :形核前液相金属或合金中无外来固相质点而从液相自身发生形核的过程,亦称“自发形核”。非均质形核(Hetergeneous nucleation) :依靠外来质点或型壁界面提供的衬底进行生核过程,亦称“异质形核”。 11、粗糙界面和光滑界面-从原子尺度上来看,固-液界面固相一侧的点阵位置只有50%左右被固相原子所占据,从而形成一个坑坑洼洼凹凸不平的界面层。粗糙界面在有些文献中也称为“非小晶面”。

材料成型原理第四章答案

第四章 1. 何谓结晶过程中的溶质再分配?它是否仅由平衡分配系数K 0所决定?当相图 上的液相线和固相线皆为直线时,试证明K 0为一常数。 答:结晶过程中的溶质再分配:是指在结晶过程中溶质在液、固两相重新分布的 现象。 溶质再分配不仅由平衡分配系数K 0决定 ,还受自身扩散性质的制约,液相中的对流强弱等因素也将影响溶质再分配。 当相图上的液相线和固相线皆为直线时K 为一常数,证明如下:如右图所 示: 液相线及固相线为直线,假设 其斜率分别为m L 及m S ,虽然 C *S 、C *L 随温度变化有不同值,但 L m S m L S m T T m T T C C K /)(/)(0****--===S L m m =常数, 此时,K 0与温度及浓度无关, 所以,当液相线和固相线为直 线时,不同温度和浓度下K 0为 定值。 2. 某二元合金相图如右所示。合金液成分为C B =40%,置于长瓷舟中并从左端 开始凝固。温度梯度大到足以使固-液界面保持平面生长。假设固相无扩散,液相均匀混合。试求:①α相与液相之间的平衡分配系数K 0;②凝固后共晶体的数量占试棒长度的百分之几?③凝固后的试棒中溶质B 的浓度沿试棒长度的分布曲线。

解:(1)平衡分配系数K 0 的求解: 由于液相线及固相线均为直 线不同温度和浓度下K 0为 定值,所以:如右图, 当T=500℃时, K 0 =**L C C α=%60%30=0.5 K 0即为所求 α相与液相之间的 平衡分配系数. (2)凝固后共晶体的数量占试棒长度的百分数的计算: 由固相无扩散液相均匀混合下溶质再分配的正常偏析方程 )1(00-*=K L L f C C 代入已知的*L C = 60% , K 0 = 0.5, C 0= C B =40% 可求出此时的L f = 44.4% 由于T=500℃为共晶转变温度,所以此时残留的液相最终都将转变为共晶组织,所以凝固后共晶体的数量占试棒长度的百分数也即为44.4%. (3)凝固后的试棒中溶质B 的浓度沿试棒长度的分布曲线 (并注明各特征成分及其位置)如下: 图 4-43 二元合金相图

材料成型原理复习题

综合测试题一 模具寿命与材料成形加工及材料学 一、填空题(每小题2分,共20分) 1. 目前铸造成形技术的方法种类繁多按生产方法分类,可分为砂型铸造和特种铸造。 2. 在铸造生产中,细化铸件晶粒可采用的途径有增加过冷度、采用孕育处理和附加振动。 3. 铸铁按碳存在形式分灰铸铁、可锻铸铁、球墨铸铁、蠕墨铸铁等。 4. 合金在铸造时的难易程度的衡量指标合金的流动性和收缩。 5. 合金的流动性主要取决于它本身的化学成分。 6. 压力加工的加工方法主要有:冲压、锻造、轧制、拉拔和 挤压等。 7. 合金的流动性常采用浇注螺旋型标准试样的方法来衡量, 8. 流动性不好的合金容易产生浇不足、冷隔、气孔、夹渣等缺陷。 9. 液态金属的充型能力主要取决于金属的流动性,还受外部条件如浇注温度、充型压力、铸型结构和铸型材料等因素的影响,是各种因素的综合反映。 10.金属由浇注温度冷却到室温经历了液态收缩、凝固收缩和固态收缩三个相互关联的收缩阶段。 11.液态收缩和凝固收缩是铸件产生缩孔和缩松的基本原因。固态收缩对铸件的形状和尺寸精度影响很大,是内应力、变形和裂纹等缺陷产生的基本原因。 12.铸造中常产生的铸造缺陷有缩孔、缩松、浇不足、裂纹、内应力、夹渣和夹砂等

13. 特种铸造相对于砂型铸造的两类特点:型模的革新和充型方式的变更。 14.常用特种铸造方法金属型铸造、压力铸造、离心铸造、消失模铸造和熔模铸造、壳型铸造等。 15.衡量金属锻造性能的两个指标塑性和变形抗力。 16.自由锻造常用设备空气锤和水压机。 17.自由锻的基本工序包括镦粗、拔长、冲孔、弯曲、切割、扭转和错移等。 18.镦粗的变形特点横截面积变大,长度变短普通拔长的变形特点横截面积变小,长度变长芯轴拔长的变形特点内孔直径不变,长度变长,壁厚变薄。 19.锻造温度范围是指始锻温度与终锻温度之差。后者过低易产生加工硬化现象。 20. 锤上模锻的实质金属在模膛内成形和变形阻力大,变形不均匀。 21. 模膛的分类制坯模膛和模锻模膛。 22. 板料冲压中分离工序有冲孔、落料、剪切和修整等。变形工序有拉深、弯曲、翻边和成形等。 23. 电弧燃烧实质是指电弧的产生、运动和消失的动态平衡。 24. 电弧分为阴极区、阳极区和弧柱区三个区。 25. 直流电焊机正接极是指焊件接正极,焊条接负极。 26. 焊接冶金过程的特点反应温度高、接触面积大、冷却速度快。 27. 焊接接头是指焊缝和热影响区。焊接热影响区包括熔合区、过热区、正火区、部分相变区和再结晶区。 28. 焊接应力和变形产生的原因对焊缝区不均匀的加热和冷却。

材料成型原理复习

《材料成型原理》试卷 一、铸件形成原理部分(共40分) (1)过冷度;(2)液态成形;(3)复合材料;(4) 定向凝固; (1)过冷度:金属的理论结晶温度与实际结晶温度的差,称为过冷度。 (2)液态成形:将液态金属浇入铸型后,凝固后获得一定形状和性能的铸件或铸锭的加工法。 (3)复合材料:有两种或两种以上物理和化学性质不同的物质复合组成的一种多相固体。(4)定向凝固:定向凝固是使金属或合金在熔体中定向生长晶体的一种工艺方法。 (5)溶质再分配系数:凝固过程中固-液界面固相侧溶质质量分数与液相中溶质质量分数之比,称为溶质再分配系数。 2、回答下列问题 (1)影响液态金属凝固过程的因素有哪些?影响液态金属凝固的过程的主要因素是化学成分;冷却速率是影响凝固过程的主要工艺因素;液态合金的结构和性质等对液态金属的凝固也具有重要影响。 (2)热过冷与成分过冷有什么本质区别?热过冷完全由热扩散控制。成分过冷由固-液界前方溶质的再分配引起的,成分过冷不仅受热扩散控制,更受溶质扩散控制。 (3)简述铸件(锭)典型宏观凝固组织的三个晶区.表面细晶粒区是紧靠型壁的激冷组织,由无规则排列的细小等轴晶组成;中间柱状晶区由垂直于型壁彼此平行排列的柱状晶粒组成;内部等轴晶区由各向同性的等轴晶组成。 3、对于厚大金属型钢锭如何获得细等轴晶组织?降低浇注温度,有利于游离晶粒的残存和产生较多的游离晶粒;对金属液处理,向液态金属中添加生核剂,强化非均质形核;浇注系统的设计要考虑到低温快速浇注,使游离晶不重熔;引起铸型内液体流动,游离晶增多,获得等轴晶。 二、焊接原理部分1简述氢在金属中的有害作用。氢脆,白点,气孔,冷裂纹2写出锰沉淀脱氧反应式,并说明熔渣的酸碱性对锰脱氧效果的影响.[Mn] + [FeO] = [Fe] + (MnO),酸性渣脱氧效果好,碱度越大,锰的脱氧效果越差。3冷裂纹的三大形成要素是什麽?钢材的淬硬倾向,氢含量及其分布,拘束应力状态4说明低碳钢或不易淬火钢热影响区组织分布.(1)熔合区:组织不均匀;(2)过热区:组织粗大; (3)相变重结晶区(正火区):组织均匀细小;(4)不完全重结晶区:晶粒大小不一,组织分布不均匀. 一、填空题 1.液态金属本身的流动能力主要由液态金属的成分、温度和杂质含量等决定。 2.液态金属或合金凝固的驱动力由过冷度提供。 3.晶体的宏观生长方式取决于固液界面前沿液相中的温度梯度,当温度梯度为正时,晶体的宏观生长方式为平面长大方式,当温度梯度为负时,晶体的宏观生长方式为树枝晶长大方式。 4.液态金属凝固过程中的液体流动主要包括自然对流和强迫对流。 5.液态金属凝固时由热扩散引起的过冷称为热过冷。 6.铸件宏观凝固组织一般包括表层细晶粒区、中间柱状晶区和内部等轴晶区不同形态的晶区。 7.内应力按其产生的原因可分为热应力、相变应力和机械应力三种。 8.铸造金属或合金从浇铸温度冷却到室温一般要经历液态收缩、凝固收缩和固态收缩三个收缩阶段。 9.铸件中的成分偏析按范围大小可分为微观偏析和宏观偏析二大类。

材料成型加工与工艺学-习题解答(9-10-11)备课讲稿

材料成型加工与工艺学-习题解答(9-10- 11)

第八章注射成型 2.塑料挤出机螺杆与移动螺杆式注射机的螺杆在结构特点和各自的成型作用上有何异同? (p278)注射螺杆与挤出螺杆在结构上有何区别: (a)注射螺杆长径比较小,约在10~15之间。 (b)注射螺杆压缩比较小,约在2~5之间。 (c) 注射螺杆均化段长度较短,但螺槽深度较深,以提高生产率。为了提高塑化量,加料段较长,约为螺杆长度的一半。 (d)注射螺杆的头部呈尖头形,与喷嘴能有很好的吻合,以防止物料残存在料筒端部而引起降解。 (p221)挤出机螺杆成型作用是对物料的输送、传热塑化塑料及混合均化物料。 移动螺杆式注射机的螺杆成型作用是对塑料输送、压实、塑化及传递注射压力。是间歇式操作过程,它对塑料的塑化能力、操作时的压力稳定以及操作连续性等要求没有挤出螺杆严格。 3.请从加热效率出发,分析柱塞是注射机上必须使用分流梭的原因? (p278)分流梭的作用是将料筒内流经该处的物料成为薄层,使塑料流体产生分流和收敛流动,以缩短传热导程。既加快了热传导,也有利于减少或避免塑料过热而引起热分解现象。同时塑料熔体分流后,在分流梭与料筒间隙中流速增加,剪切速度增大,从而产生较大的摩擦热,料温升高,黏度下降,使塑料进一步的混合塑化,有效提高柱塞式注射机的生产量及制品质量。

6.试分析注射成型中物料温度和注射压力之间的关系,并绘制成型区域示意图。 (p298) 料温高时注射压力减小;反之,所需的注射压力加大。 8.试述晶态聚合物注射成型时温度(包括料温和模温)对其结晶性能和力学性能的影响。 (p297)结晶性塑料注射入模具后,将发生向转变,冷却速率将影响塑料的结晶速率。缓冷,即模温高,结晶速率大,有利结晶,能提高制品的密度和结晶度,制品成型收缩性较大,刚度大,大多数力学性能较高,但伸长率和充及强度下降。反过来,骤冷所得制品的结晶度下降,韧性较好。但在骤冷的时不利大分子的松弛过程,分子取向作用和内应力较大。中速冷塑料的结晶和曲性较适中,是用得最多的条件。实际生产中用何种冷却速度,还应按具体的塑料性质和制品的使用性能要求来决定。例如对于结晶速率较小的PET塑料,要求提高其结晶度就应选用较高的模温。

材料成型原理

21.铸件宏观组织的控制途径与措施 1.铸件结晶组织对铸件质量和性能的影响 表面细晶粒区薄,对铸件的质量和性能影响不大。 铸件的质量与性能主要取决于柱状晶区与等轴晶区的比例以及晶粒的大小。 (1)柱状晶: 生长过程中凝固区域窄,横向生长受到相邻晶体的阻碍,枝晶不能充分发展,分枝少,结晶后显微缩松等晶间杂质少,组织致密。 但柱状晶比较粗大,晶界面积小,排列位向一致,其性能具有明显的方向性:纵向好、横向差。凝固界面前方常汇集有较多的第二相杂质气体,将导致铸件热裂。 (2)等轴晶: 晶界面积大,杂质和缺陷分布比较分散,且各晶粒之间位向也各不相同,故性能均匀而稳定,没有方向性。 枝晶比较发达,显微缩松较多,凝固后组织不够致密。 细化能使杂质和缺陷分布更加分散,从而在一定程度上提高各项性能。晶粒越细综合性能越好。 对塑性较好的有色金属或奥氏体不锈钢锭,希望得到较多的柱状晶,增加其致密度; 对一般钢铁材料和塑性较差的有色金属铸锭,希望获得较多的甚至是全部细小的等轴晶组织;对于高温下工作的零件,通过单向结晶消除横向晶界,防止晶界降低蠕变抗力。 2.铸件宏观组织的控制途径和措施 等轴晶组织的获得和细化 强化非均匀形核促进晶粒游离抑制柱状晶区 1)加入强生核剂——孕育处理 孕育——向液态金属中添加少量物质以达到增加晶核数、细化晶粒、改善组织之目的的一种方法。 变质——加入少量物质通过元素的选择性分布而改变晶体的生长形貌,如球化或细化。 A.形核剂: a)直接作为外加晶核 b)通过与液态金属的相互作用而产生非均匀晶核 能与液相中某些元素组成较稳定的化合物 通过在液相中造成大的微区富集而使结晶相提前弥散析出 B.强成分过冷元素: 通过在生长界面前沿的富集而使晶粒根部和树枝晶分枝根部产生细弱缩颈,从而促进晶粒的游离。 强化熔体内部的非均匀形核孕育剂富集抑制晶体生长

材料成形原理重点及答案

一、名词解释 表面张力—表面上平行于表面切线方向且各方向大小相等的张力。表面张力是由于物体在表面上的质点受力不均匀所致。 粘度-表面上平行于表面切线方向且各方向大小相等的张力。或作用于液体表面的应力τ大小与垂直于该平面方向上的速度梯度dvx/dvy的比例系数。 表面自由能(表面能)-为产生新的单位面积表面时系统自由能的增量。 液态金属的充型能力-液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力,即液态金属充填铸型的能力。 液态金属的流动性-是液态金属的工艺性能之一,与金属的成分、温度、杂质含量及其物理性质有关。溶质平衡分配系数K0—特定温度T*下固相合金成分浓度CS*与液相合金成分CL*达到平衡时的比值。均质形核和异质形核-均质形核(Homogeneous nucleation) :形核前液相金属或合金中无外来固相质点而从液相自身发生形核的过程,亦称“自发形核” 。非均质形核(Hetergeneous nucleation) :依靠外来质点或型壁界面提供的衬底进行生核过程,亦称“异质形核”。 粗糙界面和光滑界面-从原子尺度上来看,固-液界面固相一侧的点阵位置只有50%左右被固相原子所占据,从而形成一个坑坑洼洼凹凸不平的界面层。粗糙界面在有些文献中也称为“非小晶面”。 光滑界面—从原子尺度上来看,固-液界面固相一侧的点阵位置几乎全部为固相原子占满,只留下少数空位或台阶,从而形成整体上平整光滑的界面结构。也称为“小晶面”或“小平面”。 “成分过冷”与“热过冷”-液态合金在凝固过程中溶质再分配引起固-液界面前沿的溶质富集,导致界面前沿熔体液相线的改变而可能产生所谓的“成分过冷”。这种仅由熔体存在的负温度梯度所造成的过冷,习惯上称为“热过冷” 。 内生生长和外生生长-晶体自型壁生核,然后由外向内单向延伸的生长方式,称为“外生生长”。平面生长、胞状生长和柱状枝晶生长皆属于外生生长。等轴枝晶在熔体内部自由生长的方式则称为“内生生长”。 枝晶间距-指相邻同次枝晶间的垂直距离。它是树枝晶组织细化程度的表征。 共生生长-是指在共晶合金结晶时,后析出的相依附于领先相表面而析出,进而形成相互交叠的双相晶核且具有共同的生长界面,依靠溶质原子在界面前沿两相间的横向扩散,互相不断地为相邻的另一相提供生长所需的组元,彼此偶合的共同向前生长。 离异生长-两相的析出在时间上和空间上都是彼此分离的,因而形成的组织没有共生共晶的特征。这种非共生生长的共晶结晶方式称为离异生长,所形成的组织称离异共晶。 孕育与变质-孕育主要是影响生核过程和促进晶粒游离以细化晶粒;而变质则是改变晶体的生长机理,从而影响晶体形貌。变质在改变共晶合金的非金属相的结晶形貌上有着重要的应用,而在等轴晶组织的获得和细化中采用的则是孕育方法。 联生结晶-熔池边界未熔母材晶粒表面,非自发形核就依附在这个表面,在较小的过冷度下以柱状晶的形态向焊缝中心生长,称为联生结晶(也称外延生长)。 择优生长-那些主干取向与热流方向平行的枝晶,较之取向不利的相邻枝晶生长得更为迅速。它们优先向内伸展并抑制相邻枝晶的生长。在逐渐淘汰趋向不利的晶体过程中发展成柱状晶组织。这种互相竞争淘汰的晶体生长过程称为晶体的择优生长。 快速凝固-是指采用急冷技术或深过冷技术获得很高的凝固前沿推进速率的凝固过程。 气体的溶解度—在一定温度和压力条件下,气体溶入金属的饱和浓度。影响溶解度的主要因素是温度及压力、气体的种类和合金的成分。 熔渣的碱度-是熔渣中的碱性氧化物与酸性氧化物浓度的比值(分子理论)或液态熔渣中自由氧离子的浓度(或氧离子的活度)(离子理论)。 熔渣的氧化和还原能力-是指熔渣向液态金属中传入氧(或从液态金属中导出氧)的能力。

超有用的材料成型原理试卷试题及答案(精选.)

陕西工学院考试试卷(B)标准答案 一、填空题(每空2分,共40分) 1.液态金属本身的流动能力主要由液态金属的成分、温度和杂质含量等决定。2.液态金属或合金凝固的驱动力由过冷度提供。 3.晶体的宏观生长方式取决于固液界面前沿液相中的温度梯度,当温度梯度为正时,晶体的宏观生长方式为平面长大方式,当温度梯度为负时,晶体的宏观生长方式为树枝晶长大方式。 5.液态金属凝固过程中的液体流动主要包括自然对流和强迫对流。6.液态金属凝固时由热扩散引起的过冷称为热过冷。 7.铸件宏观凝固组织一般包括表层细晶粒区、中间柱状晶区和内部等轴晶区三个不同形态的晶区。 8.内应力按其产生的原因可分为热应力、相变应力和机械应力三种。9.铸造金属或合金从浇铸温度冷却到室温一般要经历液态收缩、凝固收缩和固态收缩三个收缩阶段。 10.铸件中的成分偏析按范围大小可分为微观偏析和宏观偏析二大类。 二、下列各小题均有多个答案,选择最适合的一个填于横线上(每空1分,共9分)。 1.塑性变形时,工具表面的粗糙度对摩擦系数的影响大于工件表面的粗糙 度对摩擦系数的影响。

A、大于;B、等于;C、小于; 2.塑性变形时不产生硬化的材料叫做A。 A、理想塑性材料;B、理想弹性材料;C、硬化材料; 3.用近似平衡微分方程和近似塑性条件求解塑性成形问题的方法称为 B。 A、解析法;B、主应力法;C、滑移线法; 4.韧性金属材料屈服时,A准则较符合实际的。 A、密席斯;B、屈雷斯加;C密席斯与屈雷斯加;5.塑性变形之前不产生弹性变形(或者忽略弹性变形)的材料叫做B。 A、理想弹性材料;B、理想刚塑性材料;C、塑性材料; 6.硫元素的存在使得碳钢易于产生A。 A、热脆性;B、冷脆性;C、兰脆性; 7.应力状态中的B应力,能充分发挥材料的塑性。 A、拉应力;B、压应力;C、拉应力与压应力; 8.平面应变时,其平均正应力 mB中间主应力 2。 A、大于;B、等于;C、小于; 9.钢材中磷使钢的强度、硬度提高,塑性、韧性 B 。 A、提高;B、降低;C、没有变化; 三、判断题(对打√,错打×,每题1分,共7分) 1.合金元素使钢的塑性增加,变形拉力下降。(X )

材料成型原理课后题答案

第三章: 8:实际金属液态合金结构与理想纯金属液态结构有何不同 答:纯金属的液态结构是由原子集团、游离原子、空穴或裂纹组成的,是近程有序的。液态中存在着很大的能量起伏。而实际金属中存在大量的杂质原子,形成夹杂物,除了存在结构起伏和能量起伏外还存在浓度起伏。 12:简述液态金属的表面张力的实质及其影响因数。 答:实质:表面张力是表面能的物理表现,是是由原子间的作用力及其在表面和内部间排列状态的差别引起的。 影响因数:熔点、温度和溶质元素。 13:简述界面现象对液态成形过程的影响。 答:表面张力会产生一个附加压力,当固液相互润湿时,附加压力有助于液体的充填。液态成形所用的铸型或涂料材料与液态合金应是不润湿的,使铸件的表面得以光洁。凝固后期,表面张力对铸件凝固过程的补索状况,及是否出现热裂缺陷有重大影响。 15:简述过冷度与液态金属凝固的关系。 答:过冷度就是凝固的驱动力,过冷度越大,凝固的驱动力也越大;过冷度为零时,驱动力不存在。液态金属不会在没有过冷度的情况下凝固。 16:用动力学理论阐述液态金属完成凝固的过程。 答:高能态的液态原子变成低能态的固态原子,必须越过高能态的界面,界面具有界面能。生核或晶粒的长大是液态原子不断地向固体晶粒堆积的过程,是固液界面不断向前推进的过程。只有液态金属中那些具有高能态的原子才能越过更高能态的界面成为固体中的原子,从而完成凝固过程。 17:简述异质形核与均质形核的区别。 答:均质形核是依靠液态金属内部自身的结构自发形核,异质形核是依靠外来夹杂物所提供的异质界面非自发的形核。 异质形核与固体杂质接触,减少了表面自由能的增加。 异质形核形核功小,形核所需的结构起伏和能量起伏就小,形核容易,所需过冷度小。 18:什么条件下晶体以平面的方式生长什么条件下晶体以树枝晶方式生长 答:①平面方式长大:固液界面前方的液体正温度梯度分布,固液界面前方的过冷区域及过冷度极小,晶体生长时凝固潜热析出的方向与晶体的生长方向相反。 ②树枝晶方式生长:固液界面前方的液体负温度梯度分布,固液界面前方的过冷区域较大,且距离固液界面越远过冷度越大,晶体生长时凝固潜热析出的方向与晶体生长的方向相同。 19:简述晶体的微观长大方式及长大速率。 答:①连续生长机理--粗糙界面的生长:动力学过冷度小,生长速率快。②二维生长机理--光滑界面生长:过冷度影响大,生长速度慢。③从缺陷处生长机理--非完整界面生长:所需过冷度较大,生长速度位于以上二者之间。 20:为生么要研究液态金属凝固过程中的溶质再分配它受那些因素的影响 答:液态金属在凝固过程中的各组元会按一定的规律分配,它决定着凝固组织的成分分布和组织结构,液态合金凝固过程中溶质的传输,使溶质在固液界面两侧的固相和液相中进行再分配。掌握凝固过程中的溶质再分配的规律,是控制晶体生长行为的重要因素,也是在生产实践中控制各种凝固偏析的基础。 凝固过程中溶质的再分配是合金热力和动力学共同作用的结果,不同的凝固

相关主题
文本预览
相关文档 最新文档