当前位置:文档之家› 系统图性能评估难点详解

系统图性能评估难点详解

系统图性能评估难点详解
系统图性能评估难点详解

[后续] 一篇文章详解性能评估难点

在上篇文章[收藏] 深入浅出存储性能评估方法论中,我们介绍了性能评估相关概念和原理,但是在项目实战中,要根据业务真实诉求给出切合实际的性能配置,还需要针对业务模型进行最佳实践分析和洞察,从主机端口、存储系统、后端磁盘等端到端进行分析和评估,在本文中把常见的性能评估过程中的难点依次罗列,希望对大家有所帮助。

IO聚合成满分条写优化写惩罚

IO聚合成满分条大小的情况下,无需做预读操作,不会触发RAID写惩罚,RAID写惩罚在不是满分条写的时候,才会触发预读的流程。以RAID5-5小写为例,写一个数据位,需要预读两次,写校验位一次。可以认为是一个IO被放大成了四个IO。

而满分条写的时候,同时写四个数据位,不需要预读,只需要额外写一次校验位,可以认为是四个IO被放大成了五个IO 。对比非满分条写,效率大大提高。

存储的IO合并能力对于数据库业务是否各家都能做到IO合并呢?一般存储针对不同类型的IO有不同的合并能力;数据库业务主要是随机IO,各厂商都做不到完全满分条IO合

并。存储收到的IO是否能够合并,主要取决于两个方面。

1、主机侧发下来的业务IO模型:IO是否顺序,是否连续,与主机业务软件本身、主机侧块设备、卷管理策略、HBA卡拆分策略等相关。主机下发的IO越顺序、越连续,到达阵列后的合并效果越好。

2、存储侧对IO的合并能力:IO路径上的Cache、存储块设备、硬盘等模块都会对IO 进行排序与合并的操作,试图尽可能将小IO合成大IO下盘。

对于顺序小IO而言,基本上能够实现将IO都合并成满分条后下盘。而对于IO随机程度较高的数据库业务,各厂商都无法确保所有IO都能够合并,只能尽量通过排序和合并,将相邻地址的小IO合成大IO,但合并程度由于算法实现和内存大小等因素可能会有所差异。

OLTP、OLAP、VDI和SPC-1业务模型

OLTP、OLAP、VDI和SPC-1是当前性能评估中常见的三类业务场景。SPC-1是业界通用的随机IOPS型的IO模型,在不清楚实际业务类型的条件下,常用此模型来进行性能评估。四种模型的简单IO特征如下表所示。

下面将分别介绍四种模型的业务特性与IO特征:

一、OLTP业务模型和特征:

1、业务特征:每个事务的读,写,更改涉及的数据量非常小,同时有很多用户连接到数据库,使用数据库,要求数据库有很快的响应时间,通常一个事务在几秒内完成,时延要求一般在10-20ms。

2、IO特征:针对DATA LUN,随机小IO,IO大小主要为8KB(IO大小与数据库的Block块大小一致),读写比约为3:2,读全随机,写有一定合并。针对LOG LUN,多路顺序小IO,大小不定,几乎都是写IO。

二、OLAP业务模型和特征:

1、业务特征:一般很少有数据修改,除非在批量加载数据时;系统调用非常复杂的查询语句,同时扫描非常多的行;一个查询将花费数小时,甚至数天;主要取决于查询语句的复杂程度;查询的输出通常是一个统计值,由group by与order by得出;当读取操作进行时,发生的写操作通常在临时表空间内;平常对在线日志写入很少,除非在批量加载数据时;分析型业务,一般对时延没有要求。

2、IO特征:针对DATA LUN,多路顺序大IO(可以近似认为是随机大IO),IO大小与主机侧设置的分条大小有关(如512KB),90%以上为读业务,混合间断读写。针对TMP LUN,随机IO,读写混合(先写后读,计算时写,读临时表时读,大部分是写,占整个业务中很少部分的IO),IO大小基本为200KB以上大IO。

三、VDI业务模型和特征

1、业务特性:可以分为启动风暴、登录风暴和平稳状态几个常见场景,在不同的状态下,业务压力相差很大。启动风暴,即大量虚拟机同时启动时的突发状态,是读密集型操作,可以通过VSA(View Storage Accelerator 可以降低70%的读负载)、分批错峰等操作规避。登录风暴,即大量用户同时登录到桌面,导致共享存储产生大量爆发性负载的情况,是写密集型的,很难通过技术方式避免。平稳状态,即所有用户在同时使用桌面时,产生负载波动较小的状态。不同的用户类型,平稳状态的负载有所不同。时延要求一般在

10ms左右。

2、IO特征:平稳状态下,读写比例约为2:8,多路顺序小IO,主要是写,存在一定的合并,IO大小从512B到16KB都有;少量的读IO,基本都是16KB,在负载稳定之后,Cache命中率在80%以上(采用链接克隆技术的情况下,如果是完整克隆的情况,命中率有所下降)。

四、SPC-1业务模型和特征

1、业务特性:SPC-1设计一个专门为测试存储系统在典型业务应用场合下的负载模型,这个负载模型连续不断地对业务系统并发的做查询和更新的工作,因此其主要由随机

I/O组成。这些随机I/O的操作主要涉及数据库型的OLTP应用以及E-mail系统应用,能够很好地衡量存储系统的IOPS指标。

2、IO特征:它抽象的测试区域称为ASU,包括ASU1临时数据区域,ASU2用户数据区域和ASU3日志区域。对整体而言,读写比约为4:6,顺序IO与随机IO的比例约为3:7,IO大小主要为4KB,有较明显的热点访问区域。

SSD、SAS、NL-SAS的性能特点、优势对比

你知道FC链路带宽是如何计算的呢?

今天就跟你一起详细解析一下。FC协议是主机服务器与存储系统连接传输的常用协议之一。在评估存储系统整体带宽时,FC链路的带宽是计算前端带宽的最重要的因素之一。8G FC链路的理论带宽计算方法如下:

8Gbps FC参考时钟:8.5G Hz

8Gbps FC协议编码:8b/10b编码

协议帧的传输如上图所示。8Gbps FC协议传输效率计算如下:

ACK在FC协议中是class 1和class 2服务(面向连接)使用的,class 3服务不使用ACK帧,因此可以获得更高的传输效率。通常使用的是class 3服务,按照class 3服务计算实际传输效率为97.15%。

单向理论数据传输带宽计算公式如下:

链路时钟*链路编码效率* FC协议层传输效率/8 /1024 /1024,即8Gbps FC单向理论数据传输带宽=(8.5*1000*1000*1000) * (8/10) * 97.15%/8 /1024 /1024 = 787.5MB/s

由于传输命令请求也要开销链路带宽,帧与帧之间的传输还需要协议的原语开销,故单向链路的数据带宽无法超越理论值787.5MB/s。双向带宽理论上为单向链路的两倍,但是由于光模块和上层模块的处理调度开销等因素,实际测试时达不到两倍的理论值。当前产品中常见的FC链路为8G FC和4G FC链路,它们的极限带宽如下表所示:

例如,某客户采购了一台阵列,此款产品能够提供的最大读带宽为3000MB,客户规划配置48块600GB 15k SAS盘(推荐单盘读带宽为40MB),前端双控各配置1张8G FC 卡,分别连接了1根光纤到A、B控,估算当前场景下能够提供的最大读带宽。

硬盘提供的有效读带宽 = 单盘顺序读带宽 * 硬盘数量 = 40MB * 48 = 1920 MB。

前端链路提供的最大读带宽 = 780MB * 2 = 1560 MB。

该场景能提供的最大读带宽 = MIN(产品能提供的最大读带宽,硬盘提供的有效写带宽,前端链路提供的最大读带宽)= MIN(3000MB,1920MB , 1560MB)= 1560 MB。

带宽计算中如何考虑校验的影响

对于顺序写业务,IO经过cache的IO合并后下发到RAID层,基本能够确保都是满分条写。对于RAID5-5(4D+1P)这种配置来说,每4个数据IO(D)下盘同时会有一个校验IO(P)需要下盘。校验IO下盘所占的硬盘带宽用于保障数据的可靠性,而对于用户上层业务来说并没有提供可用带宽,因此需要扣除掉校验位下盘所占的带宽开销。

对于顺序读业务,在满分条的情况下,在每个分条内部只需要读数据位所在的磁盘,不需要读校验位所在的磁盘。

例如,某一款产品,能够提供的最大写带宽为3200MB,规划配置96块600GB 15k SAS盘(推荐单盘写带宽为30MB),部署RAID6-6(4D+2P),估算这款产品能够提供的有效写带宽。

硬盘提供的有效写带宽 = 单盘顺序写带宽 * 硬盘数量 * (RAID数据盘数量/RAID总盘数)= 30MB * 96 * (4/6)= 1920 MB

产品能提供的有效写带宽 = MIN(产品能提供的最大写带宽,硬盘提供的有效写带宽)= MIN(3200MB,1920MB)= 1920 MB

什么是读写比和对性能影响

读写比(Read/Write):指的是上层应用下发的读IO和写IO的比例分布。此数据是存储规划的重要参考依据。读业务与写业务消耗的存储资源差异很大。下面是一些典型业务模型的常见读写比例

确切了解上层应用的读写比例直接影响到对cache策略、RAID级别和LUN配置的选择。写业务比读业务会消耗更多的存储系统资源:

1、在回写的场景下,写IO下发到cache之后需要通过交换通道“镜像”到对端控制器,IO路径更长,并需要占用交换通道的带宽;

2、为保证写数据的可靠性和一致性,智能存储通常会采用一些可靠性技术,例如writehole方案,需要将写数据额外保存一份在cache或磁盘上;

3、对于不同的RAID级别而言,写惩罚的存在会造成更大的时延和资源的开销;此外,对于磁盘(包括SSD盘)而言,写速度低于读速度。

而对于读业务来说,通常消耗较少的系统资源。例如,读业务不需要生成额外的数据来保证数据一致。此外,绝大部分存储设备的读速度都比写速度要快。当读IO发现它所需读取的数据已经在Cache中(读命中)时,可以直接返回而不需要再下盘读取。在读命中的情况下,通常意味着最短的响应时延。

同样数量的主机IO,如果读写比例不同,最终需要下盘的IO数量不同,意味着需要提供的磁盘能力不同。

例如,RAID6单次写入需要分别对数据位和校验位进行3次读和3次写,即写惩罚是6。在RAID6的场景下,如果有1000个随机的主机IO,读写比为2:8,则需要下盘的IO 数量为1000*0.2 + 1000*0.8*6 = 5000;而如果读写比例为8:2的话,则需要下盘的IO

数量为1000*0.8 + 1000*0.2*6 = 2000。

不同RAID级别对性能和容量影响

由于各RAID级别的写惩罚不同,对于相同的业务类型、同样数量的硬盘而言,选择不同的RAID算法,能够提供给主机的性能是不相等的。

针对各种典型场景的RAID10、RAID5和RAID6的性能对比,其中假设某存储设备上所有硬盘能够提供的性能为100%,按照各个应用场景的读写比例,经过写惩罚系数的折算,得到配置成各个RAID级别后能提供给用户的实际性能。

从数据中也可以看出,对于不同的业务类型、同样数量的硬盘、相同的RAID算法,写比例越大,性能越差。以SPC-1场景配置RAID6为例,假设用户实际性能为x(0.4x + 0.6x * 6 = 100%),实际性能只是磁盘能提供的x = 25%。

由于RAID算法的实现原理不同(RAID10的镜像、RAID5/6的校验盘),对于同样大小的裸容量来说,选择不同的RAID算法,可提供给用户的可用容量是不同的(不考虑热备空间和系统预留的影响)。

从可靠性的层面来看,RAID6的可靠性最佳,RAID10次之,RAID5最差。RAID6和RAID10都支持同时坏2块盘不丢数据,但是RAID10对坏的2块盘是有条件要求的。

如何区分顺序IO和随机IO

IO的寻址方式是IO特性的一个重要方面,分为顺序、随机或混合,这取决于上层应用程序获取数据的方式。例如,数据库OLTP业务是典型的随机读写,视频监控业务是典型的顺序读,SPC-1模型是混合读写。

在通常情况下,如果数据的读写是在连续的磁盘空间上,可以认为是顺序IO;如果应用读取的数据分布在不连续的磁盘空间,且无固定的顺序,则视为随机IO;如果一部分数据

是顺序读写,一部分数据是随机读写,则视为混合类型IO。

顺序/随机特性对性能的影响

在磁盘层面,顺序IO的性能优于随机IO。这是由于传统的机械磁盘读写数据需要盘片转动和磁头移动,使得随机读写的盘片旋转和磁头寻道时间要远大于顺序读写。

在智能存储系统层面,通常情况下,顺序IO的性能同样大大优于随机IO,特别是对于小IO的IOPS性能而言:

1、小IO读:通过顺序流识别和预取算法,系统提前在磁盘上读取大块的连续数据存放在cache中,后续的大量顺序小IO在cache中命中,无需下盘处理。而随机小IO在cache中命中率极低,只能逐个下盘读。

2、小IO写:通过IO合并,系统将多个顺序小IO合并成一个较大的IO下盘。如果在RAID5或RAID6场景,IO聚合成满分条大小的情况下,无需做预读操作,不会触发RAID 写惩罚,效率很高。而随机小IO无法合并,只能逐个下盘写,且会触发写惩罚,导致性能更为低下。典型业务场景的顺序/随机特性,以下是一些典型业务场景的顺序/随机特性。

如何区分大IO和小IO

在做性能评估和讨论IO模型时,经常会遇到是大IO还是小IO的问题。我们通常把<=16KB的IO认为是小IO(典型的如512bytes、4KB),而>=32KB的IO认为是大IO (典型的如256KB、1MB),处于16K和32K间的IO也认为是小IO。例如,典型的OLTP数据业务是小IO,而数据仓库业务是大IO。典型业务场景的IO大小,以下是一些

典型业务场景的IO大小。

IO大小对性能的影响

IO的大小取决于上层应用程序本身。对性能而言,小IO一般用IOPS来衡量,大IO一般用带宽来衡量。例如我们熟悉的SPC-1,主要衡量存储系统在随机小IO负荷下的IOPS,而SPC-2则主要衡量在各种高负荷连续读写应用场合下存储系统的带宽。

就单个IO而言,大IO从微观角度相比小IO会需要更多的处理资源。对于随机IO而言,随着随机IO块大小的增加,IOPS会随之降低。例如,当随机IO大小大于16KB时,机械硬盘的IOPS会呈线性下降。因此,我们通常SPC-1测试的IOPS值很高,但因为用户业务模型不同,IO大小不同,性能值也是变化的。

不过对于智能存储系统来说,会尽可能通过排序、合并、填充等方法对IO进行整合,将多个小IO组合成单个大IO。例如,典型的Web Server Log业务,一般是8KB大小的顺序小IO,在分条大小设置为128KB的存储设备上,最终会将16个8KB大小的小IO合并成一个128KB的大IO下发到硬盘上。在这种情况下,对比处理多个小IO,处理单个大IO的速度更快、开销更小。

IO的大小,影响到磁盘选型,缓存、RAID类型、LUN的一些属性和策略的调优。例如,随机小IO的场景,由于SSD盘具有快速随机读写的特性,选用SSD盘对比SAS盘能够大幅提升性能;但如果是随机大IO,选用带宽性能相当、价钱便宜的SAS盘更有优势。

Cache加速的原理

Cache是存储中最重要的模块之一,对于IOPS性能而言,CACHE的主要作用是加速。

对于写业务,CACHE加速体现在三个方面:

1、回写情况下,主机侧下到阵列侧的数据只需要下到CACHE处而不需要真正写到磁盘即可以返回通知主机写完成,当写CACHE的数据积累到一定程度(水位),阵列才把数据刷到磁盘。由此可以将速度较差的“同步单个写”转为“异步批量写”,在通常情况下,回写的性能约是透写性能的两倍以上。

2、写命中。回写条件下,新写到CACHE中的数据发现在CACHE中已经有准备写到相同地址但还没有刷盘的数据。在这种情况下,只需要将新写入的数据下盘即可。

3、写合并。例如小IO下到CACHE中,CACHE会尽可能对IO进行排序与合并,将多个小IO合成单个大IO再下盘。

对于读业务,CACHE加速主要体现在读命中。例如智能预取策略,CACHE会主动识别IO流的特征,如果发现是顺序IO流,CACHE会在下盘读IO的同时,主动读取相邻区域的大块数据放到CACHE中。当顺序IO下发到CACHE时,发现CACHE中已存放了需要的数据,则直接将此数据返回即可,不需要再下盘读。其中的一个特例是“全命中”。在全命中条件下,业务需要读取的数据已经全部保存到CACHE中,完全不需要再下盘处理,即所有IO到CACHE层就返回了,路径和时延最短。全命中读的IOPS值,往往是一款存储产品能够提供的最大IOPS值。

4.2-需求管理-信息中心XX系统性能评估报告

XX性能评估报告 (20XX年XX月份) 1性能评估结论 通过对XX服务器一个月指定实体业务的业务量分时统计和IT资源使用 率的性能分析,结合服务器处理能力TpmC的计算公式,建议XX应用服务器和Web服务器的CPU配置应从原先的3个CPU增加到4个CPU,当前内存配置保持不变。 2评估过程分析 2.1应用当前配置环境 XX应用部署在南海数据中心一台IBM P780小型机上。小型机的Model Type为9179-MHB,共64个CPU,每个CPU有4个Core。服务器的处理能力一般是由TpmC来计算的,TpmC是指在服务器CPU中每个Core每分钟的处理能力。基于部署XX的P780的配置,通过官方数据查到所配64个CPU的TpmC值为10,366,254,单个CPU的TpmC值为161,973。 XX应用共使用两个逻辑分区(LPAR)。两个LPAR的当前配置信息如下:

服务器主机名称所属应用 名称 IP地址 操作系 统版本 已分配的 CPU个数 CPU的频 率(GHZ) 已分配的 内存(GB) gdweb03 社保费系 统web服务 器 150.17.30.1 66 AIX 6.1 3(CPU) 3.86GHZ 32GB gdsbapp01 社保费系 统核心应 用服务器 150.17.30.1 70 AIX 6.1 3(CPU) 3.86GHZ 44GB 2.2应用业务量情况分析 以下是对指定实体业务基于2013年4月12日以来一个月数据的全天业务量的峰值情况进行分析。 增减员业务量统计 增减员业务在一天内有一个高峰时间段,下午15点-17点。具体的实体业务量的峰值如下: 业务时间实体业务量图表统计说明 08:00 3785 09:00 11035 10:00 27124 11:00 30041 12:00 32760 13:00 11301 14:00 15060 15:00 37066 16:00 38749 17:00 60384 18:00 60069 19:00 10370 20:00 5022 21:00 5217 22:00 1067 23:00 648 申报业务量统计

(整理)linux系统监控性能评估.

总控服务器性能: 一、Cpu性能评估 Vmstat命令的参数解释: 对上面每项的输出解释如下: procs r列表示运行和等待cpu时间片的进程数,这个值如果长期大于系统CPU的个数,说明CPU 不足,需要增加CPU。? b列表示在等待资源的进程数,比如正在等待I/O、或者内存交换等。 Memory swpd列表示切换到内存交换区的内存数量(以k为单位)。如果swpd的值不为0,或者比较大,只要si、so的值长期为0,这种情况下一般不用担心,不会影响系统性能。 free列表示当前空闲的物理内存数量(以k为单位)? buff列表示buffers cache的内存数量,一般对块设备的读写才需要缓冲。 cache列表示page cached的内存数量,一般作为文件系统cached,频繁访问的文件都会被cached,如果cache值较大,说明cached的文件数较多,如果此时IO中bi比较小,说明文件系统效率比较好。 swap si列表示由磁盘调入内存,也就是内存进入内存交换区的数量。 so列表示由内存调入磁盘,也就是内存交换区进入内存的数量。 一般情况下,si、so的值都为0,如果si、so的值长期不为0,则表示系统内存不足。需要增加系统内存。? IO项显示磁盘读写状况? Bi列表示从块设备读入数据的总量(即读磁盘)(每秒kb)。 Bo列表示写入到块设备的数据总量(即写磁盘)(每秒kb) 这里我们设置的bi+bo参考值为1000,如果超过1000,而且wa值较大,则表示系统磁盘IO有问题,应该考虑提高磁盘的读写性能。 system 显示采集间隔内发生的中断数 in列表示在某一时间间隔中观测到的每秒设备中断数。 cs列表示每秒产生的上下文切换次数。 上面这2个值越大,会看到由内核消耗的CPU时间会越多。 CPU项显示了CPU的使用状态,此列是我们关注的重点。 us列显示了用户进程消耗的CPU 时间百分比。us的值比较高时,说明用户进程消耗的cpu 时间多,但是如果长期大于50%,就需要考虑优化程序或算法。 sy列显示了内核进程消耗的CPU时间百分比。Sy的值较高时,说明内核消耗的CPU资源很多。 根据经验,us+sy的参考值为80%,如果us+sy大于 80%说明可能存在CPU资源不足。 id 列显示了CPU处在空闲状态的时间百分比。 wa列显示了IO等待所占用的CPU时间百分比。 wa值越高,说明IO等待越严重,根据经验,wa的参考值为20%,如果wa超过20%,说明IO等待严重,引起IO等待的原因可能是磁盘大量随机读写造成的,也可能是磁盘或者磁盘控制器的带宽瓶颈造成的(主要是块操作)。综上所述,在对CPU的评估中,需要重点注意

(整理)安全性可靠性性能评价

3.3 安全性、可靠性和性能评价 3.3.1主要知识点 了解计算机数据安全和保密、计算机故障诊断与容错技术、系统性能评价方面的知识,掌握数据加密的有关算法、系统可靠性指标和可靠性模型以及相关的计算方示。 3.3.1.1数据的安全与保密 (1)数据的安全与保密 数据加密是对明文(未经加密的数据)按照某种加密算法(数据的变换算法)进行处理,而形成难以理解的密文(经加密后的数据)。即使是密文被截获,截获方也无法或难以解码,从而阴谋诡计止泄露信息。数据加密和数据解密是一对可逆的过程。数据加密技术的关键在于密角的管理和加密/解密算法。加密和解密算法的设计通常需要满足3个条件:可逆性、密钥安全和数据安全。 (2)密钥体制 按照加密密钥K1和解密密钥K2的异同,有两种密钥体制。 ①秘密密钥加密体制(K1=K2) 加密和解密采用相同的密钥,因而又称为密码体制。因为其加密速度快,通常用来加密大批量的数据。典型的方法有日本的快速数据加密标准(FEAL)、瑞士的国际数据加密算法(IDEA)和美国的数据加密标准(DES)。 ②公开密钥加密体制(K1≠K2) 又称不对称密码体制,加密和解密使用不同的密钥,其中一个密钥是公开的,另一个密钥是保密的。由于加密速度较慢,所以往往用在少量数据的通信中,典型的公开密钥加密方法有RSA和ESIGN。 一般DES算法的密钥长度为56位,RSA算法的密钥长度为512位。 (3)数据完整性 数据完整性保护是在数据中加入一定的冗余信息,从而能发现对数据的修改、增加或删除。数字签名利用密码技术进行,其安全性取决于密码体制的安全程度。现在已经出现很多使用RSA和ESIGN算法实现的数字签名系统。数字签名的目的是保证在真实的发送方与真实的接收方之间传送真实的信息。 (4)密钥管理 数据加密的安全性在很大程度上取决于密钥的安全性。密钥的管理包括密钥体制的选择、密钥的分发、现场密钥保护以及密钥的销毁。 (5)磁介质上的数据加密

系统性能评估

第7章 1.工程工作站:具有实现工程计算、程序编制和调试、作图、通信、资源共享的计算机环 境。 2.早期CAD环境:“大型机(超级小型机)+多路终端 3.工作站从应用对象、范围和功能需求上都不同于普通PC机 4.工作站与PC在配置上的一般区别:1. 图形处理能力:专业图形卡2. 可靠性: 采用多种 可靠性措施3. 性能: 采用高性能器件4. 扩展能力: 内存、多处理器等5. 软件配置: 操作系统、高性能图形处理软件等。 5.系统性能评价技术:从技术上, 主要有分析、模拟、测量三种技术 6.常采用的分析技术有:常采用排队论、随机过程、均值分析等方法进行近似求解,比如 流水线性能、多处理器系统性能分析、软件可靠性静态评估等。 7.分析技术的特点:特点是理论严密, 对基础理论的掌握要求较高。优点是节约人力/物 力, 可应用于设计中的系统。 8.模拟技术的特点:既可以应用于设计中或实际应用中的系统, 也可以与分析技术相结 合, 构成一个混合系统。 9.测量技术的特点: 10.模拟技术是基于试验数据的系统建模, 主要有: (1) 按系统的运行特性建立系统模型; (2) 按系统工作负载情况建立工作负载模型; (3) 编写模拟程序, 模拟被评价系统的运 行。 11.测量技术:该技术是对已投入使用的系统进行测量, 通常采用不同层次的基准测试程序 评估。不同层次指的是:核心程序、实际应用程序、合成测试程序 12.几乎所有基于模拟的评价方法都依赖于测试数据或实验值 13.总结:分为三种性能评价技术,分别是分析、模拟、测量,这三种技术分别对用不同成 熟度的系统。分析技术对应理论研究,特点是理论严密,基础知识掌握度高。模拟技术是对正在设计以及已经用于实际应用的系统进行建模,建模数据来源是实验数据。而测量技术的应用是对已经投入使用的系统进行测量。通常采用不同层次的基准测试程序,不同层次值的是:核心程序、实际应用程序、合成测试程序。 14.系统性能评价对象:内存、I?O、网络、操作系统、编译器的性能。 15.与程序执行的时间相关的两大因素:(1) 时钟频率(MHz);(2) 执行程序使用的总时钟周期 数。 16.CPU时间= 总时钟周期数?时钟周期= 总时钟周期数/ 时钟频率 17.IC(程序执行的指令数)和CPI(每条指令所需时钟数 18.CPU时间= CPI?IC ?时钟周期= CPI?IC /时钟频率 19.(1) 时钟频率: 反映计算机实现、工艺和组织技术; 20.(2) CPI: 反映计算机实现、指令集结构和组织; 21.(3) IC: 反映计算机指令集结构和编译技术。 22.系统性能评价标准:(1) 时钟频率(主频): 用于同类处理机之间(2) 指令执行速度法 (MIPS —定点运算) (3) 等效指令速度:吉普森(Gibson)法4)数据处理速率PDR(processing data rate)法(5) 基准程序测试法 23.MIPS指标的主要缺点是不能反映以下情况: ①不能反映不同指令对速度的影响②不能 反映指令使用频率差异的影响③不能反映程序量对程序执行速度的影响 24.吉普森(Gibson)法的主要缺点:(1) 同类指令在不同的应用中被使用的频率不同;(2) 程序 量和数据量对Cache 影响; (3) 流水线结构中指令执行顺序对速度的影响;(4) 编译程序对系统性能的影响。

系统配置与性能评价题库1-1-8

系统配置与性能评价 题库1-1-8

问题: [单选]下列关于软件可靠性的叙述,不正确的是() A.由于影响软件可靠性的因素很复杂,软件可靠性不能通过历史数据和开发数据直接测量和估算出来 B.软件可靠性是指在特定环境和特定时间内,计算机程序无故障运行的概率 C.在软件可靠性的讨论中,故障指软件行为与需求的不符,故障有等级之分 D.排除一个故障可能会引入其他的错误,而这些错误会导致其他的故障 软件可靠性是软件系统在规定的时间内及规定的环境条件下,完成规定功能的能力,也就是软件无故障运行的概率。这里的故障是软件行为与需求的不符,故障有等级之分。软件可靠性可以通过历史数据和开发数据直接测量和估算出来。在软件开发中,排除一个故障可能会引入其他的错误,而这些错误会导致其他的故障,因此,在修改错误以后,还是进行回归测试。

问题: [单选]在关于计算机性能的评价的下列说法中,正确的叙述是() Ⅰ、机器主频高的一定比主频低的机器速度高。 Ⅱ、基准程序测试法能比较全面地反映实际运行情况,但各个基准程序测试的重点不一样。 Ⅲ、平均指令执行速度(MIPS)能正确反映计算机执行实际程序的速度。 Ⅳ、MFLOPS是衡量向量机和当代高性能机器性能的主要指标之一。 A.Ⅰ、Ⅱ、Ⅲ和Ⅳ B.Ⅱ和Ⅲ C.Ⅱ和Ⅳ D.Ⅰ和Ⅱ 机器主频高的并不一定比主频低的机器速度快,因为指令系统不同,各指令使用的机器周期数也不同。平均指令执行速度并不能完全正确地反映计算机执行实际程序的速度,因为它仅是对各种指令执行速度加权后的平均值,而实际程序使用的指令情况与测试平均指令速度的程序不一样。基准程序测试法是目前一致承认的测试性能较好的方法,目前,有很多这样的测试程序,各个基准程序测试的重点和应用领域都不一样。向量机和当代高性能机器主要用在工程应用计算中,浮点工作量占很大比例,因此机器浮点操作性能是这些机器性能的主要指标之一。

AIX系统的CPU性能评估

1、vmstat 使用vmstat来进行性能评估,该命令可获得关于系统各种资源之间的相关性能的简要信息。当然我们也主要用它来看CPU的一个负载情况。 下面是我们调用vmstat命令的一个输出结果: $vmstat 1 2 System configuration: lcpu=16 mem=23552MB kthr memory page faults cpu ----- ----------- ------------------------ ----------------- ----------- r b avm fre re pi po fr sr cy in sy cs us sy id wa 0 0 3091988 2741152 0 0 0 0 0 0 1849 26129 4907 8 1 88 3 0 0 3091989 2741151 0 0 0 0 0 0 2527 32013 6561 15 2 77 6 对上面的命令解释如下: Kthr段显示内容 ¨ r列表示可运行的内核线程平均数目,包括正在运行的线程和等待CPU 的线程。如果这个数字大于CPU 的数目,则表明有线程需要等待CPU。 ¨ b列表示处在非中断睡眠状态的进程数。包括正在等待文件系统I/O 的线程,或由于内存装入控制而被挂起的线程。 Memory段显示内容 ¨ avm列表示活动虚拟内存的页面数,每页一般4KB ¨ fre空闲的页面数,每页一般4KB Page段显示内容 ¨ re –该列无效 ¨ pi 从磁盘交换到内存的交换页(调页空间)数量,4KB/页。调页空间是驻留在硬盘上的虚拟内存的一部分。当内存使用过量时,会将溢出的工作组页面存储到调页空间中(窃取页)。当进程访问一个窃取页时,就产生了一个缺页故障,而这一页页必须从调页空间中读入到内存中。 ¨ po 从内存交换到磁盘的交换页数量,4KB/页。如果窃取的工作也在调页空间中不存在或者已经作了修改,则写入调页空间中。如果不被再次访问,它会留在调度空间中直到进程终止或者放弃空间。 ¨ fr 根据页面替换算法每秒释放的页数。当VMM页面替换例程扫描页面帧表(Page Frame Table,PFT)时,它会根据一些条件选取需要窃取的页面以补充空闲列表。该条件中包含工作页面和计算页面,释放的页面中,计算页面不产生I/O,工作页面如果数据没有发生修改,也不需要写回磁盘,也不会产生I/O。 ¨ sr 根据页面替换算法每秒所检查的页数。sr值比fr值高的越多,说明替换算法要查找可以替换的页面就越困难。 ¨ cy 每秒页面替换代码扫描了PFT多少次。因为增加空闲列表达到maxfree值,不一定需要完全扫描PFT表,而所有vmstat输出都为整数,所以通常cy列值为0。 Faults段显示内容(其实这段内容不需太多关注) ¨ in 在该时间间隔中观测到的每秒设备中断数。 ¨ sy 在该时间间隔中观测到的每秒系统调用次数。 ¨ cs 在该时间间隔中观测到的每秒钟上下文切换次数。 Cpu段显示内容 ¨ us 列显示了用户模式所消耗的CPU 时间。

模拟通信系统性能指标

1.5.1 模拟通信系统性能指标 知识点归纳: 通信系统的主要性能指标 通信系统的性能指标指涉及有效性、可靠性、标准性、经济性及可维护性等,但设计或评价通信系统的主要性能指标是传输信息的有效性和可靠性。有效性主要是指消息传输的“速度”,而可靠性主要是指消息传输的“质量”。 对于模拟通信系统来说,有效性可以用消息占用的有效带宽来度量,可靠性可以用接受端输出的信噪比来度量。 对于数字通信系统来说,度量其有效性的主要性能指标是传输速率和频带利用率,可靠性主要指标是差错率。 数字系统的性能指标 有效性 有效性时通信系统传输信息的数量上的表征,时指给定信道和时间内传输信息的多少。数字通信系统中的有效性通常用码元速率RB、信息速率Rb和频带利用率衡量。 1.码元速率 码元速率RB也称为传码率、符号传输速率等定义:码元速率RB是指每秒钟传输码元的数目。单位:为波特(baud),简记为B, 例如,某系统在 2 秒内共传送 4800 个码元,则该系统的传码率为 2400B 。 虽然数字信号由二进制和多进制的区分,但码元速率与信号的进制无关,只与一个码元占有时间Tb有关,RB=1/Tb。 2 .信息速率 定义:信息速率(Rb)是指每秒传输的信息量。单位:比特/秒(bit/s),简记(b/s) 例如,若某信源在 1 秒钟内传送 1200 个符号,且每一个符号的平均信息量为 l ( bit ),则该信源的信息传输速率 =1200b/s 或 1200bps 。对于传输二进制数字信号,则Rb为二进制码元数目/秒,对于传输N二进制数字信号,有 Rb=RBlog2M 式中RB为M进制数字信号的码元速率。二进制时,码元速率与信息速率数值相等,只是单位不同。 3.频带利用率 在比较不同的数字通信系统的效率时,仅仅看他们的信息传输速率是不够的。因为即使是两个系统的

电脑系统性能分析与评价

浅谈计算机系统性能评价的认识和理解 随着科学技术的日益进步,计算机也得到快速发展,计算机性能成为人们关注的重点。计算机性能评价不仅是计算机网络和计算机系统研究与应用的重要理论基础和支撑技术,也是当今通信和计算机科学领域的重要研究方向。因此,进行计算机系统性能评价成为当务之急。 计算机性能评价是指对系统的动态行为进行研究和优化,包括对实际系统的行为进行分析、测量和模拟按照一定的性能要求对方案进行选择,对现有系统的性能缺陷和瓶颈进行改进,对未来系统的性能进行预测,以及在保证一定服务质量的前提下进行设计。性能评价技

术研究使性能成为数量化的、能进行度量和评比的客观指标,以及从系统本身或从系统模型获取有关性能信息的方法。性能评价通常是与成本分析综合进行的,借以获得各种系统性能和性能价格比的定量值,从而指导新型计算机系统(如分布式计算机系统)的设计和改进,以及指导计算机应用系统的设计和改进,包括选择计算机类型、型号和确定系统配置等。 1 计算机系统性能评测指标 计算机系统性能指标有两类:可用性、工作能力。 可用性:它指计算机能够持续工作时间,一般用平均无故障时间和可恢复性来表示。 工作能力:它指计算机在正常工作状态下所具有的能力。它们是系统性能评价的主要研究对象。常用的工作能力指标由:吞吐量、延迟和资源利用率。 吞吐量:单位时间内系统的处理能力,指单位时间内完成的任务数。对于不同目标可能含义不同。例如,在评价一个数据库系统时,所指的吞吐量可以是单位时间内交易完成的个数;在评价一个网络系统是,吞吐量指单位时间内传输的字节数等。 延迟:完成一个指定任务所花费的时间。例如,在评价一个数据库系统时,可以考察它完成一个查询,或完成一个数据处理所需要的时间;在评价一个网络系统时,可以考察发送一个网络包所需要的时间等。 资源利用率:指完成一个任务所需要花费的系统资源。例如完成一个数据处理、所占用处理器的时间、占用内存的大小或占用网络带宽的大小等。 吞吐量越高、延迟越少、资源利用率越低则表示系统的性能越好。 2 计算机性能的主要评测手段 计算机性能的主要评测手段主要包括测量、模拟、分析方法。 测量方法:测量是最基本、最重要的系统性能评价手段。测试设备向被测设备输入一组测试信息并收集被测设备的原始输出,然后进行选择、处理、记录、分析和综合,并且解释其结果。上述这些功能一般是由被测的计算机系统和测量工具共同完成的,其中测量工具完成测量和选择功能。测量工具分硬件工具和软件工具两类。硬件测量工具附加到被测计算机系统内部去测量系统中出现的比较微观的事件(如信号、状态)。典型的硬件检测器有定时器、序列检测器、比较器等。例如,可用定时器测量某项活动的持续时间;用计数器记录某一事件出现的次数;用序列检测器检测系统中是否出现某一序列(事件)等。数据的采集、状态的监视、寄存器内容的变化的检测,也可以通过执行某些检测程序来实现。这类检测程序即软件测量工具。例如,可按程序名或作业类收集主存储器、辅助存储器使用量、输入卡片数、打印纸页数、处理机使用时间等基本数据;或者从经济的角度收集管理者需要的信息;或者收集诸如传送某个文件的若干个记录的传送时间等特殊信息;或者针对某个程序或特定的设备收集程序运行过程中的一些统计量,以及发现需要优化的应用程序段等。硬件监测工具的监测精度和分辨率高,对系统干扰少;软件监测工具则灵活性和兼容性好,适用范围广。测量方法是最直接、最基本的方法,其他方法也要依赖于测量的量,但是它比较浪费时间,只适合于已经存在并运行的系统。 分析方法:分析方法可为计算机系统建立一种用数学方程式表示的模型,进而在给定输入条件下通过计算获得目标系统的性能特性。该方法一般应用于系统的设计阶段,这时候因

武器装备系统技术重要度的综合评估

武器装备系统技术重要度的综合评估 冉超1,2,李文强1,熊宜光2 (1.四川大学制造科学与工程学院,四川成都610065;2.中国人民解放军昆明民族干部学院,云南昆明650000) 来稿日期:2017-04-13 基金项目:科技部创新方法工作专项:技术创新方法集成研究与企业系统化应用(2013IM020400)作者简介:冉超,(1987-),男,重庆万州人,硕士研究生,主要研究方向:机械制造及其自动化; 李文强,(1976-),男,新疆乌鲁木齐人,博士研究生,硕士生导师,副教授,主要研究方向:机电系统创新设计与系统优化 1 引言 在武器装备生命周期的方案阶段主要任务是方案选择和对已经选定的方案进行功能分析,确定武器分系统和设备的定性、定量要求,评价和权衡效能、费用、进度要求,并在可靠性、维修性、保障性以及综合保障诸要素之间权衡,进行武器系统的初步设计和初样机的研制性试验[1]。研究表明,武器装备方案阶段所花费用,通常只占武器装备系统全寿命周期费用的(2~3)%,而据此所做的技术选择和决策,却决定了以后80%以上的费用。据统计,武器装备方案拟定阶段所花费用只占全寿命周期费用的1%左右,而对全寿命周期费用的影响却高达70%;方案拟定和演示验证阶段所花费用只占全寿命周期费用的3%,而对全寿命周期费用的影响却高达85%[2],由此可见,在武器装备方案阶段进行技术分析,科学合理的选择技术对项目成败及整个武器装备的全寿命周期费用起着至关重要的作用。 近年来,国内外不少学者对技术评价进行了研究,加拿大国防部(DND )[3]发布技术成熟度测量系统以度量武器系统的技术成熟度。文献[4]整合技术成熟度指标用以解决系统集成成熟度问题。文献[5]提出基于灰靶理论的武器装备体系技术贡献度评估。文献[6]提出基于灰靶理论改进算法的技术贡献度评估。文献[7]建立武器装备体系的技术成熟度评估方法。文献[8]提出大型武器系统的技术成熟度评估方法。但都是对已列装部队的武器装备进行评估,运用武器装备使用数据分析技术对武器装备能力效能的影响,或对武器装备进行效能对比,没有对武器装备部件进行评估。在武器装备方案阶段进行初样机研制时,通常采用“试错法”进行技术选择,存在盲目性,也会降低武器装备研制效率和增加研制成本。基于此,针对方案阶段的技术选择问题建立技术评估指标体系,选用灰色系统理论与层次分析法相结合的评估方法进行技术重要度评估,通过技术重要度来有效的进行技术选择。 摘要:基于技术角度出发,提出了武器装备系统技术重要度概念,提出了一种面向武器装备系统的技术重要度评估指标体系和评估方法,建立了基于灰色系统理论与层次分析法相结合的技术重要度评估流程,选用端点混合三角白化权函数进行数据处理以降低人为主观因素的影响。通过针对两种火炮系统装填技术进行重要度评估,评估结果与两种技术在部队装备实际应用相符,验证了该评估方法的有效性,该评估方法可以在装备方案阶段为决策部门技术选择提供科学依据。关键词:技术重要度;武器装备系统;灰色系统理论;层次分析法;装填技术 中图分类号:TH16 文献标识码:A 文章编号:1001-3997(2017)10-0256-04The Synthetical Evaluation of Weapon Equipment System ’s Technological Importance Value RAN Chao 1,2,LI Wen-qiang 1,XIONG Yi-guang 2 (1.Sichuan University ,School of manufacturing science and Engineering ,Sichuan Chengdu 610065,China ; 2.Kunming ethnic officer academy PLA china ,Yunnan Kunming 650000,China ) Abstract :It based on the perspective of technology of proposes the concept of the important degree of weapon equipment system technology.An evaluation system and method is put forward to evaluate this weapon equipment system ’s technological importance value.The evaluation process of technological importance value is based on the combination of grey system theory and analytic hierarchy process (AHP ).End mixed triangle definite weighted functions is adopted for data processing to reduce the influence of subjective factors.By conducting an importance value evaluation on two kinds of artillery system ’s loading technologies ,the evaluation result is in agreement with the actual situation in army equipment application ,which proves that the evaluation method is effective.When in equipment programming stage ,this evaluation method can provide a scientific basis for decision-making departments to select technologies. Key Words ::Technical Importance ;Weapon Equipment System ;Grey System Theory ;Analytic Hierarchy Process ;Loading Technology Machinery Design &Manufacture 机械设计与制造 第10期2017年10月 256 万方数据

模拟通信系统性能指标

模拟通信系统性能指标 知识点归纳: 通信系统的主要性能指标 通信系统的性能指标指涉及有效性、可靠性、标准性、经济性及可维护性等,但设计或评价通信系统的主要性能指标是传输信息的有效性和可靠性。有效性主要是指消息传输的“速度”,而可靠性主要是指消息传输的“质量”。 对于模拟通信系统来说,有效性可以用消息占用的有效带宽来度量,可靠性可以用接受端输出的信噪比来度量。 对于数字通信系统来说,度量其有效性的主要性能指标是传输速率和频带利用率,可靠性主要指标是差错率。 数字系统的性能指标 有效性 有效性时通信系统传输信息的数量上的表征,时指给定信道和时间内传输信息的多少。数字通信系统中的有效性通常用码元速率RB、信息速率Rb和频带利用率衡量。 1.码元速率 码元速率RB也称为传码率、符号传输速率等定义:码元速率RB是指每秒钟传输码元的数目。单位:为波特(baud),简记为B, 例如,某系统在 2 秒内共传送 4800 个码元,则该系统的传码率为 2400B 。 虽然数字信号由二进制和多进制的区分,但码元速率与信号的进制无关,只与一个码元占有时间Tb有关,RB=1/Tb。 2 .信息速率 定义:信息速率(Rb)是指每秒传输的信息量。单位:比特/秒(bit/s),简记(b/s) 例如,若某信源在 1 秒钟内传送 1200 个符号,且每一个符号的平均信息量为 l ( bit ),则该信源的信息传输速率 =1200b/s 或 1200bps 。对于传输二进制数字信号,则Rb为二进制码元数目/秒,对于传输N二进制数字信号,有Rb=RBlog2M 式中RB为M进制数字信号的码元速率。二进制时,码元速率与信息速率数值相等,只是单位不同。 3.频带利用率 在比较不同的数字通信系统的效率时,仅仅看他们的信息传输速率是不够的。因为即使是两个系统的信息传输的速率相同,他们所占用的频带宽度也可能不同。从而效率也不同。对于相同的信道频带,传输的信息量越来越高。所以用来衡量数字通信系统传输效率指标(有效性)应当是单位频带内的传输速率,即 n=符号传输速率/频带宽度(波特/赫) 对于二进制传输,则可以表示为 n=信息传输速率/频带宽度(比特/秒*.赫) 可靠性

可靠性及系统性能评价

两个部件的可靠度R 均为0.8,由着两个部件串联构成的系统可 靠度为:0.64;由这两个部件并联构成的系统的可靠度为:0.96。 串联系统: 设系统各个子系统的可靠性分别用R1,R2,R3、、、、、,Rn 表 示,则系统的可靠度R=R1*R2*R3*、、、、、*Rn 。 如果系统的各个子系统的失效率分别用R1,R2,R3、、、、 Rn 表示,则系统的失效率为R=R1+R2+、、、、+Rn 。 并联系统: 系统的可靠性R=1-(1-R1)*(1-R2)*、、、、、*(1-Rn )。 系统的失效率R=∑=n j j R 1111 平均无故障时间(MTBF )与失效率的关系为:MTBF=1/R 。 内存按字节编址,地址从90000(H )到CFFFF (H ),可以通过 内存容量的计算公式:内存容量=终止地址-起始地址+1, 内存容量=CFFFF (H )-90000(H )+1=40000(H )=256KB 。 基于Windows 、Linux 和UNIX 等操作系统的服务器称为开放系 统。开放系统的数据存储方式分为内置存储和外挂存储两种,而外挂 存储又根据连接方式分为直连式存储和网络话存储,目前应用的网络

化存储方式有两种,即网络接入存储和存储区域网络。 开始系统的直连式存储(DAS) 网络接入存储(NAS)是将存储设备连接到现有的网络上,来提供数据存储和文件访问服务的设备。DAS服务器是在专用主机上安装简化了的瘦操作系统文件服务器。 存储区域网络(SAN)是一种连接存储设备和存储管理子系统的专用网络。 廉价磁盘冗余阵列RAID RAID分为0~7这8个不同的冗余级别,其中RAID0级无冗余校验功能;RAID1采用磁盘镜像功能,磁盘容量的利用率是50%;RAID3利用一台奇偶校验盘来完成容错功能。所以如果利用4个盘组成RAIDS阵列,可以用3个盘用于有效数据,磁盘容量的利用率为75%。RAID0的磁盘容量利用率是最高的。 P239 项目段式管理页式管理段页式管理划分方式 虚地址 虚实转换 主要优点简化了任意增长和收缩的 数据段管理,利于进程间共消除了页外碎片结合了段与页的有点 便于控制存取访问

控制系统性能评估1

对于一个控制系统来说,系统稳定是前提,在这个前提下,控制系统性能评估主要关心控制系统的动态性能和稳态性能。动态性能指标反映给定输入信号快速平稳的跟踪能力,或者扰动下恢复正常工作的能力。稳态性能指标反映控制性能的最终控制精度。动态性能和稳态性能的性能指标对评估一个控制系统有较重要的作用。 对于控制系统的分析主要有三种方法:时域分析法,频域分析法,根轨迹法。不同的分析方法有不同的稳态和动态性能指标,下面是我的具体介绍。 一、时域:评估一个具体控制系统,我们要得到它的性能指标,在此我给控制系统输入一个阶跃信号,由控制系统输出响应曲线来求出性能指标,仿真可在MATLAB或Simulink进行。 1、一阶系统:数学模型: 阶跃响应曲线: 图一 性能指标:过渡时间ts=4T(98%),上升时间tr=0.13T。上升时间和过渡时间越小,说明其稳态性能和动态性能越好。 2、二阶系统: 数学模型:

单位阶跃响应(衰减振荡形式): 图二 (1)衰减比:n=B/B1,B表示第一个波振幅,B1表示第二个波振幅,n是恒大于1的,n越大稳定性越高,实际操作将n控制在4:1到10:1范围内,则控制性能较好。 (2)超调量δ%:超过目标值的最大偏差量与目标值之比,用百分比表示。阻尼比越小,超调量越大,与自然频率无关。在实际系统中阻尼比一般在0.5-0.8之间。 超调量越大说明稳定性越差,而快速性越好,它们是相互制约的、矛盾的。 (3)调节时间ts:从开始上升到不断调整后进入到稳定的误差范围内的时间。正是这段时间也可以称作动态过程,之后的时间称为稳态。通常所指的动态性能指标包括稳定性和快速性,稳态性能指标就是准确性。稳定性和稳态是不能混为一谈的,一定要分清。 (4)振荡次数N:从开始上升到反复穿越目标值的次数。理想状态下希望N=0.5次。这是考虑到三项指标的综合性。 (5)上升时间tr:从开始上升时间到第一次到达目标值的时间。阻尼比不变时,Wn越大,上升时间越小;自然频率不变,阻尼比越小,上升时间越小。理想状态下希望越短越好,在实际的自动控制系统中是不可能的。 (6)稳态误差ess,反映控制系统的稳态精度,越小越好。 对于一些高阶,复杂的系统,可以在一定范围内简化为典型的系统,便于对控制系统进行分析。 3、高阶系统的性能分析:

制造系统可靠性

制造系统可靠性 李沁逸 (长沙理工大学汽车与机械工程学院,湖南长沙 410114) 摘要:本文简单的对制造系统和可靠性进行了介绍,分析了制造系统发展的概况,阐明了制造系统可靠性的概念和其重要性。 关键字:制造系统可靠性 0引言 随着科学技术的发展,制造系统日趋复杂。科学技术的进步,对企业的制造系统提出了越来越高的要求。然而制造系统的可靠性就变的越来越重要了,制造企业要在外部环境激烈变动的环境下生存和竞争,就要努力的提高制造系统的可靠性,以保证较快的速度和较低的价格,提供较好的产品和高质量的服务才能满足客户需求的多样化和个性化。 1 制造系统可靠性研究现状及发展趋势 制造系统的可靠性建模技术和制造系统可靠性理论研究是近些年来随机制造系统研究的一个重要方向。随着制造系统规模的不断扩大和结构复杂化,其可靠性问题同益显得重要。可靠性模型是用来描述系统及组成单元之间的故障逻辑关系的数学模型,是进行可靠性评估的必不可少的一个环节。当前制造系统性能建模、性能评价的发展趋势可以概括为以下几点: ●针对制造系统性能多样性,需要确定制造企业级性能评价指标体系; ●对制造系统时间、成本、质量等性能建立性能模型,分析各种影响因素,形 成一套参考模型体系; ●将制造系统的不同目标转化为可以进行计算或比较的量化要素,即通过建立 一定的技术经济模型完成各种性能要素的建模分析,即从制造活动性能到制造过程性能和制造过程性能到制造系统性能的映射,并将这些性能属性用量化的形式表达出来; ●对制造系统性能实时跟踪,在制造系统的计算机信息系统基础上,管理人员 实时对所要分析和评价的性能进行跟踪监视,使分析和评价能实时进行; ●定性和定量评价相结合,制造系统内部和制造系统外部性能分析和评价相结 合,并注意制造系统内外部的协调发展; ●重视对制造系统长期利益和短期利益的性能分析和评价相结合,更重视制造 系统长远发展潜力的分析与评价; ●反映整个制造系统全过程的运营动态性能分析和评价,而不是仅仅反映单个 活动或过程的运营情况和静态经营结果。反映整个制造系统整体性能分析和评价,同时也注重各节点相互间利益相关性的性能分析和评价,进行制造全

安全性可靠性性能评价

如对你有帮助,请购买下载打赏,谢谢! 3.3 安全性、可靠性和性能评价 3.3.1主要知识点 了解计算机数据安全和保密、计算机故障诊断与容错技术、系统性能评价方面的知识,掌握数据加密的有关算法、系统可靠性指标和可靠性模型以及相关的计算方示。 3.3.1.1数据的安全与保密 (1)数据的安全与保密 数据加密是对明文(未经加密的数据)按照某种加密算法(数据的变换算法)进行处理,而形成难以理解的密文(经加密后的数据)。即使是密文被截获,截获方也无法或难以解码,从而阴谋诡计止泄露信息。数据加密和数据解密是一对可逆的过程。数据加密技术的关键在于密角的管理和加密/解密算法。加密和解密算法的设计通常需要满足3个条件:可逆性、密钥安全和数据安全。 (2)密钥体制 按照加密密钥K1和解密密钥K2的异同,有两种密钥体制。 ①秘密密钥加密体制(K1=K2) 加密和解密采用相同的密钥,因而又称为密码体制。因为其加密速度快,通常用来加密大批量的数据。典型的方法有日本的快速数据加密标准(FEAL)、瑞士的国际数据加密算法(IDEA)和美国的数据加密标准(DES)。 ②公开密钥加密体制(K1≠K2) 又称不对称密码体制,加密和解密使用不同的密钥,其中一个密钥是公开的,另一个密钥是保密的。由于加密速度较慢,所以往往用在少量数据的通信中,典型的公开密钥加密方法有RSA和ESIGN。 一般DES算法的密钥长度为56位,RSA算法的密钥长度为512位。 (3)数据完整性 数据完整性保护是在数据中加入一定的冗余信息,从而能发现对数据的修改、增加或删除。数字签名利用密码技术进行,其安全性取决于密码体制的安全程度。现在已经出现很多使用RSA和ESIGN算法实现的数字签名系统。数字签名的目的是保证在真实的发送方与真实的接收方之间传送真实的信息。 (4)密钥管理 数据加密的安全性在很大程度上取决于密钥的安全性。密钥的管理包括密钥体制的选择、密钥的分发、现场密钥保护以及密钥的销毁。 (5)磁介质上的数据加密

系统性能评定方法

HKH系统性能评定方法 1.适用范围 1.1本办法适用于短时间内客观评价管道泄漏监测报警定位系统(以下称系统),属于采用测试的办法检验管道泄漏监测报警定位系统。 1.2本办法不适用于通过长时间运行效果统计评价管道泄漏监测报警定位系统(以下称系统)。 1.3本办法涉及到的名词术语凡是“管道泄漏检测技术名词术语解释”已有解释的,一律以“管道泄漏检测技术名词术语解释”为准。 1.4管道泄漏监测系统的性能以长期运行统计的效果为评价主要依据,本办法测试的结果只是测试时系统的性能,如果扩展其代表性,需要供需双方认可。 2.基本要求 2.1系统的主要性能指标是漏报率、误报率和定点误差,本办法适用于用试验的方法对这三项指标的考核。 2.2为检验系统性能,如果被监测管道原有可泄放流体处,最好采用这种方法试验。没有可泄放条件时最好采用开孔泄放的方法,如果不能开孔,可以采用改变信号的方法。 2.2.1选择开孔时,在管道有可能发生泄漏的位置开孔n个,孔径不得小于实际发生过的盗油开孔最小孔径,开孔采用密闭带压开孔方式。 2.2.2选择改变信号方法时,可以选择软件或硬件的方法,但是要尽量模拟管道发生泄漏的实际信号变化过程。 2.3试验必须在管道正常输送状态下进行。要求在试验前一小时内到试验结束前的时间段内,除试验外不得有任何可能导致管道压力发生波动的操作。 3试验方法 3.1在确认计算机已经处于正常监控和管道正常输送的状态下,从开孔处

放油和在两站调整外输管压,然后依据统计数据计算出上述三项指标,所取数据应有足够的代表性。 3.2开关放油阀操作时须连续,不得节流。放油一次时间不小于200s,每次停止放油后到下次操作的间隔时间不小于10分钟。 3.3调整管道压力一次时间不小于200s,每次恢复后到下次调整的间隔时间不小于10分钟。对于不能连续开动的阀门,每开动一下为一次操作。调整管道压力操作可采用在管线上放油(取样)、调回流、调外输量等办法,对于有变频调速器的场合,如果用调整频率的方法不能导致管道压力振荡时,也允许采用该方法。 4数据的收集和处理 4.1现场数据必须有专人记录,记录操作时间,操作内容和间隔时间,时间采用实时时间,要求操作员、记录员、审核员签字完整。 4.2漏报率: 漏报率=(放油次数-计算机报警次数)/放油次数×100% 4.3误报率: 误报率=调整管道压力时计算机报警次数/调整管道压力次数×100% 4.4定位误差: 定位误差=单个报警定点值-总平均定点值 4.5粗大误差 原始记录产生的粗大误差应予剔除,以消除非正常因素导致的不公正。 5操作规范 5.1在测试过程中,同一时刻不能进行另一项考核内容的操作。 5.2在测试的全过程中,不得调整外输管道压力,如化验取样需要,也必须在测试误报中取样,取样操作要符合本规范并统计在数据中。

检测系统分析性能评价

检测系统及其分析性能评价程序 1目的 规范检测系统的分析性能评价程序,对新购置的检测系统在正式用于检测标本前对检测系统的分析性能进行评价,确认检测系统的分析性能符合临床要求,以保证检验结果的可靠性。 2范围 适用于生化定量检验项目的各类检测系统。 3职责 技术负责人和科主任共同负责检测系统分析性能评价实验方法的设计。 科主任负责组织检测系统的分析性能评价实验。 4定义和术语 4.1检测系统 完成一个项目检测所涉及的仪器、试剂、校准品、操作程序、质量控制程序、保养计划等的组合为检测系统,若手工操作还包括具体操作人员。 4.2检测系统的分析性能 检测系统的分析性能包括:精密度、准确度、病人结果可报告范围、分析灵敏度、分析特异性和生物参考区间等。 4.3检测系统分析性能评价的方式 4.3.1检测系统分析性能的评价: 对实验室自行开发或研究的新检测系统或检验方法的分析性能进行确定,包括:精密度、准确度、病人结果可报告范围、分析灵敏度、分析特异性和生物参考区间等基本性能的实验评价,使其检验结果符

合临床要求,以说明检测系统检测结果的可靠性。 4.3.2检测系统分析性能的确认: 对实验室新购置的已被政府有关部门认可了其分析性能的检测系统,实验室在投入进行常规病人标本检测前,需对厂商提供的性能资料中的几个分析性能进行实验以确认该检测系统是否具有预期的水平。对检测系统分析性能的确认包括:精密度、准确度和病人结果可报告范围三种性能的评估。对于低值在临床上特别有意义的项目需要增加分析灵敏度性能的评估。 4.3.3检测系统分析性能的核实: 对实验室新购置的已被许多实验室广泛应用的检测系统,实验室期望核实该系统已被认可的性能而进行的评估实验为核实。评估时以最少的必需的实验去核实,说明可以得到和厂商报告一致的精密度和准确度,也可以和其他用户的性能一致。对检测系统分析性能的核实包括不精密度和不准确度二种性能的核实。

相关主题
文本预览
相关文档 最新文档