当前位置:文档之家› 纯金属的凝固

纯金属的凝固

液态金属凝固过程中的传热与传质

液态金属凝固过程中的传热与传质 摘要:液态金属熔体中传热和传质过程的改变会影响晶体的形核和生长,从而影响凝固组织。本文介绍了液态金属凝固的原理,凝固过程中传热“一热、二迁、三传”的特点,以及凝固过程中的传质及其基本问题。传热与传质的研究方法包括解析法、实验法、数值模拟法等。我国许多研究者对凝固过程中的传热和传质问题进行了研究,高新技术方面热质传递现象的机理和特有规律是今后重点发展的研究领域。 关键词:金属凝固;传热和传质;界面;溶质再分配 在金属的热态成形过程中,常常伴随着金属液的流动、气体的流动、金属件内部和它周围介质间的热量交换和物质转移现象,即动量传输、热量传输和质量传输现象。液态金属熔体中传热和传质过程的改变会影响晶体的形核和生长,从而影响凝固组织[1-2]。因此,只有正确和深入研究金属凝固过程中的传输现象,才能有助于建立正确的凝固过程理论模型。 1 金属凝固过程的传热与传质 1.1 金属凝固过程中的传热 在凝固过程中,伴随着潜热的释放、液相与固相降温放出物理热,定向凝固时,还需外加热源使凝固过程以特定的方式进行,各种热流被及时导出,凝固才能维持。宏观上讲,凝固方式和进程主要是由热流控制的。金属凝固过程的传热特点可以简明的归结为“一热、二迁、三传”[3-5]。 “一热”即在凝固过程中热量的传输是第一重要的,它是金属凝固过程能否进行的驱动力。凝固过程首先是从液体金属传出热量开始的。高温的液体金属浇入温度较低的铸型时,金属所含的热量通过液体金属、已凝固的固体金属、金属-铸型的界面和铸型的热阻而传出。凝固是一个有热源非稳态传热过程。 “二迁”指在金属凝固时存在着两个界面,即固相-液相间界面和金属-铸型间界面,这两个界面随着凝固进程而发生动态迁移,并使得界面上的传热现象变得极为复杂。图1为纯金属浇入铸型后发生的传热模型示意,由图可见在凝固过程中随着固相-液相间界面向液相区域迁移,液态金属逐步变为固态,并在凝固前沿释放出凝固潜热,并随着凝固进程而非线性地变化。在金属凝固过程中,由于金属的凝固收缩和铸型的膨胀,在金属和铸型间形成金属和铸型间的界面,由于接触不完全,它们之间存在着界面热阻。接触情况不断地变化,在一定条件下,会形成一个间隙(也称气隙),因此这里的传热不知是一种简单的传导,而是同时存在微观的对流和辐射传热。 “三传”即金属的凝固过程是一个同时包含动量传输、质量传输和热量传输的三传耦合的三维传热物理过程。在热量传输过程中也同时存在有导热、对流和辐射换热三种传热方式。一个从宏观上看是一维传热的单向凝固的金属,由于凝固过程中的界面现象使传热过程在微观变得非常复杂。当固/液界面是凹凸不平或生长为枝晶状时,在这个凝固前沿上,热总是垂直于这些界面的不同方位从液相传入固相,因而发生微观的三维传热现象。在金属和铸型界面上的传热也不只是一种简单的传导,而是同时存在微观的对流和辐射传热。

纯金属的凝固习题与答案

纯金属的凝固习题与答案 1 说明下列基本概念 凝固、结晶、过冷、过冷度、结构起伏、能量起伏、均匀形核、非均匀形核、临界晶核半径、临界晶核形核功、形核率、生长线速度、光滑界面、粗糙界面、动态过冷度、柱状晶、等轴晶、树枝状晶、单晶、非晶态、微晶、液晶。 2 当球状晶核在液相中形成时,系统自由能的变化为σππ233 44r G r G V +?=?,(1)求临界 晶核半径c r ;(2)证明V V c c G A G c ?- ==?2 31 σ(c V 为临界晶核体积);(3)说明上式的物理意 义。 3 试比较均匀形核与非均匀形核的异同点,说明为什么非均匀形核往往比均匀形核更容易进行。 4 何谓动态过冷度?说明动态过冷度与晶体生长的关系。在单晶制备时控制动态过冷度的意义? 5 分析在负温度梯度下,液态金属结晶出树枝晶的过程。 6 在同样的负温度梯下,为什么Pb 结晶出树枝状晶而Si 的结晶界面却是平整的? 7 实际生产中怎样控制铸件的晶粒大小?试举例说明。 8 何谓非晶态金属?简述几种制备非晶态金属的方法。非晶态金属与晶态金属的结构和性能有什么不同。 9 何谓急冷凝固技术?在急冷条件下会得到哪些不同于一般晶体的组织、结构?能获得何种新材料? . 计算当压力增加到500×105Pa 时锡的熔点的变化,已知在105Pa 下,锡的熔点为505K ,熔化热7196J/mol ,摩尔质量为118.8× 10-3kg/mol ,固体锡的体积质量7.30×103kg/m 3,熔化时的体积变化为+2.7%。 2. 考虑在一个大气压下液态铝的凝固,对于不同程度的过冷度,即:ΔT=1,10,100和200℃,计算: (a)临界晶核尺寸;(b)半径为r*的团簇个数; (c)从液态转变到固态时,单位体积的自由能变化ΔGv ; (d)从液态转变到固态时,临界尺寸r*处的自由能的变化 ΔGv 。 铝的熔点T m =993K ,单位体积熔化热ΔH f =1.836×109J/m 3,固液界面自由能γsc =93J/m 2 , 原子体积V 0=1.66 ×10-29m 3。 3. (a)已知液态纯镍在1.1013×105Pa(1个大气压),过冷度为319℃时发生均匀形核。设临界晶核半径为1nm ,纯镍的熔点为

金属凝固原理复习资料

金属凝固原理复习题部分参考答案 (杨连锋2009年1月) 2004年 二 写出界面稳定性动力学理论的判别式,并结合该式说明界面能,温度梯度,浓度梯度对界面稳定性的影响。 答:判别式, 2 01()()2 (1)m c v D s g m v D g G T k ωωωω * *??- ??? =-Γ- ++?? -- ??? ,()s ω的正负决定 着干扰振幅是增长还是衰减,从而决定固液界面稳定性。第一项是由界面能决定的,界面能不可能是负值,所以第一项始终为负值,界面能的增加有利于固液界面的稳定。第二项是由温度梯度决定的,温度梯度为正,界面稳定,温度梯度为负,界面不稳定。第三项恒为正,表明该项总使界面不稳定,固液界面前沿形成的浓度梯度不利于界面稳定,溶质沿界面扩散也不利于界面稳定。 三 写出溶质有效分配系数E k 的表达式,并说明液相中的对流及晶体生长速度对E k 的影 响。若不考虑初始过渡区,什么样的条件下才可能有0s C C * = 答:0 00 (1)N L s v E D C k k C k k e δ*- = = +- 可以看出,搅拌对流愈强时,扩散层厚度N δ愈小, 故s C * 愈小。生长速度愈大时,s C * 愈向0C 接近。(1)慢的生长速度和最大的对流时,N L v D δ《1,0E k k = ;(2)大的生长速度或者液相中没有任何对流而只有扩散时,N L v D δ》1,E k =1 (3)液相中有对流,但属于部分混合情况时,0 1E k k <<。1E k =时,0 s C C * = ,即在 大的生长速度或者液相中没有任何对流而只有扩散时。 四 写出宏观偏析的判别式,指出产生正偏析,负偏析,和不产生偏析的生长条件。 答:0 1s q q C k C k = -+,s C 是溶质的平均浓度,0C 是液相的原始成分,q 是枝晶 内溶质分布的决定因素,它是合金凝固收缩率β,凝固速度u 和流动速度v 的函数, (1)(1)v q u β=-- 。0s C C =,即 1p u v β β =- -时,q=1,无宏观偏析。0s C C >时,对于01k <的合金来说,为正偏析,此时 1p u v β β >- -。0s C C <时,对于01k <的合金来 说,为负偏析,此时 1p u v β β <- -。 五 解:用2m m m m r m m k r T V T V T H H σσ?=- ?=- ? ??计算

材料成形原理课后习题解答汇总

材料成型原理 第一章(第二章的内容) 第一部分:液态金属凝固学 1.1 答:(1)纯金属的液态结构是由原子集团、游离原子、空穴或裂纹组成。原子集团的空穴或 裂纹内分布着排列无规则的游离的原子,这样的结构处于瞬息万变的状态,液体内部 存在着能量起伏。 (2)实际的液态合金是由各种成分的原子集团、游离原子、空穴、裂纹、杂质气泡 组成的鱼目混珠的“混浊”液体,也就是说,实际的液态合金除了存在能量起伏外, 还存在结构起伏。 1.2答:液态金属的表面张力是界面张力的一个特例。表面张力对应于液-气的交界面,而 界面张力对应于固-液、液-气、固-固、固-气、液-液、气-气的交界面。 表面张力σ和界面张力ρ的关系如(1)ρ=2σ/r,因表面张力而长生的曲面为球面时,r为球面的半径;(2)ρ=σ(1/r1+1/r2),式中r1、r2分别为曲面的曲率半径。 附加压力是因为液面弯曲后由表面张力引起的。 1.3答:液态金属的流动性和冲型能力都是影响成形产品质量的因素;不同点:流动性是确 定条件下的冲型能力,它是液态金属本身的流动能力,由液态合金的成分、温度、杂 质含量决定,与外界因素无关。而冲型能力首先取决于流动性,同时又与铸件结构、 浇注条件及铸型等条件有关。 提高液态金属的冲型能力的措施: (1)金属性质方面:①改善合金成分;②结晶潜热L要大;③比热、密度、导热系大; ④粘度、表面张力大。 (2)铸型性质方面:①蓄热系数大;②适当提高铸型温度;③提高透气性。 (3)浇注条件方面:①提高浇注温度;②提高浇注压力。 (4)铸件结构方面:①在保证质量的前提下尽可能减小铸件厚度; ②降低结构复杂程度。 1.4 解:浇注模型如下:

过冷温度对金属凝固的影响

过冷度对金属凝固的影响 金属材料作为支撑国民生活富裕及安全的基础结构材料而大量使用。随着材料使用方法的多样化,对材料特性的要求也日益严格。因此,利用现代科学技术开发出高质量和高性能的钢铁材料将具有重大的现实意义。 金属的凝固过程对金属的机械性能特点有重大影响,它决定着该零件组织,包括各种相的形态,大小和分布,直接影响到该零件后面的加工处理工艺,间接地影响了工件的加工性能和使用性能。而对于铸件和焊接件来说,结晶过程基本上就决定了它的使用性能和使用寿命,而对尚需进一步加工的铸锭来说,结晶过程既直接影响了它的轧制和锻压工艺性能,又不同程度地影响着其制品的使用性能。因此,研究和控制金属的结晶过程,已成为了提高金属力学性能和工艺性能的重要手段。而金属的结晶过程总是伴随着过冷,可以说研究金属的结晶过程就是相当于研究结晶过程对过冷的控制。 1过冷度的概念 1.1几种过冷定义 过冷:金属理论凝固温度与实际温度之差。即图1中的ΔT。 图1:过冷度 热过冷:金属凝固时所需过冷度完全由传热所提供。仅由熔体实际温度分布决定。 成分过冷:凝固时由于溶质再分配造成固液界面前沿溶质浓度变化,引起理论凝固温度的改变而在液固界面前液相内形成的过冷。这种由固-液界面前方溶质再分配引起的过冷,称为成分过冷。由界面前方的实际温度和液相线温度分布两者共同决定。成分过冷不仅受热扩散的控制,更受溶质扩散的控制。

1.2过冷现象 实验表明纯金属的实际凝固温度Tn总比其熔点Tm低,这种现象叫做过冷。金属实际结晶温度Tn与理论结晶温度Tm之差,称为过冷度,用△T表示。其大小取决于: 1)液态金属的本性,金属不同,△T也不同; 2)纯度越高,△T越大; 3)冷却速度越快,△T越大。但无论多慢也不能在Tm结晶。 2金属结晶的必要条件 2.1过冷是结晶的必要条件 由热力学规律可知,在等温等压条件下,物质系统总是自发地从自由能较高的状态向自由能较低的状态转变。如果液相的自由能比固相的自由能低,那么金属将自发地从固相转变为液相,即金属发生熔化。如果液相的自由能高于固相的自由能,那么液相将自发地转变为固相,即金属发生结晶,从而使系统的自由能降低,处于更为稳定的状态。结晶过程的驱动力:液相金属和固相金属的自由能之差,即体积自由能的下降就是促进这种转变的驱动力。而结晶的阻力就是其表面能。二者的大小与温度的关系如图2。 图2:液相和固相自由能随温度的变化 低值温度自由能:熵的物理意义是表征系统中原子排列混乱程度的参数。温度升髙,原子的活动能力提高,因而原子排列的混乱程度増加,即熵值增加,系统的自由能也就随着温度的升高而降低。 纯金属液,固两相自由能随温度变化规律:

(完整word版)第三章__纯金属的凝固答案

第三章纯金属的凝固 本章主要内容: 液态金属的结构; 金属结晶过程:金属结晶的条件,过冷,热力学分析,结构条件 晶核的形成:均匀形核:能量分析,临界晶核,形核功,形核率,非均匀形核:形核功,形核率 晶体的长大:动态过冷度(晶体长大的条件),固液界面微观结构,晶体长大机制,晶体长大形态:温度梯度,平面长大,树枝状长大、结晶理论的应用实例:铸锭晶粒度的控制,单晶制备,定向凝固,非晶态金属 一、填空 1..在液态金属中进行均质形核时,需要__结构_起伏和____能量起伏。 1.金属凝固的必要条件是__________过冷度和能量起伏_____________。 2.细化铸锭晶粒的基本方法是:(1)___控制过冷度_,(2)___变质处理__,(3)____振动、搅拌等____。 5、形成临界晶核时体积自由能的减小只能补偿新增表面能的____2/3____。 6、液态金属均质形核时,体系自由能的变化包括(体积自由能)和(表面自由能)两部分,其中__表面_____ 自由能是形核的阻力,____体积___自由能是形核的动力;临界晶核半径r K与过冷度△T呈__反比_ T L T r m m ? - = σ2 _ 关系,临界形核功△G K等于____ ()2 2 3 3 16 T L T G m m k? ? = ? σ π 表面能的1/3___。 7 动态过冷度是______晶核长大时固液界面(前沿)的过冷度___。 8 在工厂生产条件下,过冷度增大,则临界晶核半径__减小___,金属结晶冷却速度越快,N/G比值___越大_____,晶粒越细_小。 9 制备单晶的基本原理是__保证一个晶核形成并长大__,主要方法有____尖端成核法和___垂直提拉法。 10. 获得非晶合金的基本方法是_____快速冷却___________。 11 铸锭典型的三层组织是______细晶粒区________, ___柱状晶区____, _____等轴晶区____。 12 纯金属凝固时,其临界晶核半径的大小、晶粒大小主要决定于_______过冷度_______________。 14 液态金属凝固时,异质形核需要的过冷度比均质形核小,这是因为_异质形核时固相质点可作为晶核长大,其临界形核功较小。 15、液态金属凝固过程中晶体长大的方式有(垂直长大方式)和(横向长大方式),其中大多数金属采用(垂直长大方式)方式长大。 二、名词解释 过冷度,临界晶核,临界晶核半径,自发形核,结构起伏、能量起伏,形核功,形核率,变质处理, 异质形核,非晶态金属、光滑界面、粗糙界面、温度梯度、 三、判断 1 纯金属中含有少量杂质在热力学上是稳定的。(√) 2 临界半径r K大小仅与过冷度有关。(×)

材料科学基础试题及答案

第一章 原子排列与晶体结构 1. fcc 结构的密排方向是 ,密排面是 ,密排面的堆垛顺序是 ,致密度为 ,配位数是 ,晶胞中原子数为 ,把原子视为刚性球时,原子的半径r 与点阵常数a 的关系是 ;bcc 结构的密排方向是 ,密排面是 ,致密度为 ,配位数是 ,晶胞中原子数为 ,原子的半径r 与点阵常数a 的关系是 ;hcp 结构的密排方向是 ,密排面 是 ,密排面的堆垛顺序是 ,致密度为 ,配位数是 ,, 晶胞中原子数为 ,原子的半径r 与点阵常数a 的关系是 。 2. Al 的点阵常数为0.4049nm ,其结构原子体积是 ,每个晶胞中八面体间隙数为 ,四面体间隙数为 。 3. 纯铁冷却时在912ε 发生同素异晶转变是从 结构转变为 结构,配位数 ,致密度降低 ,晶体体积 ,原子半径发生 。 4. 在面心立方晶胞中画出)(211晶面和]211[晶向,指出﹤110﹥中位于(111)平 面上的方向。在hcp 晶胞的(0001)面上标出)(0121晶面和]0121[晶向。 5. 求]111[和]120[两晶向所决定的晶面。 6 在铅的(100)平面上,1mm 2有多少原子?已知铅为fcc 面心立方结构,其原子半径R=0.175×10-6mm 。 第二章 合金相结构 一、 填空 1) 随着溶质浓度的增大,单相固溶体合金的强度 ,塑性 ,导电性 ,形成间隙固溶体时,固溶体的点阵常数 。 2) 影响置换固溶体溶解度大小的主要因素是(1) ; (2) ;(3) ;(4) 和环境因素。 3) 置换式固溶体的不均匀性主要表现为 和 。 4) 按照溶质原子进入溶剂点阵的位置区分,固溶体可分为 和 。 5) 无序固溶体转变为有序固溶体时,合金性能变化的一般规律是强度和硬度 ,塑性 ,导电性 。 6)间隙固溶体是 ,间隙化合物是 。 二、 问答 1、 分析氢,氮,碳,硼在?-Fe 和?-Fe 中形成固溶体的类型,进入点阵中的位置和固溶度大小。已知元素的原子半径如下:氢:0.046nm ,氮:0.071nm ,碳:0.077nm ,硼:0.091nm ,?-Fe :0.124nm ,?-Fe :0.126nm 。 2、简述形成有序固溶体的必要条件。 第三章 纯金属的凝固 1. 填空 1. 在液态纯金属中进行均质形核时,需要 起伏和 起伏。 2 液态金属均质形核时,体系自由能的变化包括两部分,其中 自由能

纯金属的凝固

第三章纯金属的凝固 1名词解释 过冷度,临界晶核,临界晶核半径,自发形核,能量起伏,形核功,形核率,变质处理,柱状晶带,等轴晶,异质形核,非晶态金属 2判断 1 纯金属中含有少量杂质在热力学上是稳定的。() 2 临界半径r K 大小仅与过冷度有关。() 3 液态金属凝固时,临界晶核半径与过冷度成反比。() 4 在液态金属中形成临界晶核时,体系自由能的变化为零。() 5 任何温度下液态金属中出现最大结构起伏是晶胚。() 6 任何过冷度下液态金属中出现的最大结构起伏却是晶核。() 7 湿润角θ =180e时,异质形核最容易进行。() 8 枝臂间距是指相邻两树枝晶一次轴之间的距离。() 9 为了细化晶粒,工艺上采用增大过冷度的方法,这只对小件或薄件有效,而对较大厚壁铸件并不适用。() 10 从非均匀形核计算公式:A 非均匀=A 均匀 (2-3cosθ+cos3θ)/4看出当θ=00时固相杂质相当于 现成的大晶核。() 11 理论凝固温度与固/液界面处温度之差,称为动态过冷度。() 12 动态过冷度是指结晶过程中实际液相温度熔点之差。() 13 液态金属结晶时,其临界晶粒半径rK是不变的恒定值。() 14液态金属结晶时,其理论结晶温度与固/液界面处温度之差称为临界过冷度。() 3问答 1 根据凝固理论,试述细化晶粒的基本途径。 2 试根据凝固理论,分析通常铸锭组织的特点。 3 试说明在铸锭中获得细等轴晶组织可以采取的措施。 4 回答液态金属凝固时均质形核的有关问题: (1)写出临界晶核半径γ k 的表达式; (2)画出γ k 与过冷度?T的关系曲线示意图; (3)写出形核功?G k 与临界晶核界面能的关系式;

液态金属的传热与凝固方式

第五章 液态金属的传热与凝固方式 1. 试分析铸件在金属型,砂型,保温型中凝固时的传热过程,并讨论在上述几种情况影响传热的限制性环节及温度场的特点。 答: (1)砂型: 2λ 远小于1λ ,铸件冷却缓慢断面上的温差很小,而铸型内表面被铸件加热到很高的温度,而外表面仍处于较低的温度。砂型本身的热物理性质是主要因素(限制环节)。 (2)金属型: a.铸件较厚,涂料较厚。 铸件的冷却和铸型的加热都不十分激烈,大部分温度降在中间层,而铸型和铸件上温度分布均匀。 传热过程主要取决于涂料层的热物理性质。 b.当涂料层很厚时,铸件的冷却和铸型的加热都很激烈,有明显的温度梯度界面热量很小,可忽略。 传热过程取决于铸件、铸型的热物理性质。 (3)保温型: 与砂型情况类似,只是铸型比铸件的冷却更缓慢,铸型界面处温度梯度较大,而外部温度低(接近金属型后涂料)。 2.试应用凝固动态曲线分析铸件的凝固特征,根据铸件的动态凝固曲线能否判断其停止流动的过程。 答: ①某一时刻的各区宽度,L 、L+S 、S 、L+S 宽度分别为,逐层、体积、中间凝固方式。 ②结壳早晚:

停止流动的过程: 两线重合或垂直距离小,流动管道中晶体长大阻塞而停止流动。 两线垂直距离大,液体中析出晶体较多,连成网络而阻塞。 两线垂直中等,管道壁有一部分柱状晶,中心有等轴晶,使剩余的液体停止流动。 3. 试证明铁在熔点浇入铝制容器中,铝型内表明不会熔化。 已知:铁液熔点t 10=1539℃ λ1=23.26()k m w ?,k kg J C ?=9211,3 1kg 6900m =ρ 铝液熔点660℃,λ2=23.26()k m w ?,k kg J C ?=9212,3 kg 6900m =ρ, t 20=20℃。 解:起始边界温度t F 2 120 2101b b t b t b t F ++= ()()c c t p c b p c b 00F 2222111166064.642k 64.9152 .174549.121572092732.1745427315399.121572.17459.12157<==+?++?= ====λλ 不会熔化。 4. 用契福利诺夫定律计算铸件的凝固时间,误差来源于几方面?半径相同的圆柱和球哪个误差大?大铸件与小铸件哪个误差大?金属型和砂型哪个误差大? 契福利诺夫定律:22 K R =τ 答: ⑴误差来自: ①金属型和接触面是无限大的平面,铸件和铸型的壁厚都是半无限大的; ② 与金属液接触的铸型表面温度浇注后立即达到金属表面温度,且以后保持 结壳晚 结壳早 结壳正常

材料成型原理课后题答案

第三章: 8:实际金属液态合金结构与理想纯金属液态结构有何不同 答:纯金属的液态结构是由原子集团、游离原子、空穴或裂纹组成的,是近程有序的。液态中存在着很大的能量起伏。而实际金属中存在大量的杂质原子,形成夹杂物,除了存在结构起伏和能量起伏外还存在浓度起伏。 12:简述液态金属的表面张力的实质及其影响因数。 答:实质:表面张力是表面能的物理表现,是是由原子间的作用力及其在表面和内部间排列状态的差别引起的。 影响因数:熔点、温度和溶质元素。 13:简述界面现象对液态成形过程的影响。 答:表面张力会产生一个附加压力,当固液相互润湿时,附加压力有助于液体的充填。液态成形所用的铸型或涂料材料与液态合金应是不润湿的,使铸件的表面得以光洁。凝固后期,表面张力对铸件凝固过程的补索状况,及是否出现热裂缺陷有重大影响。 15:简述过冷度与液态金属凝固的关系。 答:过冷度就是凝固的驱动力,过冷度越大,凝固的驱动力也越大;过冷度为零时,驱动力不存在。液态金属不会在没有过冷度的情况下凝固。 16:用动力学理论阐述液态金属完成凝固的过程。 答:高能态的液态原子变成低能态的固态原子,必须越过高能态的界面,界面具有界面能。生核或晶粒的长大是液态原子不断地向固体晶粒堆积的过程,是固液界面不断向前推进的过程。只有液态金属中那些具有高能态的原子才能越过更高能态的界面成为固体中的原子,从而完成凝固过程。 17:简述异质形核与均质形核的区别。 答:均质形核是依靠液态金属内部自身的结构自发形核,异质形核是依靠外来夹杂物所提供的异质界面非自发的形核。 异质形核与固体杂质接触,减少了表面自由能的增加。 异质形核形核功小,形核所需的结构起伏和能量起伏就小,形核容易,所需过冷度小。 18:什么条件下晶体以平面的方式生长什么条件下晶体以树枝晶方式生长 答:①平面方式长大:固液界面前方的液体正温度梯度分布,固液界面前方的过冷区域及过冷度极小,晶体生长时凝固潜热析出的方向与晶体的生长方向相反。 ②树枝晶方式生长:固液界面前方的液体负温度梯度分布,固液界面前方的过冷区域较大,且距离固液界面越远过冷度越大,晶体生长时凝固潜热析出的方向与晶体生长的方向相同。 19:简述晶体的微观长大方式及长大速率。 答:①连续生长机理--粗糙界面的生长:动力学过冷度小,生长速率快。②二维生长机理--光滑界面生长:过冷度影响大,生长速度慢。③从缺陷处生长机理--非完整界面生长:所需过冷度较大,生长速度位于以上二者之间。 20:为生么要研究液态金属凝固过程中的溶质再分配它受那些因素的影响 答:液态金属在凝固过程中的各组元会按一定的规律分配,它决定着凝固组织的成分分布和组织结构,液态合金凝固过程中溶质的传输,使溶质在固液界面两侧的固相和液相中进行再分配。掌握凝固过程中的溶质再分配的规律,是控制晶体生长行为的重要因素,也是在生产实践中控制各种凝固偏析的基础。 凝固过程中溶质的再分配是合金热力和动力学共同作用的结果,不同的凝固

金属凝固理论重点总结

金属凝固理论复习资料 一、名词解释 1.能量起伏:金属晶体结构中每个原子的振动能量不是均等的,一些原子的能量超过原子 的平均能量,有些原子的能量则远小于平均能量,这种能量的不均匀性称为“能量起伏” 2.结构起伏:液态金属中的原子集团处于瞬息万变的状态,时而长大时而变小,时而产生 时而消失,此起彼落,犹如在不停顿地游动。这种结构的瞬息变化称为结构起伏。 3.浓度起伏:不同原子间结合力存在差别,在金属液原子团簇之间存在着成分差异。这种 成分的不均匀性称为浓度起伏。 4.熔化潜热:将金属加热到至熔点时,金属体积突然膨胀,等于固态金属从热力学温度零 度加热到熔点的总膨胀量,金属的其他性质如电阻,粘性等发生突变,吸收的热能。 5.充型能力:液态金属充满铸型型腔,获得形状完整,轮廓清晰的铸件的能力。 6.成分过冷:由溶质再分配导致的界面前方熔体成分及其凝固温度发生变化而引起的过 冷。 7.热过冷:仅由熔体实际温度分布所决定的过冷状态称为热过冷 8.宏观偏析:又称长程偏析或区域偏析,指较大范围内的化学成分不均匀现象,表现为铸 件各部位之间化学成分的差异。 9.微观偏析:微观偏析是指微小范围(约一个晶粒范围)内的化学成分不均匀现象,按位 置不同可分为晶内偏析(枝晶偏析)和晶界偏析。 10.微观偏析 (1)晶内偏析:在一个晶粒内出现的成分不均匀现象,常产生于有一定结晶温度范围、能够形成固溶体的合金中。 (2)晶界偏析:溶质元素和非金属夹杂物富集与晶界,使晶界和晶内的化学成分出现差异。它会降低合金的塑性和高温性能,又会增加热裂倾向。 11.宏观偏析: (1)正常偏析:当合金溶质分配系数k<1时,凝固界面的液相中将有一部分被排出,随着温度的降低,溶质的浓度将逐渐增加,越是后来结晶的固相,溶质浓度越高,当k>1时相反。正常偏析存在使铸件的性能不均匀,在随后的加工中难以消除。 (2)逆偏析:即k<1时,铸件表面或底部含溶质元素较多,而中心部分或上部分含溶质较少。 (3)V形偏析和逆V形偏析:常出现在大型铸锭中,一般呈锥形,偏析中含有较高的碳以及硫和磷等杂质。 (4)带状偏析:它总是和凝固的固-液界面相平行。 (5)重力偏析:由于重力的作用而出现化学成分不均匀的现象,常产生于金属凝固前和刚刚开始凝固之际。 枝晶偏析:由于固溶体合金多按枝晶方式生长,分支本身分支与分支间的成分是不均匀的,故称为~。 12.正偏析:指溶质含量高于其平均溶质含量的区域 13.负偏析:降低该区的溶质浓度,使该区C5降低,产生的偏析。(溶质含量低于其平均溶 质含量的区域) 14.重力偏析:由于沿垂直方向逐层凝固而产生的正常偏析和固液相之间或互不相容的液相 之间有的密度不同,在凝固过程中发生沉浮现象造成的。 15.过热度:指金属熔点与液态金属温度之差。 16.过冷度:理论结晶温度与实际结晶温度的差值称为过冷度

第二章 纯金属结晶作业答案

第二章纯金属的结晶 (一) 填空题 1.金属结晶两个密切联系的基本过程是形核和长大。 2 在金属学中,通常把金属从液态向固态的转变称为结晶,通常把金属从一种结构的固态向另一种结构的固态的转变称为相变。 3.当对金属液体进行变质处理时,变质剂的作用是增加非均质形核的形核率来细化晶粒 4.液态金属结晶时,获得细晶粒组织的主要方法是控制过冷度、加入结构类型相同的形核剂、振动、搅动 5.金属冷却时的结晶过程是一个放热过程。 6.液态金属的结构特点为长程无序,短程有序。 7.如果其他条件相同,则金属模浇注的铸件晶粒比砂模浇注的细小,高温浇注的铸件晶粒比低温浇注的粗大,采用振动浇注的铸件晶粒比不采用振动的细小,薄铸件的晶粒比厚铸件细小。 8.过冷度是金属相变过程中冷却到相变点以下某个温度后发生转变,即平衡相变温度与该实际转变温度之差。一般金属结晶时,过冷度越大,则晶粒越细小。 9、固态相变的驱动力是新、旧两相间的自由能差。 10、金属结晶的热力学条件为金属液必须过冷。 11、金属结晶的结构条件为在过冷金属液中具有尺寸较大的相起伏,即晶坯。 12、铸锭的宏观组织包括外表面细晶区、中间等轴晶区和心部等轴晶区。 (二) 判断题 1 凡是由液态金属冷却结晶的过程都可分为两个阶段。即先形核,形核停止以后,便发生长大,使晶粒充满整个容积。( ×) 2.凡是由液体凝固成固体的过程都是结晶过程。( ×) 3.近代研究表明:液态金属的结构与固态金属比较接近,而与气态相差较远。( √) 4.金属由液态转变成固态的过程,是由近程有序排列向远程有序排列转变的过程。( √) 5.当纯金属结晶时,形核率随过冷度的增加而不断增加。( ×) P41+7 6.在结晶过程中,当晶核成长时,晶核的长大速度随过冷度的增大而增大,但当过冷度很大时,晶核的长大速度则很快减小。( √) P53 图2-33 7.金属结晶时,冷却速度愈大,则其结晶后的晶粒愈细。( √) P53-12 8.所有相变的基本过程都是形核和核长大的过程。( √) 9.在其它条件相同时,金属模浇注的铸件晶粒比砂模浇注的铸件晶粒更细(√) 10.在其它条件相同时,高温浇注的铸件晶粒比低温浇注的铸件晶粒更细。( ×) 11.在其它条件相同时,铸成薄件的晶粒比铸成厚件的晶粒更细。( √) 12. 金属的理论结晶温度总是高于实际结晶温度。( √) 14.在实际生产条件下,金属凝固时的过冷度都很小(<20℃),其主要原因是由于非均匀形核的结果。(√) 15.过冷是结晶的必要条件,无论过冷度大小,均能保证结晶过程得以进行。

纯金属凝固部分课后习题

习题 6-1 计算当压力增加到500×105Pa时锡的熔点变化,已知在105Pa下,锡的熔点为505K,熔化热为7196J/mol,摩尔质量为118.8×10-3kg/mol,固体锡的密度为7.30×103kg/m3,熔化时的体积变化为+2.7%。 6-2 根据下列条件建立单元系相图: ①组元A在固态有两种结构A 1和A 2 ,且密度A 2 >A 1 >液体; ②A 1转变到A 2 的温度随压力增加而降低; ③A 1 相在低温是稳定相; ④固体在其本身的蒸气压1333Pa(10mmHg)下的熔点是8.2℃; ⑤在1.013×105Pa(1个大气压)下沸点是90℃; ⑥A 1,A 2 和液体在1.013×106Pa(10个大气压)下及40℃时三相共存(假设 升温相变△H<0)。 6-3 考虑在1个大气压下液态铝的凝固,对于不同程度的过冷度,即△T=1,10,100和200℃,计算: ①临界晶核尺寸; ②半径为r*的晶核个数; ③从液态转变到固态时,单位体积的自由能变化△G V ; ④从液态转变到固态时,临界尺寸r*处的自由能的变化△G r *(形核功)。 铝的熔点T m =993K,单位体积熔化热L m =1.836×109J/m3,固液界面比表面能 δ=93×10-3J/m2,原子体积V0=1.66×10-29m3。 6-4 ①已知液态纯镍在1.013×105Pa(1个大气压),过冷度为319℃时发生均匀形核。设临界晶核半径为1nm,纯镍的熔点为1726K,熔化热 L m =18075J/mol,摩尔体积V=6.6cm3/mol,计算纯镍的液一固界面能和临界形核功。 ②若要在2045K发生均匀形核,须将大气压增加到多少?已知凝固时体积变化△V=-0.26cm3/mol(1J=9.87×106cm3·Pa)。 6-5 纯金属的均匀形核率可用下式表示: 式中,A≈1035;;△G*为临界形核功;k为玻尔兹曼常数,其值为1.38×10-23J/K。 ①假设过冷度△T分别为20℃和200℃,界面能σ=2×10-5/cm2,熔化热 △H m =12600J/mol,熔点T m =1000K,摩尔体积V=6cm3/mol,计算均匀形核率N。 ②若为非均匀形核,晶核与杂质的接触角θ=60°,则如何变化?△T为 多少? ③导出r*与△T的关系式,计算r*=1nm时的。 6-6 试证明:在同样过冷度下均匀形核时,球形晶核较立方晶核更易形成。 6-7 证明:任意形状晶核的临界晶核形核功△G*与临界晶核体积V*的关系:

金属凝固理论答案

1.凝固速度对铸件凝固组织、性能与凝固缺陷的产生有重要影响。试分析可以通过哪些工艺措施来改变或控制凝固速度? 答:① 改变铸件的浇注温度、浇铸方式与浇铸速度; ② 选用适当的铸型材料和起始(预热)温度; ③ 在铸型中适当布置冷铁、冒口与浇口; ④ 在铸型型腔内表面涂敷适当厚度与性能的涂料。 2. 影响铸件凝固方式的因素有哪些? 答:①合金凝固温度区间;②铸件断面的温度梯度。 3. 何为凝固动态曲线?有何意义? 答: 凝固动态曲线:在凝固体的断面上,不同时间、不同位置达到同一温度点(液相温度、固相温度)连接起来的曲线。 意义:判断金属在凝固过程中两相去的宽窄由两相区的宽窄判断凝固断面的凝固方式。 4. 凝固方式分为几种?对铸件质量有何影响? 答:①逐层凝固方式,对铸件质量的影响:流动性能好,容易获得健全的铸件。液体补缩好,铸件的组织致密,形成集中缩孔的倾向大(形成缩松的倾向小,可以采用一定的工艺措施消除集中缩孔)。热裂倾向小(因为热裂是在凝固区形成的,凝固区域窄,晶间不易出现裂纹,即使出现也可以焊合)。气孔倾向小,应力大,宏观偏析严重。 ②体积凝固方式,对铸件质量的影响:流动性能不好,不容易获得健全的铸件。液体补缩不好,铸件的组织不致密,热裂形成集中缩孔的倾向小。热裂倾向大(因为热裂是在凝固区形成的,凝固区域宽,晶间易出现裂纹),气孔倾向大,应力小,宏观偏析不严重。 ③中间凝固方式,对铸件质量的影响:可大幅改善铸件的组织和降低铸件的中心缺陷,介于前两者之间。 5.凝固时间“平方根定律”与“折算厚度法则”有何区别? 答:“平方根定律”是对于大平板,球体和长圆柱体铸件比较准确,对于短而粗的杆和矩形;“折算厚度法则”考虑了铸件形状,由于边角效应的影响,计算结果一般比实际凝固时间长10%~20%。“折算定律”考虑了铸件形状影响因素,接近实际,是对“平方根定律”的修正。它们形式一样但意义不一样。 6. 比较同样体积大小的球状、块状、板状及杆状铸件凝固时间的长?。 答:一般在体积相同的情况下上述物体的表面积大小依次为:A 球t 块>t 板>t 杆。 5. 在砂型中浇铸尺寸为300?300?20 mm 的纯铝板。设铸型的初始温度为20℃,浇注后瞬间铸件-铸型界面温度立即升至纯铝熔点660℃,且在铸件凝固期间保持不变。浇铸温度为 纯铝 212 1200 2700 6.5?10-5 3.9?105 砂型 0.739 1840 1600 2.5?10-7 试求:(1)根据平方根定律计算不同时刻铸件凝固层厚度s,并作出曲线; (2)分别用“平方根定律”及“折算厚度法则”计算铸件的完全凝固时间,并分析差别。 解:(1) 代入相关已知数解得: 2222ρλc b ==1475 ,

金属凝固学课程考试试题(个人整理版)

河南科技大学 2014级硕士研究生课程考试试题 一、名词解释(每个3分,共30分) (1)共晶团;(2)小晶面相;(3)均质形核;(4)生长过冷度;(5)溶质平衡分配系数; (6)临界晶核;(7)等轴枝晶;(8)成分过冷;(9)溶质再分配;(10)形核速率 二、问答题(每题5分,共10分) 1.铸造铝硅合金变质处理,可以使共晶硅相细化和钝化,但只能使初生硅相细化,而不能改变其形态,为什么? 2.凝固过程中晶体的生长方式有哪些?不同生长方式的长大速度与生长过冷度的关系是怎 样的? 三、计算分析题(每题10分,共20分) 1.在成分为含GalOppm的Ge-Ga熔液中生长Ge-Ga晶体,对流边界层厚δ=0.005厘米,设液相扩散系 数D L=5×10-5厘米2/秒,溶质分配系数k=0.1,凝固速度为8×10-3厘米/秒。问凝固到50%时形成的固相成分为多少?试绘制出凝固后沿锭子轴向的成分分布图。 2.通过热分析实验测得某共晶Zn-Al合金试样从开始结晶到结晶结束的时间为2s,对该试样进行定量 金相统计,得到共晶团最大直径为0.22mm,层片间距为0.0023mm。另有一共晶Zn-Al合金试样,由于冷却速度太快,在热分析实验所得的冷却曲线上分辨不出试样开始结晶和结晶结束的时刻,但对该试样进行定量金相统计,得到共晶团最大直径为0.05mm, 层片间距为0.0005mm,试推算该试样从开始结晶到结晶结束的时间(Zn-Al合金中的共晶组织为“非小晶面相一非小晶面相”共晶 四、综述题(每人选做一题,不能同题,40分) 1.查阅文献资料,综述有关液态金属结构的理论与实验结果。 2.查阅文献资料,综述有关金属液固相变物理机制的研究成果。 3.论述形核的热力学原理,以此为基础阐述孕育剂的作用。 4.解析形核的动力学规律,以此为基础阐述孕育剂的作用。 5.论述决定小晶面与非小晶面两种生长方式的热力学原理,以此为基础阐述变质剂改变晶体生长方式的 机理。 6.论述影响小晶面与非小晶面两种生长方式的动力学因素,以此为基础阐述变质剂改变晶体生长方式的 机理。 7.论述晶体生长方式及其长大速度,对二维形核生长方式的长大速度进行物理数学解析。 8.论述铸铁中石墨相的生长方式,以及变质处理改变石墨相形态的物理机制。 9.论述铸造铝硅合金中硅相的生长方式,以及变质处理改变硅相形态的物理机制。 10.试推导固相无扩散,液相均匀混合情况下球形晶生长的溶质再分配解析式。

金属学与热处理课后习题答案

第三章 1.在正温度梯度下,为什么纯金属凝固时不能呈树枝状生长,而固溶体合金却能呈树枝状成长? 纯金属凝固时,要获得树枝状晶体,必需在负的温度梯度下;在正的温度梯度下,只能以平面状长大。而固溶体实际凝固时,往往会产生成分过冷,当成分过冷区足够大时,固溶体就会以树枝状长大。 2.何谓合金平衡相图,相图能给出任一条件下的合金显微组织吗? 合金平衡相图是研究合金的工具,是研究合金中成分、温度、组织和性能之间关系的理论基础,也是制定各种热加工工艺的依据。其中二元合金相图表示二元合金相图表示在平衡状态下,合金的组成相或组织状态与温度、成分、压力之间关系的简明图解。平衡状态:合金的成分、质量份数不再随时间而变化的一种状态。合金的极缓慢冷却可近似认为是平衡状态。 三元合金相图是指独立组分数为3的体系,该体系最多可能有四个自由度,即温度、压力和两个浓度项,用三维空间的立体模型已不足以表示这种相图。若维持压力不变,则自由度最多等于3,其相图可用立体模型表示。若压力、温度同时固定,则自由度最多为2,可用平面图来表示。通常在平面图上用等边三角形(有时也有用直角坐标表示的)来表示各组分的浓度。 不能,相图只能给出合金在平衡条件下存在的合金显微组织 4.何谓成分过冷?成分过冷对固溶体结晶时晶体长大方式和铸锭组织有何影响?

在固溶体合金凝固时,在正的温度梯度下,由于固液界面前沿液相中的成分有所差别,导致固液界面前沿的熔体的温度低于实际液相线温度,从而产生的过冷称为成分过冷。 这种过冷完全是由于界面前沿液相中的成分差别所引起的。温度梯度增大,成分过冷减小。成分过冷必须具备两个条件:第一是固~液界面前沿溶质的富集而引起成分再分配;第二是固~液界面前方液相的实际温度分布,或温度分布梯度必须达到一定的值。 对合金而言,其凝固过程同时伴随着溶质再分配,液体的成分始终处于变化当中,液体中的溶质成分的重新分配改变了相应的固液平衡温度,这种关系有合金的平衡相图所规定。利用“成分过冷”判断合金微观的生长过程。

金属凝固原理(全)

《金属凝固理论》期末复习题 一、是非判断题 1 金属由固态变为液态时熵值的增加远远大于金属由室温加热至熔点时熵值的增加。(错) 2 格拉晓夫准则数大表明液态合金的对流强度较小。(错) 3 其它条件相同时,凹形基底的夹杂物不如凸形基底的夹杂物对促进形核有效。(错) 4 大的成分过冷及强形核能力的形核剂有利于等轴晶的形成。(对) 5 大多数非小平面-小平面共晶合金的共晶共生区呈现非对称型。(对) 6 根据相变动力学理论,液态原子变成固态原子必须克服界面能。(对) 7 具有糊状凝固方式的合金容易产生分散缩孔。(对) 8.金属熔体的黏度与金属的熔点相类似,本质都是反映质点间(原子间)结合力大小。(对) 9. 以熔体中某一参考原子作为坐标原点,径向分布函数表示距参考原子r处找到其他原子的 几率。(错) 10. 液态金属中在3-4个原子直径的范围内呈一有序排列状态,但在更大范围内,原子间呈无序状态。(对) 11. 金属熔体的黏度越大,杂质留在铸件中的可能性就越大。(对) 12. 半固态金属在成型过程中遵循的流变特性,主要满足宾汉体的流变特性(对) 13. 在砂型中,低碳钢的凝固方式是体积凝固。(错) 14. 铸型具有一定的发气能力,会导致型腔气体反压增大,充型能力下降。(对) 15. 晶体生长的驱动力是固液两相的体积自由能差值。(对) 16. 绝大多数金属或合金的生长是二维晶核生长机理。(错) 17. Fe-Fe3C共晶合金结晶的领先相是奥氏体。(错) 18. 铸件中的每一个晶粒都代表着一个独立的形核过程,而铸件结晶组织的形成则是这些晶 核就地生长的结果。(错) 19. 型壁附近熔体内部的大量形核只是表面细晶粒区形成的必要条件,而抑制铸件形成稳定 的凝固壳层则为其充分条件. (对) 20.对于薄壁铸件,选择蓄热系数小的铸型有利于获得细等轴晶。(错) 21.处理温度越高,孕育衰退越快。因此在保证孕育剂均匀溶解的前提下,应尽量降低处理 温度。(对) 22. 铸铁中产生的石墨漂浮属于逆偏析。(错) 23.湿型铸造的阀体铸件件皮下形成的内表面光滑的气孔,其形成原因主要是砂型的发气量 大、透气性不足。(对) 二、名词解释 1.黏度:是熔体在不同层面上存在相对运动时才表现出来的一种物理性能,其本质反映的是 质点间的结合力大小。 2.金属遗传性:指在结构上,由原始炉料通过熔体阶段向铸造合金的信息传递,具体表现在 原始炉料通过熔体阶段对合金零件凝固组织,力学性能及凝固缺陷的影响。 3.半固态铸造:指在金属的凝固过程中,对金属施加剧烈的搅拌或扰动、或改变金属的热状 态、或加入晶粒细化剂、或进行快速凝固,即改变初生固相的形核和长大 过程,得到的一种液态金属熔体中均匀地悬浮着一定球状初生固相的固液 混合浆料,然后利用其进行成型的工艺。 4. 充型能力:液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力 5.非均质形核:指在不均匀的熔体中依靠外来杂质或型壁界面提供的衬底进行形核的过程 6. 临界形核半径:由金属学可知,只有大于临界半径的晶胚才可以作为晶核稳定存在,此

相关主题
文本预览
相关文档 最新文档