当前位置:文档之家› 超声波模块系统设计

超声波模块系统设计

超声波模块系统设计
超声波模块系统设计

超声波测距系统设计

作者:陈芸来源:转载

减小字体增大字体摘要:超声波作为一种传输信息的媒体,由于其本身的直射性和反射性,以及不易受光照、电磁波等外界因素影响的特性,在探伤、测距、测速等多种领域越来越受到重视。

关键词:超声波测距非接触式 PIC单片机

本系统设计的超声波波测距系统采用PIC16F73作为主控制芯片,首先产生40KHz的方波,驱动超声波发射探头发出超声波。在发波的同时,开启T1定时器,用来记下收到回波的时间。接收部分先对接受到的回波信号两级放大,然后整流成一较平稳的信号,再通过一个比较器将模拟信号转化成数字信号作为有无回波的识别。当单片机接收回波信号时,使用单片机捕捉功能,产生中断,在中断程序中读出T1计数寄存器中的数值即为超声波发射与接收的时间间隔。测得回波的时间,根据声在空气中的传播特性,通过计算S=v*t/2,即可得到障碍物的距离。

1.1 超声波发波电路

超声波的发波部分,首先由软件产生40KHz的方波,经引脚RC0输出,分两路驱动超声波发射探头,一路经一个4011与非门反向,驱动探头之前分别先各由一个9013NPN的三极管做开关,后由4069反向器来增强驱动能力,使超声波发射探头发出40KHz的超声波。

1.2 超声波接收电路

接收部分先对接受到的回波信号放大,然后将信号整流,最后通过一个比较器将模拟信号转化成数字信号作为有无回波的识别信号。

1.3 放大电路

放大电路有两个LM358构成一个两级放大电路,第一级放大约100倍,第二级放大约10倍。

其中C4可除去超声波传感器接收头收到的信号的直流信号,第一级放大其放大倍数为R1/R4=100,第二级放大器放大倍数为R2/R4=10。由于LM358是双电源供电,这里为了使电路的供电系统简单点,在LM358的第3脚输入一个2.5V的电压,来取代器件的双电源供电,从而使器件能正常工作。

1.4整形、比较电路

由于超声波传感器接收头接收到的信号是一个正弦信号,不便于单片机处理,故在电路上用两个检波二极管和一个电容组成的整流电路将回波信号整形成一平稳的电平,信号经整流后通过LM358构成的一个比较器将模拟信号转化成数字信号,然后与单片机引脚RA5共同经一个4011与非门输出到单片机RC2/CCP1引脚,以产生单片机的中断。其中R10、R11构成一个分压电路产生一个比较电压,当回波信号的电压大于此比较电压时,LM358输出一个高电平;当回波信号小于此比较电压时,LM358输出一个低电平。单片机引脚RA5用做信号接收的使能控制,当RA5为高电平时允许接收,当RA5为低电平时,回波信号无效,不允许接收。

1.5 数据传输

当模块将距离测出后,需将数据传输到外围的电路以供应用,此系统采用两种数据传输方式,D/A 数据传输和I2C数据传输。

1.6 D/A数据传输

D/A数据传输是利用单片机的PWM输出将测得的距离值转化成电压值输出,使得测得的距离与输出的脉宽调制方波的占空比成正比,PWM波再经整流输出平稳电压,这样就能将测得的距离按一定的线性关系输出,外围电路可使用A/D转换器将数据读取。

1.7 I2C数据传输

I2C要求两条总线线路一条串行数据线SDA 和一条串行时钟线SCL,每个连接到总线的器件都可以通过一个唯一的地址与主机获得通信。它是一个真正的多主机总线,如果两个或更多主机同时初始化数据传输可以通过冲突检测和仲裁防止数据被破坏。串行的8 位双向数据传输位速率在标准模式

下可达100kbit/s, 快速模式下可达400Kbit/s, 高速模式下可达3.4Mbit/s。片上的滤波器可以滤去总线数据线上的毛刺波以保证数据完整。

本系统采用I2C数据传输方式,可使得测量距离毫无偏差得传输到外围电路中,避免D/A数据传输过程中的转化误差。

I2C地址的设置使用一个4位的拨码开关,电路如图4.9示。4位的拨码开关最多可识别16个I2C地址,本系统使用前三个开关,提供8个不同的I2C地址,8个地址0xB0,0xB2,0xB4,0xB6,0xB8,0xBA,0xBC,0xBE,具体设置由软件实现。

2超声波波测距系统软件设计

其中初始化中包括I/O口设置、中断系统设置、I2C初始化,CAP初始化,然后发送超声波,开始时按短距离模式发波,发完波开启接收回波,同时开始计时,当有回波信号产生中断时,计时停止,并计算出距离。随后将距离以D/A数据传输的方式输出,最后根据当前的测量结果来选择下次发波的模式。I2C数据传输采用中断实现,测距模块实时响应外围电路中I2C主控器对数据读取的要求

超声波测距系统设计

目录 一、课程设计目的 (2) 二、内容及要求 (2) 2.1、设计内容 (2) 2.2、设计要求 (2) 三、超声波传感器的工作原理 (2) 四、系统框图 (3) 五、单元电路设计原理 (3) 5.1、51系列单片机的功能特 (4) 5.2、超声波发射电路 (4) 5.3、超声波检测接收电路 (5) 六、完整的电路图………………………………………………………………… 七、程序流程图 (6) 八、参考文献 (7) 九、设计中的问题及解决方法 (7) 十、总结 (7)

一、课程设计目的 通过《传感器及检测技术》课程设计,掌握传感器及检测系统设计的方法和设计原则及相应的硬件调试的方法。进一步理解传感器及检测系统的设计和应用。 二、内容及要求 超声波测距系统设计 2.1设计内容 采用40KHz的超声波发射和接收传感器测量距离。可采用发射和接收之间的距离,也可将发射和接收平行放在一起,通过反射测量距离。 功能:1)LED数码管显示测量距离,精确到小数点后一位(单位:cm)。 2)测量范围:30cm~200cm。 3)误差<0.5cm。 4)其它。 2.2设计要求 1)掌握传感器的工作原理及相应的辅助电路设计方法。 2)独立设计原理图及相应的硬件电路。 3)设计说明书格式规范,层次合理,重点突出。并附上详细的原理图。 三、超声波传感器的工作原理 由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量。利用超声波检测距离,设计比较方便,计算处理也较简单,并且在测量精度方面也能达到农业生产等自动化的使用要求。 目前在近距离测量方面常用的是压电式超声波换能器。根据设计要求并综合各方面因素,本文采用AT89C51单片机作为控制器,用动态扫描法实现LED数字显示,超声波驱动信号用单片机的定时器。 超声波测距的原理是利用超声波的发射和接受,根据超声波传播的时间来计算出传播距离。实用的测距方法有两种,一种是在被测距离的两端,一端发射,另一端接收的直接波方式,适用于身高计;一种是发射波被物体反射回来后接收的反射波方式,适用于测距仪。此次设计采用反射波方式。 理论计算 如图1所示为反射时间法,是利用检测声波发出到接收到被测物反射回波的时间来测量距离其原理如图所示,对于距离较短和要求不高的场合我们可认为空气中的声速为常数,我们通过测量回波时间T利用公式(T/2) C S=其中,S为被 * 测距离、V为空气中声速、T为回波时间(T2 =),这样可以求出距离: T1 T+

超声波模块程序详解

int Trigpin = 7; //定义模块触发引脚 int Echopin = 5; //定义模块接收引脚 float Distance; //定义距离变量 void setup() { pinMode(Echopin,INPUT) ; pinMode(Trigpin,OUTPUT); Serial.begin(9600);//启动串口功能 } void loop() { Distance = Measurement();//调用测量函数,将采得的值给变量Distance Serial.print(Distance);//在端口输出距离 Serial.println("cm");//输出单位,并换行 delay(2000); } float Measurement() { float distance;//定义一个局部变量 digitalWrite(Trigpin,LOW); //初始化触发引脚 delayMicroseconds(2); digitalWrite(Trigpin,HIGH);//给触发引脚一个信号,使模块发出声波 delayMicroseconds(10); digitalWrite(Trigpin,LOW);//结束声波信号 distance = (pulseIn(Echopin,HIGH)*17)/1000;//计算距离 return distance;//将算得的距离返回给变量distance }

伺服舵机+超声波模块 #include int Trigpin = 7; //定义模块触发引脚 int Echopin = 5; //定义模块接收引脚 float Distance; //定义距离变量 Servo myservo3; void setup() { myservo3.attach(3); pinMode(Echopin,INPUT) ; pinMode(Trigpin,OUTPUT); Serial.begin(9600);//启动串口功能 } void loop() { myservo3.write(0); delay(2000); Distance = Measurement();//调用测量函数,将采得的值给变量Distance Serial.print(Distance);//在端口输出距离 Serial.println("cm");//输出单位,并换行 myservo3.write(90); delay(2000); Distance = Measurement();//调用测量函数,将采得的值给变量Distance Serial.print(Distance);//在端口输出距离 Serial.println("cm");//输出单位,并换行 myservo3.write(178); delay(2000); Distance = Measurement();//调用测量函数,将采得的值给变量Distance Serial.print(Distance);//在端口输出距离 Serial.println("cm");//输出单位,并换行 }

超声波测距仪的设计说明

题目:超声波测距仪的设计 超声波测距仪的设计 一、设计目的: 以51单片机为主控制器,利用超声波模块HC-SR04,设计出一套可在数码管上实时显示障碍物距离的超声波测距仪。 通过该设计的制作,更为深入的了解51的工作原理,特别是51的中断系统及定时器/计数器的应用;掌握数码管动态扫描显示的方法和超声波传感器测距的原理及方法,学会搭建51的最小系统及一些简单外围电路(LED显示电路)。从中提高电路的实际设计、焊接、检错、排错能力,并学会仿真及软件调试的基本方法。 二、设计要求: 设计一个超声波测距仪。要求: 1.能在数码管上实时显示障碍物的实际距离; 2.所测距离大于2cm小于300cm,精度2mm。 三、设计器材: STC89C52RC单片机 HC-SR04超声波模块 SM410561D3B四位的共阳数码管 9014三极管(4) 按键(1) 电容(30PF2,10UF1) 排阻(10K),万用板,电烙铁,万用表,5V直流稳压电源,镊子,钳子,

导线及焊锡若干,电阻(200欧5)。 四、设计原理及设计方案: (一)超声波测距原理 超声测距仪是根据超声波遇到障碍物反射回来的特性进行测量的。超声波发射器向某一方向发射超声波,在发射同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即中断停止计时。通过不断检测产生波发射后遇到障碍物所反射的回波,从而测出发射超声波和接收到回波的时间差T,然后求出距离L。基本的测距公式为:L=(△t/2)*C 式中 L——要测的距离 T——发射波和反射波之间的时间间隔 C——超声波在空气中的声速,常温下取为344m/s 声速确定后,只要测出超声波往返的时间,即可求得L。 根据本次设计所要求的测量距离的围及测量精度,我们选用的是HC-SR04超声波测距模块。(如下图所示)。此模块已将发射电路和接收电路集成好了,硬件上不必再自行设计繁复的发射及接收电路,软件上也无需再通过定时器产生40Khz的方波引起压电陶瓷共振从而产生超声波。在使用时,只要在控制端‘Trig’发一个大于15us宽度的高电平,就可以在接收端‘Echo’等待高电平输出。单片机一旦检测到有输出就打开定时器开始计时。 当此口变为低电平时就停止计时并读出定时器的值,此值就为此次测距的时间,再根据传播速度方可算出障碍物的距离。 (二)超声波测距模块HC-SR04简要介绍 HC-SR04超声波测距模块的主要技术参数使用方法如下所述: 1. 主要技术参数: ①使用电压:DC5V ②静态电流:小于2mA ③电平输出:高5V

10米超声波测距仪设计实现

10米超声波测距仪设计实现 一、功能要求 设计一个超声波测距仪,可以测量测距仪与被测物体间的距离。要求测量范围0.1~10.00米,测量精度1cm,测量时与被测物体不接触,并将测量结果显示出来。 二、系统硬件电路 1.单片机系统及显示电路 单片机采用89C51或89S51。采用12MHz高精度晶振,以获得较稳定的时钟频率,减小测量误差。单片机用p1.0端口输出超声波换能器所需的40Hz方波信号,利用外中断0口监测超声波接受电路输出的返回信号。显示电路采用简单实用的4位共阳极LED数码管,段码用74LS244驱动,位用PNP8550驱动。 2.超声波发射电路 主要由74LS04和超声波换能器T构成。这种推挽形式的方波信号可以提高发射强度。反相器并联提高驱动能力。上拉电阻R1、R2提高74LS04输出高电平的驱动能力。 3.超声波接收电路 CX20106A是接收38KHz超声波的芯片,可利用它做接收电路。 4.系统程序 超声波测距仪的软件主要由主程序、超声波发生子程序、超声波接收中断程序及显示子程序组成。 主程序:

开始 系统初始化 发送超声波脉冲 等待反射超声波 计算距离 显示结果 丢系统初始化,设置T0为方式1,EA=1,P0,P2清0。为避免超声波发射器直接接传送到接收器,需要延时0.1ms。由于时钟的频率是12MHz,计数器每计一个数就是1us。如果按声速344m/s,则d=c*t/2=172T0 cm 超声波发生子程序:通过P1.0端口发送2个左右超声波脉冲信号,脉宽12us,同时T0计数。 超声波测距仪利用中断0检测返回的超声波,一旦接收到返回的信号,立即进入中断。中断后就立即关闭T0停止计时。如果计数器益出则测试不成功。 3方案设计和选择 根据本次设计的要求,方案的选择应力求实用性强,性价比高,使用简单。 3.1 超声波测距的基本原理 谐振频率高于20kHz的声波被称为超声波。超声波

基于51单片机的超声波测距系统

基于51单片机的超声波测距系统 贾源 完成日期:2011年2月22日

目录 一、设计任务和性能指标 (3) 1.1设计任务 (3) 1.2性能指标 (3) 二、超声波测距原理概述 (4) 2.1超声波传感器 (5) 2.1.1超声波发生器 (5) 2.1.2压电式超声波发生器原理 (5) 2.1.3单片机超声波测距系统构成 (5) 三、设计方案 (6) 3.1AT89C2051单片机 (7) 3.2超声波测距系统构成 (8) 3.2.1超声波测距单片机系统 (9) 图3-1:超声波测距单片机系统 (9) 3.2.2超声波发射、接收电路 (9) 图3-1:超声波测距发送接收单元 (10) 3.2.3显示电路 (10) 四.系统软件设计 (11) 4.1主程序设计 (11) 4.2超声波测距子程序 (12) 4.3超声波测距程序流程图 (13) 4.4超声波测距程子序流程图 (14) 五.调试及性能分析 (14) 5.1调试步骤 (14) 5.2性能分析 (15) 六.心得体会 (15) 参考文献 (16) 附录一超声波测系统原理图 (18) 附录二超声波测系统原理图安装图 (19) 附录三超声波测系统原理图PCB图 (20) 附录四超声波测系统原理图C语言原程序 (21) 参考文献 (26)

一、设计任务和性能指标 1.1设计任务 利用单片机及外围接口电路(键盘接口和显示接口电路)设计制作一个超声波测距仪器,用LED数码管把测距仪距测出的距离显示出来。 要求用Protel 画出系统的电路原理图,印刷电路板,绘出程序流程图,并给出程序清单。 1.2性能指标 距离显示:用三位LED数码管进行显示(单位是CM)。 测距范围:25CM到 250CM之间。误差:1%。

一款串口输出超声波测距模块使用范例

一款串口输出超声波测距模块使用范例 一、模块简介: 该串口输出超声波测距模块采用STC11F04E单片机作处理器,工作电源:DC5V,工作电流10mA。测量数据输出方式为TTL串口输出,数据格式为标准的ASCII码,数据由:空格位(起始位)+百+十位+个位。工作方式有两种:一是连续测量方式;二是查询测量方式。

测量范围:方式一:5cm~200cm(盲区5cm);方式二:25cm~350cm(盲区25cm)。 测量过程中,当接收不到障碍物反射的回波时,输出“C C C”,当测量低于下限值(在盲区内)时显示“- - -”。测量结果由模块上的输出端口输出,输出方式为串口(TTL电平)输出。测量结果可通过电脑进行显示。模块使用串口通讯可靠性更高,

同时可以通过电脑串口采集数据,编写通讯程序非常的 便捷。 波特率:1200 校验位:无 数据位:8 停止位:无 ASCII码数据格式:空格位(起始位)+百+十位+个位。 二、模块的使用设置 下图为模块的背面图片。图中标有A、B、C短接焊 盘是作为设置测量方式用;标有0-7的短路焊盘是设置 查询方式下的模块地址用。

方式1:设置为小盲区期测量。设置方法,标号为B 的焊盘即单片机的P3.5 脚与地断开,这时的测量范围为:5-200;这种方式下,测量盲区值小,适合长时间近距离测量用。 方式2: 设置为远距离测量,这种方式,盲区值相对较大,测量相对较远一些,设置方法:将标号为B的焊盘即单片机的P3.5 脚与地短接,这时的测量范围

为:25-350厘米。 方式3:连续方式测量。将标号为A的焊盘即单片机的P3.4 脚与地断开,这时模块测量方式是连续的进行 测量,测量间隔为1-2次/秒,每测量一次,就将测量结果通过串口送出。 方式4:查询方式测量。将标号为A的焊盘即单片机的P3.4 脚与地短接,这时的测量方式为查询方式测量,即通过控制设备向模块发出一个命令后,模块才测量一次。查询方式下,每向测距模块发送一次查询命令,模 块才进行测量一次,完成测量后即将测量结果通过串口 发送出来。设置成查询方式,模块可多块模块连接在一 起组网测量。 查询命令格式:AT+CL=1-255(1-255为模的的地址 编码,每个模块的地址编码由模块上单片机P1口与地短接的情况决定,各块模块的编码可独立,由使用者自己 设定,设定范围1-255,只在查询方式下有效),数据格式为16进制数据。 三、模块使用 为减小本超声波测距模块外形尺寸,该超声波测距 元件采用双面安装,全部元件安装在一块长6cm宽2.5cm 的PCB上。模块可用作应用系统的测距模块。因为它是 串口TTL电平输出的。可应用在倒车雷达、机器人避障、

汽车倒车系统中超声波测距模块的设计

收稿日期:2006-12-13 作者简介:彭翠云(1979-),女,湖北省荆门市人,硕士生,研究方向为汽车倒车辅助系统。 文章编号: 1004-2474(2008)02-0251-04汽车倒车系统中超声波测距模块的设计 彭翠云1,赵广耀2,戎海龙3 (1.安徽工程科技学院机械学院,安徽芜湖,241000;2.东北大学机械工程与自动化学院, 辽宁沈阳110004;3.东南大学自动化学院,江苏南京,210096) 摘 要:介绍了以Cy gnal 8051F 330单片机为控制器,用于汽车倒车的超声波测距模块的硬件电路和软件设 计方案,在抗干扰设计等方面该模块采用了软硬件综合处理措施,实现了较高的测距精度和较宽的测距范围。在满足倒车系统要求的基础上,体现了简单、经济、实效、实用的特点,文章给出了该模块的实际调试效果和误差分析结果。 关键词:超声波测距;带通滤波;单片机中图分类号:T P212 文献标识码:A The Design of Ultrasonic Distance -Measuring S ystem Used on Car -backing System PENG Cui -yun 1 ,ZHAO Guang -yao 2 ,R ONG Hai -long 3 (1.Dept .of M echanical Engineering ,An hui University of Technology and S cien ce ,Wu hu Anhui 241000,China ; 2.C ollege of M echanical E ngineering an d Automation ,Northeastern University ,Shenyang 110004,China ; 3.College of Automation ,S ou theastern University ,Nanjing 210096,China ) A bstract :A n per so nally desig ned ultr aso nic distance -measuring sy stem is intro duced and its hardw are circuits and softw are design me tho ds are giv en in this pape r ,which ba ses o n Cyg na l 8051F330sing le chip ,a nd is applied to ca rbacking sy stem .In the sy stem ,some impr ovement on bo th ha rdw are a nd softw are is adapted ,w hich makes the sy stem has better precisio n and wider measuring range .M o reove r ,besides its capability o f satisfy the requirement raised by car -backing sy stem ,the system ha s other characters such as briefness ,economy ,actual effect ,practicality e tc ..T he practical debugg ing results and err or a nalyzing results a re given at the end of this paper . Key words :ultrasonic distance -measuring ;bandpass -filtr ation ;sing le chip 超声波测距是利用超声波指向性强、能量消耗缓慢并因而在特定介质中传输距离远的特点,通过发射具有特征频率的超声波实现对被摄目标距离的探测[1]。本文主要探讨倒车系统的超声波测距模块的设计与实现。超声测距模块作为汽车外部环境传感器,其用途是向决策系统实时提供汽车与障碍物的间距,以利于汽车蔽障。为克服以往超声波测距模块因采用超声波专用集成电路而造成的电路固定,应用不灵活,抗干扰和抗噪声能力差等不足,本超声波测距模块以Cy gnal 8051F330单片机为核心,并侧重发送模块和回波接收预处理模块的开发与实验研究,获得了较高的测距精度和较宽的测距范围,能满足倒车系统要求。该模块选用器件较廉价且易获取,体现出简单、经济、实效、实用的特点。 1 硬件设计 为使超声测距模块和决策系统之间的接口线最少,本设计采用模拟口方式而不采用串口、SM Bus 等方式。该方式即决策系统从超声波测距模块获得的距离信息为一模拟电压,该模拟电压正比于被测 距离。 为实现控制系统的简单化,本超声测距模块的中央处理器采用Cyg nal 8051F330单片机[2],该单片机较其他单片机(如F060等)外设规模小,仅有17个I /O 口,虽然功能上显得不够强劲,但其指令执行速度并未降低,加上其20引脚的精简封装,已广泛应用于所需功能较为简单的小规模控制电路中。对于倒车超声波测距系统可谓是合适的选择。 图1为超声测距模块的原理。单片机每隔一定时间间隔向超声波换能器发送一串频率为40kHz (超声波换能器的谐振频率)的激励脉冲,使超声波换能器向需要探测的方向发射出超声波,同时开始定时,一旦接收到返回的超声波信号即停止定时,获得超声波往返时间,由超声波脉冲在空气中传输的速度,便可计算出超声波换能器与目标物体间距离。 第30卷第2期压 电 与 声 光 Vo l .30No .22008年4月 PI EZO EL ECT ECT RICS &ACO U ST OO P T ICS Apr .2008

超声波探测系统设计

目录 超声波探测系统设计及制作 (1) 第1 章绪论 (1) 1.1 背景 (1) 1.2 研究的意义 (1) 第2章超声波测距原理 (2) 2.1 超声波简介 (2) 2.2 超声波测距原理 (2) 第3章方案论证 (3) 3.1 单片机应用系统概述 (3) 3.2 设计思路 (3) 第4章主要元件介绍 (5) 4.1 单片机AT89s52 (5) 4.2超声波测距模块HY-SRF05 (7) 4.3锁存器74HCS373 (8) 4.4共阴数码管LG5631AH (8) 第5章硬件电路设计 (9) 5.1 HY-SRF05模块电路 (9) 5.2复位电路 (9) 5.3时钟电路 (10) 5.4原理电路 (10) 第6章软件设计 (11) 6.1 程序设计 (11) 第7章实现与仿真 (15) 7.1 PCB设计图 (15) 7.2 实物图 (15) 7.3 运行结果图 (17) 致谢...................................................................................................................... 错误!未定义书签。

参考文献 (18)

超声波探测系统设计及制作 第1 章绪论 1.1 背景 随着科学技术的快速发展,超声波将在传感器中的应用越来越广。但就目前技术水平来说,人们可以具体利用的传感技术还十分有限,因此,这是一个正在蓬勃发展而又有无限前景的技术及产业领域。展望未来,超声波传感器作为一种新型的非常重要有用的工具在各方面都将有很大的发展空间,它将朝着更加高定位高精度的方向发展,以满足日益发展的社会需求。随着传感器的技术进步,传感器将从具有单纯判断功能发展到具有学习功能,最终发展到具有创造力。 1.2 研究的意义 目前国内一般使用专用集成电路设计超声波测距仪,但是专用集成电路的成本很高,并且显示距离也比较困难,操作使用也不是很方便。而本设计研究的测距仪成本低廉,性能优良,市场前景极为广阔。在整个倒车过程中自动测量车尾到最近障碍物的距离,并用数字显示出来,在倒车到极限距离时会发出警告声,提醒驾驶员注意刹车。本设计可望成为驾驶员特别是货车以及公共汽车驾驶员的好帮手,可有效的减少和避免那些视野不良的大型汽车,如集装箱车、载货车、公共汽车等倒车交通事故。目前市面上常见的超声波测距系统不仅价格昂贵,体积过大而且精度也不高等种种因素,使得在一些中小规模的应用领域中难以得到广泛的应用。为解决这一系列难题,本文设计了一款基于AT89S52单片机的低成本、高精度、微型化的超声波测距仪。

高精度超声波测距系统设计

高精度超声波测距系统设计。 引言 利用超声波测量距离的原理可简单描述为:超声波定期发送超声波,遭遇障碍物时发生反射,发射波经由接收器接收并转化为电信号,这样测距技术只要测出发送和接收的时间差, 然后按照下式计算,即可求出距离: 由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求, 因此,广泛应用于倒车提醒、建筑工地、工业现场等的距离测量。目前的测距量程上能达到百米数量级,测量的精度往往能达到厘米数量级。本文在分析现有超声波测距技术基础之上, 给出了一种改进方案,测量精度可达毫米级。 2 系统方案分析与论证 2.1 影响精度的因素分析 根据超声波测距式(1)可知测距的误差主要是由超声波的传播速度误差和测量距离传播 的时间误差引起的。 对于时间误差主要由发送计时点和接收计时点准确性确定,为了能够提高计时点选择的准确性,本文提出了对发射信号和加收信号通过校正的方式来实现准确计时。此外,当要求测距误差小于 1 mm时,假定超声波速度C=344 m/s(20℃室温),忽略声速的传播误差。则测距误差s△t<0.000 002 907 s,即2.907 ms。根据以上过计算可知,在超声波的传播速度是准确的前提下,测量距离的传播时间差值精度只要在达到微秒级,就能保证测距误差小于1 mm的误差。使用的12 MHz晶体作时钟基准的89C51单片机定时器能方便的计数到1μs的精度,因此系统采用AT89S51的定一时器能保证时间误差在 1 mm的测量范围内。

超声波测距技术综述

文献综述 题目超声波测距技术综述学生姓名 专业班级 学号 院(系)电气信息工程学院指导教师 完成时间2014 年06月01日

超声波测距技术综述 摘要 我们把频率高于20000赫兹的声波称为“超声波”。超声波具有指向性强,能量消耗缓慢,在介质中传播的距离较远等特点,同时它是一种非接触式的检测方式,不受光线、被测对象颜色等影响,因此经常被用于距离的测量。超声测距技术在工业现场、车辆导航、水声工程等领域都具有广泛的应用价值,目前已应用于物位测量、机器人自动导航以及空气中与水下的目标探测、识别、定位等场合。因此,深入研究超声波测距的理论和方法具有重要的实践意义。 关键词超声波超声波测距车辆导航物位测量

1 引言 1.1 超声波简介 一般认为,关于超声的研究最初起始于1876年F1Galton的气哨实验。当时Galton 在空气中产生的频率达300K Hz,这是人类首次有效产生的高频声。而科学技术的发展往往与一些偶然的历史事件相联系。对超声的研究起到极大推动作用的是,1912年豪华客轮Titanic号在首航中碰撞冰山后的沉没,这个当时震惊世界的悲剧促使科学家们提出用声学方法来预测冰山,在随后的第一次世界大战中,对超声的研究得以进一步的促进。 近些年来,随着超声技术研究的不断深入,我们把频率高于20000赫兹的声波称为“超声波”。再加上其具有的高精度、无损、非接触等优点,超声的应用变得越来越普及。目前已经广泛的应用在机械制造、电子冶金、航海、航空、宇航、石油化工、交通等工业领域。此外在材料科学、医学、生物科学等领域中也占据重要地位。 而我国,关于超声波的大规模研究始于1956年。迄今,在超声的各个领域都开展了研究和应用,其中有少数项目已接近或达到了国际水平。 1.2 超声波测距简介 超声测距指的是利用超声波的反射特性进行距离测量,是一种非接触式的检测方式。与其它方法相比,如电磁的或光学的方法,它不受光线、被测对象颜色等影响。对于被测物处于黑暗、有灰尘、烟雾、电磁干扰、有毒等恶劣的环境下有一定的适应能力。特别是应用于空气测距,由于空气中波速较慢,其回波信号中包含的沿传播方向上的结构信息很容易检测出来,具有很高的分辨力,因而其准确度也较其它方法为高。超声波测距仪,可以应用于汽车倒车、建筑施工工地以及一些工业现场的位置监控和移动机器人的研制上,也可在潮湿高温,多尘等恶劣环境下工作。例如:液位、厚度、管道长度等场合。 超声波测距作为一种典型的非接触测量方法,在很多场合,诸如工业自动控制,建筑工程测量,机器人视觉识别,倒车防撞雷达,海洋测量,物体识别等方面得到广泛的应用。超声波具有指向性强、能量消耗缓慢且在介质中传播的距离较远的优点。与激光测距、红外线测距相比,超声波对外界光线、色彩和电磁场不敏感,更适于黑暗、

钢轨超声波探伤系统设计

钢轨超声波高速探伤系统设计

目录 一.设计题目 (1) 二.设计目的 (3) 三.设计要求 (3) 四.设计背景 (4) 五.技术原理 (9) 六.基本设计过程 (11) 1.探头的设计 (11) 2.探伤系统的设计 (15) 3.探伤小车的设计 (18) 4.探伤车组的设计 (22) 5.其他 (24) 七.探伤车的关键技术 (25) 八.设计总结 (27) 九.参考文献 (29)

钢轨超声波探伤设计说明书 【设计目的】 我国铁路运输繁忙,列车运行间隔只有十几分钟,同时,运 营线路近七万公里,线路状况较差,超期服役钢轨数量很大, 钢轨伤损发生率高。为了保障铁路运输安全,目前检测钢轨 内部缺陷的主要设备为小型钢轨超声探伤仪,由人工进行钢 轨伤损的检测。为防止、监测伤损的发生、发展,平均每年 每条线路检测需十遍以上,总检测里程近一百万公里,全线 有近万名专职钢轨探伤人员负责钢轨内部伤损的检测。随着 中国铁路的第三次提速,使铁路对于能在现有鱼尾板联结线 路上完成高速探伤的设备需求日益迫切,研究开发钢轨高速 探伤车,使其在检测时不影响铁路正常运营,对铁路运输业 具有重要的意义。试设计钢轨探伤系统。 【设计要求】 (1)以5人左右的小组为单位,注意发挥集体的力量。对问 题的讨论务必注意叙述的清晰性、严谨性。 (2)最后的结果必须以Word文档和PowerPoint 文档提 交,每组只提交一份文档即可。注意,文件的格式、图表的 美观将作为评价的一部分。其中图必须采用Microsoft Visio 描画。

(3)每组在班级作10-15分钟交流。 (4)可以进行自由选题,问题可超出教师拟定的问题之外。【设计背景】 钢轨和钢轨伤损 一.钢轨的作用和分类 (一)钢轨的作用: 钢轨是轨道结构的重要部件,主要作用是支持并引导机车车辆的车轮,直接承受来自车轮的载荷和冲击,并将其传 布于轨枕和扣件。在自动闭塞区段,钢轨成为信号电流的导 体,起到轨道电路的作用。在电气化区段,钢轨还起到牵引 电流的回流导线。 (二)钢轨的分类 目前我国定型钢轨分类如下: a)按钢轨成份分: i.普碳钢:U71、U74和U71Cu等 ii.合金钢:U71Mn、U70MnSi和U70MnSiCu等 b)按钢轨重量分: 38kg/m; 43kg/m; 50kg/m; 60kg/m(主要线路使用); 75kg/m(主要线路使用)。

超声波测距系统设计

(一)题目 超声波测距系统设计 (二)内容及要求 1)设计内容 采用40KHz的超声波发射和接收传感器测量距离。可采用发射和接收之间的距离,也可将发射和接收平行放在一起,通过反射测量距离。 功能:1)LCD液晶显示测量距离,精确到小数点后一位(单位:cm)。 2)测量方式可通过硬件开关预置。 3)测量范围:30cm~200cm, 4)误差<0.5cm。 5)其它。 2)设计要求 1)掌握传感器的工作原理及相应的辅助电路设计方法。 2)独立设计原理图及相应的硬件电路。 3)设计说明书格式规范,层次合理,重点突出。并附上详细的原理图。(三)传感器工作原理 超声波测距是通过不断检测超声波发射后遇到障碍物所反射的回波,从而测出发射和接收回波的时间差t,然后求出距离S=Ct/2,式中的C为超声波波速。由于超声波也是一种声波,其声速C与温度有关,表1列出了几种不同温度下的声速。在使用时,如果温度变化不大,则可认为声速是基本不变的。如果测距精度要求很高,则应通过温度补偿的方法加以校正。声速确定后,只要测得超声波往返的时间,即可求得距离。这就是超声波测距仪的机理。 (四)系统框图 图1 超声波测距系统框图 (五)单元电路设计原理

1、AT89C2051的功能特点 AT89C2051是一个2k字节可编程EPROM的高性能微控制器。它与工业标准MCS-51的指令和引脚兼容,因而是一种功能强大的微控制器,它对很多嵌入式控制应用提供了一个高度灵活有效的解决方案。AT89C2051有以下特点:2k字节EPROM、128字节RAM、15根I/O线、2 个16位定时/计数器、5个向量二级中断结构、1个全双向的串行口、并且内含精密模拟比较器和片内振荡器,具有4.25V至5.5V的电压工作范围和12MHz/24MHz工作频率,同时还具有加密阵列的二级程序存储器加锁、掉电和时钟电路等。此外,AT89C2051还支持二种软件可选的电源节电方式。空闲时,CPU停止,而让RAM、定时/计数器、串行口和中断系统继续工作。可掉电保存RAM的内容,但可使振荡器停振以禁止芯片所有的其它功能直到下一次硬件复位。 AT89C2051有2个16位计时/计数器寄存器Timer0t Timer1。作为一个定时器,每个机器周期寄存器增加1,这样寄存器即可计数机器周期。因为一个机器周期有12个振荡器周期,所以计数率是振荡器频率的1/12。作为一个计数器,该寄存器在相应的外部输入脚P3.4/T0和P3.5/T1上出现从1至0的变化时增1。由于需要二个机器周期来辨认一次1到0的变化,所以最大的计数率是振荡器频率的1/24,可以对外部的输入端P3.2/INT0和P3.3/INT1编程,便于测量脉冲宽度的门。 图2 ATC2051示意图 2、LCD的工作原理 在两片玻璃基板上装有配向膜,所以液晶会沿着沟槽配向,具有偶极矩的液晶棒状分子在外加电场的作用下其排列状态发生变化,使得通过液晶显示器件的光被调制,从而呈现明与暗或透过与不透过的显示效果。液晶显示器件中的每个显示像素都可以单独被电场控制,不同的显示像素按照控制信号的“指挥”便可以在显示屏上组成不同的字符、数字及图形。因此建立显示所需的电场以及控制显示像素的组合就成为液晶显示驱动器和液晶显示控制器的功能。 LCD器件是由背光源发射的光通过偏振片和液晶盒时,控制投

超声波测距模块说明

最近做超声波测距,就是简单的测量引脚高电平的时间。 思路是这样的 1.使用8MHZ时钟,不分频 初始化Timerx_Init(235,1);//8Mhz的计数频率,计数到235为1cm距离 2. PA0高电平时,打开定时器,测量时间 while(PAin(0)) { TIM3->CR1|=0x01; //使能定时器3 } TIM3->CR1|=0x00; //关闭定时器3 S=temp/2 //测量距离为总路程一半 temp=0;//计数值清零 3.计数到235时,产生中断,进入中断函数。执行temp++操作 void TIM3_IRQHandler(void) { if(TIM3->SR&0X0001)//溢出中断 { temp++; } TIM3->SR&=~(1<<0);//清除中断标志位 } 4.得出距离值S 初学定时器,这样测距思路对吗 实际测试后,S值一直为0,为什么

超声波测距模块说明 1.模块引脚 从左到右(见图)模块引脚分别为:VCC、trig(控制端)、echo(接收端)、out(空脚)、GND 2.主要技术参数: 1:使用电压:DC5V 2:静态电流:小于2mA 3:电平输出:高电平VCC-0.2V 低<0.2V 4:感应角度:不大于15 度 5:探测距离:0.02m-5m 6:探测精度:3mm(既然探测精度精确到毫米,就是说数据可以显示到毫米级,也就是四位数了!) 板上接线方式:VCC、trig(控制端)、echo(接收端)、out(空脚)、GND。OUT 脚为防盗模块时的开关量输出脚,测距模块不用此脚! 3.使用方法: (1)采用IO 触发测距,给TRIG 至少10us 的高电平信号(实际上25us 最佳);此处通过IO口给一个高电平就行了。(2)模块自动发送8 个40khz 的方波,自动检测是否有信号返回; (3)有信号通过ECHO 返回,ECHO 输出一高电平,高电平持续的时间就是超声波从发射到返回的时间.此处用定时

超声波测距模块的毕业设计

西南科技大学毕业设计(论文) 题目名称:超声波测距模块的设计 年级:■本科□专科 学生学号: 学生姓名:指导教师: 学生单位:技术职称: 学生专业:教师单位:信息工程学院 西南科技大学教务处制

超声波测距模块的设计 摘要:超声波测距应用十分广泛。论文在分析可行性、可靠性的基础上,参照工程设计方法,确立了结构化设计的思路。本文设计了一套超声波检测系统,该系统是一种基于AT89C51 单片机的超声波测距系统,它根据超声波在空气中传播的反射原理, 以超声波传感器为接口部件, 应用单片机技术和超声波在空气中的时间差来测量距离。该系统主要由主控制器模块、超声波发射模块、超声波接收模块和显示模块等四个模块构成。设计利用51单片机系统的I/O口,使超声波传感器发出40KHz的超声波,反射回来的超声波信号,经过放大和整形电路进入单片机,比较调试后确定其对应的距离,完成测距。可实现3米内测距,盲区7厘米,具有LCD显示功能。 关键词:超声波;超声波传感器;AT89C51单片机;LCD显示单元;测距仪

Design of Ultrasonic Distance measurement Abstract: The ultrasonic ranging application is extremely widespread. After the feasibility and reliability has been analysised, the structure design technique was established. This article introduces an ultrasonic distance measurement based on the AT89C51 single-chip computer, the system according to ultrasound in the air reflection principles of the dissemination. And it uses the ultrasound sensor as interface components for the application of the distance measure based by single-chip computer technology and the margin of time that ultrasound transmit in air, thereby the systems of design of ultrasonic test comes into being. The system primarily composed by the four modules : the controller module,ultrasonic launch module, ultrasound receiving module and display modular. The I/O ports of the 51 single-chip computer were used to cause the ultrasonic transducer to send out the 40kHz ultrasonic wave. The reflected signal enter the 51 after the enlargement and feedback circuit, and the system will complete the range finder by debugging the corresponding distance. This design can realize 3 meters in range finders, with the 7 centimeters blind spot, The system have the LCD demonstration. Keywords: ultrasonic, ultrasonic sensor, AT89C51 single-chip computer, LCD display unit, range finder

超声波测距系统设计

超声波测距系统设计

论文题目:超声波测距系统设计 摘要 超声波具有不受外界光及电磁场等因素的影响的优点,超声波测距作为一种有效的非接触式测距方法已被应用于多个领域。 本设计采用渡越时间法,硬件系统分为发射模块、接收模块、显示模块、中央处理模块四个部分。本设计采用STC89C52单片机作为微型中央处理器并由软件实现40kHz脉冲经放大电路从超声波发射探头T-40发射出超声波,接收探头R-40收到声波后经集成芯片CX20106A放大滤波整形后回送到单片机计算,通过发射与接收的时间差和声速计算出距离。本系统使用四位共阳极LED数码管显示距离,能实时显示即时距离。 经测试,在30cm~200cm范围内,误差能控制在2cm以内。根据实验数据进行了误差分析,并提出了解决方案,最后对超声波测距技术的发展进行了展望。通过系统的调试和测试,本设计基本完成了设计要求。 【关键词】单片机,超声波,测距,渡越时间法; 【论文类型】应用型

Title: The design of ultrasonic distance measurement system Major:Electronic and Information Engineering Name: Zhang Yankun Signature:_______ Supervisor: Zhang Xiaoli Signature:_______ ABSTRACT The advantages of ultrasound without the influence of outside light and electromagnetic fields and other factors , ultrasonic distance measurement as an effective non-contact distance measurement method has been used in many fields. This design uses the transit time method, the hardware system is divided into transmitter module, receiver module and display module, the central processing module. This design uses a microcontroller STC89C52 as micro central processing unit and 40 kHz pulse by the software, The ultrasonic emission from the ultrasonic probe the T-40 via the amplifier circuit. Acoustic

相关主题
文本预览
相关文档 最新文档