当前位置:文档之家› 基于FPGA的UART设计

基于FPGA的UART设计

基于FPGA的UART设计
基于FPGA的UART设计

一、题目

基于FPGA的UART设计

二、设计要求

1)支持数据格式:起始位(1bit)+数据(8bit)+奇偶校验位(1bit)+终止位(1bit)2)奇/偶校验可配置

3)可配置支持115200以下的常见波特率

4)支持115200以下的波特率自适应,自适应过程如下:

a.复位后,UART首先接收输入,不断自动调整波特率,直到以一定波特率正确连

续接收到3个bytes的0x55

b.接着UART以此波特率连续发送3个bytes 0xaa

c.之后两端以此波特率进行通信

d.波特率自适应只在电路复位后进行一次,如欲再次自适应波特率应对电路再次

复位

e.波特率自适应过程中不能对UART的波特率作任何设置,自适应完成后可以对

波特率作设置

5)自动计算校验位用于发送数据;对接收到的校验位和数据进行校验,发现错误应设置错误标志,并丢弃数据

6)对接收不正常数据(如无终止位、无校验位、数据位数不正确等)应能自动识别并设置错误标志、丢弃

三、UART 的工作原理

异步通信时,UART发送/接收数据的传输格式如图1所示,一个字符单位由开始位、数据位、停止位组成。

异步通信的一帧传输经历以下步骤:

(1)无传输。发送方连续发送信号,处于信息“1”状态。

(2)起始传输。发送方在任何时刻将传号变成空号,即“1”跳变到“0”,并持续1位

时间表明发送方开始传输数据。而同时,接收方收到空号后,开始与发送方同步,并期望收到随后的数据。

(3)奇偶传输。数据传输之后是可供选择的奇偶位发送或接收。

(4)停止传输。最后是发送或接收的停止位,其状态恒为“1”。

发送或接收一个完整的字节信息,首先是一个作为起始位的逻辑“0”位,接着是8个数据位,然后是停止位逻辑“1”位,数据线空闲时为高或“1”状态。起始位和停止位的作用是使接收器能把局部时钟与每个新开始接收的字符再同步。异步通信没有可参

照的时钟信号,发送器可以随时发送数据,任何时刻串行数据到来时,接收器必须准确地发现起始位下降沿的出现时间,从而正确采样数据。

首先,收发双方设定一个波特率,从计算机串口调试助手发出字符串到试验箱,试验箱接收完成后再将接收到的信息发回串口调试助手,若所发送的字符串与接收到的字符串一样,则设计无误。

四、波特率发生器设计

module speed_select(

clk,rst_n,

bps_start,clk_bps

);

input clk; // 12MHz主时钟

input rst_n; //低电平复位信号

input bps_start; //接收到数据后,波特率时钟启动信号置位

output clk_bps; // clk_bps的高电平为接收或者发送数据位的中间采样点

`define BPS_PARA 1254 //波特率为9600时的分频计数值

`define BPS_PARA_2 627 //波特率为9600时的分频计数值的一半,用于数据采样

reg[12:0] cnt; //分频计数

reg clk_bps_r; //波特率时钟寄存器

//----------------------------------------------------------

reg[2:0] uart_ctrl; // uart波特率选择寄存器

//----------------------------------------------------------

always @ (posedge clk or negedge rst_n)

if(!rst_n) cnt <= 13'd0;

else if((cnt == `BPS_PARA) || !bps_start) cnt <= 13'd0; //波特率计数清零

else cnt <= cnt+1'b1; //波特率时钟计数启动

always @ (posedge clk or negedge rst_n)

if(!rst_n) clk_bps_r <= 1'b0;

else if(cnt == `BPS_PARA_2) clk_bps_r <= 1'b1; // clk_bps_r高电平为接收数据位的中间采样点,同时也作为发送数据的数据改变点

else clk_bps_r <= 1'b0;

assign clk_bps = clk_bps_r;

endmodule

五、发送模块设计

module my_uart_tx(

clk,rst_n,

rx_data,rx_int,rs232_tx,

clk_bps,bps_start

);

input clk; //12MHz主时钟

input rst_n; //低电平复位信号

input clk_bps; // clk_bps_r高电平为接收数据位的中间采样点,同时也作为发送数据的数据改变点

input[7:0] rx_data; //接收数据寄存器

input rx_int; //接收数据中断信号,接收到数据期间始终为高电平,在该模块中利用它的下降沿来启动串口发送数据

output rs232_tx; // RS232发送数据信号

output bps_start; //接收或者要发送数据,波特率时钟启动信号置位

reg rx_int0,rx_int1,rx_int2; //rx_int信号寄存器,捕捉下降沿滤波用

wire neg_rx_int; // rx_int下降沿标志位

always @ (posedge clk or negedge rst_n) begin

if(!rst_n) begin

rx_int0 <= 1'b0;

rx_int1 <= 1'b0;

rx_int2 <= 1'b0;

end

else begin

rx_int0 <= rx_int;

rx_int1 <= rx_int0;

rx_int2 <= rx_int1;

end

end

assign neg_rx_int = ~rx_int1 & rx_int2; //捕捉到下降沿后,neg_rx_int拉高保持一个主时钟周期

reg bps_start_r;

reg tx_en; //发送数据使能信号,高有效

reg[3:0] num;

always @ (posedge clk or negedge rst_n) begin

if(!rst_n) begin

bps_start_r <= 1'bz;

tx_en <= 1'b0;

tx_data <= 8'd0;

end

else if(neg_rx_int) begin //接收数据完毕,准备把接收到的数据发回去bps_start_r <= 1'b1;

tx_data <= rx_data; //把接收到的数据存入发送数据寄存器

tx_en <= 1'b1; //进入发送数据状态中

end

else if(num==4'd10) begin //数据发送完成,复位

bps_start_r <= 1'b0;

tx_en <= 1'b0;

end

end

assign bps_start = bps_start_r;

reg rs232_tx_r;

always @ (posedge clk or negedge rst_n) begin

if(!rst_n) begin

num <= 4'd0;

rs232_tx_r <= 1'b1;

end

else if(tx_en) begin

if(clk_bps) begin

num <= num+1'b1;

case (num)

4'd0: rs232_tx_r <= 1'b0; //发送起始位

4'd1: rs232_tx_r <= tx_data[0]; //发送bit0

4'd2: rs232_tx_r <= tx_data[1]; //发送bit1

4'd3: rs232_tx_r <= tx_data[2]; //发送bit2

4'd4: rs232_tx_r <= tx_data[3]; //发送bit3

4'd5: rs232_tx_r <= tx_data[4]; //发送bit4

4'd6: rs232_tx_r <= tx_data[5]; //发送bit5

4'd7: rs232_tx_r <= tx_data[6]; //发送bit6

4'd8: rs232_tx_r <= tx_data[7]; //发送bit7

4'd9: rs232_tx_r <= 1'b1; //发送结束位

default: rs232_tx_r <= 1'b1;

endcase

end

else if(num==4'd10) num <= 4'd0; //复位

end

end

assign rs232_tx = rs232_tx_r;

endmodule

六、接收器设计

module my_uart_rx(

clk,rst_n,

rs232_rx,rx_data,rx_int,

clk_bps,bps_start

);

input clk; // 12MHz主时钟

input rst_n; //低电平复位信号

input rs232_rx; // RS232接收数据信号

input clk_bps; // clk_bps的高电平为接收或者发送数据位的中间采样点

output bps_start; //接收到数据后,波特率时钟启动信号置位

output[7:0] rx_data; //接收数据寄存器,保存直至下一个数据来到

output rx_int; //接收数据中断信号,接收到数据期间始终为高电平

reg rs232_rx0,rs232_rx1,rs232_rx2,rs232_rx3; //接收数据寄存器,滤波用wire neg_rs232_rx; //表示数据线接收到下降沿,1到0,起始位。

always @ (posedge clk or negedge rst_n) begin

if(!rst_n) begin

rs232_rx0 <= 1'b0;

rs232_rx1 <= 1'b0;

rs232_rx2 <= 1'b0;

rs232_rx3 <= 1'b0;

end

else begin

rs232_rx0 <= rs232_rx;

rs232_rx1 <= rs232_rx0;

rs232_rx2 <= rs232_rx1;

rs232_rx3 <= rs232_rx2;

end

end

//下面的下降沿检测可以滤掉<20ns-40ns的毛刺(包括高脉冲和低脉冲毛刺),

//这里就是用资源换稳定(前提是我们对时间要求不是那么苛刻,因为输入信号打了好几拍)

//(当然我们的有效低脉冲信号肯定是远远大于40ns的)

assign neg_rs232_rx = rs232_rx3 & rs232_rx2 & ~rs232_rx1 & ~rs232_rx0; //接收到下降沿后neg_rs232_rx置高一个时钟周期

reg bps_start_r;

reg[3:0] num; //移位次数

reg rx_int; //接收数据中断信号,接收到数据期间始终为高电平,用于启动发送模块

always @ (posedge clk or negedge rst_n)

if(!rst_n) begin

bps_start_r <= 1'bz;

rx_int <= 1'b0;

end

else if(neg_rs232_rx) begin //接收到串口接收线rs232_rx的下降沿标志信号

bps_start_r <= 1'b1; //启动串口准备数据接收,用于控制speedselect模块

rx_int <= 1'b1; //接收数据中断信号使能

end

else if(num==4'd10) begin //接收完有用数据信息

bps_start_r <= 1'b0; //数据接收完毕,释放波特率启动信号

rx_int <= 1'b0; //接收数据中断信号关闭

end

assign bps_start = bps_start_r;

reg[7:0] rx_temp_data; //当前接收数据寄存器

always @ (posedge clk or negedge rst_n)

if(!rst_n) begin

rx_temp_data <= 8'd0;

num <= 4'd0;

rx_data_r <= 8'd0;

end

else if(rx_int) begin //接收数据处理

if(clk_bps) begin //读取并保存数据,接收数据为一个起始位,8bit数据,1或2个结束位

num <= num+1'b1;

case (num)

4'd1: rx_temp_data[0] <= rs232_rx; //锁存第0bit

4'd2: rx_temp_data[1] <= rs232_rx; //锁存第1bit

4'd3: rx_temp_data[2] <= rs232_rx; //锁存第2bit

4'd4: rx_temp_data[3] <= rs232_rx; //锁存第3bit

4'd5: rx_temp_data[4] <= rs232_rx; //锁存第4bit

4'd6: rx_temp_data[5] <= rs232_rx; //锁存第5bit

4'd7: rx_temp_data[6] <= rs232_rx; //锁存第6bit

4'd8: rx_temp_data[7] <= rs232_rx; //锁存第7bit

default: ;

endcase

end

else if(num == 4'd10) begin //我们的标准接收模式下只有1+8+1(2)=11bit的有效数据

num <= 4'd0; //接收到STOP位后结束,num清零

rx_data_r <= rx_temp_data; //把数据锁存到数据寄存器rx_data中

end

end

assign rx_data = rx_data_r;

endmodule

七、顶层模块设计

module my_uart_top(

clk,rst_n,

rs232_rx,rs232_tx

);

input clk; // 12MHz主时钟

input rst_n; //低电平复位信号

input rs232_rx; // RS232接收数据信号

output rs232_tx; // RS232发送数据信号

wire bps_start1,bps_start2; //接收到数据后,波特率时钟启动信号置位

wire clk_bps1,clk_bps2; // clk_bps_r高电平为接收数据位的中间采样点,同时也作为发送数据的数据改变点

wire[7:0] rx_data; //接收数据寄存器,保存直至下一个数据来到

wire rx_int; //接收数据中断信号,接收到数据期间始终为高电平

//----------------------------------------------------

//下面的四个模块中,speed_rx和speed_tx是两个完全独立的硬件模块,可称之为逻辑复制

//(不是资源共享,和软件中的同一个子程序调用不能混为一谈)

////////////////////////////////////////////

speed_select speed_rx(

.clk(clk), //波特率选择模块

.rst_n(rst_n),

.bps_start(bps_start1),

.clk_bps(clk_bps1)

);

my_uart_rx my_uart_rx(

.clk(clk), //接收数据模块

.rst_n(rst_n),

.rs232_rx(rs232_rx),

.rx_data(rx_data),

.rx_int(rx_int),

.clk_bps(clk_bps1),

.bps_start(bps_start1)

);

speed_select speed_tx(

.clk(clk), //波特率选择模块

.rst_n(rst_n),

.bps_start(bps_start2),

.clk_bps(clk_bps2)

);

my_uart_tx my_uart_tx(

.clk(clk), //发送数据模块

.rst_n(rst_n),

.rx_data(rx_data),

.rx_int(rx_int),

.rs232_tx(rs232_tx),

.clk_bps(clk_bps2),

.bps_start(bps_start2)

);

endmodule

八、实验效果图

九、实验总结

本次设计具有较大的灵活性,通过调整波特率发生器的分频参数,就可以使其工作在不同的频率。可以实时有效探测数据的起始位,并可对数据位进行“对准”中央采样,保证了所采样数据的正确性。该模块可以作为一个完整的IP核移植进各种FPGA中,在实际应用时可嵌入到其他系统中,很容易实现和远端上位机的异步通信。虽然本次试验设计没有完成波特率自适应,但是通过这次试验更深入的了解了uart的工作原理,重温Verilog-hdl程序设计。

(完整版)FPGA温度测量设计毕业设计

毕业论文FPGA温度测量设计

摘要 温度作为一种最基本的环境参数,与人民的生活有着密切关系。温度的测量和控制在工业、农业、国防、医疗等各个领域中应用普遍。温度测量仪是一种常用的检测仪器。 本文首先介绍了DS18B20的工作原理,利用数字温度传感器DS18B20的数据接口特点,展示了FPGA(Field-Programmable Gate Array,即现场可编程逻辑门阵列)的使用方法以及Verilog HDL (HDL:Hardware Discription Language)语言的编程,完成了基本温度测量功能。给出了硬件电路和软件设计,此设备具有结构简单、转换速度快、精确性高,扩展性好等优点。 关键词:FPGA;DS18B20;测温;Verilog HDL语言

Design of temperature measurement based on FPGA Abstract Tenperture is one of the most basic environmental parameters, and it industry, agriculture, national defense,medical and other fields, temperature measurement and control was widely used.The temperature measuring instrument is a kind of common testing instrument. In this paper,first we introduces the work principle of DS18B20,and the characteristics of data interface of digital temperature sensor DS18B20, demonstrated Language)programming language,accomplished the function of temperature measurement. Given the .The device . Key Words: FPGA;DS18B20;Temperature measurement;Verilog HDL language 目录 中文摘要 (1) 英文摘要 (2) 1绪论 (1) 1.1题目背景意义 (1) 1.2工作内容 (2)

(完整版)基于FPGA的智能交通灯的设计毕业设计

目录 摘要 ............................................................. I 1 前言 (1) 2 交通红绿灯控制电路的发展与技术现状 (2) 2.1 交通控制系统以及交通红绿灯控制电路的发展现状 (2) 2.2 智能交通红绿灯控制电路技术的现状 (3) 3 VHDL、FPGA、Quartus ii简介 (5) 3.1 VHDL简介 (5) 3.1.1 VHDL简介 (5) 3.1.2 VHDL语言的特点 (6) 3.2 FPGA简介 (8) 3.2.1 PLD器件的设计特点 (8) 3.2.2 FPGA的基本结构 (10) 3.2.3 采用FPGA设计逻辑电路的优点 (11) 3.3 Quartus II 的简介 (12) 4 具体方案论证与设计 (13) 4.1 具体方案论证 (13) 4.2系统算法设计 (15) 4.3 具体电路原理图 (16) 4.4 电路仿真图 (16) 5 实验结果 (17) 总结 (18) 参考文献 ......................................... 错误!未定义书签。附录: .. (19)

基于FPGA的十字路口交通信号灯 摘要 本文主要介绍十字路口交通灯控制器的设计。首先,介绍交通控制系统以及交通红绿灯控制电路的发展现状;然后采用硬件描述语言进行的交通灯控制器设计。重点介绍了控制系统各部分的设计,以及各个模块之间的同步处理。为了克服交通信号灯控制系统传统设计方法的弊端,更加适应城镇交通现状,利用VHDL语言、采用层次化混合输入方式,设计了具有3种信号灯和倒计时显示器的交通信号灯控制系统,在 QuartusⅡ下进行仿真,并下载到FPGA中制作成实际的硬件电路进行了模拟运行.使用该方法设计的交通灯控制系统电路简单、运行可靠、易于实现,可实现对交通信号的控制和显示功能。 关键词 FPGA;QUARTUS ii;HDPLD;十字路口交通灯控制器; Based on FPGA intersection traffic lights Abstract This paper describes the design of intersection traffic signal controller.First, the introduction of traffic control systems and traffic light control circuit of the development status; then using language designed for the traffic light controller.Focus on various parts of the control system

UART IP设计

UART IP设计文档 1,主要特征; UART采用的是一种起止式异步协议,特点是一个字符一个字符地传输,并且传送一个字符总是以起始位开始,以停止位结束,字符之间没有固定的时间间隔要求。一个字符传送完成后,奇偶校验位之后的停止位和空闲位都规定为高电平,而起始位为低电平,这样就保证起始位开始处一定有个下降沿,这个下降沿用来界定一个字符传输的开始,它的到来就表示下面是数据位,要准备接收;而停止位标志一个字符的结束,它的出现表示一个字符传送完毕,这样就为通信双方提供了何时开始收发和何时结束的标志。 2,整体框图 图2.1 UART IP整体框图 UART IP的整体框图如图2.1所示。它有控制电路模块、发送控制模块和接收控制模块三部分组成。CPU通过对控制电路模块中的寄存器进行设置达到对内部电路的控制和管理,从而实现UART和CPU以及其它UART模块间的数据收发功能。3,整个模块的外部接口 图3.1 UART IP外部接口 4,子模块说明 (一)控制电路模块 该模块的主要功能为:a、与CPU接口,将CPU对内部控制寄存器的写操作转化

为对发送控制器和接收控制器的控制信号;b、将CPU写入到内部数据发送寄存器的数据进行锁存并提供给发送控制器;c、将接收控制器接收的数据提交给CPU,同时提交接收数据的状态信息;d、对收、发控制器的中断进行管理。对于中断寄存器的读操作同时对寄存器清零,以避免重复产生中断,这需要专门的电路进行维护和管理。 (二)发送控制模块 该模块的主要功能为:a、根据clk_div_ctl给出的时钟分频比将xmt_data上的数据按照从低位到高位的顺序依次发出。在数据发送过程中需要根据规范插入起始位、奇偶校验位和停止位。b、发送控制器在xmt_en为高电平时开始向线路方向发送数据。完成当前字节发送后通过xmt_over通知控制电路当前发送完成,由控制电路负责产生中断和进行中断管理。 发送控制模块的仿真波形如下: 图4.1发送控制模块仿真波形 a.当发送状态机处于idle状态时,如果xmt _en有效则产生一个clk_cnt_clr 信号,用于对时钟计数器清零,同时进入start状态,见图4.1中“1”处。 b.在start状态下,如果sample有效则输出起始位,同时进入data状态,见图 4.1中“2”处。 c.在data状态下,在sample有效时连续输出8位数据。最后一个比特开始输出后进入parity状态,准备输出奇偶校验位,,见图4.1中“3”处。 d.在parity状态下,如果出现sample则进入stop状态,在stop状态下如果sample有效则输出截止位,并进入waiting状态,见图4.1中“4”处。 e.在waiting状态下,截止位保持有效,并在sample有效时进入idle状态,sdout 持续为1,见图4.1中“5”处。 f在由waiting进入idle状态时,输出xmt_over信号,通知控制电路当前数据发送完成。注意这里的xmt_over信号只是在一个时钟周期内保持有效,见图4.1中“6”处. (三)接收控制模块 该模块的主要功能为:a、检测接收数据中的起始位,并完整地接收数据。b、根

基于单片机的毕业设计题目

单片机类 业设计 刷电子时钟的设计 刷全自动节水灌溉系统--硬件部 刷数 式温度计的设计 刷温度 控系统设计 刷基于单片机的语音提示测温系统的研究 刷简易无线电遥控系统 刷数 流 计 刷基于单片机的全自动洗衣机 刷水塔智能水 控 系统 刷温度箱模拟控 系统 刷超声波测距仪的设计 刷基于51单片机的L司号点阵显示屏系统的设计与实 16×16点阵显示屏 刷基于A切89分51单片机的数 电子时钟 刷基于单片机的步 电机的控 刷基于单片机的交流调 器设计 刷基于单片机的数 电压表的设计 刷单片机的数 钟设计 刷智能散热器控 器的设计 刷单片机打铃系统设计 刷基于单片机的交通信 灯控 电路设计 刷基于单片机的电话 程控 家用电器系统设计 刷基于单片机的安全 警器 刷基于单片机的 路抢答器设计 刷基于单片机的超声波测距系统的设计 刷基于MC分-51数 温度表的设计 刷电子体温计的设计 刷基于A切89C51的电话 程控 系统 刷基于A三R单片机幅度 调的号号分信 发生器 刷基于单片机的数控稳压电源的设计 刷基于单片机的室内一氧化碳 测及 警系统的研究 刷基于单片机的空调温度控 器设计 刷基于单片机的 编程多 能电子定时器 刷单片机的数 温度计设计 刷红外遥控密码锁的设计 刷基于61单片机的语音识别系统设计 刷家用 燃气体 警器的设计 刷基于数 温度计的多点温度检测系统 刷基于凌 单片机的语音实时采集系统设计 刷基于单片机的数 频率计的设计 刷基于单片机的数 电子钟设计 刷设施 境中温度测 电路设计 刷汽车倒车 撞 警器的设计 刷篮球赛计时记 器

刷基于单片机的家用智能总线式开关设计 刷设施 境中湿度检测电路设计 刷基于单片机的音乐合成器设计 刷设施 境中二氧化碳检测电路设计 刷基于单片机的水温控 系统设计 刷基于单片机的数 温度计的设计 刷基于单片机的火灾 警器 刷基于单片机的红外遥控开关设计 刷基于单片机的电子钟设计 刷基于单片机的红外遥控电子密码锁 刷大棚温湿度自动 控系统 刷基于单片机的电器遥控器的设计 刷单片机的语音 储与 放的研究 刷基于单片机的电 热炉温度控 系统设计 刷红外遥控电源开关 刷基于单片机的 频信 发生器设计 刷基于单片机的呼叫系统的设计 刷基于PIC16F876A单片机的超声波测距仪 刷基于单片机的密码锁设计 刷单片机步 电机转速控 器的设计 刷由A切89C51控 的太 能热水器 刷 盗与恒温系统的设计与 作 刷A切89分52单片机实验系统的开发与 用 刷基于单片机控 的数 气压计的设计与实 刷智能压力传感器系统设计 刷智能定时器 刷基于单片机的智能火灾 警系统 刷基于单片机的电子式转速 程表的设计 刷 交车汉 显示系统 刷单片机数 电压表的设计 刷精密三F转换器与MC分-51单片机的接口技术 刷基于单片机的居室安全 警系统设计 刷基于89C2051 IC卡读/写器的设计 刷PC机与单片机串行通信设计 刷球赛计时计 器设计 刷 系列PCL五层电 控 系统设计 刷自动起闭光控窗帘设计 刷单片机控 交通灯系统设计 刷基于单片机的电子密码锁 刷基于51单片机的多路温度采集控 系统 刷点阵电子显示屏-- 业设计 刷超声波测距仪-- 业设计 刷单片机对玩 小车的智能控 业设计论文 刷基于单片机控 的电机交流调速 业设计论文

fpga毕业设计开题报告.doc

fpga毕业设计开题报告 FPGA(Field-Programmable Gate Array),即现场可编程门阵列,它是在PAL、GAL、CPLD等可编程器件的基础上进一步发展的产物。以下是fpga毕业设计,欢迎阅读。 1选题目的意义和可行性 在这个时间就是金钱的年代里,数字电子钟已成为人们生活中的必需品。目前应用的数字钟不仅可以实现对年、月、日、时、分、秒的数字显示,还能实现对电子钟所在地点的温度显示和智能闹钟功能,广泛应用于车站、医院、机场、码头、厕所等公共场所的时间显示。随着现场可编程门阵列( field program-mable gate array ,FPGA) 的出现,电子系统向集成化、大规模和高速度等方向发展的趋势更加明显,作为可编程的集成度较高的ASIC,可在芯片级实现任意数字逻辑电路,从而可以简化硬件电路,提高系统工作速度,缩短产品研发周期。故利用FPGA这一新的技术手段来研究电子钟有重要的现实意义。设计采用FPGA现场可编程技术,运用自顶向下的设计思想设计电子钟。避免了硬件电路的焊接与调试,而且由于FPGA的I /O 端口丰富,内部逻辑可随意更改,使得数字电子钟的实现较为方便。本课题使用Cyclone EP1C6Q240的FPGA器件,完成实现一个可以计时的数字时钟。该系统具有显示时、分、秒,智能闹钟,按键实现校准时钟,整点报时等功能。满足人们得到精确时间以及时间提醒的需求,方便人们生活。 2 研究的基本内容与拟解决的主要问题 2.1研究的基本内容 数字时钟是采用电子电路实现对时间进行数字显示的计时

装置,由于数字集成电路的发展和石英晶体振荡器的广泛应用,使得数字钟的精度不断提高。 数字时钟系统的实现有很多,可以利用VerilogDHL语言在Quartus II里实现时、分、秒计数的功能。在芯片内部存储器设24个字节分别存放时钟的时、分、秒信息。数字时钟首先是秒位(共8位)上按照系统时钟CLK进行计数,存储器内相应的秒值加1;若秒位的值达到60(110000),则将其清零,并将相应的分位(共8位)的值加1;若分值达到60(110000),则清零分位,并将时位(共8位)的值加1;若计数满24(100100)后整个系统从0开始重新进行计数。 本设计使用Cyclone EP1C6Q240的FPGA器件为核心,通过编写程序,完成此电子时钟的主要功能显示时,分,秒,以及通过按键实现校准时钟主要功能,使用LED液晶屏显示,分别显示时,分,秒。并且能够实现附加功能----闹铃设置功能和整点报时。 2.2 拟要解决的问题 本设计电子钟系统功能简单,用Cyclone EP1C6Q240的FPGA器件为核心,通过编写程序,完成此电子时钟的主要功能。 本课题主要解决以下问题: (1) 学习VerilogDHL语言、运用Quartus II环境进行程序设计。 用VerilogDHL语言能进行综合的电路设计,也可用于电路的仿真;设计的 规模是任意的,语言不对设计规模施加任何限制;内置各种基本的逻辑门。便于改进和扩充,有利于本系统的研制,并使其性能更完备的。

UART串口通信设计实例

2.5 UART串口通信设计实例(1) 接下来用刚才采用的方法设计一个典型实例。在一般的嵌入式开发和FPGA设计中,串口UART是使用非常频繁的一种调试手段。下面我们将使用Verilog RTL编程设计一个串口收发模块。这个实例虽然简单,但是在后续的调试开发中,串口使用的次数比较多,这里阐明它的设计方案,不仅仅是为了讲解RTL编程,而且为了后续使用兼容ARM9内核实现嵌入式开发。 串口在一般的台式机上都会有。随着笔记本电脑的使用,一般会采用USB转串口的方案虚拟一个串口供笔记本使用。图2-7为UART串口的结构图。串口具有9个引脚,但是真正连接入FPGA开发板的一般只有两个引脚。这两个引脚是:发送引脚TxD和接收引脚RxD。由于是串行发送数据,因此如果开发板发送数据的话,则要通过TxD线1 bit接着1 bit 发送。在接收时,同样通过RxD引脚1 bit接着1 bit接收。 再看看串口发送/接收的数据格式(见图2-8)。在TxD或RxD这样的单线上,是从一个周期的低电平开始,以一个周期的高电平结束的。它中间包含8个周期的数据位和一个周期针对8位数据的奇偶校验位。每次传送一字节数据,它包含的8位是由低位开始传送,最后一位传送的是第7位。

这个设计有两个目的:一是从串口中接收数据,发送到输出端口。接收的时候是串行的,也就是一个接一个的;但是发送到输出端口时,我们希望是8位放在一起,成为并行状态(见图2-10)。我们知道,串口中出现信号,是没有先兆的。如果出现了串行数据,则如何通知到输出端口呢?我们引入“接收有效”端口。“接收有效”端口在一般情况下都是低电平,一旦有数据到来时,它就变成高电平。下一个模块在得知“接收有效”信号为高电平时,它就明白:新到了一个字节的数据,放在“接收字节”端口里面。

基于FPGA的数字频率计设计毕业论文

武汉轻工大学 毕业设计外文参考文献译文本 2013届 原文出处:from Vin Skahill.VHDL for Programmable Logic page 76-88 毕业设计题目:基于FPGA的数字频率计设计 院(系):电气与电子工程学院 专业名称:电子信息科学与技术 学生姓名: 学生学号: 指导教师:

Introduction of digital frequency meter Digital Frequency is an indispensable instrument of communications equipment, audio and video, and other areas of scientific research and production . In addition to the plastic part of the measured signal, and digital key for a part of the show, all the digital frequency using Verilog HDL designed and implemented achieve in an FPGA chip. The entire system is very lean, flexible and have a modification of the scene. 1 、And other precision measuring frequency Principle Frequency measurement methods can be divided into two kinds: (1) direct measurement method, that is, at a certain time measurement gate measured pulse signal number. (2) indirect measurements, such as the cycle frequency measurement, VF conversion law. Frequency Measurement indirect measurement method applies only to low-frequency signals. Based on the principles of traditional frequency measurement of the frequency of measurement accuracy will be measured with the decline in signal frequency decreases in the more practical limitations, such as the accuracy and frequency of measurement not only has high accuracy, but also in the whole frequency region to maintain constant test accuracy. The main method of measurement frequency measurement Preferences gated signal GATE issued by the MCU, GATE time width on the frequency measurement accuracy of less impact, in the larger context of choice, as long as the FPGA in 32 of 100 in the counter b M Signals are not overflow line, in accordance with the theoretical calculation GATE time can be greater than the width Tc 42.94 s, but due to the single-chip microcomputer data processing capacity constraints, the actual width of less time, generally in the range of between 0.1 s choice, that is, high-frequency, shorter gate;, low gate longer. This time gate width Tc based on the size of the measured frequency automatically adjust frequency measurement in order to achieve the automatic conversion range, and expanded the range of frequency measurement; realization of the entire scope of measurement accuracy, reduce the low-frequency measurement error. The design of the main methods of measuring the frequency measurement and control block diagram as shown in Figure 1. Figure 1 Preferences gated signal GA TE issued by the MCU, GA TE time width of less frequency measurement accuracy, in the larger context of choice, as long as the FPGA in 32 of 100 in the counter b M

基于FPGA的四层电梯控制系统设计毕业设计论文

毕业论文Array 基于FPGA的四层电梯控制系统设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

电子类毕业设计题目

盼盼电子设计网本网站承接电子类毕业设计论文一条龙服务!!! 电子毕业设计:12 1.基于FPGA的PCI总线设计 2.基于FPGA的UART接口设计 3.基于单片机的数字电压表 4.单片机控制的全自动洗衣机毕业设计 电梯控制的设计与实现 6.恒温箱单片机控制 7.单片机脉搏测量仪 8.单片机控制步进电机毕业设计论文 9.函数信号发生器设计论文 变电所一次系统设计 11.报警门铃设计论文 单片机交通灯控制 13.单片机温度控制系统 通信系统中的接入信道部分进行仿真与分析 15.仓库温湿度的监测系统 16.基于单片机的电子密码锁 17.单片机控制交通灯系统设计 18.基于DSP的IIR数字低通滤波器的设计与实现

19.智能抢答器设计 20.基于LabVIEW的PC机与单片机串口通信设计的IIR数字高通滤波器 22.单片机数字钟设计 23.自动起闭光控窗帘毕业设计论文 24.三容液位远程测控系统毕业论文 25.基于Matlab的PWM波形仿真与分析 26.集成功率放大电路的设计 27.波形发生器、频率计和数字电压表设计 28.水位遥测自控系统毕业论文 29.宽带视频放大电路的设计毕业设计 30.简易数字存储示波器设计毕业论文 31.球赛计时计分器毕业设计论文 数字滤波器的设计毕业论文 机与单片机串行通信毕业论文 34.基于CPLD的低频信号发生器设计毕业论文 35. 基于labVIEW虚拟滤波器的设计与实现序列在扩频通信中的应用 37.正弦信号发生器 38.红外报警器设计与实现 39.开关稳压电源设计 40.基于MCS51单片机温度控制毕业设计论文

41.步进电动机竹竿舞健身娱乐器材 42.单片机控制步进电机毕业设计论文 43.单片机汽车倒车测距仪 44.基于单片机的自行车测速系统设计 45.水电站电气一次及发电机保护 46.基于单片机的数字显示温度系统毕业设计论文 47.语音电子门锁设计与实现 48.工厂总降压变电所设计-毕业论文 49.单片机无线抢答器设计 50.基于单片机控制直流电机调速系统毕业设计论文 51.单片机串行通信发射部分毕业设计论文 52.基于VHDL语言PLD设计的出租车计费系统毕业设计论文 53.超声波测距仪毕业设计论文 54.单片机控制的数控电流源毕业设计论文 55.声控报警器毕业设计论文 56.基于单片机的锁相频率合成器毕业设计论文 57.基于Multism/protel的数字抢答器 58.单片机智能火灾报警器毕业设计论 59.无线多路遥控发射接收系统设计毕业论文 60.单片机对玩具小车的智能控制毕业设计论文 61.数字频率计毕业设计论文 62.基于单片机控制的电机交流调速毕业设计论文

UART原理及接受模块设计

2 UART 原理 2.1 UART 的通信原理 UART 即通用异步收发器,是一种串行通信方式。数据在传输过程中是通过一位一位地进行传输来实现通信的,串行通信方式具有传输线少,成本底等优点,缺点是速度慢。串行通信分为两种类型:同步通信方式和异步通信方式。但一般多用异步通信方式,主要因为接受和发送的时钟是可以独立的这样有利于增加发送与接收的灵活性。异步通信是一个字符接着一个字符传输,一个字符的信息由起始位、数据位、奇偶校验位和停止位组成。每一个字符的传输靠起始位来同步,字符的前面一位是起始位,用下降沿通知收方开始传输,紧接着起始位之后的是数据位,传输时低位在前高位在后,字符本身由5~8位数据位组成。数据位后面是奇偶校验位,最后是停止位,停止位是用高电平来标记一个字符的结束,并为下一个字符的传输做准备。停止位后面是不同长度的空闲位。停止位和空闲位都规定为高电平,这样可以保证起始位有一个下降沿。UART 的帧格式如图2.1所示。 图2.1 UART 的帧格式 Figure 2.1 The frame format of UART UART 的帧格式包括线路空闲状态(idle ,高电平)、起始位(start bit ,低电平)、5~8位数据位(data bits)、校验位(parity bit ,可选)和停止位(stop bit ,位数可为1、1.5、2位)。 在串口的异步通信中,数据以字节为单位的字节帧进行传送。发送端和接收端必须按照相同的字节帧格式和波特率进行通信。其中字节帧格式规定了起始位、数据位、寄偶效验位、停止位。起始位是字节帧的开始。使数据线处于逻辑0状态 ,用于向接收端表明开始发送数据帧,起到使发送和接收设备实现同步。停止位是字节帧的终止,使数据线处于逻辑1状态。用于向接收端表明数据帧发送完毕。波特率采用标准速度9600bit/s 。

FPGA的UART完整设计

第三章UART设计 3、1 UART得帧格式 在UART 中,数据位就是以字符为传送单位,数据得前、后要有起始位、停止位,另外可以在停止位得前面加上一个比特(bit)得校验位。其帧格式如图所示。 文章通过分析UART得功能,利用有限状态机来描述UART核心控制逻辑得方法,将其核心功能集成,从而使整个设计更加稳定、可靠。基本得UART通信只需要两条信号线就可以完成数据得相互通信。UART得功能模块如图3_2所示。

3、2 UART模块 在大规模电路得设计中,广泛采用层次化,结构化得设计方法。它将一个完整得硬件设计任务从系统级开始,划分为若干个可操作得模块,编制出相应得模型并进行仿真验证,最后在系统级上进行组合。这样在提高设计效率得同时又提高了设计质量,就是目前复杂数字系统实现得主要手段,也就是本文设计思想得基础。其系统模块可划分为4个部分,如波特发生器,控制器,接收器,发送器,如图3-3所示: 3 Data_in:并行输入data_out:并行输出 Cs:通知cpu接收数据位ks:通知cpu发送准备位 Reset:重启输入state:uart状态输入 Clk:48M时钟输入

3、2、2UART主体程序 `timescale 1ns/1ns module gs_opt( input wire read, input wire clk, input wire reset, input wire state, input wire [7:0] dat_in, output wire send, output wire cs, output wire ks, output wire [7:0] dat_out ); wire send_enable; wire read_enable; wire clk_enable3; wire clk_enable4; wire clear3 ; wire clear4 ; wire clk_enable; wire [7:0] counters; wire clear ; wire t1; /* read,send,cs,ks,reset,state,clk,dat_in,dat_out); //module uart(read,send,cs,ks,reset,state,clk,dat_in,dat_out); input read,clk,reset,state; //read为串行输入,clk为时钟输入50MHZ,reset为重启键input[7:0] dat_in;//并行数据输入 output send,cs,ks; //send为串行输出,cs为通知cpu接收数据位,ks为发送准备位output[7:0] dat_out;//并行数据输出 wire clear,clk_enable,read_enable,clear3,send_enable,clear4,t1; wire[7:0] counters,dat_in;*/

FPGA毕业设计论文英文

[1] Using FPGA technology towards the design of an adaptive fault tolerant framework Erdogan, Sevki (University of Hawaii); Gersting, Judith L.; Shaneyfelt, Ted; Duke, Eugene L. Source: Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, v 4, IEEE Systems, Man and Cybernetics Society, Proceedings - 2005 International Conference on Systems, Man and Cybernetics, 2005, p 3823-3827 ISSN: 1062-922X CODEN: PICYE3 Conference: IEEE Systems, Man and Cybernetics Society, Proceedings - 2005 International Conference on Systems, Man and Cybernetics, Oct 10-12 2005, Waikoloa, HI, United States Sponsor: IEEE Systems, Man and Cybernetics Society Publisher: Institute of Electrical and Electronics Engineers Inc. Abstract: In this paper we propose architecture for a Reconfigurable, Adaptive, Fault-Tolerant (RAFT) framework for application in real time systems with require multiple levels of redundancy and protection. Typical application environments include distributed processing, fault-tolerant computation, and mission and safety-critical systems. The framework uses Field Programmable Gate Array (FPGA) technologies with on the fly partial programmability achieving reconfiguration of a system component when the existing components fail or to provide extra reliability as required in the specification. The framework proposes the use an array of FPGA devices to implement a system that, after detecting an error caused by a fault, can adaptively reconfigure itself to achieve fault tolerance. The FPGAs that are becoming widely available at a low cost are exploited by defining a system model that allows the system user to define various levels of reliability choices, providing a monitoring layer for the system engineer. ? 2005 IEEE. (21 refs.) [2]METHOD FOR PROTECTING COMPUTER THROUGH REAL-TIME MONITORING BY PROTECTING EXECUTION FILE, AND COMPUTER AND SYSTEM PROTECTED BY THE SAME Patent number: KR20040083409 Publication date: 2004-10-01 Inventor: AHN MU GYEONG Applicant: SAFEI CO LTD Classification: - international: G06F11/30; G06F11/30; (IPC1-7): G06F11/30 - european: Application number: KR20040072633 20040910 Priority number(s): KR20040072633 20040910 View INPADOC patent family View forward citations

基于FPGA的数字存储示波器的设计毕业设计

本科生毕业设计 基于FPGA的数字存储示波器的设计Design a digital oscillograph based on FPGA

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

基于FPGA的液晶显示设计毕业设计论文

诚信申明 本人申明: 我所呈交的本科毕业设计(论文)是本人在导师指导下对四年专业知识而进行的研究工作及全面的总结。尽我所知,除了文中特别加以标注和致谢中所罗列的内容以外,论文中创新处不包含其他人已经发表或撰写过的研究成果,也不包含为获得北京化工大学或其它教育机构的学位或证书而已经使用过的材料。与我一同完成毕业设计(论文)的同学对本课题所做的任何贡献均已在文中做了明确的说明并表示了谢意。 若有不实之处,本人承担一切相关责任。 本人签名:年月日

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

基于FPGA的MCU设计毕业设计

毕业论文声明 本人郑重声明: 1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。本人完全意识到本声明的法律结果由本人承担。 2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。 3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。 4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。 学位论文作者(签名): 年月

关于毕业论文使用授权的声明 本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。本人完全了解大学有关保存,使用毕业论文的规定。同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容:按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入学校有关数据 库和收录到《中国学位论文全文数据库》进行信息服务。在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。 论文作者签名:日期: 指导教师签名:日期:

相关主题
文本预览
相关文档 最新文档