当前位置:文档之家› 误差计算公式

误差计算公式

误差计算公式
误差计算公式

2009-06-22 13:38

电流型:

(测量值-标准值)/(上限-下限)*100热电阻:PT100:

上限<63.5℃

(测量值-标准值)/250*100

增益:64

上限<278.7℃

(测量值-标准值)/400*100

增益:16

上限<824.5℃

(测量值-标准值)/950*100

增益:8

Cu50:

上限<150℃

(测量值-标准值)/150*100

增益:64

BA1:

上限<120℃

(测量值-标准值)/320*100

热电偶:

分类型:J型:上限<698℃(测量值-标准值)/698*100 增益:64

上限<1200℃

(测量值-标准值)/1200*100 增益:32

K型:上限<943℃

(测量值-标准值)/943*100 增益:64

上限<1372℃

(测量值-标准值)/1372*100 增益:32

N型:上限<1073℃

(测量值-标准值)/1073*100 增益:64

上限<1300℃

(测量值-标准值)/1300*100 增益:32

E型:上限<525℃

(测量值-标准值)/525*100 增益:64

上限<1000℃

(测量值-标准值)/1000*100 增益:32

S型:上限<1760℃

(测量值-标准值)/1760*100 增益:64

B型:上限<1750℃

(测量值-标准值)/1750*100 增益:64

R型:上限<1760℃

(测量值-标准值)/1760*100 增益:64

施工测量方法及精度评定

施工测量方法及精度评定 1、设站方法 根据现场情况,主要选择以下两种方式设站。 1.1 全站仪坐标法设站 (1)在施工控制点上架设全站仪并对中整平,初始化后检查仪器的设置:气温、气压、棱镜常、在输入(或调出)测站点的三维坐标,量取并输入仪器高,输入(或调出)后视点坐标,照准后视点进行后视。 (2)如果后视点上有棱镜,输入棱镜高,可以测量后视点的坐标和高程并与已知数据检核。 (3)瞄准另一控制点,检查方位角或坐标;在另一后视点上竖棱镜或尺子检查仪器的视线高。 (4)利用仪器自身的计算功能进行计算时,记录员也应该进行相应的计算,以检查输入数据的正确性。 (5)在各待测站点上架设脚架和棱镜,量取、记录并输入棱镜高,测量、记录待定点的坐标和高程。 1.2 全站仪边角交会法设站 (1)在未知点P上架设、整平全站仪;在已知的基本控制点A上安置棱镜,量测棱镜高;在已知点B、C上安置照准点标志。 (2)量测PA间平距D、高差DH和PA至PB方向间的水平角α、β。 (3)用D、α及A、B点的坐标计算P点的一组坐标;用D、β及A、C点的坐标计算P点的另一组坐标;两组坐标的差值不超过规定限差,取中数即为P点的最后坐标。

(4)根据A点的高程HA和高差DH计算仪器的视线高:H视=HA-DH。 (5)如果需要可以将P点投影到地面上,并作好记录。量取仪器高,求出地面P 点的高程。 2、施工测量方法 2.1 放样方法 (1)用以上方法把测站设置好了后,就可以用测站极坐标法开始放样。 (2)使用全站仪测量测点的三维坐标,用计算器计算测点距设计棱镜的距离,再指挥司镜员移动棱镜,直至到位。 (3)若使用免棱镜全站仪时,可由观测员移动激光斑点再进行测量,直至到位。 (4)在直线较长的边坡、洞室、混凝土工程放样时,建立以边坡平行线、洞室轴线、混凝土边线、为坐标轴的独立坐标系,以便加快测量放样的速度和减少现场测量计算的错误。 2.2 验收断面测量方法 (1)验收断面测量采用免棱镜全站仪。 (2)边坡断面测量时,采用相对坐标设站,任意架设仪器,直接测量符合断面要求的点位,保证断面桩号差小于10cm,数据直接保存在仪器内。 (3)洞室断面测量时也可以用边坡断面测量方法,而现场通常是先把每个断面的中桩放出来,然后将仪器架设于中桩上,将方向置于断面方向上,用独立坐标进行断面测量,数据直接保存在仪器内。 (4)内业资料处理前,把仪器内存储的数据传到计算机内,用专用软件进行数据格式转换,网上也可下载。

测量学_计算题库及参考答案

计算题库及参考答案 1、设A 点高程为15.023m ,欲测设设计高程为16.000m 的B 点,水准仪安置在A 、B 两点之间,读得A 尺读数a=2.340m ,B 尺读数b 为多少时,才能使尺底高程为B 点高程。 【解】水准仪的仪器高为=i H +=17.363m ,则B 尺的后视读数应为 b==1.363m ,此时,B 尺零点的高程为16m 。 2、在1∶2000地形图上,量得一段距离d =23.2cm ,其测量中误差=d m ±0.1cm ,求该段距离的实地长度 D 及中误差D m 。 【解】==dM D ×2000=464m ,==d D Mm m 2000×=200cm=2m 。 3、已知图中AB 的坐标方位角,观测了图中四个水平角,试计算边长B →1,1→2,2→3, 3→4的坐标方位角。 【解】=1B α197°15′27″+90°29′25″-180°=107°44′52″ =12α107°44′52″+106°16′32″-180°=34°01′24″ =23α34°01′24″+270°52′48″-180°=124°54′12″ =34α124°54′12″+299°35′46″ -180°=244°29′58″ 4、在同一观测条件下,对某水平角观测了五测回,观测值分别为:39°40′30″,39°40′48″,39°40′54″,39°40′42″,39°40′36″,试计算: ① 该角的算术平均值——39°40′42″; ② 一测回水平角观测中误差——±″; ③ 五测回算术平均值的中误差——±″。 6、已知=AB α89°12′01″,=B x 3065.347m ,=B y 2135.265m ,坐标推算路线为B →1→2,测得坐标推算路线的右角分别为=B β32°30′12″,=1β261°06′16″,水平距离分别为=1B D 123.704m , =12D 98.506m ,试计算1,2点的平面坐标。 【解】 1) 推算坐标方位角 =1B α89°12′01″-32°30′12″+180°=236°41′49″ =12α236°41′49″-261°06′16″+180°=155°35′33″ 2) 计算坐标增量 =?1B x ×cos236°41′49″=-67.922m , =?1B y ×sin236°41′49″=-103.389m 。 =?12x ×cos155°35′33″=-89.702m , =?12y ×sin155°35′33″=40.705m 。 3) 计算1,2点的平面坐标 =1x 2997.425m =1y 2031.876m =2x 2907.723m =2y 2072.581m 、试完成下列测回法水平角观测手簿的计算。 测站 目标 竖盘位置 水平度盘读数 (°′″) 半测回角值 (°′″) 一测回平均角值 (°′″) 一测回 B A 左 0 06 24 111 39 54 111 39 51 C 111 46 18 A 右 180 06 48 111 39 48 C 291 46 36 8、完成下列竖直角观测手簿的计算,不需要写公式,全部计算均在表格中完成。 测站 目标 竖盘 位置 竖盘读 (° ′ ″) 半测回竖直角 (° ′ ″) 指标差 (″) 一测回竖直角 (° ′ ″ ) A B 左 81 18 42 8 41 18 6 8 41 24 图 推算支导线的坐标方位角

数值计算中误差的传播规律

数值计算方法 实 验 报 告 实验序号:实验一 实验名称:数值计算中误差的传播规律 实验人: 专业年级: 教学班: 学号: 实验时间:

实验一 数值计算中误差的传播规律 一、实验目的 1.观察并初步分析数值计算中误差的传播; 2.观察有效数字与误差传播的关系. 二、实验内容 1.使用MATLAB 的help 命令学习MATLAB 命令digits 和vpa 的用途和使用格式; 2.在4位浮点数下解二次方程01622=++x x ; 3.计算下列5个函数在点2=x 处的近似值 (1)60)1(-=x y , (2)61) 1(1+=x y , (3)32)23(x y -=, (4)3 3)23(1x y +=, (5)x y 70994-=. 三、实验步骤 本次实验包含三个相对独立的内容. 1.在内容1中,请解释两个命令的格式和作用; 在matlab 中采用help 语句得到:

1、digits用于规定运算精度,比如: digits(20); 这个语句就规定了运算精度是20位有效数字。但并不是规定了就可以使用,因为实际编程中,我们可能有些运算需要控制精度,而有些不需要控制。vpa就用于解决这个问题,凡是用需要控制精度的,我们都对运算表达式使用vpa函数。 例如: digits(5); a=vpa(sqrt(2)); 这样a的值就是1.4142,而不是准确的1.4142135623730950488016887242097 又如: digits(11); a=vpa(2/3+4/7+5/9); b=2/3+4/7+5/9; a的结果为1.7936507936,b的结果为1.793650793650794......也就是说,计算a的值的时候,先对2/3,4 /7,5/9这三个运算都控制了精度,又对三个数相加的运算控制了精度。而b的值是真实值,对它取11位有效数字的话,结果为1.7936507937,与a不同,就是说vpa 并不是先把表达式的值用matlab本身的精度求出来,再取有效数字,而是每运算一次都控制精度。 2.求解方程时,分别使用求根公式和韦达定理两种方法,并比较其有效数字和相对误差; 用求根公式解得:x1=-0.015,x2=-62.00 用韦达定理解得:x11=-0.016,x22=-62.00 x22=x2,x11=1/x22

误差基本知识及中误差计算公式

测量误差按其对测量结果影响的性质,可分为: 一.系统误差(system error) 1.定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均相同或按一定的规律变化,这种误差称为系统误差。 2.特点:具有积累性,对测量结果的影响大,但可通过一般的改正或用一定的观测方法加以消除。 二.偶然误差(accident error) 1.定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均不一定,这种误差称为偶然误差。但具有一定的统计规律。 2.特点: (1)具有一定的范围。 (2)绝对值小的误差出现概率大。 (3)绝对值相等的正、负误差出现的概率相同。 (4)数学期限望等于零。即: 误差概率分布曲线呈正态分布,偶然误差要通过的一定的数学方法(测量平差)来处理。 此外,在测量工作中还要注意避免粗差(gross error)(即:错误)的出现。 §2衡量精度的指标 测量上常见的精度指标有:中误差、相对误差、极限误差。 一.中误差 方差 ——某量的真误差,[]——求和符号。 规律:标准差估值(中误差m)绝对值愈小,观测精度愈高。 在测量中,n为有限值,计算中误差m的方法,有: 1.用真误差(true error)来确定中误差——适用于观测量真值已知时。 真误差Δ——观测值与其真值之差,有: 标准差 中误差(标准差估值),n为观测值个数。 2.用改正数来确定中误差(白塞尔公式)——适用于观测量真值未知时。 V——最或是值与观测值之差。一般为算术平均值与观测值之差,即有: 二.相对误差 1.相对中误差=

2.往返测较差率K= 三.极限误差(容许误差) 常以两倍或三倍中误差作为偶然误差的容许值。即:。§3误差传播定律 一.误差传播定律 设、…为相互独立的直接观测量,有函数 ,则有: 二.权(weight)的概念 1.定义:设非等精度观测值的中误差分别为m 1、m 2 、…m n ,则有: 权其中,为任意大小的常数。 当权等于1时,称为单位权,其对应的中误差称为单位权中误差(unit weight mean square error) m ,故有:。 2.规律:权与中误差的平方成反比,故观测值精度愈高,其权愈大。

公差计算方法大全

六西格玛机械公差设计的RSS分析 2012年12月20日不详 关键字: 六西格玛机械公差设计的RSS分析 1.动态统计平方公差方法 RSS没有充分说明过程均值的漂移,总是假设过程均值在名义设计规格的中心,这就是为什么能力最初看起来比较充分,但实际中这种情况是很少的原因,特别是在制造过程中工具受到磨损的时候。因此就有必要利用C来调整每一个名义设计值已知的或者估计的过程标准偏差,以此来说明过程均值的自然漂移,这一方法就称为动态统计平方公差方法(Dynamic Root-Sum-of-Squares Analysis, DRSS)。实际上,这种调整会使标准偏差变大,因而会降低装配间隙概率。 调整后就以一个均值累积漂移的临界值是否大于等于4.5来衡量六西格玛水平,即时,DRSS 模型就简化为一个RSS模型,这一特征对公差分析有许多实际意义。从这一意义上讲,DRSS 模型是一个设计工具,也是一个分析工具。因为DRSS模型考虑均值随时间的随机变异的影响,所以称之为动态模型。 2.静态极值统计平方公差方法 当假设的均值漂移都设定在各自的极值情况时,这种方法称为静态极值统计平方公差方法( Worse-Case Static Raot- Surn- of-Squares Anlysis, WC-SRSS),这一方法可以认为是一种极值情况的统计分析方法。为了有效地研究任意假定的静态条件,需要将公式(2-10)分母项中的偏倚机制转移到分了项中(注意:当均值漂移大于2σ时,就不能应用上述转换),同时必须用Cp,代替分母中的Cpk:

实际上,所有偏倚机制都可以利用来表示,但是当过程标准偏差改变时,如果利用作为转换日标,名义间隙值也会改变,这样就违背了均值和方差独立的假设。也就是说,用作为描述均值漂移的基础使得均值和方差之间正相关。而利用k为动态和静态分析提供了一个可行的和灵活的机制,同时保证了过程均值和方差的独立性。 3.设计优化 利用IRSS作为优化基础,当考虑5RS5和WC-SRSS作为基础时其逻辑和推理是相同的。(1)优化零部件的名义尺寸 在任一给定的需求条件和过程能力条件下,重新安排公式(2-10)就得到该优化方程的表达式:

定位误差计算方法

定位误差的计算方法: (1)合成法 为基准不重合误差和基准位移误差之和; (2)极限位置法 工序基准相对于刀具(机床)的两个极限位置间的距离就是定位误差; (3)微分法 先用几何方法找出工序基准到定位元件上某一固定点的距离,然后对其全微分,用微小增量代替微分,将尺寸误差视为微小增量代入,就可以得到某一加工尺寸的定位误差。 注:基准不重合误差和基准位移误差它们在工序尺寸方向上的投影之和即为定位误差。 例如:用V 型块定位铣键槽,键槽尺寸标注是轴的中心到键槽底面的尺寸H 。T D 为工件定位外圆的公差;α为V 型块夹角。 1. 工序基准为圆柱体的中心线。 表示一批工件依次放到V 型块上定位时所处的两个极端位置情形,当工件外圆直径尺寸为极大和极小时,其工件外圆中心线分别出于点 O '和点O ''。 因此工序基准的最大位置变动量O O ''',便是对加工尺寸 H 1所产生的定位误差: 故得: O E O E H H O O 11DH 1 ''-'='-''='''=ε O A E Rt 1''?中: max 1 D 2 1A O ='' 2 sin A O O E 1α''= ' O A E Rt 1''''?中:min 1 D 2 1 A O ='''' 2 sin A O O E 1α''''= '' 2 sin 2T 2sin 2T 2sin A O A O O E O E D D 11DH 1 α=α=α''''-''=''-'=ε 2. 工序基准为圆柱体的下母线:

工件加工表面以下母线C 为其工序基准时,工序基准的极限位置变动量 C C '''就是加工尺寸H2所产生的定位误差。 C S C S C O O O H H 22DH 2 '-''=''-'''='-''=ε C O C O O O ) C O O S ()C O O S (' '-''''+'''=''+'-'''+'= 而 2 sin 2T O O D α= ''' min D 2 1C O ='''' max D 2 1C O ='' 所以: C O C O O O 2 DH ''-''''+'''=ε ) 12 sin 1(2T 2T 2sin 2T 2D D 2 sin 2T )D (21 )D (212sin 2T D D D max min D max min D DH 2 -α=-α=-+ α=-+α=ε 3. 工序基准为上母线 如果键槽的位置尺寸采用上母线标注时,上母线K 的极限位置变动量为 K K ''',就是对加工尺寸H 3 所产生的定位误差。

公差计算方法全套汇编

2012年12月20日不详 关键字: 六西格玛机械公差设计的RSS分析 1.动态统计平方公差方法 RSS没有充分说明过程均值的漂移,总是假设过程均值在名义设计规格的中心,这就是为什么能力最初看起来比较充分,但实际中这种情况是很少的原因,特别是在制造过程中工具受到磨损的时候。因此就有必要利用C来调整每一个名义设计值已知的或者估计的过程标准偏差,以此来说明过程均值的自然漂移,这一方法就称为动态统计平方公差方法(Dynamic Root-Sum-of-Squares Analysis, DRSS)。实际上,这种调整会使标准偏差变大,因而会降低装配间隙概率。 调整后就以一个均值累积漂移的临界值是否大于等于4.5来衡量六西格玛水平,即时,DRSS模型就简化为一个RSS模型,这一特征对公差分析有许多实际意义。从这一意义上讲,DRSS模型是一个设计工具,也是一个分析工具。因为DRSS模型考虑均值随时间的随机变异的影响,所以称之为动态模型。 2.静态极值统计平方公差方法 当假设的均值漂移都设定在各自的极值情况时,这种方法称为静态极值统计平方公差方法( Worse-Case Static Raot- Surn- of-Squares Anlysis, WC-SRSS),这一方法可以认为是一种极值情况的统计分析方法。为了有效地研究任意假定的静态条件,需要将公式(2-10)分母项中的偏倚机制转移到分了项中(注意:当均值漂移大于2σ时,就不能应用上述转换),同时必须用Cp,代替分母中的Cpk:

实际上,所有偏倚机制都可以利用来表示,但是当过程标准偏差改变时,如果利用作为转换日标,名义间隙值也会改变,这样就违背了均值和方差独立的假设。也就是说,用作为描述均值漂移的基础使得均值和方差之间正相关。而利用k为动态和静态分析提供了一个可行的和灵活的机制,同时保证了过程均值和方差的独立性。 3.设计优化 利用IRSS作为优化基础,当考虑5RS5和WC-SRSS作为基础时其逻辑和推理是相同的。(1)优化零部件的名义尺寸 在任一给定的需求条件和过程能力条件下,重新安排公式(2-10)就得到该优化方程的表达式:

加权平均值及其中误差

6-7 加权平均值及其中误差 一、不等精度观测和观测值的权 在测量实践中,除了等精度观测之外,还有不等精度观测。此时,求多次观测的最或然值就不能简单地用算术平均值,而是需要用“加权平均值”的方法求解。 某一观测值或观测值的函数的误差越小(精度越高),其权越大;反之,其误差越大(精度越小),其权越小。一般用“”表示中误差,用“P”表示权,并定义:“权与中误差的平方成反比”,以公式表示为 (6-26) 式中,C为任意常数。等于1的权称为“单位权“,权等于1的中误差称为“单位权中误差”,一般用表示。因此,权的另一种表达式为 (6-27) 中误差的另一种表达式为 (6-28) 在测量工作中,为了使权的概念简单明了,一般取一次观测、一个测回或单位长度(1m 或1km )等的测量误差作为单位权中误差。 二、加权平均值及其中误差 对某一未知量进行一组不等精度观测:,其中误差为,则观测值的权为。按照误差理论,此时应按下式取其加权平均值,作为该量的最或然值: 上式可以写成线性函数的形式: 根据线性函数的误差传播公式,得到 上式可化为

因此,加权平均值的中误差为 (6-29) 加权平均值的权为所有观测值的权之和: (6-30) 三、单位权中误差的计算 在处理不等精度的测量成果时,需要根据单位权中误差来计算观测值的权和加权平均值的中误差。单位权中误差一般取某一类观测值的基本精度,例如,水平角观测的一测回的中误差等。根据一组对同一量的不等精度观测,可以估算本类观测值的单位权中误差。 如对同一量的n个不等精度观测,得到 …. 取以上各式的总和,并除以n,得到 用真误差代替中误差,得到在观测量的真值已知时用真误差求单位权中误差的公式: (6-31) 在观测值的真值未知的情况下,用观测值的加权平均值代替真值;用观测值的改正值代替真误差,得到按不等精度观测值的改正值计算单位权中误差的公式; (6-32)

房产测量的标准规范以及计算方法

房产测量的标准规范以及计算方法 1 范围 本标准规定了城镇房产测量内容与基本要求,适用于城市、建制镇的建成区和建成取以外的工矿企事业单位及其毗邻居民点的房产测量。其他地区的房地产测量亦可参照执行。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB/T 2260--1995 中华人民共和国行政区划代码 GB 6962--1986 1:500、1:1000、1:2000比例尺地形图航空摄影规范 GB/T 17986.2--2000 房产测量规范第二单元:房产图图式 CH 1003--1995 测绘产品质量评定标准 3 总则 3.1 房产测量的目的和内容 3.1.1 房产测量的目的。房产测量主要是采集和表述房屋和房屋用地的有关信息,为房产产权、产籍管理、房地产开发利用、交易、征收税费,以及城镇规划建设提供数据的资料。 3.1.2 房产测量的基本内容。房产测量的基本内容包括:房产平面控制测量,房产调查,房产要素测量,房产图绘制,房产面积测算,变更测量,成果资料的检查与验收等。 3.1.3 房产测量的成果。房产测量成果包括:房产簿册,房产数据和房产图集。 3.2 房产测量的基本精度要求 3.2.1 房产测量的精度指标与限差。本标准以中误差作为评定精度的标准,以两倍中误差作为限差。 3.2.2 房产平面控制测量的基本精度要求。末级相邻基本控制点的相对点位中误差不超过± 0.025m。 3.2.3 房产分幅平面图与房产要素测量的精度 3.2.3.1 模拟方法测绘的房产分幅平面图上的地物点,相邻于邻近控制点的点位中误差不超过图上± 0.5mm。 3.2.3.2 利用已有的地籍图、地形图编绘房产分幅图时,地物点相对于邻近控制点的点位中误差不超过图上 ± 0.6mm。 3.2.3.3 对全野外采集数据或野外解析测量等方法所测的房地产要素点和地物点,相对于邻近控制点的点位中误差不超过± 0.05m。 3.2.3.4 采用已有坐标或已有图件,展绘成房产分幅图时,展绘中误差不超过图上± 0.1mm。 3.2.4 房产界址点的精度要求。房产界址点(以下简称界址点)的精度分三级,各界址点相对于邻近控制点的点位误差和间距超过50m的相邻界址点的间距误差不超过表1的规定;间距未超过50m的界址点间的间距误差限差不应超过式(1)计算结果。 表 1 界址点等级界址点相对于邻近控制点的点位误差相邻界址点的间距误差 限差中误差 一 ±0.04 ±0.02 二 ±0.10 ±0.05 三 ±0.20 ±0.10 ΔD=(±m j+0.02m jD) (1) 式中:m j——相应等级界址点的点位中误差,m; D-----相邻界址点间的距离,m; ΔD----界址点坐标计算的边长与实量边长较差的限差,m。 3.2.5 房脚点的精度要求。需要测定房脚点的坐标时,房脚点坐标的精度登记和限差执行与界址点相同的标准;不要求测定房脚点坐标时则将房屋按2.3的精度要求表示于房产图上。 3.2.6 房产面积的精度要求。房产面积的精度分为三级,各级面积的限差和中误差不超过表2计算结果。

尺寸链计算方法-公差计算

尺寸链计算 一.基本概念 尺寸链是一组构成封闭尺寸的组合。 尺寸链中的各个尺寸称为环。零件在加工或部件在装配过程中,最后得到的尺寸称为封闭环。组成环又分为增环和减环,当尺寸链中某组成环的尺寸增大时,封闭环的尺寸也随之增大,则该组成环称为增环。反之为减环。 补偿环:尺寸链中预先选定的某一组成环,可以通过改变其大小或位置,使封闭环达到规定要求。 传递系数ξ:表示各组成环对封闭环影响大小的系数。增环ξ为正值,减环ξ为负值。通常直线尺寸链的传递系数取+1或-1. 尺寸链的主要特征: ①.尺寸连接的封闭性;②.每个尺寸的变化(偏差)都会影响某一尺寸的精度。 二.尺寸链的分类 1.按应用范围分 工艺尺寸链:在零件加工过程中,几个相互联系的工艺尺寸形成的封闭链。 装配尺寸链:在设计或装配过程中,由几个相关零件的有关尺寸形成的封闭链。 2. 按构成尺寸链各环的空间位置分 线性尺寸链:各环位于平行线上 平面尺寸链:各环位于一个平面或相互平行的平面,各环不平行排列。 空间尺寸链:各环位于不平行的平面,需投影到三个座标平面上计算。 3.按尺寸链的形式分 a)长度尺寸链和角度尺寸链 b)装配尺寸链装、零件尺寸链和工艺尺寸链 c)基本尺寸链与派生尺寸链 基本尺寸链指全部组成环皆直接影响封闭环的尺寸链 派生尺寸链指一个尺寸链的封闭环为另一个尺寸链组成环的尺寸链。

d)标量尺寸链和矢量尺寸链 三. 基本尺寸的计算 把每个基本尺寸看成构成尺寸链的各环,验算其封闭环是否符合设计要求。是设计中尺寸链计算时首先应该进行的工作。 目前产品生产中经常出现错误的环节,大部分是基本尺寸链错误。特别是测绘设计的产品。由于原机的制造误差,测量系统的误差以及尺寸修约的误差,往往会使测绘设计与原设计产生很大的偏差,所以必须进行基本尺寸链的计算 四.解尺寸链的主要方法 根据零件尺寸的要求和相关标准确定零件尺寸公差,然后按照解尺寸链的最短途径原理的方法对尺寸公差进行验算和修正。 为了提高零件的装配精度,与其有关各零件表面形成的尺寸链环数必须最少。 a)极值法(完全互换法) 各组成环的公差之和不得大于封闭环的公差 即Σδi≤δN 不适合环数很多的尺寸链 b)概率法(不完全互换法) 设A表示组成环的算术平均值,σ表示均方根偏差,则一般各环的公差取±3σ。 σ=∑- i n A Xi/) ( c)选配法 将尺寸链中组成环的公差放大到经济可行的程度,然后选择合适的零件进行装配。 尺寸链计算程序 ①基本尺寸计算依据产品标准、产品装配图、零件图 ②公差设计计算可以先按推荐的公差等级标准选取公差值,然后按互换法进 行计算调整,决定各组成环的公差与极限偏差。 ③公差校核计算校核封闭环公差与极限偏差。 五. 计算举例

测站高差中误差

水准测量,一测站高差中误差为±3mm,若每公里观测16站,求每公里及K公里的高差中误差为多少 解:每千米的误差: ±√(16×3^2)=±4×3=±12(mm),即:±12mm/km k千米的误差:±√(k×12^2)=±(√k)12mm。 在最新版的《建筑变形测量规范》JGJ 8-2007中提到有关监测等级的定义和精度要求,其中关于沉降监测方面提到观测点测站高差中误差的概念。现我有一些疑问,特咨询大家: 1、在2007版的《建规》中提到关于变形等级为二级的精度要求,其要求观测点测站高差中误差《0.5(正负)。 问1:那么这里提到的观测点测站高差中误差如何求得,其计算公式有没有? 2、关于提到的观测点测站高差中误差,我查询了本规范中对观测点的定义,它是这样描述的: 观测点observation point:布设在建筑地基、基础、场地及上部结构的敏感位置上能反映其变形特征的测量点,亦称变形点。 问2:是不是可以认为,在判断某次沉降监测数据处理的精度是否满足相应等级的精度要求,只需要求得变形点的测站高差中误差,与之相比即可。而不用求得基准点和工作基点相应的测站高差中误差? 3.、现在回到最根本的地方,就是如何定义监测的等级,如何判定它是按二级还是按三级来监测,是否有一个公式可以计算出来。 我通过查资料,看到有这么一个推导过程: 沉降监测精度取决于监测目的、建筑物的结构和基础类型。为了监测建筑物的安全,其观测中误差应小于容许变形值的1/10~1/20;根据这一原则,通常采用“以当时可能达到的最高精度“确定变形观测精度。按照上述要求,结合该楼的实际情况,基准网采用国家一等水准测量的技术要求。沉降点的观测精度,采用以下公式进行估算m=△k/t。式中,Δ为容许变形值,t为置信区间内最大误差与中误差的比例值;K为安全系数。估算时,通常采用K=0.05,t=2。参考以上资料与方法,最后沉降观测精度确定为最弱点高程中误差m≤+1mm。由此而确定沉降监测等级。 问:不知道这么做是否科学,是否可行,或者还有其他方法来确定监测的等级。

6 西格玛标准公差计算公式.

六西格玛管理系列讲座之一 什么是6西格玛管理?当人们谈论世界著名公司-通用电器(GE)的成功以及世界第一CEO-杰克.韦尔奇先生为其成功制定的三大发展战略时,都会不约而同地提出这样的问题。 如果概括地回答的话,可以说6西格玛管理是在提高顾客满意程度的同时降低经营成本和周期的过程革新方法,它是通过提高组织核心过程的运行质量,进而提升企业赢利能力的管理方式,也是在新经济环境下企业获得竞争力和持续发展能力的经营策略。因此,管理专家Ronald Snee先生将6西格玛管理定义为:“寻求同时增加顾客满意和企业经济增长的经营战略途径。” 如果展开来回答的话,6西格玛代表了新的管理度量和质量标准,提供了竞争力的水平对比平台,是一种组织业绩突破性改进的方法,是组织成长与人才培养的策略,更是新的管理理念和追求卓越的价值观。 让我们先从6西格玛所代表的业绩度量谈起: 符号σ(西格玛)是希腊字母,在统计学中称为标准差,用它来表示数据的分散程度。我们常用下面的计算公式表示σ的大小: 如果有两组数据,它们分别是1、2、3、4、5;和3、3、3、3、3;虽然它们的平均值都是3,但是它们的分散程度是不一样的(如图1-1所示)。如果我们用σ来描述这两组数据的分散程度的话,第一组数据的σ为1.58,而第二组数据的σ为0。假如,我们把数据上的这些差异与企业的经营业绩联系起来的话,这个差异就有了特殊的意义。 假如顾客要求的产品性能指标是3±2(mm),如果第一组数据是供应商A所提供的产品性能的测量值,第二组数据是供应商B所提供的产品性能的测量值。显然,在同样的价格和交付期下,顾客愿意购买B的产品。因为,B的产品每一件都与顾客要求的目标值或理想状态最接近。它们与顾客要求的目标值之间的偏差最小。 假如顾客要求的产品交付时间是3天。如果第一组数据和第二组数据分别是供应商A和B每批产品交付时间的统计值,显然,顾客愿意购买B的产品。因为,B每批产品的交付时间与顾客要求最接近。尽管两个供应商平均交付时间是一样的,但顾客的评判,不是按平均值,而是按实际状态进行的。 假如顾客要求每批产品交付数量是3件。如果第一组数据和第二组数据分别是供应商A和B每批产品

标准偏差与相对标准偏差公式

标准偏差 数学表达式: S-标准偏差(%) n-试样总数或测量次数,一般n值不应少于20-30个 i-物料中某成分的各次测量值,1~n; 标准偏差的使用方法 六个计算标准偏差的公式[1] 标准偏差的理论计算公式 设对真值为X的某量进行一组等精度测量, 其测得值为l1、l2、……l n。令测得值l与该量真值X之差为真差占σ, 则有σ1 = l i?X σ2 = l2?X …… σn = l n?X 我们定义标准偏差(也称标准差)σ为

(1) 由于真值X都是不可知的, 因此真差σ占也就无法求得, 故式只有理论意义而无实用价值。标准偏差σ的常用估计—贝塞尔公式 由于真值是不可知的, 在实际应用中, 我们常用n次测量的算术平均值 来代表真值。理论上也证明, 随着测量次数的增多, 算术平均值最接近真值, 当时, 算术平均值就是真值。 于是我们用测得值l i与算术平均值之差——剩余误差(也叫残差)V i来代替真差σ , 即 设一组等精度测量值为l1、l2、……l n 则 …… 通过数学推导可得真差σ与剩余误差V的关系为 将上式代入式(1)有

(2) 式(2)就是著名的贝塞尔公式(Bessel)。 它用于有限次测量次数时标准偏差的计算。由于当时, ,可见贝塞尔公式与σ的定义式(1)是完全一致的。 应该指出, 在n有限时, 用贝塞尔公式所得到的是标准偏差σ的一个估计值。它不是总体标准偏差σ。因此, 我们称式(2)为标准偏差σ的常用估计。为了强调这一点, 我们将σ的估计值用“S ” 表示。于是, 将式(2)改写为 (2') 在求S时, 为免去求算术平均值的麻烦, 经数学推导(过程从略)有 于是, 式(2')可写为 (2") 按式(2")求S时, 只需求出各测得值的平方和和各测得值之和的平方艺 , 即可。 标准偏差σ的无偏估计 数理统计中定义S2为样本方差

最新公差计算方法大全资料

六西格玛机械公差设计的RSS分析2012年12月20日不详 关键字: 六西格玛机械公差设计的RSS分析 1.动态统计平方公差方法 RSS没有充分说明过程均值的漂移,总是假设过程均值在名义设计规格的中心,这就是为什么能力最初看起来比较充分,但实际中这种情况是很少的原因,特别是在制造过程中工具受到磨损的时候。因此就有必要利用C来调整每一个名义设计值已知的或者估计的过程标准偏差,以此来说明过程均值的自然漂移,这一方法就称为动态统计平方公差方法(Dynamic Root-Sum-of-Squares Analysis, DRSS)。实际上,这种调整会使标准偏差变大,因而会降低装配间隙概率。 调整后就以一个均值累积漂移的临界值是否大于等于4.5来衡量六西格玛水平,即时,DRSS 模型就简化为一个RSS模型,这一特征对公差分析有许多实际意义。从这一意义上讲,DRSS 模型是一个设计工具,也是一个分析工具。因为DRSS模型考虑均值随时间的随机变异的影响,所以称之为动态模型。 2.静态极值统计平方公差方法 当假设的均值漂移都设定在各自的极值情况时,这种方法称为静态极值统计平方公差方法( Worse-Case Static Raot- Surn- of-Squares Anlysis, WC-SRSS),这一方法可以认为是一种极值情况

的统计分析方法。为了有效地研究任意假定的静态条件,需要将公式(2-10)分母项中的偏倚机制转移到分了项中(注意:当均值漂移大于2σ时,就不能应用上述转换),同时必须用Cp,代替分母中的Cpk: 实际上,所有偏倚机制都可以利用来表示,但是当过程标准偏差改变时,如果利用作为转换日标,名义间隙值也会改变,这样就违背了均值和方差独立的假设。也就是说,用作为描述均值漂移的基础使得均值和方差之间正相关。而利用k为动态和静态分析提供了一个可行的和灵活的机制,同时保证了过程均值和方差的独立性。 3.设计优化 利用IRSS作为优化基础,当考虑5RS5和WC-SRSS作为基础时其逻辑和推理是相同的。(1)优化零部件的名义尺寸 在任一给定的需求条件和过程能力条件下,重新安排公式(2-10)就得到该优化方程的表达式:

定位误差计算方法

定位误差计算方法 皇甫彦卿 (杭州电子科技大学信息工程学院,浙江杭州310018) 摘要:分析了定位误差产生的原因和定位误差的本质,并结合具体的实例,对定位误差的计算提出了三种方法:几何法、微分法、组合法,并且为正确选择计算方法提供了依据。 关键词:定位误差;几何法;微分法;组合法 Position error calculation method Abstract:To analyze the causes of the positioning error and the nature of the positioning error, and combined with concrete examples, three methods are put forward for the calculation of position error: geometric method, differential method, group legal, and provide the basis for correct selection of calculation method. Key words: positioning error; Geometry method; Differentiation; Set of legal 1 引言 定位误差分析与计算,是机床夹具设计课程中的重点和难点。在机械加工中,能否保证工件的加工要求,取决于工件与刀具间的相互位置。而引起相互位置产生误差的因素有四个,定位误差就是重要因素之一(定位误差一般允许占工序公差的三分之一至五分之一)。定位误差分析与计算目的是为了对定位方案进行论证,发现问题并及时解决。 2 工件定位误差 2.1定位误差计算的概念 按照六点定位原理,可以设计和检查工件在夹具上的正确位置,但能否满足工件对工序加工精度的要求,则取决于刀具与工件之间正确的相互位置,而影响这个正确位置关系的因素很多,如夹具在机床上的装夹误差、工件在夹具中的定位误差和夹紧误差、机床的调整误差、工艺系统的弹性变形和热变形误差、机床和刀具的制造误差及磨损误差等。 因此,为保证工件的加工质量,应满足如下关系式: δ ?式中:?--各种因素产生的误差总和;δ--工件被加工尺寸的公差。 ≤ 2.2定位误差及其产生原因 所谓定位误差,是指由于工件定位造成的加工面相对工序基准的位置误差。因为对一批

误差基本知识及中误差计算公式

测量中误差 测量误差按其对测量结果影响的性质,可分为: 一.系统误差(system error) 1.定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均相同或按一定的规律变化,这种误差称为系统误差。 2.特点:具有积累性,对测量结果的影响大,但可通过一般的改正或用一定的观测方法加以消除。 二.偶然误差(accident error) 1.定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均不一定,这种误差称为偶然误差。但具有一定的统计规律。 2.特点: (1)具有一定的范围。 (2)绝对值小的误差出现概率大。 (3)绝对值相等的正、负误差出现的概率相同。 (4)数学期限望等于零。即: 误差概率分布曲线呈正态分布,偶然误差要通过的一定的数学方法(测量平差)来处理。 此外,在测量工作中还要注意避免粗差(gross error)(即:错误)的出现。

§2衡量精度的指标 测量上常见的精度指标有:中误差、相对误差、极限误差。 一.中误差 方差 ——某量的真误差,[]——求和符号。 规律:标准差估值(中误差m)绝对值愈小,观测精度愈高。 在测量中,n为有限值,计算中误差m的方法,有: 1.用真误差(true error)来确定中误差——适用于观测量真值已知时。 真误差Δ——观测值与其真值之差,有: 标准差 中误差(标准差估值), n为观测值个数。 2.用改正数来确定中误差(白塞尔公式)——适用于观测量真值未知时。 V——最或是值与观测值之差。一般为算术平均值与观测值之差,即有: 二.相对误差 1.相对中误差=

2.往返测较差率K= 三.极限误差(容许误差) 常以两倍或三倍中误差作为偶然误差的容许值。即: 。 §3误差传播定律 一.误差传播定律 设、…为相互独立的直接观测量,有函数 ,则有: 二.权(weight)的概念 1.定义:设非等精度观测值的中误差分别为m1、m2、…m n,则有: 权其中,为任意大小的常数。 当权等于1时,称为单位权,其对应的中误差称为单位权中误差 (unit weight mean square error)m0,故有:。 2.规律:权与中误差的平方成反比,故观测值精度愈高,其权愈大。

关于测量中坐标的计算

测量中坐标的求法 1、介绍极坐标法 极坐标法适用于测设点靠近控制点,便于量距的地方。用极坐标法测定一点的平面位置时,系在一个控制点上进行,但该点必须与另一控制点通视。根据测定点与控制点的坐标,计算出它们之间的夹角(极角β)与距离(极距S),按β与S之值即可将给定的点位定出。如图4-6中,M、N为控制点,即已知M、N之坐标和MN边的坐标方位角αMN。现在要求根据控制点M测定P点。首先进行内业计算,按坐标反算方法,求出M到P的坐标方位角αMP和距离S。计算公式如下: β=αMN-αMP(4-20) 图4-6 极坐标放线图 在实地测定P点的步骤:将经纬仪安置于M点上,以MN为起始边,测设极角β,定出MP之方向,然后在MP上量取S,即得所求点P。

当不计控制点M 的误差,用极坐标法测定P 之点位中误差m P ,可按下式进行计算: 2222 S P m m S m +=βρ (4-21) 式中 m β——测设β角度的中误差; S ——控制点至测定点的距离; m s ——测定距离S 的中误差。 注:算出来的角度正负规定(逆时针为正,顺时针为负) 2、如何计算任意一点的坐标 利用设计院所给坐标总图的引点坐标→运用全站仪打出主轴线的交点→在任意的结构施工图中,以一条轴线为控制轴线(如极坐标中的MN )→以一点画圆,量出所要测量点与M 点的距离以及与MN 的角度→运用极坐标反算方法,算出各点坐标,其计算公式如下: MP M P MP M P MN MP M N M N MN S y y S x x x x y y ααβαααsin co s t an 1?+=?+=-=--=-

测量计算

一、水准测量内业的方法: 水准测量的内业即计算路线的高差闭合差,如其符合要求则予以调整,最终推算出待定点的高程。 1.高差闭合差的计算与检核 附合水准路线高差闭合差为: =- () (2-8) 闭合水准路线高差闭合差为: =(2-9) 为了检查高差闭合差是否符合要求,还应计算高差闭合差的容许值(即其限差)。一般水准测量该容许值规定为 平地=mm 山地=mm (2-11) 式中,―水准路线全长,以km为单位;―路线测站总数。 2.高差闭合差的调整 若高差闭合差小于容许值,说明观测成果符合要求,但应进行调整。方法是将高差闭合差反符号,按与测段的长度(平地)或测站数(山地)成正比,即依下式计算各测段的高差改正数,加入到测段的高差观测值中: ⊿= -(平地) ⊿= - (山地) 式中,―路线总长;―第测段长度 (km) (=1、2、3...); ―测站总数;―第测段测站数。 3.计算待定点的高程 将高差观测值加上改正数即得各测段改正后高差: h i改=hi+⊿h i i=1,2,3,…… 据此,即可依次推算各待定点的高程。 如上所述,闭合水准路线的计算方法除高差闭合差的计算有所区别而外,其余与附合路线的计算完全相同。

二、举例 1.附合水准路线算例 下图2-18所示附合水准路线为例,已知水准点A 、B 和待定点1、2、3将整个路线分为四个测段。 表 2-2 附合水准路线计算 == = 54mm 1)将点名、各测段测站数、各测段的观测高差、已知高程数填入表2-2内相应栏目2、3、4、7(如系平地测量,则将测站数栏改为公里数栏,填入各测段公里数;表内加粗字为已知数据)。 2)进行高差闭合差计算: = - ( ) =8.847-(48.646-39.833)=+ 0.034m

测角中误差

《工程测量规范》中,根据附合导线或闭合导线网闭合差计算测量中误差公式 Mβ(测)=±√([fβ*fβ/n]/N) fβ:角度闭合差 N:附合导线或闭合导线环个数 n:计算fβ时测站数 规范中规定四等导线测角中误差Mβ=2.5″,允许闭合差=2Mβ√n 现在有个问题,如果实测单个附合导线(N=1),实测闭合差为2Mβ√n, 然后代入Mβ=±√([fβ*fβ/n]/N)中求导线角度闭合差,则测角中误差为5″,超限 迷惑了,然道是单一附合导线不能用此公式计算测角闭合差还是其他的原因,为什么用规范中规定的值去反推会出现这种情况? 1、计算三角形闭合差、测角中误差(宜由20个以上三角形闭合差计算) 2、当水准网的环数超过20个时还应按环线闭合差计算MW 只有大规模作业才计算测角中误差和每公里水准测量全中误差,具体要超过20个闭合差,单个的可以并入其他测区进行计算。 首先要明白中误差的意义(按N次观测的偶然误差求得的标准差称为中误差),单次测量显然是无法计算中误差的。公式没错,只怪你你当初读书没用功。 以下是引用片段: 以下是引用魔刀火火在2007-12-15 17:17:00的发言: 《工程测量规范》中,根据附合导线或闭合导线网闭合差计算测量中误差公式 Mβ(测)=±√([fβ*fβ/n]/N) fβ:角度闭合差 N:附合导线或闭合导线环个数 n:计算fβ时测站数 规范中规定四等导线测角中误差Mβ=2.5″,允许闭合差=2Mβ√n 现在有个问题,如果实测单个附合导线(N=1),实测闭合差为2Mβ√n, 然后代入Mβ=±√([fβ*fβ/n]/N)中求导线角度闭合差,则测角中误差为5″,超限 迷惑了,然道是单一附合导线不能用此公式计算测角闭合差还是其他的原因,为什么用规范中规定的值去反推会出现这种情况?

相关主题
文本预览
相关文档 最新文档