当前位置:文档之家› 平面解析几何-高考复习知识点

平面解析几何-高考复习知识点

平面解析几何-高考复习知识点
平面解析几何-高考复习知识点

平面解析几何 高考复习知识点

一、直线的倾斜角、斜率

1、直线的倾斜角:

(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,如果把x 轴绕着交点按逆时针方向转到和直线l 重合时所转的最小正角记为α,那么α就叫做直线的倾斜角。当直线l 与x 轴重合或平行时,规定倾斜角为0; (2)倾斜角的范围[)π,0。 2、直线的斜率

(1)定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =tan α(α≠90°);倾斜角为90°的直线没有斜率;

(2)斜率公式:经过两点111(,)P x y 、222(,)P x y 的直线的斜率为()212

12

1x x x x y y k ≠--=

(3)直线的方向向量(1,)a k =r

,直线的方向向量与直线的斜率有何关系?

(4)应用:证明三点共线: AB BC k k =。

例题:

例1.已知直线的倾斜角的变化范围为,求该直线斜率的变化范围;

思路点拨:已知角的范围,通过正切函数的图像,可以求得斜率的范围,反之,已知斜率的范围,通过正切函数的图像,可以求得角的范围

解析: ∵, ∴.

总结升华:

在知道斜率的取值范围求倾斜角的取值范围,或知道倾斜角的取值范围求斜率的取值范

围时,可利用在和上是增函数分别求解.当时,;

当时,;当时,;当不存在时,.反之,亦成立.

类型二:斜率定义

例2.已知△ABC 为正三角形,顶点A 在x 轴上,A 在边BC 的右侧,∠BAC 的平分线在x 轴上,求边AB 与AC 所在直线的斜率. 思路点拨:

本题关键点是求出边AB 与AC 所在直线的倾斜角,利用斜率的定义求出斜率.

解析:

如右图,由题意知∠BAO=∠OAC=30°

∴直线AB 的倾斜角为180°-30°=150°,直线AC 的倾斜角为30°,

∴k AB =tan150°= k AC =tan30°=

总结升华:

在做题的过程中,要清楚倾斜角的定义中含有的三个条件①直线向上方向②轴正向③小于

的角,只有这样才能正确的求出倾斜角.

类型三:斜率公式的应用 例3.求经过点

直线的斜率并判断倾斜角为锐

角还是钝角.

思路点拨: 已知两点坐标求斜率,直接利用斜率公式即可. 解析:

经过两点的直线的斜率

,即.

即当

时,

为锐角,当

时,

为钝角.

例4、过两点,

的直线的倾斜角为,求的

值.

【答案】

由题意得:直线的斜率

故由斜率公式,

解得或

. 经检验

不适合,舍去. 故

例5.已知三点A(a ,2)、B(3,7)、C(-2,-9a)在一条直线上,求实数a 的值.

思路点拨:

如果过点AB ,BC 的斜率相等,那么A ,B ,C 三点共线.

解析:

∵A 、B 、C 三点在一条直线上,

∴k AB =k AC .即

二、直线方程的几种形式

1、点斜式:已知直线过点00(,)x y 斜率为k ,则直线方程为00()y y k x x -=-,它不包括垂直于x 轴的直线。

2、斜截式:已知直线在y 轴上的截距为b 和斜率k ,则直线方程为y kx b =+,它不包括垂直于x 轴的直线。

3、两点式:已知直线经过111(,)P x y 、222(,)P x y 两点,则直线方程为

1

21

121x x x x y y y y --=

--,它不包括垂直于坐标轴的直线。 4、截距式:已知直线在x 轴和y 轴上的截距为,a b ,则直线方程为

1=+b

y

a x ,它不包括垂直于坐标轴的直线和过原点的直线。

5、一般式:任何直线均可写成0Ax By C ++=(A,B 不同时为0)的形式。

提醒:(1)直线方程的各种形式都有局限性.(如点斜式不适用于斜率不存在的直线,还有截距式呢?);(2)直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等?直线的斜率为-1或直线过原点;直线两截距互为相反数?直线的斜率为1或直线过原点;直线两截距绝对值相等?直线的斜率为1±或直线过原点。如过点(1,4)A ,且纵横截距的绝对值相等的直线共有___条(答:3)

注:设直线方程的一些常用技巧:

(1)知直线纵截距b ,常设其方程为y kx b =+;

(2)知直线横截距0x ,常设其方程为0x my x =+(它不适用于斜率为0的直线); (3)知直线过点00(,)x y ,当斜率k 存在时,常设其方程为00()y k x x y =-+,当斜率k 不存在时,则其方程为0x x =;

(4)与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=; (5)与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=.

提醒:求直线方程的基本思想和方法是恰当选择方程的形式,利用待定系数法求解。

三、两直线之间的位置关系

1、距离公式 (1)平面上的两点

间的距离

。特

别地,原点O (0,0)与任意一点的P(x,y)的距离

(2)点00(,)P x y 到直线0Ax By C ++=的距离002

2

Ax By C d A B

++=

+;

(3)两平行线1122:0,:0l Ax By C l Ax By C ++=++=间的距离为122

2

C C d A B

-=+。

2、直线1111:0l A x B y C ++=与直线2222:0l A x B y C ++=的位置关系:

(1)平行?12210A B A B -=(斜率)且12210B C B C -≠(在y 轴上截距); (2)相交?12210A B A B -≠;

(3)重合?12210A B A B -=且12210B C B C -=; (4)垂直?12120A A B B += 提醒: (1)

111222A B C A B C =≠、1122A B A B ≠、111222

A B C

A B C ==仅是两直线平行、相交、重合的充

分不必要条件!为什么?

(2)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中提到的两条直线都是指不重合的两条直线;

3、两直线夹角公式

(1)1l 到2l 的角是指直线1l 绕着交点按逆时针方向转到和直线2l 重合所转的角θ,

θ()π,0∈且tan θ=

2

11

21k k k k +-(121k k ≠-);

(2)1l 与2l 的夹角是指不大于直角的角,(0,]2

π

θθ∈且tan θ=︱

2

11

21k k k k +-︱

(121k k ≠-)。

提醒:解析几何中角的问题常用到角公式或向量知识求解。如已知点M 是直线240x y --=与x 轴的交点,把直线l 绕点M 逆时针方向旋转45°,得到的直线方程是______(答:360x y +-=) 例题:

例1、两条直线m y x m l 352)3(1-=++:

,16)5(42=++y m x l :,求分别满足下列条件的m 的值.

(1) 1l 与2l 相交; (2) 1l 与2l 平行; (3) 1l 与2l 重合; (4) 1l 与2l 垂直; (5) 1l 与2l 夹角为?45.

解:由

m m +=

+5243得0782

=++m m ,解得11-=m ,72-=m . 由16

3543m m -=

+得1-=m . (1)当1-≠m 且7-≠m 时,

2

1

21b b a a ≠,1l 与2l 相交; (2)当7-=m 时,

2

1

2121c c b b a a ≠=.21//l l ; (3)当1-=m 时,

2

1

2121c c b b a a ==,1l 与2l 重合; (4)当02121=+b b a a ,即0)5(24)3(=+?+?+m m ,3

11

-=m 时,21l l ⊥; (5) 231+-

=m k ,m

k +-=54

2.由条件有145tan 11212

=?=+-k k k k . 将1k ,2k 代入上式并化简得029142

=++m m ,527±-=m ;

01522=-+m m ,35或-=m .∴当527±-=m 或-5或3时1l 与2l 夹角为?45.

例2当a 为何值时,直线01)1()2(1=--++y a x a l :

与直线02)32()1(2=+++-y a x a l :互相垂直?

解:由题意,直线21l l ⊥.

(1)若01=-a ,即1=a ,此时直线0131=-x l :,0252=+y l :显然垂直; (2)若032=+a ,即2

3

-=a 时,直线0251=-+y x l :与直线0452=-x l :不垂直; (3)若01≠-a ,且032≠+a ,则直线1l 、2l 斜率1k 、2k 存在,

a a k -+-

=121,3

21

2+--=a a k . 当21l l ⊥时,121-=?k k ,即1)3

21

()12(-=+--?-+-

a a a a ,∴1-=a . 综上可知,当1=a 或1-=a 时,直线21l l ⊥.

例3已知直线l 经过点)1,3(P ,且被两平行直线011=++y x l :和062=++y x l :截得的线段之长为5,求直线l 的方程.

解法一:若直线l 的斜率不存在,则直线l 的方程为3=x ,此时与1l 、

2l 的交点分别为)4,3('-A 和)9,3('-B ,截得的线段AB 的长594=+-=AB ,符合题意,

若直线l 的斜率存在,则设直线l 的方程为1)3(+-=x k y .

解方程组???=+++-=,01,1)3(y x x k y 得??? ??+--+-114,12

3k k k k A ,

解方程组?

??=+++-=,06,1)3(y x x k y 得??? ??+--+-119,17

3k k k k B .

由5=AB ,得2

2

251191141731

23=??? ??+-++--+??? ??+--+-k k k k k k k k . 解之,得0=k ,即欲求的直线方程为1=y .

综上可知,所求l 的方程为3=x 或1=y . 解法二:由题意,直线1l 、2l 之间的距离为1

2

52

61=

-=

d ,且直线l 被平等直线1l 、2l 所截得的线段AB 的长为5(如上图),设直线l 与直线1l 的夹角为θ,则2

252

25sin ==θ,

故∴?=45θ.

由直线011=++y x l :的倾斜角为135°,知直线l 的倾斜角为0°或90°,又由直线l 过

点)1,3(P ,故直线l 的方程为3=x 或1=y .

解法三:设直线l 与1l 、2l 分别相交),(11y x A 、),(22y x B ,则:

0111=++y x ,0622=++y x .

两式相减,得5)()(2121=-+-y y x x . ① 又25)()(221221=-+-y y x x ② 联立①、②,可得??

?=-=-052121y y x x 或???=-=-5

2121y y x x

由上可知,直线l 的倾斜角分别为0°或90°. 故所求直线方程为3=x 或1=y .

例4 已知直线082=+-y x l :和两点)0,2(A 、)4,2(--B . (1)在l 上求一点P ,使PB PA +最小; (2)在l 上求一点P ,使PA PB -最大. 解:(1)如图,设A 关于l 的对称点为),('

n m A

则???????=+?-+-=-08222

2,22

n m m n

∴2-=m ,8=n . ∴)8,2('

-A

∴B A '

的的是2-=x ,B A '

与l 的交点是)3,2(-, 故所求的点为)3,2(-P . (2)如下图,

AB 是方程)2()

2(2)

4(0-----=

x y ,

即2-=x y .

代入l 的方程,得直线AB 与l 的交点)10,12(, 故所求的点P 为)10,12(.

四、对称问题——代入法(中心对称和轴对称)

1、 中心对称

(1)点关于点对称点P (00,y x )关于(b a ,)对称的点为(002,2y b x a --); (2)线关于点对称:(转化为点点对称) 在已知直线上任意去两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再有两点式求出直线方程,或者求出一个点,再利用两直线平行(注:线关于点对称的另一条直线和已知直线平行),由点斜式求出直线方程。 特别的,直线x=a 关于点P (00,y x )的对称直线为a x x -=02;直线y=b 关于点P (00,y x )的对称直线为b y y -=02 2、 轴对称

(1)点关于直线的对称问题:

(1)点(00,y x )关于x 轴对称的点为(00,y x -); (2)点(00,y x )关于y 轴对称的点为(00,y x -); (3)点(00,y x )关于原点对称的点为(00,y x --); (4)点(00,y x )关于x y =对称的点为(00,x y ); (5)点(00,y x )关于x y -=对称的点为(00,x y --)。

(6)设点P (00,y x )关于直线y=kx+b 的对称点

则有由

此求出

特别的,点P (00,y x )关于直线x=a 的对称点为;点P (00,y x )关于直线y=b 的对称点为

(2)直线关于直线的对称问题:

它的一般解题步骤是:1. 在所求曲线上选一点),(y x M ;2. 求出这点关于中心或轴

的对称点),(00'

y x M 与),(y x M 之间的关系;3. 利用0),(00=y x f 求出曲线0),(=y x g 。

直线关于直线的对称问题是对称问题中的较难的习题,但它的解法很多,现以一道典型习题为例给出几种常见解法,供大家参考。

例题:试求直线01:1=-+y x l 关于直线033:2=--y x l 对称的直线l 的方程。

在1l 上任取点

))(,(2''l P y x P ?,设点P 关于2l 的对称点为),(y x Q ,则 ?????-+=++-=????????-=--=-+-+534359

343103223'

'''

''y x y y x x x x y y y y x x

又点P 在1l 上运动,所以01=-+y x ,所以0

153

435934=--++++-y x y x 。即

017=--y x 。所以直线l 的方程是017=--y x 。

解法2:(到角公式法)

解方程组??

?==??

??=--=-+01

03301y x y x y x 所以直线21,l l 的交点为A(1,0) 设所求直线l 的方程为)1(-=x k y ,即0=--k y kx ,由题意知,1l 到2l 与2l 到l 的角相等,

则7131313113=

?+-=?-+k k

k .所以直线l 的方程是017=--y x 。 解法3:(取特殊点法)

解方程组???==??

?

?=--=-+0103301y x y x y x 所以直线21,l l 的交点为A(1,0) 在1l 上取点P (2,1),设点P 关于2l 的对称点的坐标为

),('

'y x Q ,则?????

==????

????-=--=-+-+575431210321223''''

''y x x y y x 而点A ,Q 在直线l 上,由两点式可求直线l 的方程是017=--y x 。

解法4:(两点对称法)

对解法3,在1l 上取点P (2,1),设点P 关于2l 的对称点的坐标为)

57

,54(Q ,在1l 上取点M

(0,1),设点P 关于2l 的对称点的坐标为

)

51,512(N 而N ,Q 在直线l 上,由两点式可求直线l 的方程是017=--y x 。

解方程组???==??

?

?=--=-+01

03301y x y x y x 所以直线21,l l 的交点为A(1,0) 设所求直线l 的方程为:设所求直线l 的方程为)1(-=x k y ,即0=--k y kx .由题意知,

2

l 为1,l l 的角平分线,在2l 上取点P (0,-3),则点P 到1,l l 的距离相等,由点到直线距离公

式,有:1

71

1|30|2|130|2

-==?+-+=--或k k k k

1-=k 时为直线1l ,故

71

=

k 。所以直线l 的方程是017=--y x

例题:

例1 : 已知点A (-2,3),求关于点P (1,1)的对称点B (00y ,x )。 分析:利用点关于点对称的几何特性,直接应用中点坐标公式求解。

解:设点A (-2,3)关于点P (1,1)的对称点为B (00y ,x ),则由中点坐标公式得???????=+=+-,

12

y 3,12

x 200

解得??

?-==1y ,4x 00所以点A 关于点P (1,1)的对称点为B (4,-1)。

评注:利用中点坐标公式求解完之后,要返回去验证,以确保答案的准确性。

例2 : 求直线04y x 3=--关于点P (2,-1)对称的直线l 的方程。

分析:由已知条件可得出所求直线与已知直线平行,所以可设所求直线方程为0b y x 3=+-。 解:由直线l 与04y x 3=--平行,故设直线l 方程为0b y x 3=+-。

由已知可得,点P 到两条直线距离相等,得

.1

3|b 16|1

3|416|2

2

+++=

+-+

解得10b -=,或4b -=(舍)。则直线l 的方程为.010y x 3=--

评注:充分利用直线关于点对称的特性:对称直线与已知直线平行且点P 到两条直线的距离相等。几何图形特性的灵活运用,可为解题寻找一些简捷途径。此题还可在直线04y x 3=--上取两个特殊点,并分别求其关于点P (2,-1)的对称点,这两个对称点的连线即为所求直线。

例3 :求点A (2,2)关于直线09y 4x 2=+-的对称点坐标。 利用点关于直线对称的性质求解。

解法1(利用中点转移法):设点A (2,2)关于直线09y 4x 2=+-的对称点为A ′(00y ,x ),则直线AA ′与已知直线垂直,故可设直线AA ′方程为0c y 2x 4=++,把A (2,2)坐标代入,可求得12c -=。 ∴直线AA ′方程为06y x 2=-+。

由方程组???=-+=+-0

6y x 2,09y 4x 2解得AA ′中点M ???

??3,23。

由中点坐标公式得

32

2

y ,2322x 00=+=+,解得.4y ,1x 00== ∴所求的对称点坐标为(1,4)。

评注:解题时,有时可先通过求中间量,再利用中间量求解结果。 分析:设B (a ,b )是A (2,2)关于直线09y 4x 2=+-的对称点,则直线AB 与l 垂直,线段AB 中点在直线0

9y 4x 2=+-上。

解法2(相关点法):设B (a ,b )是A (2,2)关于直线09y 4x 2=+-的对称点,根据直线AB 与l 垂直,线段AB 中点在直线09y 4x 2=+-上,

则有???

????=++?-+?-=--?,0922b 422a 2,12

a 2

b 21

解得.4b ,1a ==

∴所求对称点的坐标为(1,4)。

评注:①中点在09y 4x 2=+-上;②所求点与已知点的连线与09y 4x 2=+-垂直。

例4 : 求直线02y x :l 1=--关于直线03y x 3:l 2=+-对称的直线l 的方程。

分析:设所求直线l 上任一点为P (y ,x ''),利用“相关点法”求其对称点坐标,并将其对称点坐标代入直线1l 方程进行求解。

解:设所求直线l 上任意一点P (y ,x '')(2l P ?)关于2l 的对称点为Q (11y ,x ),

则???????-=-'-'=+'+-'+?,1x x y y ,032y y 2x x 31

111解得???????+'+'=-'+'-=.53y 4x 3y ,59y 3x 4x 11

又因为点Q 在1l 上运动,则=--2y x 110。

025

3

y 4x 359y 3x 4=-+'+'--'+'-,解得022y x 7=+'+'。即直线l 的方程为022y x 7=++。

评注:直线关于直线对称实质是点关于线的对称。此题还可在直线1l 上任取一点(非两直线交点)并求其关于直线

2l 的对称点,则该对称点与两直线交点的连线便是所求对称直线。

五、圆的方程:

1、圆的标准方程:()()2

2

2

x a y b r -+-=。

2、①圆的一般方程:

22220(D E 4F 0)+-x y Dx Ey F ++++=>

特别提醒:只有当22

D E 4F 0+->时,方程22

0x y Dx Ey F ++++=才表示圆,

圆心为(,)22D E -

-

的圆。 ②常见圆的方程

圆心在原点:()2220x y r r +=≠;过原点:()()()

2

2

22220x a y b a b a b -+-=++≠; 圆心在x 轴上:()()2

2

2

0x a y r

r -+=≠;圆心在y 轴上:()

()2

220x y b r r +-=≠;

圆心在x 轴上且过原点:()()2

2

2

0x a y a a -+=≠; 圆心在y 轴上且过原点:()()2

2

2

0x y b b

b +-=≠;

与x 轴相切:()()()22

2

0x a y b b

b -+-=≠;与y 轴相切:()()

()2

2

20x a y b a a -+-=≠

与两坐标轴都相切:()()()2

2

2

0x a y b a a b -+-==≠

3、圆的参数方程:

{cos sin x a r y b r θ

θ

=+=+(θ为参数),其中圆心为(,)a b ,半径为r 。圆的

参数方程的主要应用是三角换元:2

2

2

cos ,sin x y r x r y r θθ+=→==;22x y t +≤

cos ,sin (0x r y r r θθ→==≤≤。

4、()()1122A ,,,x y B x y 为直径端点的圆方程()()()()12120x x x x y y y y --+--= 例题

例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.

解法一:(待定系数法)设圆的标准方程为2

2

2

)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2

2

2

)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点.

∴?????=+-=+-2

22

24)3(16)1(r

a r a 解之得:1-=a ,202=r .

所以所求圆的方程为20)1(2

2=++y x . 解法二:(直接求出圆心坐标和半径)

因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13

12

4-=--=

AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方

程为:23-=-x y 即01=+-y x .

又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2

2

=

++==AC r .故所求圆的方程为20)1(22=++y x .

又点)4,2(P 到圆心)0,1(-C 的距离为r PC d >=++==254)12(2

2

∴点P 在圆外.

例2 求半径为4,与圆04242

2=---+y x y x 相切,且和直线0=y 相切的圆的方程.

解:则题意,设所求圆的方程为圆2

22)()(r b y a x C =-+-:

. 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆04242

2

=---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA .

(1)当)4,(1a C 时,2

2

2

7)14()2(=-+-a ,或2

2

2

1)14()2(=-+-a (无解),故可得

1022±=a .

∴所求圆方程为2224)4()1022(=-+--y x ,或2

224)4()1022(=-++-y x .

(2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2

221)14()2(=--+-a (无解),故

622±=a .

∴所求圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x .

例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.

解:∵圆和直线02=-y x 与02=+y x 相切, ∴圆心C 在这两条直线的交角平分线上,

又圆心到两直线02=-y x 和02=+y x 的距离相等.

5

25

2y x y x +=

-.∴两直线交角的平分线方程是03=+y x 或03=-y x .

又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上. 设圆心)3,(t t C

∵C 到直线02=+y x 的距离等于AC ,

22)53(5

32-+=+t t t t .

化简整理得0562=+-t t .解得:1=t 或5=t

∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55. ∴所求圆的方程为5)3()1(2

2

=-+-y x 或125)15()5(2

2

=-+-y x .

例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.

解:设圆心为),(b a P ,半径为r . 则P 到x 轴、y 轴的距离分别为b 和a .

由题设知:圆截x 轴所得劣弧所对的圆心角为?90,故圆截x 轴所得弦长为r 2. ∴222b r =

又圆截y 轴所得弦长为2. ∴122+=a r .

又∵),(b a P 到直线02=-y x 的距离为

5

2b a d -=

∴2

225b a d -=

ab b a 4422-+=)

(242222b a b a +-+≥1222=-=a b

当且仅当b a =时取“=”号,此时5

5min =

d . 这时有???=-=122

2a b b a ∴???==11b a 或?

??-=-=11b a

又222

2==b r

故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(2

2=+++y x

六、点、直线与圆的位置关系

1、点与圆的位置关系

已知点()00M ,x y 及圆()()()2

2

2C 0:x-a y b r r +-=>,

(1)点M 在圆C 外()()2

2

2

00CM r x a y b r ?>?-+->;

(2)点M 在圆C 内?()()22

2

00CM r x a y b r

(3)点M 在圆C 上()20CM r x a ?=?-()2

2

0y b r +-=。

2、直线与圆的位置关系

(1)直线与圆的位置关系有相交、相切、相离三种情况,分别对应直线与圆有两个公共点、一个公共点、没有公共点。

相交 相切 相离

(两个公共点) (一个公共点) (没有公共点) (2)直线与圆的位置关系的判断方法 ①几何法:

通过圆心到直线的距离与半径的大小比较来判断。

设直线l :Ax+By+C=0 圆C :(x-a )2+(y-b )2=r 2

(r>0) 则圆半径为r

设圆心到直线的距离为d ,则 直线与圆相离 直线与圆相切 直线与圆相交 ②代数法:

通过直线与圆的方程联立的方程组的解的个数来判断

直线方程与圆的方程联立方程组?

??=++++=++002

2F Ey Dx y x C By Ax 求解,通过解的个数来判断:

(1)当方程组有2个公共解时(直线与圆有2个交点),直线与圆相交; (2)当方程组有且只有1个公共解时(直线与圆只有1个交点),直线与圆相切; (3)当方程组没有公共解时(直线与圆没有交点),直线与圆相离;

即:将直线方程代入圆的方程得到一元二次方程,设它的判别式为Δ,圆心C 到直线l 的距离为d,则直线与圆的位置关系满足以下关系:

2

2B A C bB aA d +++=

相切?d=r ?Δ=0; 相交?d0; 相离?d>r ?Δ<0。 (3) 直线与圆的相交弦问题 ① 几何法:

弦心距d,半径r 及半弦l/2构成直角三角形的三边 ,利用垂径定理和勾股定理:

222AB r d =-

(其中r 为圆的半径,d 直线到圆心的距离).

② 代数法(解析法)

利用弦长计算公式:设直线y kx b =+与圆相交于()11,A x y ,()22,B x y 两点, 则弦()()

22

1212AB x x y y =

-+-=

||1212x x k -+=

(4)切线:①过圆222x y R +=上点00(,)P x y 圆的切线方程是:200xx yy R +=过圆

222()()x a y b R -+-=上点00(,)P x y 圆的切线方程是:

200()()()()x a x a y a y a R --+--= ②从圆外一点引圆的切线一定有两条,可先设切线方程,再根据相切的条件,

运用几何方法(抓住圆心到直线的距离等于半径)来求;过两切点的直线(即“切点弦”)方程的求法:先求出以已知圆的圆心和这点为直径端点的圆,该圆与已知圆的公共弦就是过两切点的直线方程;

③切线长:过圆2

2

0x y Dx Ey F ++++=(222()()x a y b R -+-=)外一点

00(,)P x y 22

0000x y Dx Ey F ++++22200()()x a y b R -+--; 例题:

1.已知圆O :x 2+y 2=5和点A (1,2),则过A 且与圆O 相切的直线与两坐标轴围成的三角形

的面积等于________.

解析:依题意,过A (1,2)作圆x 2+y 2=5的切线方程为x +2y =5,在x 轴上的截距为5,

在y 轴上的截距为52,切线与坐标轴围成的三角形面积S =12×52×5=254.答案:25

4

2.过原点O 作圆x 2+y 2-6x -8y +20=0的两条切线,设切点分别为P 、Q ,则线段PQ 的长为________.

解析:∵圆的标准方程为(x -3)2+(y -4)2=5,可知圆心为(3,4),半径为 5.如图可知,|CO |=5,

∴OP =

25-5=2 5.∴tan ∠POC =

PC OP =1

2

.在Rt △POC 中,OC ·PM =OP ·PC ,∴PM =25×5

5

=2.∴PQ =2PM =4.答案:4

3.若直线3x +4y +m =0与圆x 2+y 2-2x +4y +4=0没有公共点,则实数m 的取值范围是________.

解析:将圆x 2+y 2-2x +4y +4=0化为标准方程,得(x -1)2+(y +2)2=1,圆心为(1,-2),半径为1.

若直线与圆无公共点,即圆心到直线的距离大于半径, 即d =|3×1+4×(-2)+m |32+4

2

=|m -5|5>1,∴m <0或m >10.

答案:(-∞,0)∪(10,+∞)

4.已知直线3x -y +2m =0与圆x 2+y 2=n 2相切,其中m ,n ∈N *,且n -m <5,则满足条件的有序实数对(m ,n )共有________个.

解析:由题意可得,圆心到直线的距离等于圆的半径,即2m -1=n ,所以 2

m -1

-m <5,因为m ,n ∈N *,所以

???

?? m =1n =1,????? m =2n =2,????? m =3n =4,?????

m =4

n =8

,故有序实数对(m ,n )共有4个.答案:4个

5.直线ax +by +b -a =0与圆x 2+y 2-x -3=0的位置关系是________.

解析:直线方程化为a (x -1)+b (y +1)=0,过定点(1,-1),代入圆的方程,左侧小于0,则定点在圆内,所以直线与圆总相交.答案:相交

6.已知向量a =(cos α,sin α),b =(cos β,sin β),a 与b 的夹角为60°,直线x cos α+y sin α=0

与圆(x +cos β)2+(y +sin β)2=1

2

的位置关系是________.

解析:cos60°=cos α·cos β+sin α·sin β=cos(α-β),

d =|cos α·cos β+sin α·sin β|cos 2α+sin 2α

=|cos(α-β)|=32>22

=r .答案:相离

7.已知:以点C (t ,2

t

)(t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,

其中O 为原点.

(1)求证:△OAB 的面积为定值;

(2)设直线y =-2x +4与圆C 交于点M ,N ,若OM =ON ,求圆C 的方程.

解:(1)证明:∵圆C 过原点O ,∴OC 2=t 2+4t 2.设圆C 的方程是(x -t )2+(y -2t )2=t 2+4

t

2,

令x =0,得y 1=0,y 2=4

t

;令y =0,得x 1=0,x 2=2t .

∴S △OAB =12OA ·OB =12×|4

t

|×|2t |=4,即△OAB 的面积为定值.

(2)∵OM =ON ,CM =CN ,∴OC 垂直平分线段MN .∵k MN =-2,∴k O C =1

2

∴直线OC 的方程是y =12x .∴2t =1

2

t ,解得:t =2或t =-2.

当t =2时,圆心C 的坐标为(2,1),OC =5,此时圆心C 到直线y =-2x +4的距离d =

1

5

<5,圆C 与直线y =-2x +4相交于两点. 当t =-2时,圆心C 的坐标为(-2,-1),OC =5,此时圆心C 到直线y =-2x +4

的距离d =1

5

>5,圆C 与直线y =-2x +4不相交,

∴t =-2不符合题意舍去.∴圆C 的方程为(x -2)2+(y -1)2=5.

七、圆与圆的位置关系

(1)两圆位置关系的判定方法

①几何法:

设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21。

条公切线外离421??+>r r d ; 条公切线外切321??+=r r d ;

条公切线相交22121??+<<-r r d r r ; 条公切线内切121??-=r r d ; 无公切线内含??-<<210r r d ;

外离 相切 相交 内切 内含 ②代数法:

判断两个圆的位置关系也可以通过联立方程组判断公共解的个数来解决(方法同直线与圆位置关系的代数法)【一般不提倡用此法,太过繁琐】 (2)两圆的公共线

① 定义:当两圆相交时,必有两个交点,那么过这两点交点的弦为圆的公共点。 ② 公共弦所在直线方程 设圆

0:111221=++++F y E x D y x C ① 0:222222=++++F y E x D y x C ②

若两圆相交,则两圆的公共弦所在的直线方程是

用①-②得 0)()()(212121=-+-+-F F y E E x D D ③ 若圆C 1与C 2相交,则③式为公共弦所在的直线方程 若圆C 1与C 2外(内)切,则③式外(内)切线的方程 若圆C 1与C 2相离(外离或内含),则③式为圆的C 1、C 2相离的直线

例题:

例1.若圆x 2+y 2=4与圆x 2+y 2+2ay -6=0(a >0)的公共弦的长为23,则a =________.

解析:两圆方程作差易知弦所在直线方程为:y =1

a ,

如图,由已知|AC |=3,|OA |=2,有|OC |=1

a

=1,∴a =1.

答案:1

例2.过点A (11,2)作圆x 2+y 2+2x -4y -164=0的弦,其中弦长为整数的共有__条.

解析:方程化为(x +1)2+(y -2)2=132,圆心为(-1,2),到点A (11,2)的距离为12,最短弦长为10,最长弦长为26,所以所求直线条数为2+2×(25-10)=32(条).答案:32

例3.已知圆C 1:x 2+y 2+2x +2y -8=0与圆C 2:x 2+y 2-2x +10y -24=0相交于A 、B 两点,

(1)求公共弦AB 所在的直线方程;

(2)求圆心在直线y =-x 上,且经过A 、B 两点的圆的方程.

解:(1)?????

x 2+y 2+2x +2y -8=0

x 2+y 2-2x +10y -24=0

?x -2y +4=0.

(2)由(1)得x =2y -4,代入x 2+y 2+2x +2y -8=0中得:y 2-2y =0.

∴????? x =-4y =0或?????

x =0

y =2

,即A (-4,0),B (0,2), 又圆心在直线y =-x 上,设圆心为M (x ,-x ),则|MA |=|MB |,解得M (-3,3),∴⊙M :(x +3)2+(y -3)2=10.

例4 已知圆C 1:x 2 + y 2 – 2mx + 4y + m 2 – 5 = 0,圆C 2:x 2 + y 2 + 2x – 2my + m 2 – 3 = 0,m 为何值时,(1)圆C 1与圆C 2相外切; (2)圆C 1与圆C 2内含.

【解析】对于圆C 1,圆C 2的方程,经配方后

C 1:(x – m )2 + (y + 2)2 = 9,C 2:(x + 1)2 + (y – m )2 = 4.

(1)如果C 1与C 232=+, 所以m 2 + 3m – 10 = 0,解得m = 2或–5.

(2)如果C 1与C 232-,

所以m 2 + 3m + 2<0,得–2<m <–1.

所以当m = –5或m = 2时,C 1与C 2外切; 当–2<m <–1时,C 1与C 2内含.

例5求过直线x + y + 4 = 0与圆x 2 + y 2 + 4x – 2y – 4 = 0的交点且与y = x 相切的圆的方程.

【解析】设所求的圆的方程为x 2 + y 2 + 4x – 2y – 4 + λ(x + y + 4) = 0.

联立方程组22

424(4)0

y x

x y x y x y λ=??

++--+++=?

得:2(1)2(1)0x x λλ+++-=. 因为圆与y = x 相切,所以?=0. 即2(1)8(1)0,λλλ++-=则=3

故所求圆的方程为x 2 + y 2 + 7x + y + 8 = 0.

例6 求过两圆x 2 + y 2 + 6x – 4 = 0求x 2 + y 2 + 6y – 28 = 0的交点,且圆心在直线x – y – 4 = 0

上的圆的方程.

【解析】依题意所求的圆的圆心,在已知圆的圆心的连心线上,又两已知圆的圆心分别为(–3,0)和(0,–3).

则连心线的方程是x + y + 3 = 0.

由3040x y x y ++=??--=? 解得12

72

x y ?=????=-??.

所以所求圆的圆心坐标是17(,)22

-.

设所求圆的方程是x 2 + y 2 – x + 7y + m = 0

由三个圆有同一条公共弦得m = –32. 故所求方程是x 2 + y 2 – x + 7y – 32 = 0.

例7.已知圆C 的方程为x 2+y 2=1,直线l 1过定点A (3,0),且与圆C 相切.

(1)求直线l 1的方程;

(2)设圆C 与x 轴交于P 、Q 两点,M 是圆C 上异于P 、Q 的任意一点,过点A 且与x 轴垂直的直线为l 2,直线PM 交直线l 2于点P ′,直线QM 交直线l 2于点Q ′.求证:以P ′Q ′为直径的圆C ′总过定点,并求出定点坐标.

解:(1)∵直线l 1过点A (3,0),且与圆C :x 2+y 2=1相切,设直线l 1的方程为y =k (x -3),即kx -y -3k =0,

则圆心O (0,0)到直线l 1的距离为d =|3k |

k 2+1

=1,解得k =±2

4

∴直线l 1的方程为y =±2

4

(x -3).

(2)对于圆C :x 2+y 2=1,令y =0,则x =±1,即P (-1,0),Q (1,0).又直线l 2过点A 且与x 轴垂直,∴直线l 2方程为x =3.

设M (s ,t ),则直线PM 的方程为y =t s +1

(x +1).

解方程组?

??

x =3,

y =t

s +1(x +1),得P ′(3,4t s +1).同理可得Q ′(3,2t

s -1

).

∴以P ′Q ′为直径的圆C ′的方程为

(x -3)(x -3)+(y -4t s +1)(y -2t

s -1)=0,又s 2+t 2=1,

∴整理得(x 2+y 2-6x +1)+

6s -2

t

y =0, 若圆C ′经过定点,只需令y =0,从而有x 2-6x +1=0,解得x =3±22, ∴圆C ′总经过定点,定点坐标为(3±22,0).

(整理)届高三数学总复习平面解析几何练习题目汇总

第8章 第1节 一、选择题 1.(2010·崇文区)“m =-2”是“直线(m +1)x +y -2=0与直线mx +(2m +2)y +1=0相互垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 [答案] A [解析] m =-2时,两直线-x +y -2=0、-2x -2y +1=0相互垂直;两直线相互垂直时,m(m +1)+2m +2=0,∴m =-1或-2,故选A. 2.(文)(2010·安徽文)过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0 D .x +2y -1=0 [答案] A [解析] 解法1:所求直线斜率为12,过点(1,0),由点斜式得,y =12(x -1),即x -2y -1=0. 解法2:设所求直线方程为x -2y +b =0, ∵过点(1,0),∴b =-1,故选A. (理)设曲线y =ax2在点(1,a)处的切线与直线2x -y -6=0平行,则a =( ) A .1 B.12 C .-12 D .-1 [答案] A [解析] y′=2ax ,在(1,a)处切线的斜率为k =2a , 因为与直线2x -y -6=0平行,所以2a =2,解得a =1. 3.点(-1,1)关于直线x -y -1=0的对称点是( ) A .(-1,1) B .(1,-1) C .(-2,2) D .(2,-2) [答案] D [解析] 一般解法:设对称点为(x ,y),则

????? x -12-y +12-1=0 y -1x +1=-1,解之得????? x =2y =-2, 特殊解法:当直线l :Ax +By +C =0的系数满足|A|=|B|=1时,点A(x0,y0)关于l 的对称 点B(x ,y)的坐标,x =-By0-C A ,y =-Ax0-C B . 4.(2010·惠州市模考)在平面直角坐标系中,矩形OABC ,O(0,0),A(2,0),C(0,1),将矩形折叠,使O 点落在线段BC 上,设折痕所在直线的斜率为k ,则k 的取值范围为( ) A .[0,1] B .[0,2] C .[-1,0] D .[-2,0] [答案] D [解析] 如图,要想使折叠后点O 落在线段BC 上,可取BC 上任一点D 作线段OD 的垂直平分线l ,以l 为折痕可使O 与D 重合,故问题转化为在线段CB 上任取一点D ,求直线OD 的斜率的取值范围问题, ∵kOD≥kOB =12,∴k =-1kOD ≥-2,且k<0, 又当折叠后O 与C 重合时,k =0,∴-2≤k≤0. 5.(文)已知点(3,1)和点(1,3)在直线3x -ay +1=0的两侧,则实数a 的取值范围是( ) A .(-∞,10) B .(10,+∞) C.??? ?-∞,43∪(10,+∞) D.??? ?43,10 [答案] D [解析] 将点的坐标分别代入直线方程左边,所得两值异号,∴(9-a +1)(3-3a +1)<0,∴43

平面解析几何-高考复习知识点

平面解析几何 高考复习知识点 一、直线的倾斜角、斜率 1、直线的倾斜角: (1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,如果把x 轴绕着交点按逆时针方向转到和直线l 重合时所转的最小正角记为α,那么α就叫做直线的倾斜角。当直线l 与x 轴重合或平行时,规定倾斜角为0; (2)倾斜角的范围[)π,0。 2、直线的斜率 (1)定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =α(α≠90°);倾斜角为90°的直线没有斜率; (2)斜率公式:经过两点111(,)P x y 、222(,)P x y 的直线的斜率为()212 12 1x x x x y y k ≠--=; (3)直线的方向向量(1,)a k =,直线的方向向量与直线的斜率有何关系? (4)应用:证明三点共线: AB BC k k =。 例题: 例1.已知直线的倾斜角的变化范围为,求该直线斜率的变化范围; 思路点拨:已知角的范围,通过正切函数的图像,可以求得斜率的范围,反之,已知斜率的 范围,通过正切函数的图像,可以求得角的范围? 解析: ∵, ∴ .? 总结升华: 在知道斜率的取值范围求倾斜角的取值范围,或知道倾斜角的取值范围求斜率的取值范 围时,可利用在和上是增函数分别求解.当时,; 当时,;当时,;当不存在时,.反之,亦成立. 类型二:斜率定义 例2.已知△为正三角形,顶点A 在x轴上,A 在边的右侧,∠的平分线在x 轴上,求边与所在直线的斜率. 思路点拨: 本题关键点是求出边与所在直线的倾斜角,利用斜率的定义求出斜率. 解析:? 如右图,由题意知∠∠30°? ∴直线的倾斜角为180°-30°=15 0°,直线的倾斜角为30°,? ∴150°= 30°=? 总结升华: 在做题的过程中,要清楚倾斜角的定义中含有的三个条件①直线向上方向②轴正向③小

第二章平面解析几何初步章末总结附解析苏教版必修

第二章平面解析几何初步章末总结(附解 析苏教版必修2) 【金版学案】2015-2016高中数学第二章平面解析几何初步章末知识整合苏教版必修2 一、数形结合思想的应用 若直线y=kx+1与圆x2+y2=1相交于P、Q两点,且 ∠POQ=120°(其中O为原点),则k的值为________. 解析:本小题考查直线与圆的位置关系和数形结合的方法. y=kx+1恒过点(0,1),结合图知,直线倾斜角为120°或60°. ∴k=3或-3. 答案:3或-3 规律总结:根据数学问题的条件和结论之间的内在联系,将抽象的数学语言和直观的图形相结合,使抽象思维和 形象思维相结合. 1.以形助数,借助图形的性质,使有关“数”的问题直接形象化,从而探索“数”的规律.比如,研究两曲线 的位置关系,借助图形使方程间关系具体化;过定点的 直线系与某确定的直线或圆相交时,求直线系斜率的范

围,图形可帮助找到斜率的边界取值,从而简化运算;对于一些求最值的问题,可构造出适合题意的图形,解题中把代数问题几何化. 2.以数助形,借助数式的推理,使有关“形”的问题数量化,从而准确揭示“形”的性质. ►变式训练 1.若过定点M(-1,0)且斜率为k的直线与圆x2+4x+y2-5=0在第一象限内的部分有交点,则k的取值范围是________. 解析:∵x2+4x+y2-5=0,∴(x+2)2+y2=9是以(-2,0)为圆心,以3为半径的圆.如图所示:令x=0得y=±5. ∴点C的坐标为(0,5). 又点M的坐标为(-1,0), ∴kMC=5-00-(-1)=5. 结合图形得0k5. 答案:(0,5) 2.当P(m,n)为圆x2+(y-1)2=1上任意一点时,若不等式m+n+c≥0恒成立,则c的取值范围是________.解析:方法一∵P(m,n)在已知圆x2+(y-1)2=1上,且使m+n+c≥0恒成立,即说明圆在不等式x+y+c≥0

高考数学压轴专题人教版备战高考《平面解析几何》知识点总复习含解析

【最新】《平面解析几何》专题 一、选择题 1.若点O 和点F 分别为椭圆22 143 x y +=的中心和左焦点,点P 为椭圆上的任意一点,则 OP FP →→ g 的最大值为( ) A .4 B .5 C .6 D .7 【答案】C 【解析】 【分析】 设(),P x y ,由数量积的运算及点P 在椭圆上,可把OP FP ?u u u r u u u r 表示成为x 的二次函数,根 据二次函数性质可求出其最大值. 【详解】 设(),P x y ,()()1,0,0,0F O -,则 ()(),,+1,OP x y FP x y ==u u u r u u u r ,则 22OP FP x x y ?=++u u u r u u u r , 因为点P 为椭圆上,所以有:22143 x y +=即2 2334y x =-, 所以()2222 23132244 x x y x x x FP x OP =++=?++-=++u u u r u u u r 又因为22x -≤≤, 所以当2x =时,OP FP ?u u u r u u u r 的最大值为6 故选:C 【点睛】 本题考查了数量积的坐标运算,求二次函数的最大值,属于一般题. 2.已知直线21y kx k =++与直线1 22 y x =-+的交点位于第一象限,则实数k 的取值范围是( ) A .1 2 k > B .16k <- 或1 2 k > C .62k -<< D .1162 k - << 【答案】D 【解析】 【分析】 联立21 1 22y kx k y x =++???=-+?? ,可解得交点坐标(,)x y ,由于直线21y kx k =++与直线

高中数学平面解析几何知识点总结

平面解析几何 一、直线与圆 1.斜率公式 2121 y y k x x -=-(111(,)P x y 、222(,)P x y ). 2.直线的五种方程 (1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121 y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). < (4)截距式 1x y a b +=(a b 、分别为直线的横、纵截距,0a b ≠、). (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 3.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ?=≠; ②12121l l k k ⊥?=-. (2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222 ||A B C l l A B C ? =≠; < ②1212120l l A A B B ⊥?+=; 4.点到直线的距离 d =(点00(,)P x y ,直线l :0Ax By C ++=). 5.圆的四种方程 (1)圆的标准方程 222()()x a y b r -+-=. (2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).圆心??? ??--2,2E D ,半径r=2 422F E D -+. 6.点与圆的位置关系 点00(,)P x y 与圆2 22)()(r b y a x =-+-的位置关系有三种: . 若d =d r >?点P 在圆外;d r =?点P 在圆上;d r 相离r d ; 0=???=相切r d ; 0>???<相交r d . 其中22B A C Bb Aa d +++=. 8.两圆位置关系的判定方法 # 设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21 条公切线外离421??+>r r d ; 条公切线外切321??+=r r d ;

高考本源探究之平面解析几何

平面解析几何 例题 1.已知圆()()22 :341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点 P ,使得90APB ∠=,则m 的最大值为 2.如何理解:“直线1x y a b +=通过点(cos sin )M αα,”? 3. 如果圆C:22()(2)4x m y m -+-=总存在两点到原点距离为1,求实数m 的取值范围. 4.在平面直角坐标系xOy 中,点()03A ,,直线24l y x =-:.设圆C 的半径为1,圆心在l 上.若圆C 上存在点M ,使2MA MO =,求圆心C 的横坐标a 的取值范围. 5.过定点M (4,2)任作互相垂直的两条直线1l 和2l ,分别与x 轴、y 轴交于A,B 两点, 线段AB 中点为P ,求OP 的最小值. 6. 满足条件BC AC AB 2,2==的三角形ABC 的面积的最大值 7.直线12=+by ax 与圆122=+y x 相交于A 、B 两点(其中b a ,是实数),且AOB ?是 直角三角形(O 是坐标原点),则点(,)P a b 与点)1,0(之间距离的最大值为( ) A . 12+ B . 2 C . 2 D . 12- 8.如图,线段=8AB ,点C 在线段AB 上,且=2AC ,P 为线段CB 上一动点,点A 绕点C 旋转后与点B 绕点P 旋转后重合于点D .设=CP x , CPD △的面积为()f x .则()f x 的定 义域为 ; '()f x 的零点是 . 9.已知点()0,2A ,()2,0B . 若点C 在函数2y x =的图象上,则使得ABC △的面积为2的点C 的个数为 10. 直线=+1y kx 与圆0422=-+++my kx y x 交于,M N 两点,且,M N 关于直线+=0x y 对称.求+m k 的值. C B D

高中平面解析几何知识点总结

高中平面解析几何知识点总结 一.直线部分 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率: αtan ),(21121 2=≠--= k x x x x y y k .两点坐标为111(,)P x y 、222(,)P x y . 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:121121x x x x y y y y --= -- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线. (4)截距式:1 =+b y a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式: B C x B A y - - =,即,直线的斜率: B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直 线一般不重合.

2019高考数学真题(理)分类汇编-平面解析几何含答案解析

专题05 平面解析几何 1.【2019年高考全国Ⅰ卷理数】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为 A .2 212 x y += B .22 132x y += C .22 143 x y += D .22 154 x y += 【答案】B 【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=. 在1AF B △中,由余弦定理推论得22214991cos 2233 n n n F AB n n +-∠==??. 在12AF F △中,由余弦定理得2 2 14422243n n n n +-??? = ,解得n = 2 2 2 24312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22 132 x y +=,故选B . 法二:由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=. 在12AF F △和12BF F △中,由余弦定理得222122 2144222cos 4422cos 9n n AF F n n n BF F n ?+-???∠=?+-???∠=?, 又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠, ,得

平面解析几何初步(知识点 例题)

个性化简案 个性化教案(真题演练)

个性化教案

平面解析几何初步 知识点一:直线与方程 1. 直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角.倾斜角)180,0[?∈α,?=90α斜率不存在. 2. 直线的斜率:αtan ),(211 21 2=≠--= k x x x x y y k .(111(,)P x y 、222(,)P x y ). 3.直线方程的五种形式 【典型例题】 例1:已知直线(2m 2+m -3)x +(m 2-m)y =4m -1.① 当m = 时,直线的倾斜角为45°.②当m = 时,直线在x 轴上的截距为1.③ 当m = 时,直线在y 轴上的截距为-2 3.④ 当m = 时,直线与x 轴平行.⑤当m = 时,直线过原点. 【举一反三】 1. 直线3y + 3 x +2=0的倾斜角是 ( ) A .30° B .60° C .120° D .150° 2. 设直线的斜率k=2,P 1(3,5),P 2(x 2,7),P (-1,y 3)是直线上的三点,则x 2,y 3依次是 ( ) A .-3,4 B .2,-3 C .4,-3 D .4,3 3. 直线l 1与l 2关于x 轴对称,l 1的斜率是-7 ,则l 2的斜率是 ( ) A .7 B .- 77 C .77 D .-7 4. 直线l 经过两点(1,-2),(-3,4),则该直线的方程是 . 例2:已知三点A (1,-1),B (3,3),C (4,5).求证:A 、B 、C 三点在同一条直线上. 练习:设a ,b ,c 是互不相等的三个实数,如果A (a ,a 3)、B (b ,b 3)、C (c ,c 3)在同一直线上,求证:a+b+c=0. 例3:已知实数x,y 满足y=x 2-2x+2 (-1≤x≤1).试求:2 3 ++x y 的最大值与最小值.

高三数学《平面解析几何》

高三数学《平面解析几何》 单元练习七 (考试时间120分 分值160分) 一、填空题(本大题共14小题,每小题5分,共70分.请把正确答案填在题中横线上) 1.抛物线y 2=ax (a ≠0)的焦点到其准线的距离是______. 2.过点A (4,a )与B (5,b )的直线与直线y =x +m 平行,则AB =________. 3.已知双曲线x 24-y 2 12=1的离心率为e ,抛物线x =2py 2的焦点为(e,0),则 p 的值为________. 4.若直线ax +2by -2=0(a >0,b >0)始终平分圆x 2+y 2-4x -2y -8=0的周长,则1a +2 b 的最小值为______. 5.若双曲线x 2a 2-y 2 =1的一个焦点为(2,0),则它的离心率为________. 6.已知曲线上的每一点到点A (0,2)的距离减去它到x 轴的距离的差都是2,则曲线的方程为________. 7.(2010·淮安质检)抛物线y =-4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是________. 8.已知点A 、B 是双曲线 x 2- y 2 2 =1上的两点,O 为坐OA 标原点,且满足OA · OB =0,则点O 到直线AB 的距离等于________.

9.(2009·全国Ⅱ改编)双曲线x 26-y 2 3=1的渐近线与圆(x -3)2+y 2=r 2(r >0) 相切,则r =________. 10.(2009·四川高考改编)已知双曲线x 22-y 2 b 2=1(b >0)的左、右焦点分别为 F 1、F 2,其一条渐近线方程为y =x ,点P (3,y 0)在该双曲线上,则12PF PF ?=________. 11.(2009·天津高考改编)设抛物线y 2=2x 的焦点为F ,过点M (3,0)的直线与抛物线相交于A 、B 两点,与抛物线的准线相交于点C ,BF =2,则△BCF 与△ACF 的面积之比S △BCF S △ACF =________. 12.(2010·南京模拟)已知点(x 0,y 0)在直线ax +by =0(a ,b 为常数)上,则 (x 0-a )2+(y 0-b )2的最小值为________. 13.直线l 的方程为y =x +3,在l 上任取一点P ,若过点P 且以双曲线12x 2 -4y 2 =3的焦点为椭圆的焦点作椭圆,那么具有最短长轴的椭圆方程为 ___________________________________________________________. 14.过抛物线y 2=2px (p >0)的焦点F 的直线l 与抛物线在第一象限的交点为A ,与抛物线准线的交点为B ,点A 在抛物线准线上的射影为C ,若 AF FB =,,AF FB BA BC =?=48,则抛物线的方程为______________.

高考数学平面解析几何的复习方法总结

2019年高考数学平面解析几何的复习方法 总结 在高中数学知识体系中,平面解析几何是其中很大的一块,涉及到直线及其方程、线性规划、圆及其方程、椭圆及其方程、抛物线及其方程、双曲线及其方程以及曲线与方程的关系及其图像等具体的知识点。在高考的考查中,又可以将上述的7个知识点进行综合考查,更是增加了考查的难度。要想学好这部分知识,在高考总不丢分,以下几点是很关键的。 突破第一点,夯实基础知识。 对于基础知识,不仅一个知识点都要熟稔于心,还要有能力将这些零散的知识点串联起来。只有这样,才能形成属于自己的知识框架,才能更从容的应对考试。 (一)对于直线及其方程部分,首先我们要从总体上把握住两突破点:①明确基本的概念。在直线部分,最主要的概念就是直线的斜率、倾斜角以及斜率和倾斜角之间的关系。倾斜角α的取值范围是突破[0,π),当倾斜角不等于90°的时候,斜率k=tanα;当倾斜角=90°的时候,斜率不存在。②直线的方程有不同的形式,同学们应该从不同的角度去归类总结。角度一:以直线的斜率是否存在进行归类,可以将直线的方程分为两类。角度二:从倾斜角α分别在[0,π/2)、α=π/2和(π/2,π)的范围内,认识直线的特点。以此为基础突破,将直线方程的五种不同的形式套入其中。直线方程的不同形式突破需要满足的条件以及局限性是不同的,我们也要加以总结。

(二)对于线性规划部分,首先我们要看得懂线性规划方程组所表示的区域。在这里我们可以采用原点法,如果满足条件,那么区域包含原点;如果原点带入不满足条件,那么代表的区域不包含原点。 (三)对于圆及其方程,我们要熟记圆的标准方程和一般方程分别代表的含义。对于圆部分的学习,我们要拓展初中学过的一切与圆有关的知识,包括三角形的内切圆、外切圆、圆周角、圆心角等概念以及点与圆的位置关系、圆与圆的位置关系、圆的内切正多边形的特征等。只有这样,才能更加完整的掌握与圆有关的所有的知识。 (四)对于椭圆、抛物线、双曲线,我们要分别从其两个定义出发,明白焦点的来源、准线方程以及相关的焦距、顶点、突破离心率、通径的概念。每种圆锥曲线存在焦点在X轴和Y轴上的情况,要分别进行掌握。 突破第二点,学习基本解题思想。 对于平面几何部分的学习,最基本的解题思想就是数形结合,还包括函数思想、方程思想、转化思想等。要想掌握数形结合这种思想方法,首先同学们心中要有坐标轴,要掌握好学过的各种平面几何的概念。其次,要掌握解决不同问题的方法。对于不同的题型,同学们要掌握不同的解题方法,并将这种解题方法及其例题记录在笔记本上。对于向量方法,最长用的地方就解决与斜率有关的问题;对于“设而不求”的方法,最常用到的地方就是两种不同的平面几何图形相交的情况下求弦长的问题;设点法,最长用到的地方就是两种曲线相切以及求最值得问题等。同学们要分门别类的进行总结,才能达到事半功倍的效

高考数学:平面解析几何知识点

高考数学:平面解析几何知识点 1.数量积表示两个向量的夹角 【知识点的知识】 我们知道向量是有方向的,也知道向量是可以平行的或者共线的,那么,当两条向量与不平行时,那么它们就会有一个夹角θ,并且还有这样的公式:cosθ=.通过这公式,我们就可以求出两向量之间的夹角了. 【典型例题分析】 例:复数z=+i与它的共轭复数对应的两个向量的夹角为60°. 解:=====cos60°+i sin60°. ∴复数z=+i与它的共轭复数对应的两个向量的夹角为60°. 故答案为:60°. 点评:这是个向量与复数相结合的题,本题其实可以换成是用向量(,1)与向量(,﹣1)的夹角. 【考点点评】 这是向量里面非常重要的一个公式,也是一个常考点,出题方式一般喜欢与其他的考点结合起来,比方说复数、三角函数等,希望大家认真掌握. 2.直线的一般式方程与直线的性质 【直线的一般式方程】 直线方程表示的是只有一个自变量,自变量的次数为一次,且因变量随着自变量的变化而变化.直线的一般方程的表达式是ay+bx+c=0. 【知识点的知识】 1、两条直线平行与垂直的判定 对于两条不重合的直线l1、l2,其斜率分别为k1、k2,有: (1)l1∥l2?k1=k2;(2)l1⊥l2?k1?k2=﹣1. 2、直线的一般式方程: (1)一般式:Ax+By+C=0,注意A、B不同时为0.直线一般式方程Ax+By+C=0(B≠0)

化为斜截式方程y=﹣x﹣,表示斜率为﹣,y轴上截距为﹣的直线. (2)与直线l:Ax+By+C=0平行的直线,可设所求方程为Ax+By+C1=0;与直线Ax+By+C =0垂直的直线,可设所求方程为Bx﹣Ay+C1=0. (3)已知直线l1,l2的方程分别是:l1:A1x+B1y+C1=0(A1,B1不同时为0),l2:A2x+B2y+C2=0(A2,B2不同时为0),则两条直线的位置关系可以如下判别: ①l1⊥l2?A1A2+B1B2=0; ②l1∥l2?A1B2﹣A2B1=0,A1C2﹣A2B1≠0; ③l1与l2重合?A1B2﹣A2B1=0,A1C2﹣A2B1=0; ④l1与l2相交?A1B2﹣A2B1≠0. 如果A2B2C2≠0时,则l1∥l2?;l1与l2重合?;l1与l2相交?. 3.圆的标准方程 【知识点的认识】 1.圆的定义:平面内与定点距离等于定长的点的集合(轨迹)叫做圆.定点叫做圆心,定长就是半径. 2.圆的标准方程: (x﹣a)2+(y﹣b)2=r2(r>0), 其中圆心C(a,b),半径为r. 特别地,当圆心为坐标原点时,半径为r的圆的方程为: x2+y2=r2. 其中,圆心(a,b)是圆的定位条件,半径r是圆的定形条件. 【解题思路点拨】 已知圆心坐标和半径,可以直接带入方程写出,在所给条件不是特别直接的情况下,关键是求出a,b,r的值再代入.一般求圆的标准方程主要使用待定系数法.步骤如下: (1)根据题意设出圆的标准方程为(x﹣a)2+(y﹣b)2=r2; (2)根据已知条件,列出关于a,b,r的方程组; (3)求出a,b,r的值,代入所设方程中即可.

苏教版《第二章平面解析几何初步综合小结》word教案

苏教版《第二章平面解析几何初步综合小结》 w o r d教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

数学同步测试—第二章章节测试 本试卷分第Ⅰ卷和第Ⅱ卷两部分.共150分. 第Ⅰ卷(选择题,共50分) 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把 正确答案的代号填在题后的括号内(每小题5分,共50分). 1.方程x 2 + 6xy + 9y 2 + 3x + 9y –4 =0表示的图形是 ( ) A .2条重合的直线 B .2条互相平行的直线 C .2条相交的直线 D .2条互相垂直的直线 2.直线l 1与l 2关于直线x +y = 0对称,l 1的方程为y = ax + b ,那么l 2的方程为 ( ) A .a b a x y -= B .a b a x y += C .b a x y 1+= D .b a x y += 3.过点A (1,-1)与B (-1,1)且圆心在直线x+y -2=0上的圆的方程为 ( ) A .(x -3)2+(y +1)2=4 B .(x +3)2+(y -1)2=4 C .4(x +1)2+(y +1)2=4 D .(x -1)2+(y -1)2= 4.若A(1,2),B(-2,3),C(4,y )在同一条直线上,则y 的值是 ( ) A .2 1 B .23 C .1 D .-1 5.直线1l 、2l 分别过点P (-1,3),Q (2,-1),它们分别绕P 、Q 旋转,但始终保持平 行,则1l 、2l 之间的距离d 的取值范围为 ( ) A .]5,0( B .(0,5) C .),0(+∞ D .]17,0( 6.直线1x y a b +=与圆222(0)x y r r +=>相切,所满足的条件是 ( ) A .ab r =B .2222()a b r a b =+ C .22||ab r a b =+ D .22ab r a b =+ 7.圆2223x y x +-=与直线1y ax =+的交点的个数是 ( ) A .0个 B .1个 C .2个 D .随a 值变化而变化

高考数学压轴专题最新备战高考《平面解析几何》真题汇编及答案解析

数学《平面解析几何》复习知识要点 一、选择题 1.已知,A B 两点均在焦点为F 的抛物线()2 20y px p =>上,若4AF BF +=,线段 AB 的中点到直线2 p x = 的距离为1,则p 的值为 ( ) A .1 B .1或3 C .2 D .2或6 【答案】B 【解析】 4AF BF +=1212442422 p p x x x x p x p ?+ ++=?+=-?=-中 因为线段AB 的中点到直线2 p x = 的距离为1,所以121132 p x p p - =∴-=?=中或 ,选B. 点睛:1.凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理. 2.若 00(,)P x y 为抛物线22(0)y px p =>上一点,由定义易得02 p PF x =+ ;若过焦点的弦AB AB 的端点坐标为1122(,),(,)A x y B x y ,则弦长为1212,AB x x p x x =+++可由根与系 数的关系整体求出;若遇到其他标准方程,则焦半径或焦点弦长公式可由数形结合的方法类似地得到. 2.已知双曲线2 2x a -22y b =1(a >0,b >0)的左顶点与抛物线y 2=2px (p >0)的焦点的距离为4, 且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为( ) A . B . C . D .【答案】A 【解析】 【分析】 【详解】 解:根据题意,双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1), 即点(-2,-1)在抛物线的准线上,又由抛物线y 2=2px 的准线方程为2 p x =-,则p=4, 则抛物线的焦点为(2,0); 则双曲线的左顶点为(-2,0),即a=2; 点(-2,-1)在双曲线的渐近线上,则其渐近线方程为1 2 y x =±, 由双曲线的性质,可得b=1;

平面解析几何初步典型例题整理后

平面解析几何初步 §7.1直线和圆的方程 经典例题导讲 [例1]直线l 经过P (2,3),且在x,y 轴上的截距相等,试求该直线方程. 解:在原解的基础上,再补充这样的过程:当直线过(0,0)时,此时斜率为:2 3 0203=--= k , ∴直线方程为y= 2 3x 综上可得:所求直线方程为x+y-5=0或y= 2 3 x . [例2]已知动点P 到y 轴的距离的3倍等于它到点A(1,3)的距离的平方,求动点P 的轨迹方程. 解: 接前面的过程,∵方程①化为(x-52 )2+(y-3)2 = 214 ,方程②化为(x+12 )2+(y-3)2 = - 34 , 由于两个平方数之和不可能为负数,故所求动点P 的轨迹方程为: (x-52 )2+(y-3)2 = 214 (x ≥ 0) [例3]m 是什么数时,关于x,y 的方程(2m 2+m-1)x 2+(m 2-m+2)y 2 +m+2=0的图象表示一个 圆? 解:欲使方程Ax 2+Cy 2 +F=0表示一个圆,只要A=C ≠0, 得2m 2+m-1=m 2-m+2,即m 2 +2m-3=0,解得m 1=1,m 2=-3, (1) 当m=1时,方程为2x 2+2y 2 =-3不合题意,舍去. (2) 当m=-3时,方程为14x 2+14y 2=1,即x 2+y 2=1 14 ,原方程的图形表示圆. [例4]自点A(-3,3)发出的光线L 射到x 轴上,被x 轴反射,其反射光线所在直线与圆x 2+y 2 -4x-4y+7=0相切,求光线L 所在的直线方程. 解:设反射光线为L ′,由于L 和L ′关于x 轴对称,L 过点A(-3,3),点A 关于x 轴的对称点A ′(-3,-3), 于是L ′过A(-3,-3). 设L ′的斜率为k ,则L ′的方程为y-(-3)=k [x-(-3)],即kx-y+3k-3=0, 已知圆方程即(x-2)2+(y-2)2 =1,圆心O 的坐标为(2,2),半径r =1 因L ′和已知圆相切,则O 到L ′的距离等于半径r =1 即 1 1k 5 k 51k 3 k 32k 22 2 =+-= +-+- 整理得12k 2 -25k+12=0 解得k = 34或k =4 3 L ′的方程为y+3=34(x+3);或y+3=4 3 (x+3)。 即4x-3y+3=0或3x-4y-3=0 因L 和L ′关于x 轴对称 故L 的方程为4x+3y+3=0或3x+4y-3=0. [例5]求过直线042=+-y x 和圆01422 2 =+-++y x y x 的交点,且满足下列条件之一的圆的方程:

高考平面几何平面解析几何

第五章直线与圆 直线与圆是几何中最基础和最重要的两种图形,是代数方法在几何研究中的应用的开始. 对于这部分内容,学生应该深刻领会并熟练应用数形结合的思想方法,既要注重代数运算的简洁,也要充分利用几何图形的性质,还要认真考虑代数式的几何意义,在对参数的讨论过程中不要遗漏某些特殊值所表示的特殊情况. 近年来,这一部分内容在高考试题中通常属于基础题,难度中等,但解答问题使用的方法会直接影响到运算量的多少以及问题解答的正确率. 第一节直线与圆的位置关系 1. 直线的x-截距与y-截距之间的关系 例1 (09华南师大附中3月)已知直线l在x轴、y轴上截距的绝对值相等, 且到点(1,2)的距离为2,求直线l的方程. 【动感体验】 要全面考虑可能成立的各种情况. 已知直线l在x轴、y轴上截距的绝对值相等的条件应考虑截距可能为零或不为零两种情况. 如图5.1.1所示,点P在以A(1,2)为圆心、半径为2的圆上,直线(记为l)经过点P且与圆A相切. 则该l到点(1,2)的距离为恒为2. 打开文件“09华南师大附中3月.zjz”,拖动点P,观察可能出现直线l在x轴、y轴上截距的绝对值相等的情况.

图5.1.1 【思路点拨】 对于满足条件的直线其截距为零和不为零两种情况分别讨论. 【动态解析】 图5.1.2-5.1.7所示六种情况下,经过点P的直线在x轴、y轴上截距的绝对值均相等. 图5.1.2 图5.1.3 图5.1.4 图5.1.5

图5.1.6 图5.1.7 可设满足条件的直线的方程为b kx y +=. 当0=b 时,由点到直线的距离公式得: 21|2|2 =+-k k ,解得62+-=k 或 62--=k . 当0≠b 时,则直线l 的斜率k 为1或者-1,由点到直线的距离公式得: 21|2|2 =+-+k b k ,当1=k 时,解得1-=b 或3=b ;当1-=k 时,解得5=b 或 1=b . 因此所求直线的方程为:x y )62(+-=,或x y )62(--=,或1-=x y ,或3+=x y ,或5+-=x y ,或1+-=x y . 【简要评注】 从本题的题设条件,很容易选择利用直线的截距式方程表示直线进行求解,但要注意避免遗漏直线经过原点的情况. 在这里我们首先考虑到直线到点A 的距离为 2,再寻找满足要求的直线,就容易分类了. 有时候利用直线的截距式在绘制直线时非常方便,但答案通常写成斜截式. 2. 直线与圆的位置关系 例2 (06湖南理10)若圆010442 2 =---+y x y x 上至少有三个不同的点到直线0:=+by ax l 的距离为22,则直线l 的倾斜角的取值范围是( )。

必修二平面解析几何初步知识点及练习带答案

1直线的倾斜角与斜率: (1 )直线的倾斜角:在平面直角坐标系中,对于一条与x轴相交的直线,如果把x轴绕着 交点按逆时针方向旋转到和直线重合时所转的最小正角记为叫做 直线的倾斜角? 倾斜角[0,180 ), 90斜率不存在■ (2)直线的斜率:k y2 X2 —^(为X2), k X1 tan . ( R(X1, yj、巳佑y:)) 2 ?直线方程的五种形式: (1)点斜式: 注:当直 y y1 k(x X1)(直线1过点R(X1,y1),且斜率为k ). 1■线斜率不存在时,不冃匕用点斜式表示,此时万程为X X0 . (2)斜截式:y kx b ( b为直线1在y轴上的截距). (3)两点式: y y1 x X1 ( (% y2, X1 X2). y2 y1 X2 X1 注:①不能表示与x轴和y轴垂直的直线; ②方程形式为:(x2 x1)(y y1) (y2y1 )(x x1) 0时,方程可以表示任意直线. (4)截距式: X y 1 ( a,b分别为x轴y轴上的截距,且a 0,b 0). a b 注:不能表示与x轴垂直的直线,也不能表示与y轴垂直的直线,特别是不能表示过原点的直线. (5) —般式:Ax By C 0 (其中A、B不同时为0). AC A 一般式化为斜截式:y x ,即,直线的斜率:k B B B 注:(1)已知直线纵截距b,常设其方程为y kx b或x 0. 已知直线横截距x0,常设其方程为x my x0(直线斜率k存在时,m为k的倒数)或y 0 . 已知直线过点(X。,y°),常设其方程为y k(x x°) y或x x°. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合. 3.直线在坐标轴上的截矩可正,可负,也可为0. (1 )直线在两坐标轴上的截距相等直线的斜率为1或直线过原点. (2 )直线两截距互为相反数直线的斜率为1或直线过原点. (3 )直线两截距绝对值相等直线的斜率为1或直线过原点. 4.两条直线的平仃和垂直: (1 )若11 : y k1x b1,12 : y k2X b2 ① 11//12k1k2,b1 b2 ;② 1112k1k2 1 (2 )若11 : A1x B1y C1 0, 1 2 : A Q X B2 y C2 0,有 ① 11 //12 A i B2 A2 B i 且 A C? A2C1.② 11 12 A i A2 B i B2 0 . 5.平面两点距离公式:

平面解析几何高考研究及应考策略

平面解析几何高考研究及应考策略 考纲分析: 1.直线与方程(文、理相同) ①在平面直角坐标系中,结合具体图形,确定直线位置的几何要素。 ②理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式 ③能根据两条直线的斜率判定这两条直线平行或垂直 ④掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系。 ⑤能用解方程组的方法求两条相交直线的交点坐标。 ⑥掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。 2.圆与方程(文、理相同) ①掌握确定圆的几何要素,掌握圆的标准方程与一般方程 ②能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两个圆的位置关系 ③能用直线和圆的方程解决一些简单的问题 ④初步了解用代数方法处理几何问题的思想 3.圆锥曲线与方程(理科) ①了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用 ②掌握椭圆、抛物线的定义、几何图形、标准方程及简单的几何性质。 ③了解双曲线的定义、几何图形和标准方程,知道它们的简单几何性质(范围、对称性、顶点、离心率、渐近线)。 ④理解数形结合思想。 ⑤了解圆锥曲线的简单应用。 4.圆锥曲线与方程(文科) ①掌握椭圆的定义、几何图形、标准方程及简单的几何性质。(范围、对称性、顶点、离心率)。 ②了解双曲线的定义、几何图形和标准方程,知道其简单的几何性质(范围、对称性、顶点、离心率、渐近线)。 ③了解抛物线的定义、几何图形和标准方程,知道其简单的几何性质(范围、对称性、顶点、离心率)。 ④理解数形结合思想。 ⑤了解圆锥曲线的简单应用。 二.命题规律: 通过近三年高考数学试题的分析,高考对解析几何的考查有以下特点: 1. 从题型和内容上看:(2个小题1个大题22分)。 (1)选择填空题(一般2个小题): 主要考查直线和圆的方程.位置关系;椭圆、双曲线、抛物线的定义,标准方程,几何性质.直线与圆锥曲线的位置关系; 主要考查基础知识的掌握,尤其要注意圆锥曲线中的基本量在图形中的反应,平面几何知识的应用,数形结合的能力。属于中等难度的题。 (2)解答题(1个大题) 主要考查直线与圆锥曲线的位置关系,与平面向量、不等式、函数、三角函数、导数、平面几何等知识的综合题。常考方法有:设而不求法(韦达定理、弦长公式),点差法(弦的中点及中点弦的问题),坐标法,数形结合思想。主要考查阅读理解能力、运算求解能力、数形结合的能力以及综合运用数学知识分析解决问题的能力。属于中高档题。 2.解析几何高考考查特点看: 1)题型稳定:2个小题1个大题22分。

相关主题
文本预览
相关文档 最新文档