当前位置:文档之家› 二苯基羟基乙酸的合成

二苯基羟基乙酸的合成

二苯基羟基乙酸的合成
二苯基羟基乙酸的合成

二苯基羟基乙酸的合成Last revision on 21 December 2020

二苯基羟基乙酸的合成

摘要用二苯乙二酮作为反应物,以氢氧化钾和乙醇为催化剂,制备二苯基羟基乙酸。产物为白色

细晶体,净重,产率%;通过氢氧化钠溶液滴定测定产物纯度是%。

关键词二苯基羟基乙酸,多步骤有机反应,混合溶剂重结晶技术,滴定方法

1引言

本实验即应用上回实验的产物二苯乙二酮制备二苯基羟基乙酸。本实验的目的是通过此实验掌握混合溶剂重结晶技术,并了解多步骤有机反应。

2合成原理

二苯乙二酮为α-二酮,与氢氧化钾溶液回流,重排成α-羟基酸盐即二苯乙醇酸钾盐,称为二苯乙醇酸重排。由于反应中形成稳定的羧酸盐,使此重排成为一个不可逆的过程。

二苯乙醇酸也可直接由安息香与碱性溴酸钠溶液一步反应来制备,得到高纯度的产物。

图表 1 制备过程反应式

图表 2 二苯乙醇酸重排机理

3滴定原理

3.1氢氧化钠标准溶液标定原理

本实验产物二苯基羟基乙酸的滴定以氢氧化钠溶液作为标准溶液,而氢氧化钠标准溶液的标定通过邻苯二甲酸氢钾进行。

邻苯二甲酸氢钾()可由邻苯二甲酸酐与氢氧化钾作用而得,分子量为mol。常用做滴定分析中的基准物质,用作制备标准碱溶液的基准试剂和测定pH 值的缓冲剂,可与氢氧化钠反应生成邻苯二甲酸钾钠。通过邻苯二甲酸氢钾标定的氢氧化钠标准溶液的浓度计算式为:

C NaOH(aq)=m邻邻邻邻邻邻邻

204.22×1

V NaOH(aq)

图表 1 邻苯二甲酸氢钾结构式

3.2氢氧化钠标准溶液滴定原理

图表 4 酸碱滴定反应式

产物二苯基羟基乙酸作为酸与氢氧化钠反应式量比为1:1。事先在二苯基羟基乙酸中滴加两至三滴酚酞试剂作为指示剂,当用氢氧化钠标准溶液滴定至恰好显浅粉色且半分钟只内不退色时即为滴定终点。通过氢氧化钠标准溶液滴定二苯基羟基乙酸的质量计算式为:

m邻邻邻邻邻邻邻=C邻邻邻邻邻邻邻邻×V邻邻邻邻邻邻邻邻×228.2注意事项:由于从二苯乙醇酸钾盐制备二苯基羟基乙酸的过程用到了盐酸,遗留在二苯基羟基乙酸中的盐酸很可能会导致氢氧化钠溶液滴定得到的结果偏大,纯度甚至超过百分之百;为了得到更为准确的实验结果,洗涤产物时应尽量将产物多清洗几次,测定pH值至洗涤废液pH值接近7为止。

4实验部分

4.1实验条件

实验试剂:二苯乙二酮,乙醇,氢氧化钾,蒸馏水,浓盐酸,刚果红试纸,活性炭,氢氧化钠溶液,邻苯二酸氢钾,酚酞溶液。

实验仪器:圆底烧瓶,茄形瓶,烧杯,磁力搅拌器,油浴装置,球形冷凝管,减压抽气装置,漏斗,花式滤纸,玻璃棒,烘箱,锥形瓶,加料漏斗,布氏漏斗,酸式滴定管。

4.2二苯乙醇酸钾盐的合成

在50 mL 圆底烧瓶中加入二苯乙二酮 g与15 mL 95%乙醇,加热溶解,滴加氢氧化钾g溶于5 mL水的溶液,磁力搅拌反应并回流30 min。然后将反应混合物转移到小烧杯中,在冰水浴中放置析出二苯乙醇酸钾盐的晶体。抽滤,并用少量冷乙醇洗涤晶体。

4.3二苯基羟基乙酸的合成

将过滤出的钾盐溶于70 mL水中,滴加2 滴浓盐酸,少量未反应的二苯乙二酮成胶体悬浮物,加入活性炭脱色约两平勺,趁热过滤。滤液冷却至室温,用5%的盐酸酸化至刚果红试纸变蓝,保持搅拌保证产物松散,在冰水浴中冷却使结晶完全。抽滤,用冷水洗涤几次以除去晶体中的无机盐和盐酸。产物在85℃烘箱中干燥至恒重。

4.4滴定过程

4.4.1 mo l·L -1NaOH标准溶液的配制与标定

准确称取 g 氢氧化钠溶于1 L蒸馏水中,配制 mol·L -1的标准溶液。

准确称取 g至 g 邻苯二甲酸氢钾基准物质两份分别于两个250 mL 锥形瓶中,加入40至50 mL水使之溶解,加入3 滴酚酞指示剂,用·L -1氢氧化钠标准溶液滴定至呈微红色,保持半分钟内不退色,即为终点。

4.4.2产品纯度的测定

准确称取产品 g至 g,用30 mL乙醇/水(1∶1)溶液溶解,加入3滴酚酞指示剂,用氢氧化钠标准溶液滴定至呈微红色,保持半分钟内不退色,即为终点。平行测定两次。5结果与讨论

5.1产物产量分析及讨论

本次实验应用二苯乙二酮制备二苯基羟基乙酸。产物二苯基羟基乙酸外观为白色细晶体,理论熔点150℃,分子量为mol。

本次实验使用二苯乙二酮,约。二苯基羟基乙酸的理论产量计算

W

二苯基羟基乙酸(理论)=n

二苯乙二酮

×M

二苯基羟基乙酸

=0.012×228.2g=2.7384g,最终制得二

苯基羟基乙酸实际产量为,即二苯基羟基乙酸产物产率为W实实实实

W实实实

×100%=1.56

2.74

×

100%=56.9%。产率较低的原因推测如下:(1)反应物二苯乙二酮纯度较低;(2)制备二苯乙醇酸钾盐的加热回流时间不够充足;(3)制备二苯乙醇酸钾盐的结晶过程中冰水浴时间不够长,中间产物析出不够充分。

5.2产物纯度分析及讨论

123

m

/g

m

/g

Δm/g

表格 1 基准物质邻苯二酸氢钾的称取

123

V

/ml

V

/ml

ΔV/ml

NaOH

C NaOH

相对平均偏差%

表格 2 氢氧化钠标准溶液的标定

12

m

/g

m

/g

Δm/g

表格 3 产物二苯基羟基乙酸的称取

12

V

/ml

V

/ml

ΔV/ml

m

二苯基羟基乙酸

相对平均偏差%

表格 4 产物二苯基羟基乙酸的滴定

由上表可知,制备氢氧化钠标准溶液的浓度是L,相对极差为%;测得产物二苯基羟基乙酸的平均百分含量为%。产物纯度超过百分之百的可能原因推测如下:在抽滤分离二苯基羟基乙酸的过程中,由于洗涤产物不充分,同时也未进行洗涤液pH值的测定,致使盐酸和无机盐遗留在产物中;同等质量的盐酸和产物,盐酸可消耗更多的氢氧化钠,导致测得的二苯基羟基乙酸含量超过标准值。

参考文献

[1] 李妙葵, 贾瑜, 高翔, 李志铭. 大学有机化学实验. 上海: 复旦大学.

[2] 邢其毅, 裴伟伟, 徐瑞秋, 裴坚. 基础有机化学. 北京: 高等教育出版社.

[3] 吴性良, 孔继烈. 分析化学原理. 北京: 化学工业出版社.

[4] 赵滨, 马林, 沈建中, 卫景德. 无机化学与化学分析实验. 上海: 复旦大学出版社.

Synthesis of Benzilic acid

ABSTRACT In this experiment, 1,2-diphenylethanedione was taken as the reactant, Potassium hydroxide and alcohol was used as the catalytic centre, and Benzilic acid was made. Product Benzilic acid was white fine crystal, net weight was , yield was %. The purity measured by titration using sodium hydroxide was %.

KEY WORDS Benzilic acid; Multi-steps organic synthesis; The recrystallization of the mixed solvent; Titration

化学实验报告——乙酸乙酯的合成

乙酸乙酯的合成 一、 实验目的和要求 1、 通过乙酸乙酯的制备,加深对酯化反应的理解; 2、 了解提高可逆反应转化率的实验方法; 3、 熟练蒸馏、回流、干燥、气相色谱、液态样品折光率测定等技术。 二、 实验内容和原理 本实验用乙酸与乙醇在少量浓硫酸催化下反应生成乙酸乙酯: 243323252H SO CH COOH CH CH OH CH COOC H H O ++ 副反应: 24 32322322H SO CH CH OH CH CH OCH CH H O ???→+ 由于酯化反应为可逆反应,达到平衡时只有2/3的物料转变为酯。为了提高酯的产率,通常都让某 一原料过量,或采用不断将反应产物酯或水蒸出等措施,使平衡不断向右移动。因为乙醇便宜、易得,本实验中乙醇过量。但在工业生产中一般使乙酸过量,以便使乙醇转化完全,避免由于乙醇和水及乙酸乙酯形成二元或三元共沸物给分离带来困难,而乙酸通过洗涤、分液很容易除去。 由于反应中有水生成,而水和过量的乙醇均可与乙酸乙酯形成共沸物,如表一表示。这些共沸物的沸点都很低,不超过72 ℃,较乙醇的沸点和乙酸的沸点都低,因此很容易被蒸馏出来。蒸出的粗馏液可用洗涤、分液除去溶于其中的乙酸、乙醇等,然后用干燥剂去除共沸物中的水分,再进行精馏便可以得到纯的乙酸乙酯产品。 表一、乙酸乙酯共沸物的组成与沸点 三、 主要物料及产物的物理常数 表二、主要物料及产物的物理常数

四、主要仪器设备 仪器100mL三口烧瓶;滴液漏斗;蒸馏弯头;温度计;直形冷凝管;250mL分液漏斗;50mL锥形瓶3个;25mL梨形烧瓶;蒸馏头;阿贝(Abbe)折光仪;气相色谱仪。 试剂冰醋酸;无水乙醇;浓硫酸;Na2CO3饱和溶液;CaCl2饱和溶液;NaCl饱和溶液。 五、实验步骤及现象 表三、实验步骤及现象

乙酸乙酯的合成

乙酸乙酯的制备 一、 实验目的 1. 掌握乙酸乙酯的制备原理及方法,掌握可逆反应提高产率的措施。 2. 掌握分馏的原理及分馏柱的作用。 3. 进一步练习并熟练掌握液体产品的纯化方法。 二、 实验原理 乙酸乙酯的合成方法很多,例如:可由乙酸或其衍生物与乙醇反应制取,也可由乙酸钠与卤乙烷反应来合成等。其中最常用的方法是在酸催化下由乙酸和乙醇直接酯化法。常用浓硫酸、氯化氢、对甲苯磺酸或强酸性阳离子交换树脂等作催化剂。若用浓硫酸作催化剂,其用量是醇的0.3%即可。其反应为: CH 3COOH +CH 3CH 2OH CH 3COOCH 2CH 3H 2O +CH 3CH 22 3CH 2OCH 2CH 3H 2O +CH 3CH 2OH 24 H 2O +CH 2CH 2主反应:副反应: 酯化反应为可逆反应,提高产率的措施为:一方面加入过量的乙醇,另一方面在反应过 程中不断蒸出生成的产物和水,促进平衡向生成酯的方向移动。但是,酯和水或乙醇的共沸物沸点与乙醇接近,为了能蒸出生成的酯和水,又尽量使乙醇少蒸出来,本实验采用了较长的分馏柱进行分馏。

四、 实验装置图 蒸馏装置 五、 实验流程图 4ml 乙醇5ml 浓硫酸2粒沸石 10ml 8ml 73-80 的馏分,℃ 六、 实验步骤 在100ml 三颈瓶中,加入4ml 乙醇,摇动下慢慢加入5ml 浓硫酸,使其混合均匀,并加入几粒沸石。三颈瓶一侧口插入温度计,另一侧口插入滴液漏斗,漏斗末端应浸入液面以下,中间口安一长的刺形分馏柱(整个装置如上图)。 仪器装好后,在滴液漏斗内加入10ml 乙醇和8ml 冰醋酸,混合均匀,先向瓶内滴入约2ml 的混合液,然后,将三颈瓶在石棉网上小火加热到110-120℃左右,这时蒸馏管口应有液体流出,再自滴液漏斗慢慢滴入其余的混合液,控制滴加速度和馏出速度大致相等,并维持反应温度在110-125℃之间,滴加完毕后,继续加热10分钟,直至温度升高到130℃不再有馏出液为止。 馏出液中含有乙酸乙酯及少量乙醇、乙醚、水和醋酸等,在摇动下,慢慢向粗产品中加入饱和的碳酸钠溶液(约6ml )至无二氧化碳气体放出,酯层用PH 试纸检验呈中性。移入分液漏斗中,充分振摇(注意及时放气!)后静置,分去下层水相。酯层用10ml 饱和食盐

乙酸丁酯合成与精制实验方案

乙酸正丁酯的合成与精制专业实验预习报告 实验名称:乙酸正丁酯的合成及精制实验 姓名: 学号: 联系方式: 组员: 专业:化学工程与工艺

乙酸丁酯的合成与精制

乙酸正丁酯的合成与精制 一、实验目的 (1)初步了解和掌握化工产品开发的研究思路和实验研究方法。 (2)学会组织全流程实验,并获得高纯度的产品。 (3)学会分析实验流程及实验结果,提出实验改进方案。 二、实验原理 乙酸正丁酯是一种无色的液体。具有比乙酸戊酯略小的水果香味。它可与醇,酮,酯和大多数常用的有机溶剂混溶。特别是当它预先与活性溶剂或是惰性溶液混和时是硝化纤维素和纤维素醚的一种溶剂。天然品存在于苹果、香蕉、樱桃、葡萄等植物中,易挥发,难溶于水,能溶解油脂莘脑,树胶,松香等,有麻醉作用,有刺激性[1]。 乙酸正丁酯是一种重要的化工产品,也是一种重要的有机合成中间体,广泛用于涂料、制革、制药等工业。它是化工、医药等行业的主要溶剂之一,是清漆、人造革等的良好溶剂,还可用于部分化妆品、添加剂、防腐防霉剂等合成中,用以调配食用香精,也可用做日化香精及酒用香精。因此,乙酸正丁酯具有广泛的应用价值和发展前景。 现代工业中多采用间歇法,以浓硫酸作为催化剂生产,但此法存在着以下缺点: 1) 由于浓硫酸有强脱水性和氧化性,可能产生乙醚、乙烯等副产物,同时可能由于局部过热出现碳化,影响产品的分离; 2) 硫酸腐蚀性强,对设备的要求比较高; 3) 反应后的产品要经过多次碱洗、水洗才能出去硫酸等杂质,后处理复杂,产生的废水多,污染环境,给环境保护带来很大的压力。

随着人们充分利用资源、简化工艺流程、提高经济效益、保护生存环境的意识不断增强和环保法规的日益完善,用环境友好催化剂替代浓硫酸催化合成酯类化合物已成为探索方向。 对于乙酸正丁酯合成实验方案的改进中,绝大多数还是以酸、醇为原料的,只是所采用的催化剂不同而已,但是大多数均为固体酸。先将所查到的文献的部分方案简要叙述如下: ①蔡新安[2]等人利用廉价易得的硫酸氢钾催化剂来制备乙酸正丁酯,酯化产率较高,催化剂可重复使用,后处理简单,效果良好。硫酸氢钾是一种廉价、易得、稳定的无机酸性晶体,能够催化合成乙酸正丁酯。由于它难溶于有机反应体系,因而对设备的腐蚀性小,酯化率高,能够重复使用,是替代硫酸催化合成乙酸正丁酯的良好催化剂,适合工业化生产。研究得出的最佳条件为:正丁醇的用量为0.25mol,醇酸摩尔比为1:1.3,催化剂用量为反应物总质量的3%,在此条件下最高产率为86.83%。 ②柳艳修[3]等人在微波辐射的作用下研究了HZSM-5分子筛催化剂的多相催化酯化法合成乙酸正丁酯的反应,探讨了催化剂用量、微波辐射的功率、微波辐射的时间、和吸水剂用量对反应的影响。结果表明:在酸醇体积比为1.6时,HZMS-5分子筛催化剂为0.094g/ml(以乙酸计),微波辐射功率为640W,微波辐射时间为30min吸水机(氯化钙)为0.375g/ml(以乙酸计),酯的收率可以达到98.7%。 ③冯桂荣[4]等以乙酸和正丁醇为原料,分别以浓硫酸、三氯化铁和固体超强酸SO4/Fe2O3为催化剂合成乙酸正丁酯。利用正交设计法,通过极差分析,探讨了催化剂种类、醇酸摩尔比和酯化时间及它们之间的交互作用对酯的收率的影响。实验结果表明较好的催化条件是:醇酸物质的量比为2时,催化剂为固体超强酸SO4/Fe2O3,酯化时间为2h,其酯的收率可达93.5%。 ④尹彦冰[5]等人研究了以乙酸和正丁酯为原料,磷钼钒杂多酸为催化剂合成乙酸正丁酯的反应,考察了原料醇酸物质的量比、反应时间、反应温度、等因素对酯化反应的影响,经过试验确定了合成乙酸正丁酯的较佳工艺条件,醇酸物质的量比为1.2:1,磷钼钒杂多酸催化剂用量为反应总量的0.6,反应时间为85min,

D-对羟基苯甘氨酸的制备

D-对羟基苯甘氨酸的制备 制药081(10084349)刘朝阳 1前言 1.1目的 D-对羟基苯甘氨酸是重要的医药中间体,通过查阅国内外有关文献,本文总结了对羟基苯甘氨酸的性质、用途、主要生产路线和生产开发情况。 1.2产品介绍 D-对羟基苯甘氨酸(简称:D-p-HPG)是一种重要的医药精细化学品,主要用于合成β-2-内酰胺类半合成抗菌素,如羟氨苄青霉素(阿莫西林)、头孢克罗、头孢立新、头孢拉定等抗菌药物。这些药物用途广泛,对革兰氏阳性菌、革兰氏阴性菌、弓形体、螺旋体等均有杀灭作用;同时它也用于多种多肽类激素及农药的合成、人工甜味剂的重要中间体。 【结构式】 D-对羟基苯甘氨酸(D-p-hydroxylphenylglycine,D-p-HPG),化学名D-α- 氨基对羟基苯乙酸,分子式(OH)C 6H 4 NH 2 CH 2 COOH,分子量167.2。 【性状】 白色片状结晶,熔点204℃(分解),微溶于乙醇和水,易溶于酸或碱溶液生成盐。 1.3研究意义 D-对羟基苯甘氨酸是一种重要是合成广谱抗生素羟氨卞青霉素和羟基头孢菌素的重要原料,用途广泛。中国是抗生素类药物的生产和需求大国,而且中国制药行业已把半合成青霉素和半合成头孢菌素作为发展重点,因此对D-HPG新工艺的研究具有重要的现实意义。

2合成方法综述 合成方法大致分两类:一类是生物酶催化选择性合成D-HPG,该法选择性高,污染小,但因生物菌培养问题,大规模工业化生产还有一定技术难度;另一类是采用化学方法合成得到外消旋体D,L-对羟基苯甘氨酸(D,L-HPG),再经拆分得到具有光学活性的D-HPG。 2.1D,L-HPG的合成 化学合成是工业上生产D-HPG普遍采用的,但近年来,随着环保要求的不断提高和生物酶技术在手性氨基酸药物中的研究的不断进展,利用生物催化合成 D-HPG逐渐成为研究的热点。 2.1.1生物催化合成法 与化学合成方法相比, 生物催化法具有环境污染小、反应条件温和、选择性和转化率高等优点,但生物菌种的筛选较为困难,投资大,生物酶容易失活,无法大规模连续化生产。因此生物催化合成法仍以实验室研究较多。对于生物催化合成法的研究主要集中在利用D,L-对羟基苯海因(D,L-HPH)为原料经酶催化合 成D-HPG上。 第一步使用D-海因酶作用在底物D,L-HPH上,使其进行不对称开环生成N-氨基甲酰-D-对羟基苯甘氨酸,第二步再将N-氨基甲酰 -D -对羟基苯甘氨酸用化学方法水解脱去氨甲酰基得D-HPG。 该方法的优点在于D-海因酶能选择性水解D-HPH,而L-HPH在碱性条件下可以自发消旋为D,L-HPH,底物的利用率达到100%,但反应第二步采用化学方法水解,污染问题仍较为严重。 2.1.2化学合成法 化学合成因其具有生产工艺简单,易于操作等优点,目前国内外所有文献一致倾向于先合成出外消旋化的D,L-HPG,然后再进行拆分获得D-HPG的两步法。有些方法还包括将不需要的L-HPG进行消旋化。 D,L-HPG的化学合成方法主要有以下几种。 2.1.2.1对甲氧基苯甲醛法 该法是早期用于工业生产D,L-HPG的合成方法。对甲氧基苯甲醛与氰化钠在水溶液或醇溶液中,经环合、加压碱水解和脱甲基,得到D,L-HPG。

乙酸乙酯的制备

\\乙酯的制备 一、 实验目的 1. 掌握乙酸乙酯的制备原理及方法,掌握可逆反应提高产率的措施。 2. 掌握分馏的原理及分馏柱的作用。 3. 进一步练习并熟练掌握液体产品的纯化方法。 二、 实验原理 乙酸乙酯的合成方法很多,例如:可由乙酸或其衍生物与乙醇反应制取,也可由乙酸钠与卤乙烷反应来合成等。其中最常用的方法是在酸催化下由乙酸和乙醇直接酯化法。常用浓硫酸、氯化氢、对甲苯磺酸或强酸性阳离子交换树脂等作催化剂。若用浓硫酸作催化剂,其用量是醇的0.3%即可。其反应为: CH 3COOH +CH 3CH 2OH CH 3COOCH 2CH 3H 2O +CH 3CH 223CH 2OCH 2CH 3H 2O +CH 3CH 2OH 24 H 2O +CH 2CH 2主反应:副反应: 酯化反应为可逆反应,提高产率的措施为:一方面加入过量的乙醇,另一方面在反应过 程中不断蒸出生成的产物和水,促进平衡向生成酯的方向移动。但是,酯和水或乙醇的共沸物沸点与乙醇接近,为了能蒸出生成的酯和水,又尽量使乙醇少蒸出来,本实验采用了较长的分馏柱进行分馏。

四、 实验装置图 蒸馏装置 五、 实验流程图 4ml 乙醇5ml 浓硫酸2粒沸石 10ml 8ml 73-80 的馏分,℃ 六、 实验步骤 在100ml 三颈瓶中,加入4ml 乙醇,摇动下慢慢加入5ml 浓硫酸,使其混合均匀,并加入几粒沸石。三颈瓶一侧口插入温度计,另一侧口插入滴液漏斗,漏斗末端应浸入液面以下,中间口安一长的刺形分馏柱(整个装置如上图)。 仪器装好后,在滴液漏斗内加入10ml 乙醇和8ml 冰醋酸,混合均匀,先向瓶内滴入约2ml 的混合液,然后,将三颈瓶在石棉网上小火加热到110-120℃左右,这时蒸馏管口应有液体流出,再自滴液漏斗慢慢滴入其余的混合液,控制滴加速度和馏出速度大致相等,并维持反应温度在110-125℃之间,滴加完毕后,继续加热10分钟,直至温度升高到130℃不再有馏出液为止。 馏出液中含有乙酸乙酯及少量乙醇、乙醚、水和醋酸等,在摇动下,慢慢向粗产品中加

乙酸乙酯车间工艺设计

目录 一、设计任务 (2) 二、概述 (2) 1.乙酸乙酯性质及用途 (2) 2.乙酸乙酯发展状况 (3) 三. 乙酸乙酯的生产方案及流程 (4) 1、酯化法 (4) 2. 乙醇脱氢歧化法 (5) 3、乙醛缩合法 (6) 4、乙烯、乙酸直接加成法 (7) 5、确定工艺方案及流程 (8) 四.工艺计算 (8) 4.1. 物料衡算 (8) 4.2 初步物料衡算 (10) 五. 设备设计 (16) 5.1 精馏塔Ⅱ的设计 (16) 5.2最小回流比的估算 (18) 5.3 逐板计算 (20) 5.4 逐板计算的结果及讨论 (20) 六. 热量衡算 (21) 6.1 热力学数据收集 (21) 6.2 热量计算,水汽消耗,热交换面积 (23) 6.3 校正热量计算、水汽消耗、热交换面积(对塔Ⅱ) (26) 表10校正后的热量计算汇总表 (32)

乙酸乙酯车间工艺设计 一、设计任务 1.设计任务:乙酸乙酯车间 2.产品名称:乙酸乙酯 3.产品规格:纯度99% 4.年生产能力:折算为100%乙酸乙酯1880吨/年 5.产品用途:作为制造乙酰胺、乙酰乙酸酯、甲基庚烯酮、其他有机化合物、合成香料、合成药物等的原料;用于乙醇脱水、乙酸浓缩、萃取有机酸;作为溶剂广泛应用于各种工业中;食品工业中作为芳香剂等。 由于本设计为假定设计,因此有关设计任务书中的其他项目如:进行设计的依据、厂区或厂址、主要技术经济指标、原料的供应、技术规格以及燃料种类、水电汽的主要来源,与其他工业企业的关系、建厂期限、设计单位、设计进度及设计阶段的规定等均从略。 二、概述 1.乙酸乙酯性质及用途 乙酸乙酯又名乙酸乙酯,乙酸醚,英文名称Ethyl Acetate或 Acetic Ether Vinegar naphtha.乙酸乙酯是具有水果及果酒芳香的无色透明液体,其沸点为77℃,熔点为-83.6℃,密度为0.901g/cm3,溶于乙醇、氯仿、乙醚和苯等有机溶剂。 乙酸乙酯的重要用途是工业溶剂,它是许多树脂的高效溶剂,广泛应用于油墨、人造革、胶粘剂的生产中,也是清漆的组份。它还用于乙基纤维素、人造革、油毡、着色纸、人造珍珠的粘合剂、医用药品、有机酸的提取剂以及菠萝、香蕉、草莓等水果香料和威士忌、奶油等香料。此外,还用于木材纸浆加工等产业部门。对于用很多天然有机物的加工,例如樟脑、

乙酸丁酯合成工艺

乙酸丁酯的合成 乙酸丁酯是一种无色透明液体,具有强烈香蕉似香味,是G B 2 7 6 0 —8 6规定允许使用的食用香料,大量用于配制香蕉、梨、菠萝、杏、桃及草莓等型香精,乙酸丁酯还是一种重要的有机化工原料,广泛用于溶剂、涂料、医药和香料等工业。现有乙酸丁酯的生产均以浓硫酸为催化剂。由于硫酸的强氧化性导致副反应较多,原料消耗较大,同时后续工序分离困难,腐蚀性强。 近年来,以各种固体酸为催化剂合成乙酸丁酯的研究较多,所用的方法有:对羟基苯甲酸合成,对甲基苯甲酸催化合成,活性碳固载杂多酸催化合成等工艺设计。这些工艺方法有的可获得较高的转化率、酯收率和酯化选择性,反应温度低,产品无色,反应的催化剂无氧化性,无碳化作用,作为酯化反应的催化剂时,具有活性高,选择性好,产品纯度高,不腐蚀设备,减少污染等优点。这些催化剂虽然克服了硫酸催化剂的不足,但有些存在价格较高,有些稳定性差,有些原料回收利用率低等缺点,因此工业化应用效果不理想。 中国石油化工股份有限公司抚顺石油化工研究院,开发了耐温强酸性阳离子交换树脂催化剂,采用此催化剂,以乙酸和正丁醇为原料合成了乙酸丁酯。用”c核磁共振光谱表征了耐温强酸性阳离子交换树脂催化剂的结构;在工业生产条件下,对比了不同强酸性阳离子交换树脂催化剂的活性;以耐温强酸性阳离子交换树脂为催化剂,考察r进料量对乙酸转化率的影响及催化剂的稳定性。实验结果表明,以耐温强酸性阳离子交换树脂为催化剂合成乙酸丁酯,在反应釜温度1 2 0℃、分馏柱顶部温度9 l ~9 2℃、正丁醇与乙酸摩尔比 1 .O 2、进料量6 0m L /h 的条件下,乙酸的转化率为9 5 .1 %,达到了采用硫酸催化剂时的水平。耐温强酸性阳离子交换树脂催化剂的寿命在 5 0 0 h以上,稳定性好,以耐温强酸性阳离子交换树脂为催化剂合成乙酸丁酯,具有反应时间短、副反应少、对设备无腐蚀、产量高、无三废等优点,具有较好的工业化前景。 1 实验部分 1 .1 反应原料 乙酸:工业品,质量分数大于等于9 9 .0 %正丁醇:工业品,质量分数大于等9 8 .0 %。 1 . 2 催化剂的制备 将苯乙烯和二乙烯基苯完全混合后,加入固体石蜡,按一定的进料量加入到水相中,调节搅拌速率,控制油珠的均匀程度;升温使油珠固化,过滤、洗涤、干燥反应物料,收集2 0—5 0目的聚合物油珠进行物理结构稳定化处理,得到苯乙烯一二乙烯基苯共聚物树脂;在共聚物树脂中加入催化剂和吸电子基团试剂( 氯) 进行基团化反应,得到基团化共聚物树脂;基团化共聚物树脂中加入磺化剂( S O 或发烟硫酸) 进行磺化反应,得到磺化树脂;洗涤磺化树脂,进行活性基团稳定化处理得到耐温强酸性阳离子交换树脂催化剂。 1 .3 催化剂的表征采用B r u k e r公司Ms l一3 0 0型核磁共振( r ~i R) 仪表征试样的分子结构。 1 .4 实验及分析方法 在1 L四口烧瓶( 反应釜)上安装2 5 mm、高5 0 0 mm的分馏柱,内装3 r a i n×3 r a i n的不锈钢网环填料,分馏柱上装有气相温度计、回流冷凝器和分水器。

1-α-羟基苯乙酸拆分工艺研究

16 1-α-羟基苯乙酸也就是扁桃酸,通常情况下被称之为苦杏仁酸,在其分子结构中由于存在一个手性碳又被称之为手性分子。在制药过程中,1-α-羟基苯乙酸有着加强的使用范围,在治疗血管堵塞疾病中通常对其合成的药物进行临床运用,同时在减肥药物以及抗肿瘤药物中也有着相应的运用。另一方面,1-α-羟基苯乙酸具有较强的分解性能,是当前较为常见的有机酸种类拆分剂,致使其拥有较为良好的发展前景。文章主要对一种完善的化学法进行使用对1-α-羟基苯乙酸进行拆分,也就是将使用钙离子沉淀剂转变为使用镁离子、钙离子沉淀剂,科学有效的对非对应异构体盐进行分解。 1?实验仪器与方法1.1?实验仪器 该实验主要使用型号为WZZ-1的自动指示旋光仪、型号为AB104的电子分析天平、熔点仪、恒温水浴锅等仪器;使用的相关试剂为含量≥95%的1-α-羟基苯乙酸,含量≥95%的盐酸伪麻黄碱、无水乙醇、C 4H 10O、 C 6H 6等。 1.2?试验方法 首先,实验拆分原理。该实验的拆分原理主要是依据?p o Ca d d Ca d d ..2?? 这一化学反应式进行的。其次,拆分工艺流程。研究人员在实际研究实验过程中利用相关设备称取3.8g 1-α-羟基苯乙酸,在将其溶解在20mL的无水乙醇中进行搅拌处理,使两者之间充分的进行融合,称取3.4g的盐酸伪麻黄碱将其与20mL的无水乙醇进行充分融合,通过对其进行搅拌处理提高两者之间的融合度,之后在将两种溶解进行融合并放置在温度为40℃的水溶液 中保温1h左右,对乙醇进行回收,获得相应的胶状物质, 再添加相应的沉淀剂,如含有?? 2Ca n n ?与???Э? 2Mg ??比例为2∶1的 50mLNaClO 3溶液中,使其静止4h,进一步获得颜色为灰白色的固体物质,也就是伪麻黄碱1-α-羟基苯乙酸钙盐的沉淀物质,通过过滤以及抽滤等方法对伪麻黄碱1-α-羟基苯乙酸钙盐进行获取。再次,1-α-羟基苯乙酸钙盐水解。研究人员利用相关设备将钙盐放置在100mL的烧瓶中,添加10mL的蒸馏水,对其进行充分的搅拌,同时结合实际情况添加高东渡氯化氢,对其pH值进行调整使其为1,对其仍进行充分搅拌直至成为固体物质,将其安放在温室中放置10min左右,进行3次乙醚萃取,融合成乙醚液,无水硫化钠干燥,对乙醚进行回收,获得白色的固 体物质1-α-羟基苯乙酸1.7g左右,mp值为119℃指120℃(文献值通常为119℃),光学纯度为99.2%。最后,1-α-羟基苯乙酸纯化处理。研究人员利用设备将1-α-羟基苯乙酸放置在100mL的圆底烧瓶内,再添加15mL的苯,对其进行回流加热至沸腾状态,当固体全部融化溶液成为透明时停止加热,将其安置在温室环境等待结晶现象的发生。在发生结晶现象以及冷却后进行抽滤处理,再使用相应数量的石油醚对结晶体进行洗涤,提高其干燥速度。最终获得白色、重量为1.5g的结晶体,对其旋光度以及熔点等进行检测。 2?实验结论 该实验项目主要是将盐酸伪麻黄碱与1-α-羟基苯乙酸融合形成盐,再通过使用钙离子与镁离子沉淀剂形成d.d-Ca盐沉淀物质,其中DL-盐酸肉碱主要存在于水中,致使1-α-羟基苯乙酸与d-α-羟基苯乙酸进行充分分离。通常升恒的d.d-Ca盐主要为拆分技术中的重要工作项目对拆分效率有着较为直接的影响,因此在实际拆分期间研究人员应对d.d-Ca盐与d.d-Mg盐进行充分的检测。 在对相关图谱进行分析过程中得知,1-α-羟基苯乙酸碳酸根的吸收峰值在达到1617cm -1时,成盐开始消失,进一步导致d.d-Ca盐羧酸根负离子峰值到1647cm -1,盐酸伪麻黄碱—NHR峰值快速消失。另一方面在d.d-Ca盐中铵盐吸收峰值达到2478cm -1时,可证明1-α-羟基苯乙酸碳与盐酸伪麻黄碱形成盐,其中核磁共振图像也可对其进行证明,其中钙离子对已有结构的影响则不能进行相应的显示,致使出现沉淀现象的主要原因还缺乏相应的明了性,需科研人员对其进行深入分析。对镁离子进行添加是1-α-羟基苯乙酸拆分工艺优化的重点,同时在钙离子与镁离子摩尔比达到2∶1时,其拆分效果最为明显。 3?结束语? 综上所述,在对1-α-羟基苯乙酸拆分工艺研究过程中,科研人员通过相应的原理对其进行分析与研究,通过镁离子与钙离子的同时使用进一步对1-α-羟基苯乙酸拆分工艺进行完善。 参考文献? [1]熊正龙,吴桂荣.1-α-羟基苯乙酸拆分工艺研究[J].新疆医科大学学报,2012(1). [2]吴桂荣,杨晓芝.一种由钙离子参与的光学拆分[J].大学化学,2016(5). 1-α-羟基苯乙酸拆分工艺研究 安雪飞 国药集团威奇达药业有限公司 山西 大同 037300 摘要:主要对1-α-羟基苯乙酸拆分工艺进行分析,结合当下1-α-羟基苯乙酸拆分工艺的发展现状,从实验仪器与试剂、实验结果与解析、实验结论等方面进行深入研究与探索,主要目的在于更好地推动1-α-羟基苯乙酸拆分工艺研究的发展与进步。 关键词:1-α-羟基苯乙酸?拆分工艺 沉淀剂 Resolution?process?of?1-α-hydroxy?benzene?acetic?acid? An?Xuefei Sinopharm Weiqida Pharmaceutical Co.,Ltd.,Datong 037300,China Abstract:This?article?describes?the?resolution?processes?of?1-α-hydroxy?benzene?acetic?acid,covering?the?experimental?instruments?and?reagents,experimental?results?and?analysis?as?well?as?experimental?conclusions?on?the?basis?of?the?current?development?status?of?the?processes?to?promote?the?development?of?the?processes. Keywords:1-α-hydroxy?benzene?acetic?acid;resolution?process;precipitation?agent

乙酸乙酯的合成实验报告

乙酸乙酯的合成实验报告 学号:1120132970 实验日期:2015年3月27日一、实验目的与要求 (1)练习巩固回流蒸馏基本操作; (2)掌握分液漏斗的使用; (3)了解液体的干燥方法; (4)复习巩固酯化反应的机理。 二、复习内容 (1)萃取和洗涤—分液漏斗的使用; (2)回流; (3)干燥和干燥剂; (4)常压蒸馏基本操作。 三、反应原理 (1)萃取和洗涤 萃取和洗涤是利用物质在不同溶剂中的溶解度不同来进行分离、提取或纯化的操作。 萃取和洗涤在原理上是一样的,只是目的不同。从混合物中抽取所需要的物质,叫萃取或提取;从混合物中除去不需要的杂质,叫洗涤。 萃取是利用物质在两种互不相溶的溶剂中溶解度或分配比的不 同来达到分离、提取或纯化目的的一种操作。根据分配定律,在一定

温度下,有机物在两种溶剂中的浓度之比为一常数。即:利用分配系数的定义式可计算每次萃取后,溶液中的溶质的剩余量。 设V为被萃取溶液的体积(mL),近似看作与溶剂A的体积相等(因溶质量不多,可忽略)。 Wo 为被萃取溶液中溶质的总质量(g ),S为萃取时所用溶剂B 的体积(mL),W1为第一次萃取后溶质在溶剂A中的剩余量(g ),(Wo -W1) 为第一次萃取后溶质在溶剂B中的含量(g )。 则: 设W2为第二次萃取后溶质在溶剂A中的剩余量(g ) 设Wn 为经过n次萃取后溶质在溶剂A中的剩余量(g ) ,则:因为上式中KV/ (KV+S) 一项恒小于1,所以n越大,Wn就越小,也就是说一定量的溶剂分成几份多次萃取,其效果比用全部量溶剂做一次萃取为好。萃取和洗涤在原理上是一样的,只是目的不同。从混合物中抽取所需要的物质,叫萃取或提取;从混合物中除去不需要的杂质,叫洗涤。 (2)干燥和干燥剂 干燥是用来除去固体、气体或液体中含有有少量水分和少量有机溶剂的方法。它是实验室中最常用的操作之一。此项操作较为简单,但其完成得好坏将直接影响到有机反应的本身以及纯化和分析产品 时的结果。因此,操作者必须严肃对待,严格操作。 干燥的方法,大致可分为两种:

乙酸正丁酯的制备

“乙酸正丁酯的制备”实验报告 班级:工艺一班 实验组号:1-8 同组姓名 实验时间 撰写实验报告时间:2011 年12 月10 日

1 实验目的 (1)初步了解和掌握化工产品开发的研究思路和实验研究方法。 (2)学会组织全流程实验,并获得高纯度的产品。 (3)学会分析实验流程及实验结果,提出实验改进方案。 二、实验原理 酸与醇反应制备酯,是一类典型的可逆反应: 为提高产品收率,一般采用以下措施: 1、使某一反应物过量; 2、在反应中移走某一产物(蒸出产物或水); 3、使用特殊催化剂 用酸与醇直接制备酯,通常有三种方法。 第一种是共沸蒸馏分水法,生成的酯和水以沸臃物的形式蒸出来,冷凝后通过分水器分出水,油层回到反应器中。 第二种是提取酯化法,加入溶剂,使反应物、生成的酯溶于溶剂中,和水层分开。 第三种是直接回流法,一种反应物过量,直接回流。 制备乙酸正丁配用共沸蒸馏分水法较好。为了将反应物中生成的水除去,利用酯、酸和水形成二元或三元恒沸物,采取共沸蒸馏分水法。

使生成的酯和水以共沸物形式逸出,冷凝后通过分水器分出水层,油层则回到反应器中。 三、仪器、试剂与装置 仪器蒸馏装置玻璃磨口仪器、球形冷凝管、分水器、圆底烧瓶(250ml)、温度计(200℃)、锥形瓶(50ml)、烧杯(400ml)、油浴锅、分液漏斗、量筒(10ml、50ml)、电热套、铁架台、铁夹及十字头、铁圈、橡胶水管、天平 试剂正丁醇(23ml,0.25mol)、冰醋酸(16.5ml,0.28mol稍微过量)、KHSO4 1g (催化剂)、NaCl、无水硫酸镁、冰块、沸石、甘油、pH试纸 装置

乙酸乙酯的几种制备方法

几种工业乙酸乙酯制备方法的技术经济对比 李雄 (中国石化上海石油化工股份有限公司,200540) 乙酸乙酯是应用最广泛的脂肪酸酯之一,其制备方法有乙酸酯化法、乙醛缩合法、乙烯加成法和乙醇脱氢法等。相对比,乙醛缩合法生产乙酸乙酯路线投资低、成本也较低,较适合乙醛富裕地区投资生产。 关键词:乙醛乙酸乙酯技经指标成本 1 用途及市场情况介绍 乙酸乙酯(EA),又名醋酸乙酯,是应用最广泛的脂肪酸酯之一,具有优良的溶解性能,是一种快干性的、极好的工业溶剂,被广泛用于醋酸纤维、乙基纤维、氯化橡胶、乙烯树酯、乙酸纤维树酯、合成橡胶等生产;也可用于生产复印机用液体硝基纤维墨水;在纺织工业中用作清洗剂;食品工业中用作特殊改性酒精的香味萃取剂;香料工业中是最重要的香料添加剂,可作为调香剂的组分。以外,EA也可用作粘合剂的溶剂、油漆的稀释剂以及制造药物、染料的原料。 1.1 国际市场分析 乙酸乙酯由于其特殊的性能,在世界化工市场相当活跃。美国和日本是世界上最大的乙酸乙酯生产和消费国。全世界生产能力中美国占31.73%,日本占35.75%。美国的主要生产公司是Eastman公司、Hoechst Calanese及孟山都公司,总生产能力为127 kt/a。日本的主要生产公司是千叶乙酸乙酯、日本合成化学、德山石油化学及协和油化,总生产能力为193 kt/a。 在亚洲地区,乙酸乙酯的主要市场是日本、中国和东南亚。日本是该地区乙酸乙酯的净出口国,有近50%的生产能力在日本,该地区的生产缺口达70 kt/a,目前主要从美国和欧洲进口。近年来,日本的乙酸乙酯产量以每年10%的速率增长,增加量基本用于出口。 1.2 国内供需及预测 (1)生产能力 目前,我国乙酸乙酯的生产企业有30多家,年生产能力在万吨以上的仅有两家,其余均为千吨级生产装置,除上海石化采用乙醛法生产、山东临沭化肥厂是采用乙醇脱氢法生产外都是采用直接酯化法。 (2)产量和进口量

乙酸乙酯的制备实验报告

班级:煤化111 姓名:郝海平 学号:10 乙酸乙酯的制备实验报告一.实验目的 1.掌握酯化反应原理以及由乙酸和乙醇制备乙酸乙酯的方法。 2.学会回流反应装置的搭制方法。 3.复习蒸馏、分液漏斗的使用、液体的洗涤与干燥等基本操作。 二.实验原理 本实验用冰醋酸和乙醇为原料,采用乙醇过量、利用浓硫酸的吸水作用使反 应顺利进行。除生成乙酸乙酯的主反应外,还有生成乙醚的副反应。 主反应: 浓H 2S O 4 CH 3COOH +CH 3CH 2OH CH 3COOCH 2CH 3H 2O + 副反应: CH 3CH 2OH H 2 O 浓H S O 170 o C C H 2C H 2+ H 2O (CH 3CH 2)2O 2(CH 3CH 2)2+浓H 2S O 4140 o C 三.仪器与试剂 仪器:100ml 、50ml 圆底烧瓶,冷凝管,温度计,分液漏斗,电热套,分馏柱, 接引管,铁架台,胶管 量筒等。 试剂:无水乙醇 冰醋酸 浓硫酸 碳酸钠 食盐水 氯化钙 硫酸镁 四.实验步骤 1.向烧瓶中加入19ml 无水乙醇和5ml 浓硫酸,向恒压漏斗中加入8ml 冰醋 酸。

2.开始加热,加热电压控制在70V----80V,并冰醋酸缓慢滴入烧瓶,微沸30----40min。 3.蒸馏温度控制在温度严格控制在73-----78℃直至反应结束。 五.产品精制 1.首先加入7ml碳酸钠饱和溶液,用分液漏斗分,目的是离除去冰醋酸。 2.再向分液漏斗上层液中加入7ml饱和食盐水,目的是防止乙酸乙酯水解。 3.加入7ml饱和氯化钙溶液,目的是出去无水乙醇。 4.加入2g MgSO4 固体,目的是除水。 六.数据处理 最后量取乙酸乙酯为。(冰醋酸相对分子质量相对 密度)(乙酸乙酯相对分子质量相对密度) 产率=()//60)X100%=57% 七.讨论 1.浓硫酸加入时会放热,应在摇动中缓慢加入。 2.加入饱和NaCO 3时,应在摇动后放气,以避免产生CO 2 而使分液漏斗内压力过 大。 3.若CO 32-洗涤不完全,加入CaCl 2 时会有CaCO 3 沉淀生成,应加入稀盐酸溶解。 4.干燥时应塞上瓶塞,并间歇振荡。 5.蒸馏时,所有仪器均需烘干。

工业乙酸乙酯的制备方法

工业乙酸乙酯的制备方法 目前世界上工业乙酸乙酯主要制备方法有乙酸酯化法、乙醛缩合法、乙烯加成法和乙醇脱氢法等。传统的乙酸酯化法工艺在国外被逐步淘汰,而大规模生产装置主要是乙醛缩合法和乙醇脱氢法,在乙醛原料较丰富的地区万吨级以上的乙醛缩合法装置得到了广泛的应用。乙醇脱氢法是近年开发的新工艺,在乙醇丰富且低成本的地区得到了推广。最新的乙酸乙酯生产方法是乙烯加成法,1998年在印度尼西亚迈拉库地区采用日本昭和电工专利技术建成了50 kt/a生产装置。 (1)乙酸酯化法 乙酸酯化法是传统的乙酸乙酯生产方法,在催化剂存在下,由乙酸和乙醇发生酯化反应而得。 CH3CH2OH+CH3COOH=CH3COOCH2CH3+H2O 乙醇乙酸乙酸乙酯水 反应除去生成水,可得到高收率。该法生产乙酸乙酯的主要缺点是成本高、设备腐蚀性强,在国际上是属于被淘汰的工艺路线。 (2)乙醛缩合法 在催化剂乙醇铝的存在下,两个分子的乙醛自动氧化和缩合,重排形成一分子的乙酸乙酯。 2CH3CHO→CH3COOCH2CH3 乙醛乙酸乙酯 该方法20世纪70年代在欧美、日本等地已形成了大规模的生产装置,在生产成本和环境保护等方面都有着明显的优势。 (3)乙醇脱氢法 采用铜基催化剂使乙醇脱氢生成粗乙酸乙酯,经高低压蒸馏除去共沸物,得到纯度为99.8%以上乙酸乙酯。 2C2H5OH→CH3COOCH2CH3+H2 乙醇乙酸乙酯氢 (4)乙烯加成法

在以附载在二氧化硅等载体上的杂多酸金属盐或杂多酸为催化剂的存在下,乙烯气相水合后与气化乙酸直接酯化生成乙酸乙酯。 CH2CH2+CH3COOH=CH3COOCH2CH3 乙烯乙酸乙酸乙酯 该反应乙酸的单程转化率为66%,以乙烯计乙酸乙酯的选择性为94%。Rhone-Poulenc 、昭和电工和BP等跨国公司都开发了该生产工艺。 由于上海石化股份有限公司具有丰富的乙烯、乙酸和乙醛,故本文对乙酸酯化法、乙醛缩合法和乙烯加成法生产乙酸乙酯的技术经济指标予以对比分析。 技术经济指标对比 对于同为80 kt/a级的工业乙酸乙酯生产装置,分析其各项经济技术指标,对比如表2。表2 乙酸乙酯各工艺路线技术经济指标对照 工艺路线 乙醛缩合法 乙烯加成法 酯化法 原料单耗 /t·t-1 乙烯 - 0.355 乙醛 1.02 乙酸 0.718 0.692 乙醇 - 0.533 其他 0.005 0.01 0.005

对羟基苯乙酮的合成_张雯斐

科研探索 知识创新 与。对羟基苯乙酮在医药、农药、 染料、液晶材料等领域具有重要的应用价值 。 不同生产方法的主要区别在第二步。 方法1:苯酚和乙酐加氯化锌在一定温度下反应,经柱层析可得到对位异构体40%,邻位异构体38%;此方法得率较高, 但反应时间较长,且生成的邻位取代物较多。 方法2:采用三氯化铝——氯化钠复盐作催化剂 合成了对羟 基苯乙酮,收率58.5%纯度98.68%。 综上,我们采用方法3,即以苯酚和乙酐为原料,先进行酯化反应,再通过三氯化铝催化Fries 重排得到产物对羟基苯乙酮,并对酯化反应是否添加催化剂与第二步重排的最佳反应条件进行探究。此方法催化剂易得,产率较高,纯度经精制后很高,是可行的合成方法。3实验 3.1乙酸苯酯的合成 将一定比例的苯酚和已酐混合后加入到50mL 圆底烧瓶中,加入3滴浓硫酸,加热回流一定时间,反应结束后,将反应液冷却至室温,用蒸馏水洗涤至PH 值为6~7,分去水层,保留有机层,用无水硫酸镁干燥后,常压蒸馏,收集190~194℃的馏分,测折光率分析产品。3.2对羟基苯乙酮的合成 在烘干的装有电动搅拌器、温度计、和上部带有干燥管的冷凝管的三口烧瓶中加入一定量的乙酸苯酯和溶剂A ,在剧烈 搅拌下分三次加入一定量的无水三氯化铝,加完后开始加热使反应温度保持在t ℃左右反应一定时间,停止加热。搅拌下加入一定量的水分解多余的无水三氯化铝。将反应液进行水蒸气蒸馏至澄清,将其转移到敞开容器中,冷却至室温后加入 一定量的一定浓度的稀盐酸,至PH 值为1~2。冰盐浴冷却到-2℃析出白色晶体,过滤得对羟基苯乙酮粗品,干燥称重。将粗品转移至小烧杯中加入一定量的水,水浴加热,分去油层后冰盐浴冷却,过滤得白色针状晶体,再次称重,测熔点和红外。 3.3实验结果与讨论 3.3.1反应时间对乙酸苯酯收率的影响 采用酐醇摩尔比1.2,改变反应时间,当回流时间为2h 时, 产率为46.04%,2.5h 时,产率为60.95%,3h 时,产率为67.7%。可见,随着反应时间相对减少,收率逐渐降低。其原因可能是反应时间过短,反应不完全,反应时间过长,逆反应进行程度较大。 3.3.2反应温度对对羟基苯乙酮收率的影响 采用乙酸苯酯、氯苯、催化剂无水三氯化铝摩尔比1:1.2:1.1,改变反应温度,结果表示,随温度升高,对羟基苯乙酮的收率先增加后减少,在70℃时收率最高,大致成抛物线型变化。在相对较低的温度下, 随着温度的升高,单位体积内反应物的活化分子数增多,从而增加了单位时间内单位体积内反应物 分子的有效碰撞的频率,导致反应速率增大

乙酸乙酯的制备实验报告 ()

青岛大学实验报告 年月日姓名系年级组别同组者 科目有机化学题目乙酸乙酯的制备仪器编号 一.实验目的 1.掌握酯化反应原理以及由乙酸和乙醇制备乙酸乙酯的方法。 2.学会回流反应装置的搭制方法。 3.复习蒸馏、分液漏斗的使用、液体的洗涤与干燥等基本操作。 二.实验原理 本实验用冰醋酸和乙醇为原料,采用乙醇过量、利用浓硫酸的吸水作用使反应顺利进行。除生成乙酸乙酯的主反应外,还有生成乙醚的副反应。主反应: 副反应: 乙酸乙酯的立体结构 三.仪器与试剂 仪器:100ml、50ml圆底烧瓶,冷凝管,温度计,分液漏斗,电热套,维氏分馏柱,接引管,铁架台,胶管等。 试剂: 试剂名称用量规格试剂名称用量规格 冰醋酸20ml CP NaCl 4g CP 95%乙醇25ml CaCl 2 15g 98%浓硫酸10ml NaCO 3 10g 无水MgSO 4 5g 四.实验装置图 反应装置蒸馏装置 五.实验步骤流程图 浓H 2SO 4 蒸馏 饱和Na 2CO 3 洗涤 饱和NaCl洗涤 饱和CaCl 2洗涤 CH 3COOH+C 2 H 5 OH CH 3COOC 2 H 5 ,CH 3 COOH,C 2 H 5 OH,H 2 SO 4 ,H 2 O,(CH 3 CH 2 ) 2 O 馏出物CH 3COOC 2 H 5, C 2H 5 OH,H 2 O,(CH 3 CH 2 ) 2 O,CH 3 COO H 残馏液CH 3 COOH, H 2 SO 4, H 2 O,(CH 3 CH 2 ) 2 O 有机层(上层)CH 3COOC 2 H, C 2H 5 OH,(CH 3 CH 2 ) 2 O,Na 2 CO 3 水层(下层) CH3COONa,C 2 H 5 OH,H 2 O 有机层(上层)C 2 H 5 OH, CH 3 COOC 2 H 5 , (CH 3 CH 2 ) 2 O 水层(下层) C 2 H 5 OH,Na 2 CO 3, H 2 O,NaCl

乙酸乙酯的工业生产方法

乙酸乙酯的工业生产方法乙酸乙酯(EA)又名醋酸乙酯,是醋酸的一种重要的下游产品,具有优异的溶解性、快干性,在工业中主要用作生产涂料(油漆和瓷漆)、粘合剂、乙基纤维素、人造革、油毡着色剂以及人造纤维等的溶剂,也可作为粘合剂用于印刷油墨、人造珍珠等的生产,作为提取剂用于医药、有机酸的产品的生产等·,此外还可用作生产菠萝、香蕉、草莓等水果香精和威士忌、奶油等香料的原料,用途十分广泛,发展前景看好。 目前,乙酸乙酯的工业生产方法主要有醋酸酯化法、乙醛缩合法、乙醇脱氢法和醋酸/乙烯加成法4种。传统的醋酸酯化法工艺在国外被逐步淘汰,而大规模生产装置主要采用乙醛缩合法、乙醇脱氢法和醋酸/乙烯加成法,其中新建装置多采用醋酸/乙烯加成法,我国的乙酸乙酯则主要采用醋酸酯化法进行生产。 1醋酸酯化法 醋酸酯化法是乙酸乙酯最常见的生产方法,是在催化剂(通常为硫酸)存在下,醋酸和乙醇发生酯化反应生成乙酸乙酯,该方法适用于拥有大量低成本乙醇的地区。传统的酯化法生产工艺技术成熟,原料供应充足,生产工艺简单,投资少,在世界范围内,尤其是在美国和西欧地区被广泛采用。由于酯化反应可逆,转化率只有约67%,为增加转化率,一般采用乙醇过量的方法,并在反应过程中不断分离出生成的水。根据生产需要,既可采取间歇生产,也可采取连续式生产。该法存在反应温度高,乙酸利用率低,易发生副反应,产品处理困难、催化剂对设备腐蚀性强,废液污染环境以及生产成本高等缺点。 面对传统醋酸酯化法工艺以浓硫酸为催化剂的诸多问题,新近研究开发工作主要集中在对催化剂和生产工艺的改进上。主要有分子筛合成法、杂多酸合成法、联产法以及催化精馏法等。 1.1分子筛法 分子筛合成法主要是指以分子筛,可固载的催化剂等作催化剂的合成方法。此种工艺是将催化剂经过特殊处理,固载到某种团体物质上,制成大小均匀有一定粒度的颗粒,然后填装到特制的反应器中。此反应器下部是容器,起到加热物料的作用。中部装催化剂,起到催化缩合的作用,上部是精馏段,起到分离产品的作用。工艺过程为:用耐酸泵将配好的物料(酸稍过量)输送到反应器下部,加热到150℃左右汽化,控制反应器中部反应温度在110-120℃起缩合反应,反应混合物在精馏分离,未反应的物料返回到反应器下部继续反应。精馏段的温度控制在75℃左右,得到含酯量在94%以上的粗产品,若需要得到含酯量在98驰以上的产品,用无水硫酸镁干燥即可。分子筛法具有工艺流程短、设备紧凑且少,生产连续化、产品得率高,产品成本低,设备腐蚀小,催化剂寿命长等优点,不足之处是反应器制作技术要求高,设备制造费用大,物料需要加热到较高温度,热量损失大,且物料返回较多等。 1.2杂多酸合成法 此种乙酸乙酯合成法包括使用多元固体酸直接催化的生产方法。此种工艺是将预先制好的杂多酸催化剂加入到反应物料中起催化作用。工艺过程为:用耐酸泵将配好的反应物料(酸稍过量)输送到缩合釜,加入催化剂升温到120-130℃进行缩合反应,产品混合物人精馏塔进行分离,精馏塔温度控制在70℃左右,得到含酯量在95%左右的粗产品,再用无水硫酸镁进行干燥脱水处理可得到含量98%以上的产品,未反应的物料返回到缩合釜循环使用。杂多酸合成法具有设备技术要求不高,制造费用低,操作简单,物料反应较完全,产品得率较高,缩合温度较’低,热能耗低,设备腐蚀小,缺点是设备多,总投资费用大,工艺流程长,生产周期较长,催化剂需要特别制造技术,价格昂贵等。 1.3催化精馏法 催化精馏法以固体酸为催化剂的连续催化精馏法,属非均相反应精馏过程,是酯化反应的发展方向,与以浓硫酸为催化剂的间歇搅拌式传统酯化生产工艺相比具有酯化连续进行,转化率高;

相关主题
文本预览
相关文档 最新文档