当前位置:文档之家› ADL模型的时序分析

ADL模型的时序分析

ADL模型的时序分析
ADL模型的时序分析

ADL模型的时序分析:

1.对序列做平稳性检验,检验序列平稳性:

检验前需要做时序图,观察是否含常数项、趋势性以选择合适形式;

滞后期由软件自身决定;

2.不平稳做协整检验:

协整:某些时间序列自身非平稳,但线性组合平稳,该线性组合反映了变量之间长期稳定的比例关系,称为协整。

3.

做ADL模型:根据模型总体拟合结果和AIC、SC值确定被解释变量滞后期?

时序逻辑电路的分析方法

7.2 时序逻辑电路的分析方法 时序逻辑电路的分析:根据给定的电路,写出它的方程、列出状态转换真值表、画出状态转换图和时序图,而后得出它的功能。 7.2.1同步时序逻辑电路的分析方法 同步时序逻辑电路的主要特点:在同步时序逻辑电路中,由于所有触发器都由同一个时钟脉冲信号CP来触发,它只控制触发器的翻转时刻,而对触发器翻转到何种状态并无影响,所以,在分析同步时序逻辑电路时,可以不考虑时钟条件。 1、基本分析步骤 1)写方程式: 输出方程:时序逻辑电路的输出逻辑表达式,它通常为现态和输入信号的函数。 驱动方程:各触发器输入端的逻辑表达式。 状态方程:将驱动方程代入相应触发器的特性方程中,便得到该触发器的状态方程。 2)列状态转换真值表: 将电路现态的各种取值代入状态方程和输出方程中进行计算,求出相应的次态和输出,从而列出状态转换真值表。如现态的起始值已给定时,则从给定值开始计算。如没有给定时,则可设定一个现态起始值依次进行计算。 3)逻辑功能的说明: 根据状态转换真值表来说明电路的逻辑功能。 4)画状态转换图和时序图: 状态转换图:是指电路由现态转换到次态的示意图。 时序图:是在时钟脉冲CP作用下,各触发器状态变化的波形图。 5)检验电路能否自启动 关于电路的自启动问题和检验方法,在下例中得到说明。

2、分析举例 例、试分析下图所示电路的逻辑功能,并画出状态转换图和时序图。 解:由上图所示电路可看出,时钟脉冲CP加在每个触发器的时钟脉冲输入端上。因此,它是一个同步时序逻辑电路,时钟方程可以不写。 ①写方程式: 输出方程: 驱动方程: 状态方程: ②列状态转换真值表: 状态转换真值表的作法是: 从第一个现态“000”开始,代入状态方程,得次态为“001”,代入输出方程,得输出为“0”。 把得出的次态“001”作为下一轮计算的“现态”,继续计算下一轮的次态值和输出值。

时序实验ARMA建立预测

实验二 ARMA 模型建模与预测指导 一、实验目的 学会通过各种手段检验序列的平稳性;学会根据自相关系数和偏自相关系数来初步判断ARMA 模型的阶数p 和q ,学会利用最小二乘法等方法对ARMA 模型进行估计,学会利用信息准则对估计的ARMA 模型进行诊断,以及掌握利用ARMA 模型进行预测。掌握在实证研究中如何运用Eviews 软件进行ARMA 模型的识别、诊断、估计和预测和相关具体操作。 二、基本概念 宽平稳:序列的统计性质不随时间发生改变,只与时间间隔有关。 AR 模型:AR 模型也称为自回归模型。它的预测方式是通过过去的观测值和现在的干扰值的线性组合预测, 自回归模型的数学公式为: 1122t t t p t p t y y y y φφφε---=++++ 式中: p 为自回归模型的阶数i φ(i=1,2, ,p )为模型的待定系数,t ε为误差, t y 为一个平稳时间序列。 MA 模型:MA 模型也称为滑动平均模型。它的预测方式是通过 过去的干扰值和现在的干扰值的线性组合预测。滑动平均模型的数学公式为: 1122t t t t q t q y εθεθεθε---=---- 式中: q 为模型的阶数; j θ(j=1,2, ,q )为模型的待定系数;t ε为误差; t y 为平稳时间序列。 ARMA 模型:自回归模型和滑动平均模型的组合, 便构成了用于描述平稳随机过程的自回归滑动平均模型ARMA , 数学公式为: 11221122t t t p t p t t t q t q y y y y φφφεθεθεθε------=++ ++---- 三、实验内容及要求 1、实验内容: (1)根据时序图判断序列的平稳性; (2)观察相关图,初步确定移动平均阶数q 和自回归阶数p ; (3)运用经典B-J 方法对某企业201个连续生产数据建立合适的ARMA (,p q )模型,并能够利用此模型进行短期预测。 2、实验要求: (1)深刻理解平稳性的要求以及ARMA 模型的建模思想; (2)如何通过观察自相关,偏自相关系数及其图形,利用最小二乘法,以及信息准则建立合适的ARMA 模型;如何利用ARMA 模型进行预测; (3)熟练掌握相关Eviews 操作,读懂模型参数估计结果。 四、实验指导 1、模型识别 (1)数据录入

时序逻辑电路的组成及分析方法案例说明

时序逻辑电路的组成及分析方法案例说明 一、时序逻辑电路的组成 时序逻辑电路由组合逻辑电路和存储电路两部分组成,结构框图如图5-1所示。图中外部输入信号用X (x 1,x 2,… ,x n )表示;电路的输出信号用Y (y 1,y 2,… ,y m )表示;存储电路的输入信号用Z (z 1,z 2,… ,z k )表示;存储电路的输出信号和组合逻辑电路的内部输入信号用Q (q 1,q 2,… ,q j )表示。 x x y 1 y m 图8.38 时序逻辑电路的结构框图 可见,为了实现时序逻辑电路的逻辑功能,电路中必须包含存储电路,而且存储电路的输出还必须反馈到输入端,与外部输入信号一起决定电路的输出状态。存储电路通常由触发器组成。 2、时序逻辑电路逻辑功能的描述方法 用于描述触发器逻辑功能的各种方法,一般也适用于描述时序逻辑电路的逻辑功能,主要有以下几种。 (1)逻辑表达式 图8.3中的几种信号之间的逻辑关系可用下列逻辑表达式来描述: Y =F (X ,Q n ) Z =G (X ,Q n ) Q n +1=H (Z ,Q n ) 它们依次为输出方程、状态方程和存储电路的驱动方程。由逻辑表达式可见电路的输出Y 不仅与当时的输入X 有关,而且与存储电路的状态Q n 有关。 (2)状态转换真值表 状态转换真值表反映了时序逻辑电路的输出Y 、次态Q n +1与其输入X 、现态Q n 的对应关系,又称状态转换表。状态转换表可由逻辑表达式获得。 (3)状态转换图

状态转换图又称状态图,是状态转换表的图形表示,它反映了时序逻辑电路状态的转换与输入、输出取值的规律。 (4)波形图 波形图又称为时序图,是电路在时钟脉冲序列CP的作用下,电路的状态、输出随时间变化的波形。应用波形图,便于通过实验的方法检查时序逻辑电路的逻辑功能。 二、时序逻辑电路的分析方法 1.时序逻辑电路的分类 时序逻辑电路按存储电路中的触发器是否同时动作分为同步时序逻辑电路和异步时序逻辑电路两种。在同步时序逻辑电路中,所有的触发器都由同一个时钟脉冲CP控制,状态变化同时进行。而在异步时序逻辑电路中,各触发器没有统一的时钟脉冲信号,状态变化不是同时发生的,而是有先有后。 2.时序逻辑电路的分析步骤 分析时序逻辑电路就是找出给定时序逻辑电路的逻辑功能和工作特点。分析同步时序逻辑电路时可不考虑时钟,分析步骤如下: (1)根据给定电路写出其时钟方程、驱动方程、输出方程; (2)将各驱动方程代入相应触发器的特性方程,得出与电路相一致的状态方程。 (3)进行状态计算。把电路的输入和现态各种可能取值组合代入状态方程和输出方程进行计算,得到相应的次态和输出。 (4)列状态转换表。画状态图或时序图。 (5)用文字描述电路的逻辑功能。 3.案例分析 分析图8.39所示时序逻辑电路的逻辑功能。 图8.39 逻辑电路 解:该时序电路的存储电路由一个主从JK触发器和一个T触发器构成,受统一的时钟CP控制,为同步时序逻辑电路。T触发器T端悬空相当于置1。 (1)列逻辑表达式。 输出方程及触发器的驱动方程分别为

ARMA模型建模与预测案例分析

ARMA模型建模与预测案例分析 实验二 ARMA模型建模与预测指导 一、实验目的 学会通过各种手段检验序列的平稳性;学会根据自相关系数和偏自相关系数来初步判断ARMA模型的阶数p和q,学会利用最小二乘法等方法对ARMA模型进行估计,学会利用信息准则对估计的ARMA模型进行诊断,以及掌握利用ARMA模型进行预测。掌握在实证研究中如何运用Eviews软件进行ARMA模型的识别、诊断、估计和预测和相关具体操作。 二、基本概念 宽平稳:序列的统计性质不随时间发生改变,只与时间间隔有关。 AR模型:AR模型也称为自回归模型。它的预测方式是通过过去的观测值和现在的干扰值的线性组合预测,自回归模型的数学公式为: yyyy,,,,,,,,, tttptpt1122,,, ,,y式中: 为自回归模型的阶数(i=1,2,,p)为模型的待定系数,为误差,为?pitt一个平稳时间序列。 MA模型:MA模型也称为滑动平均模型。它的预测方式是通过 过去的干扰值和现在的干扰值的线性组合预测。滑动平均模型的数学公式为: y,,,,,,,,,,,, ttttqtq1122,,, ,,y式中: 为模型的阶数; (j=1,2,,q)为模型的待定系数;为误差; 为平稳?qjtt时间序列。

ARMA模型:自回归模型和滑动平均模型的组合,便构成了用于描述平稳随机过程的自回归滑动平均模型ARMA,数学公式为: yyyy,,,,,,,,,,,,,,,,,,, tttptptttqtq11221122,,,,,, 三、实验内容及要求 1、实验内容: (1)根据时序图判断序列的平稳性; (2)观察相关图,初步确定移动平均阶数q和自回归阶数p; (3)运用经典B-J方法对某企业201个连续生产数据建立合适的ARMA()模型,并pq,能够利用此模型进行短期预测。 2、实验要求: (1)深刻理解平稳性的要求以及ARMA模型的建模思想; (2)如何通过观察自相关,偏自相关系数及其图形,利用最小二乘法,以及信息准则建立合适的ARMA模型;如何利用ARMA模型进行预测; (3)熟练掌握相关Eviews操作,读懂模型参数估计结果。 四、实验指导 1、模型识别 (1)数据录入 打开Eviews软件,选择“File”菜单中的“New--Workfile”选项,在“Workfile structure type”栏选择“Unstructured /Undated”,在“Date range”栏中输入数据个数201,点击ok,见图2-1,这样就建立了一个工作文件。

Moore型同步时序逻辑电路的设计与分析

实验九Moore型同步时序逻辑电路的分析与设计 22920132203686 薛清文周2下午实验 一.实验目的: 1.同步时序逻辑电路的分析与设计方法 2.D,JK触发器的特性机器检测方法。 2.掌握时序逻辑电路的测试方法。 3.了解时序电路自启动设计方法。 4.了解同步时序电路状态编码对电路优化作用。 二.实验原理: 二、 1.Moore同步时序逻辑电路的分析方法: 时序逻辑电路的分析,按照电路图(逻辑图),选择芯片,根据芯片管脚,在逻辑图上标明管脚号;搭接电路后,根据电路要求输入时钟信号(单脉冲信号或连续脉冲信号),求出电路的状态转换图或时序图(工作波形),从中分析出电路的功能。 2.Moore同步时序逻辑电路的设计方法: (1)分析题意,求出状态转换图。 (2)状态分析化简:确定等价状态,电路中的等价状态可合并为一个状态。(3)重新确定电路状态数N,求出触发器数n,触发器数按下列公式求:2n-1

建立时序模型步骤

建立ARIMA模型分析时序步骤: 1.画出原始数据的时序图 从时序图可以看出数据的基本趋势:围绕某水平线波动;围绕某直线波动;呈指数上升或下降趋势;显示出季节性等。 根据图形特征初步判断序列为平稳或非平稳的。 2.如序列非平稳,通过相应的变换将其变为平稳序列 线性趋势:差分;指数趋势:先取对数再差分;季节性:季节差分(建立季节模型) 3.检验变换后序列是否平稳 看变换后序列的时序图,相关图,单位根检验,综合分析序列是否平稳。 如非平稳,考虑再作一次差分。 4.对平稳序列建立ARMA模型 从上一步的相关图初步识别序列应拟合那种模型。 通常序列可以选择三种模型中的任意一种,因此要建立三种模型,再从残差平方和,AIC 准则函数,DW统计量等指标综合判断最终选定那种模型。 (注:建立每种模型时,要从低阶到高阶依次建立,直到增加模型的阶数系数不显著。)列出最终选定模型的估计结果,并画出真实值、拟合值和残差的时序图,分析拟合效果。 5.根据选定模型进行预测 根据模型计算递推预测值,如果模型是对变换后的序列建立的,要预测原始序列需对模型的预测结果进行逆变换,从而得到原始序列的预测值。 建立组合模型 1.画出原始数据的时序图 从时序图可以看出数据的基本趋势:围绕某直线波动;呈指数上升或下降趋势;显示出季节性或上面各趋势的组合等。 2.对序列建立组合模型 拟合步骤: a.先拟合长期趋势(指数函数的加权、多项式函数),直至增加阶数无显著改进; b.对剔除长期趋势的残差序列再拟合循环趋势,直至增加阶数无显著改进; c.对剔除长期趋势和循环趋势的残差序列再拟合ARMA模型; d.将上述三个步骤建立的函数形式组合在一起,估计整个组合函数的参数。 最终估计结果就是我们对原始数据拟合的模型,列出估计结果,并画出真实值、拟合值和残差的时序图,分析拟合效果。 3.根据模型进行预测 预测结果就是原始序列的预测值。

实验十 Moore型同步时序逻辑电路的分析与设计

实验十Moore型同步时序逻辑电路的分析与设计 一.实验目的: 1.同步时序逻辑电路的分析与设计方法 2.掌握时序逻辑电路的测试方法。 二.实验原理: 1.Moore同步时序逻辑电路的分析方法: 时序逻辑电路的分析,按照电路图(逻辑图),选择芯片,根据芯片管脚,在逻辑图上标明管脚号;搭接电路后,根据电路要求输入时钟信号(单脉冲信号或连续脉冲信号),求出电路的状态转换图或时序图(工作波形),从中分析出电路的功能。 2.Moore同步时序逻辑电路的设计方法: (1)分析题意,求出状态转换图。 (2)状态分析化简:确定等价状态,电路中的等价状态可合并为一个状态。(3)重新确定电路状态数N,求出触发器数n,触发器数按下列公式求:2n-1

(7)利用卡诺图如图2,求状态方程、驱动方程。 (8)自启动检验:将各无效状态代入状态方程,分析状态转换情况,画出完整的 状态转换图,如图3所示,检查是否能自启动。

基于神经网络的时序预测模型研究

基于神经网络的时序预测模型研究 张恺陈思 (中移信息技术有限公司,广东深圳518048) [摘要]古人云“以史为鉴”,说的是吸取历史的经验教训,对未来的情况做出预判或者改变。生活中,亦是存在相似的利用历史数据对未来变化趋势进行预测分析的时间序列问题。本文就时间序列一类的问题进行研究,探讨如何更好地根据历史统计数据,对未来的变化趋势进行预测分析。本文基于神经网络,以气象观测历史数据作为研究的对象,建立了气温变化时序预测模型。本模型利用大数据相关技术对数据进行特征处理,通过深度神经网络,学习特征数据和标签数据之间复杂的非线性关系,从而实现对气温变化的趋势预测。实验结果表明,相较其他模型,本文的模型能够更好地进行时序预测,同时也证明了神经网络用于气象预测的可行性。 [关键词]时间序列;神经网络;特征;时序预测 中图分类号:TP183文献标识码:A文章编号:1008-6609(2019)01-0061-05 1引言 时序预测,是基于历史统计数据,去预知未来一段时间内研究对象变化的数据分析过程。一般来说,变化有四种形式,即长期趋势变化、季节性变化、周期性变化和随机波动。本文中研究的是天气相关的长期趋势变化问题。 传统的天气预测工作是利用卫星云图照片,并根据观测资料,应用天气学、动力气象学、统计学的原理和方法,对天气进行预测。整个过程流程复杂,步骤繁多。那么,是否有更加便捷的方式去进行天气预测呢? 本文基于上述考虑,利用深层神经网络,结合大量气象观测历史数据,实现一个简化的天气预测过程—— —气温变化预测,去研究神经网络在时序预测问题上的具体应用情况。 在本文中,天气历史数据的采集、处理,天气数据集的制作以及气温变化预测过程,遵循流程化、可视化、可与人交互化的原则进行,并尽可能地避免大宗繁杂的人工分析以及大量资源的消耗问题。 2研究对象与研究方法 2.1研究对象 2.1.1数据来源 NCDC,美国国家气候数据中心,前身为美国国家气象记录中心,位于美国北卡罗来纳州的阿什维尔,拥有世界上现存规模最大的气象观测数据。 NCDC气象观测数据记录始于1929年,至今已有90年历史,其数据来源包括:气象卫星、雷达、自动气象站,国家气象局合作观测员;飞机、船舶,无线电探空仪、风廓线仪、火箭探测器、太阳辐射网络和国家气象局预报、警报、分析产品等等的数据记录。 本文取NCDC从1999年到2018年间20年的气象观测数据进行研究。 2.1.2基本构成 NCDC气象观测数据按年划分为单个压缩包,每个压缩包里又按不同气象站分为一个个单独的压缩包,将每个单独的压缩包解压就能得到所需的原始数据。 原始数据里包含当年的所有数据,且每天对应一条数据。由于不可抗力因素(仪器故障、人为原因等)的影响,不排除某些状况下出现数据缺失、冗余的情况。 表1为原始数据中每条数据的构成情况详情表。 2.2研究方法 神经网络,又称人工神经网络(Artificial Neural Net-work),以大脑处理机制作为基础,用于建立复杂模式和预测问题的方法,其能够学习和构建非线性的复杂关系。基于此,本文采用神经网络进行研究。 本文研究所使用的神经网络为LSTM神经网络,全称长短期记忆神经网络,主要由遗忘门、输入门、输出门三部分组 作者简介:张恺(1992-),男,广东惠州人,本科,研究方向为信息系统建设与分析、人工智能研究。 电脑与电信· -61-

同步时序逻辑电路的分析方法

时序逻辑电路的分析方法 时序逻辑电路的分析:根据给定的电路,写出它的方程、列出状态转换真值表、画出状态转换图和时序图,而后得出它的功能。 同步时序逻辑电路的分析方法 同步时序逻辑电路的主要特点:在同步时序逻辑电路中,由于所有触发器都由同一个时钟脉冲信号CP来触发,它只控制触发器的翻转时刻,而对触发器翻转到何种状态并无影响,所以,在分析同步时序逻辑电路时,可以不考虑时钟条件。 1、基本分析步骤 1)写方程式: 输出方程:时序逻辑电路的输出逻辑表达式,它通常为现态和输入信号的函数。 驱动方程:各触发器输入端的逻辑表达式。 状态方程:将驱动方程代入相应触发器的特性方程中,便得到该触发器的状态方程。 2)列状态转换真值表: 将电路现态的各种取值代入状态方程和输出方程中进行计算,求出相应的次态和输出,从而列出状态转换真值表。如现态的起始值已给定时,则从给定值开始计算。如没有给定时,则可设定一个现态起始值依次进行计算。 3)逻辑功能的说明: 根据状态转换真值表来说明电路的逻辑功能。 4)画状态转换图和时序图: 状态转换图:是指电路由现态转换到次态的示意图。 时序图:是在时钟脉冲CP作用下,各触发器状态变化的波形图。 5)检验电路能否自启动 关于电路的自启动问题和检验方法,在下例中得到说明。

2、分析举例 例、试分析下图所示电路的逻辑功能,并画出状态转换图和时序图。 解:由上图所示电路可看出,时钟脉冲CP加在每个触发器的时钟脉冲输入端上。因此,它是一个同步时序逻辑电路,时钟方程可以不写。 ①写方程式: 输出方程: 驱动方程: 状态方程: ②列状态转换真值表: 状态转换真值表的作法是: 从第一个现态“000”开始,代入状态方程,得次态为“001”,代入输出方程,得输出为“0”。

《时序逻辑电路》练习题及答案

《时序逻辑电路》练习题及答案 []分析图P6-1 时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图,说明电路能否自启动。 图P6-1 [解] 驱动方程:3 1 1 Q K J= =,状态方程:n n n n n n n Q Q Q Q Q Q Q 1 3 1 3 1 3 1 1 ⊕ = + = + ; 1 2 2 Q K J= =,n n n n n n n Q Q Q Q Q Q Q 1 2 2 1 2 1 1 2 ⊕ = + = + ; # 3 3 2 1 3 Q K Q Q J= =,,n n n n Q Q Q Q 1 2 3 1 3 = + ; 输出方程:3 Q Y= 由状态方程可得状态转换表,如表6-1所示;由状态转换表可得状态转换图,如图A6-1所示。电路可以自启动。 表6-1 n n n Q Q Q 1 2 3 Y Q Q Q n n n1 1 1 2 1 3 + + +n n n Q Q Q 1 2 3 , Y Q Q Q n n n1 1 1 2 1 3 + + + 000 001 010 011 0010 0100 0110 — 1000 100 101 110 111 0001 0111 0101 ; 0011 图A6-1 电路的逻辑功能:是一个五进制计数器,计数顺序是从0到4循环。 []试分析图P6-2时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图。A为输入逻辑变量。 #

图P6-2 [解] 驱动方程:2 1 Q A D=, 2 1 2 Q Q A D= 状态方程: n n Q A Q 2 1 1 = + , ) ( 1 2 2 1 1 2 n n n n n Q Q A Q Q A Q+ = = + 输出方程:2 1 Q Q A Y=表6-2 @ 由状态方程可得状态转换表,如表6-2所示;由状态转换表 可得状态转换图,如图A6-2所示。 电路的逻辑功能是:判断A是否连续输入四个和四个以上 “1”信号,是则Y=1,否则Y=0。 图A6-2 []试分析图P6-3时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图,检查电路能否自启动。 、 图P6-3 [解] 3 2 1 Q Q J=,1 1 = K; 1 2 Q J=, 3 1 2 Q Q K=; 2 3 2 1 3 Q K Q Q J= =, = +1 1 n Q 3 2 Q Q· 1 Q; 2 1 1 2 Q Q Q n= + +2 3 1 Q Q Q; 3 2 3 2 1 1 3 Q Q Q Q Q Q n+ = + Y = 3 2 Q Q 电路的状态转换图如图A6-3所示,电路能够自启动。 ' 图A6-3 n n Q AQ 1 2 Y Q Q n n1 1 1 2 + + 000 < 001 010 011 100 111 110 101 010 $ 100 110 001 111 100 010 000

时序逻辑电路课后答案

第六章 时序逻辑电路 【题 】 分析图时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图,说明电路能否自启动。 Y 图P6.3 【解】驱动方程: 11323131233 J =K =Q J =K =Q J =Q Q ;K =Q ?? ??? 输出方程:3Y Q = 将驱动方程带入JK 触发器的特性方程后得到 状态方程为: n+11313131n 1 2121221n+1 3321 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q +?=+=?=+=⊕??=?e 电路能自启动。状态转换图如图 【题 】 分析图时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图。A 为输入逻辑变量。 图A6.3

Y 图P6.5 【解】 驱动方程: 12 21212() D AQ D AQ Q A Q Q ?=??==+?? 输出方程: 21Y AQ Q = 将驱动方程带入JK 触发器的特性方程后得到状态方程为: n+1 12 n+1 212() Q AQ Q A Q Q ?=??=+?? 电路的状态转换图如图 1 图A6.5 【题 】 分析图时序电路的逻辑功能,画出电路的状态转换图,检查电路能否自启动,说明电路能否自启动。说明电路实现的功能。A 为输入变量。

A Y 图P6.6 【解】驱动方程: 11221 1 J K J K A Q ==?? ==⊕? 输出方程: 1212Y AQ Q AQ Q =+ 将驱动方程带入JK 触发器的特性方程后得到状态方程为: n+111 n+1 2 12 Q Q Q A Q Q ?=??=⊕⊕?? 电路状态转换图如图。A =0时作二进制加法计数,A =1时作二进制减法计数。 01图A6.6 【题 】 分析图时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图,说明电路能否自启动。

ARMA模型ARCH模型GARCH模型经典时序模型

国际金价变动的分析 黄金是人类最早发现的金属之一,早在旧石器时期晚期,人们就注意到这种“闪闪发光”的东西,并被它吸引。放眼人类历史长河,黄金在人类社会扮演着各种角色,例如,祭祀的祭品、精美的工艺品、财富的象征、终极货币、战争的帮凶、稳定经济的功臣等等。在金融海啸席卷全球之后,黄金的光泽似乎更加的耀眼,每盎司黄金从2007年2月的650每元左右上涨到2009年十一月的1100美元以上,涨幅接近百分之百! 回溯200多年的历史,在这期间黄金价格有过三次大涨行情与两次大跌行情,下面对这几次行情进行回顾,一一分析金价变动原因。 金价上涨行情 第一次金价上涨发生在美国内战期间(1861-1865年),时间是1862年到1864年。1862年,美国国会通过了一个《法定货币法案》,规定名为“绿背美钞”的纸币可以作为货币流通。绿背美钞与黄金之间并没有法定比价关系,实际上就是放弃金本位制。随着纸币的大量印制,通货膨胀不可避免。在1862年到1864年两年的时间里,金价上涨幅度250%—300%。 第二次金价上涨在1970—1980年。1944年的布雷顿森林体系确定了美元本位的世界货币体系:会员国货币与美元挂钩,美元与黄金挂钩,35美元兑1盎司黄金,各国可以用35美元/盎司的价格向美国购买黄金。在二次世界大战以后,为了援助欧洲各国灾后重建,美国不断地向世界输入美元,欧洲也由战后的“美元荒”过度到了1960年代末的“美元灾”。当1971年8月15日,尼克松政府宣布美国放弃美元与黄金之间的固定比价关系后,世界进入法币时代,也就是进入全面通货膨胀时代,黄金出现暴涨:从35美元/盎司涨到1980年的850美元/盎司。 第三次金价上涨则是2003年至今。在网络泡沫与“9.11”之后,自2001年初至2003年6月,美联储共采取13次降息行动,将联邦基金利率从6.5%降到1%(这是1958年以来的最低点),并将这一利率水平维持了一年时间。这一极为宽松的货币政策为随后几年美元的大幅贬值,以及美国向全世界输送通货膨胀奠定了坚实的基础,致使2008年全世界有70多个国家的通胀率达到两位数。在这期间金价上涨了300%以上。 金价下跌行情 第一次金价下跌:1864-1879年,由1英镑的黄金需要12美元跌到1英镑黄金值4.86美元。美国国会在1875年通过《金元恢复法案》。它授权财政部从1879年1月1日起,恢复使用黄金支付所有债务——价格为战前的4.86美元兑1英镑黄金。法案提出了减少绿背美钞供应的方案:将绿背美钞的供应量限制在3亿美元以下,要求财政部收回8200万美元的纸币,并授权美国财政部从美国政府债券销售中建立黄金储备。在经济萧条、战后长期通货紧缩以及财政部逐渐收紧货币供应的综合作用下,到1878年底,减少数量后的纸币正好与已经增加的黄金储备大致相等,价格也跌到了战前的水平,绿背美钞的价格自1862年发行以来首次与黄金价格相等。政府收紧货币导致通货紧缩就会使货币升值,使金价下跌。 第二次金价下跌,1980-1999年,金价由850美元/盎司跌到252美元/盎司。1979年,反通货膨胀斗士沃尔克出任美联储主席,沃尔克上任伊始便祭起“打击世界范围的通货膨胀”大旗,与紧密同盟英国一道使美元借贷变得昂贵无比。美元拆借利息平均值从1979年的11.2%一下子涨到1981年的20%,基本利率更高达21.5%,国债收益率冲上17.3%。与此同时,英国首相撒切尔夫人也于1979年5月当选,她发誓“要把通货膨胀从经济中驱除出去”,她上任仅一个月就决定把基准利率在12个星期之内从12%提高到17%。在如此短的时间之内把借贷成本猛然提高42%,在两位反通胀斗士的不懈努力下,世界通货膨胀终于被遏制住,美国的通货膨胀率由1980年的13.58下降到1986年的1.91。黄金价格也开始节节下跌。在此大背景下,欧洲一些央行才认为“黄金无用”,开始出售黄金,压低

时序逻辑电路的分析

A、与当时的输入信号有关,与电路的原状态无关。 B、与当时的输入信号有关,与电路的原状态有关。 C、与当时的输入信号无关,与电路的 原状态有关。 D、 2、时序逻辑电路中必须含有: A、存储电路 B、编码器 C、加法器 D、 3、同步时序逻辑电路所有触发器的时钟输入端都接同一个时钟脉冲。 A、各触发器不同时具备触发翻转的条 件 B、各触发器同时具备触发翻转的条件 C、各触发器的触发翻转有先有后 D、 4、异步时序逻辑电路各触发器的时钟输入所接不是同一的时钟脉冲。 A、结构简单,速度快 B、结构复杂,速度慢 C、结构简单,速度慢 D、 5、异步时序逻辑电路,各触发器: A、触发翻转有先有后 B、同时触发翻转 C、无法确定 D、 第二题、多项选择题(每题2分,5道题共10分) 1、时序逻辑电路从结构上讲,包含有: A、存储元件 B、触发器或含有反馈延迟电路 C、译码器 2、时序逻辑电路的输出信号: A、与当时的输入信号无关 B、与当时的输入信号有关 C、与电路的原状态有关

D、与电路的原状态无关 3、同步时序逻辑电路: A、所有触发器的时钟输入端都接同一个时钟脉冲 B、各触发器同时具备触发翻转的条件 C、速度快;结构简单 D、速度快;结构复杂 4、时序逻辑电路的逻辑功能可用()来描述。 A、状态方程 B、状态表 C、状态图 D、时序图 5、时序逻辑电路的分析是指已知逻辑图: A、列写逻辑方程式 B、计算状态表 C、画电路的状态图 D、画电路的时序图 E、判定电路的功能 第三题、判断题(每题1分,5道题共5分) 1、时序逻辑电路中必须含有存储电路。 正确错误 2、时序逻辑电路中的存储电路只能用延迟元件组成,不能用触发器构成。 正确错误 3、同步时序逻辑电路各触发器同时具备触发翻转的条件。 正确错误 4、异步时序逻辑电路结构简单,速度慢。

时序逻辑电路分析举例

时序逻辑电路分析例题 1、分析下图时序逻辑电路。 解: 1、列出驱动方程:111==K J 1//122Q A AQ K J +== 2、列出状态方程: 将驱动方程代入JK 触发器的特性方程Q K JQ Q //*+=得: /1*1Q Q = 212/1//21//2/1*2Q AQ Q Q A Q Q A Q AQ Q +++= 3、列出输出方程: 21//2/1Q Q A Q AQ Y += 4、列出状态转换表: (1)当A=1时: 根据:/1*1Q Q =;21/2/1*2Q Q Q Q Q +=;/ 2 /1Q Q Y =得: (2)当A=0时:

根据:/1*1Q Q =;2/1/ 21*2Q Q Q Q Q +=;21Q Q Y =得: 5、画状态转换图: 6、说明电路实现的逻辑功能: 此电路是一个可逆4进制(二位二进制)计数器,CLK 是计数脉冲输入端,A 是加减控制端,Y 是进位和借位输出端。当控制输入端A 为低电平0时,对输入的脉冲进行加法计数,计满4个脉冲,Y 输出端输出一个高电平进位信号。当控制输入端A 为高电平1时,对输入的脉冲进行减法计数,计满4个脉冲,Y 输出端输出一个高电平借位信号。 2、如图所示时序逻辑电路,试写出驱动方程、状态方程,画出状态图,说明该电路的功能。 解:驱动方程 ?? ?=⊕=1010K Q X J n ???=⊕=11 1K Q X J n 状态方程 ()()n n n n n n n n n n n n n n Q XQ Q Q X Q Q X Q Q Q X Q Q X Q Q X Q 0 1010 1 10 01011011+=⊕=+=⊕=++ CP X Z

相关主题
文本预览
相关文档 最新文档