当前位置:文档之家› 研究BFRP约束钢筋混凝土方柱强度及其应力-应变关系

研究BFRP约束钢筋混凝土方柱强度及其应力-应变关系

研究BFRP约束钢筋混凝土方柱强度及其应力-应变关系
研究BFRP约束钢筋混凝土方柱强度及其应力-应变关系

研究BFRP约束钢筋混凝土方柱强度及其应力-应变关系

摘要:分析BFRP约束混凝土方柱的受力情况,在试验的基础上,进行数据分析,阐述了影响BFRP约束混凝土力学性能的参数,分析BFRP约束钢筋混凝土方柱的强度比和含纤特征值关系,含纤特征值和峰值应变的关系,含纤特征值和极限应变的关系,得出对于应力和应变都有极大的影响。

关键词:BFRP;混凝土方柱;

Abstract: Stress analysis of BFRP confined concrete square columns, on the basis of the experiment, data analysis, elaborated the influence parameters of concrete mechanical properties of BFRP constraints, analysis of BFRP confined reinforced concrete columns with fiber strength and characteristic values, with the relationship between the fiber characteristic value and peak strain, with the relationship between the fiber characteristics value and the ultimate strain, it has great influence on the stress and strain.

Key words:BFRP;square concrete column;

1.引言

FRP ( fiber reinforced polymer or plastics 纤维增强复合材料) 在土木工程中的结构加固、修复上的应用日益广泛, 主要因其具备高的

研究BFRP约束钢筋混凝土方柱强度及其应力-应变关系

研究BFRP约束钢筋混凝土方柱强度及其应力-应变关系 摘要:分析BFRP约束混凝土方柱的受力情况,在试验的基础上,进行数据分析,阐述了影响BFRP约束混凝土力学性能的参数,分析BFRP约束钢筋混凝土方柱的强度比和含纤特征值关系,含纤特征值和峰值应变的关系,含纤特征值和极限应变的关系,得出对于应力和应变都有极大的影响。 关键词:BFRP;混凝土方柱; Abstract: Stress analysis of BFRP confined concrete square columns, on the basis of the experiment, data analysis, elaborated the influence parameters of concrete mechanical properties of BFRP constraints, analysis of BFRP confined reinforced concrete columns with fiber strength and characteristic values, with the relationship between the fiber characteristic value and peak strain, with the relationship between the fiber characteristics value and the ultimate strain, it has great influence on the stress and strain. Key words:BFRP;square concrete column; 1.引言 FRP ( fiber reinforced polymer or plastics 纤维增强复合材料) 在土木工程中的结构加固、修复上的应用日益广泛, 主要因其具备高的

观察到的约束混凝土应力-应变关系

观察到的约束混凝土应力-应变关系 By J. B. Mander, M. J. N. Priestley, and R. Park, Fellow, ASCE _______________________________________________________________________ 内容摘要:几乎全部的圆形的、方形的钢筋混凝土柱,或者矩形墙的横截面以及包含着各种样式的钢筋排列的,对其中心压载时,轴向压缩应变率高达0.0167/s .圆截面柱子包含纵筋和螺旋筋,方柱包含纵筋和方形或八角形的箍筋,矩形墙截面包含纵筋、矩形箍筋,无论其是否有补充交叉。通过和以前的配置有横向钢筋的应力-应变模型的预测相比较,可以测量出约束混凝土纵向应力-应变行为的循环荷载和应变率。当横向钢筋第一次断裂时所测量的纵向混凝土压应变与之前测量的同等横向钢筋具有的应变能一样,是由于储存在约束混凝土里的应变能。 ________________________________________________________________________ 介绍 在一份由曼德(1988)写的报告里,有一个理论上的应力-应变模型,无论是圆形或矩形截面,还是在静态或动态轴向压缩荷载下,单向或者循环应用,该模型以可以成熟的运用到约束混凝土上。混凝土截面可以包含任何一般类型的约束,无论是螺旋箍筋还是圆形箍筋,或者有无补充交叉的矩形箍筋。对于一个特定的横向钢筋配置,可以在x和y方向计算出横向钢筋的有效的约束应力f\x和f'ly,在考虑到横向钢筋和纵向钢筋间出现拱效应的情况下,约束有效性系数K规定了有效约束混凝土的核心区域。依据三个控制参数,约束混凝土的应力-应变曲线的形式为:约束混凝土抗压强度f'cc,,使用一个可做表面极限强度的本构模型测的的轴向应力 和约束应力;应变抗压强度Eec;混凝土的弹性模量Ec。最终的混凝土抗压应变E,,其含义是当横向钢筋首先发生断裂时,横向钢筋的有效应变能遭到破坏,约束混凝土和纵向钢筋所能发挥的作用。 测试了短柱,圆形截面,方形截面,矩形墙截面的钢筋混凝土,这些扩展范围的实验结果可以用来检查应力-应变理论模型。准静态或者高应变率的荷载加载在截面中心。所测的的应力-应变结果与应力-应变模型测的的想比较。本文叙述这些实验结果及相应的对比。 圆形柱中心螺旋加载的测试

混凝土短柱加强措施

混凝土短柱加强措施 本文简述了短柱的概念,并提出了在工程设计当中如何避免短柱以及在不可避免的情况下如何解决改善短柱的受力相。 标签:短柱脆性破坏剪跨比 0 引言 5·12汶川地震灾害调查表明:混凝土框架结构当中的短柱受到严重破坏是典型破坏形式之一。这类灾害在世界其他国家的地震中均有所体现。那么,在工程设计当中如何避免短柱以及在不可避免的情况下如何解决改善短柱的受力,是结构工作者所关注的重点问题之一。 1 短柱的概念 框架结构中的短柱的侧移刚度大于相邻各柱,当受水平地震作用的屋盖发生整体侧移时,该柱实际上承受了比相邻各柱大得多的水平剪力,使柱易产生脆性破坏。因此短柱的问题在结构设计当中应引起重视。 剪跨比是判断短柱的一个指标。《混凝土结构设计规范》规定,柱的剪跨比宜大于2,柱的计算剪跨比,取λ=M/(Vh0);此处,M宜取柱上、下端考虑地震作用组合的弯矩设计值的较大值,V取与M对应的剪力设计值,h0为柱截面有效高度;当框架结构中的框架柱的反弯点在柱层高范围内时,可取λ=Hn/(2h0),此处,Hn为柱净高。 柱的破坏形态与剪跨比有关。剪跨比大于2的柱为长柱,其弯矩相对较大,一般容易实现延性压弯破坏;剪跨比不大于2、但大于1.5的柱为短柱,此类框架柱易发生粘结型剪切破坏和对角斜拉型剪切破坏,若配置足够的箍筋和采取其他的相关措施,也可能实现延性较好的剪切受压破坏,但是为减少脆性破坏的几率,柱中纵向钢筋的配筋率不宜过大,《混凝土结构设计规范》规定对一级抗震等级,且剪跨比不大于2的框架柱,规定其每侧的纵向受拉钢筋配筋率不大于1.2%。对其他抗震等级虽未作此规定,但也宜适当控制。剪跨比不大于1.5的柱为极短柱,一般发生剪切斜拉破坏,工程当中应尽量避免采用极短柱。 初步设计的时候,也可以假设柱的反弯点在高度中间,用柱的净高与计算方向柱截面高度的比值判别是长柱还是短柱:比值大于4为长柱,3与4之间为短柱,不大于3为极短柱。 2 剪跨比不大于2、但大于1.5的短柱 根据《建筑抗震设计规范》,剪跨比不大于2、但大于1.5的短柱的轴压比限值应降低0.05。限值柱子的轴压比主要是为了保证柱的塑性变形能力和保证框架

钢筋混凝土结构中短柱的成因及防治

钢筋混凝土结构中短柱的成因及防治 钢筋混凝土结构中短柱的成因及防治 摘要:为保证短柱结构的安全, 在设计施工中应严格执行国家建筑抗震设计规范, 采取切实可行的构造措施, 防止短柱破坏, 在 施工中遇到用户提出修改设计出现短柱问题时, 应及时进行妥善处理, 有针对性地采取措施, 保证结构安全。本文探讨了钢筋混凝土结构中短柱的成因及防治。 关键词:钢筋混凝土;结构;短柱;成因;防治 中图分类号:TU37 文献标识码:A 文章编号: 在多层及高层钢筋混凝土框架结构中,经常会出现短柱,甚至是极短柱。在建筑物遭受本地区设防烈度或高于本地区设防烈度的地震时,短柱很容易发生剪切破坏而造成主体结构破坏,甚至倒塌,违反了“小震不坏,中震可修,大震不倒”的三水准设防要求。因此,为了避免短柱发生脆性破坏,要提高短柱的延性和抗震性能。 一、短柱的定义 钢筋混凝土框架的短柱是指柱的净高与截面长边尺寸之比小于4的柱, 即H 0: h0 < 4 (H 0 为层间柱的净高, h0为柱截面有效高度)。抗震规范中是用剪跨比K来定义短柱K= M /Vh0, 1. 5 < K[ 2. 0时为短柱, K[ 1. 5时为极短柱, (式中:M 为柱端截面组合的弯矩计算值; V为对应的截面组合剪力计算值)。长柱一般发生弯曲破坏; 短柱多数发生剪切破坏; 极短柱发生剪切斜拉破坏。短柱的剪切破坏属于脆性破坏。在实际工程中出现短柱的原因有2大类, 一是工程设计中的问题, 二是施工中改变原设计。 二、钢筋混凝土结构中短柱的成因 钢筋混凝土框架的短柱是指柱的剪跨比小于4 的柱, 即H o/ ho < 4 (H o为层间柱的净高,ho 为柱截面的高) 。短柱的破坏状态为脆性破坏。 在实际工程中出现短柱的原因可分为两大类, 一是工程设计中

高层柱子选型

浅谈高层建筑柱子选型 张维斌 提要:本文根据现行规范及有关资料,对高层建筑底部数层柱子的选型及截面尺寸的预估作了介绍,并给出了部分计算例题。 关键词钢筋混凝土柱,钢管混凝土柱,型钢混凝土柱,钢筋混凝土分体柱,轴压比,剪跨比 Abstract: Based on the codes and other documents, the selection for columns at low stories in tall building, and calculation for sizes of column’s section are introduced in this paper Key words: reinforced concrete column, concrete-filled steel tubes, steel reinforced concrete, split column, ratios of axial forces, ratios of shear and span 一、问题的提出 柱轴压比的概念是高层建筑柱子设计的重要概念。?高层建筑混凝土结构技术规程?JGJ3-2002规定了钢筋混凝土框架柱的轴压比限值,其目的是使柱子在包括地震作用等多种荷载效应组合作用下处于大偏心受压状态, 只产生延性较好的受拉破坏而不是脆性的受压破坏。具有较大的屈服后变形能力和耗能能力,具有较好的延性和抗震性能。 剪跨比的概念也是高层建筑柱子设计的重要概念。它大体反映了截面上弯曲应力与剪切应力的比例关系,和轴压比相比,剪跨比对框架柱的破坏特征起主导作用。试验表明:在通常的配筋条件下,当剪跨比λ>2时框架柱在横向水平剪力作用下,一般都发生延性较好的弯曲破坏;当λ≤2时框架柱就变成了短柱,在横向水平剪力作用下一般都发生脆性的剪切破坏。高规表6.4.2注3规定: 剪跨比1.5≤λ≤2,其轴压比限值应比规范表中数值减小0.05,剪跨比λ<1.5,其轴压比限值应专门研究并采取特殊构造措施。 在高层建筑中,由于房屋高度大、层数多,故柱子底部数层的轴向力很大,设计时首先应满足柱轴压比要求,由于现行规范对柱轴压比限制较严,要满足规范要求,柱子截面往往较大。柱子截面过大会带来许多问题:1增加结构自重,加大地震作用;2容易形成短柱甚至超短柱,易使柱发生脆性破坏;3占据较多的建筑面积,影响建筑的使用功能。 当高层建筑设有设备层时,由于设备层层高较小,而设备层柱子的截面尺寸变化很小或者不变化,故往往会形成短柱甚至超短柱,易使柱发生脆性剪切破坏;同时造成设备层上下层侧向刚度差异大, 甚至形成结构薄弱层和(或)软弱层。 因此,根据具体结构的设计要求,选择适当的柱子型式和合理的截面尺寸,合理经济地做好高层建筑柱子的设计,避免形成短柱, 避免形成结构薄弱层,使结构具有较好的延性和抗震性能,是高层建筑结构设计的一个十分重要的问题。 二、高层建筑柱子类型简介 目前高层建筑中采用的柱子截面型式大致有以下几种:1.普通钢筋混凝土柱;2.高强混凝土柱;3.配有螺旋箍筋的钢筋混凝土柱;4.增设芯柱的钢筋混凝土柱;5.钢筋混凝土分体柱; 6.型钢混凝土柱; 7.钢管混凝土柱。现对各种类型分别简述如下: 1.普通钢筋混凝土柱 钢筋混凝土柱的设计,一般首先根据规范有关规定确定柱子的轴压比,由此初选柱子截面尺寸,再进行整体结构分析、构件内力组合和配筋计算、构造设计等。对多层及小高层建筑的底层柱,应首选普通钢筋混凝土柱,由于柱子轴向力不是很大,多数情况下柱子既可满足规范规定的轴压比限值,截面尺寸又不致很大。很多层数为20~30层的高层建筑,采用C50~C60级混凝土,也能很好地满足设计要求。普通钢筋混凝土柱是目前高层建筑中使用最多的柱子类型。由于大家都比较熟悉,这里不再赘述。

碳纤维布约束混凝土单轴受压时的应力_应变关系

第22卷第2期2006年4月 结 构 工 程 师 Structural Engineers Vol.22,No.2 Ap r.2006碳纤维布约束混凝土单轴受压时 的应力-应变关系3 顾祥林1 李玉鹏1 张伟平1 欧阳煜2 (1.同济大学,上海200020;2.上海大学,上海200072) 提 要 通过32个混凝土圆形试块的轴压试验,研究了碳纤维布约束混凝土的受压性能。分别讨论了混凝土强度等级、碳纤维布加固率、截面尺寸对碳纤维约束混凝土性能的影响。建立了力学意义明确且精度满足应用要求的碳纤维约束混凝土单轴受压时的应力-应变关系。 关键词 碳纤维布,约束混凝土,加固率,尺寸效应,应力-应变关系 Co mpressi ve Stress-Stra i n Rel ati onshi p of Concrete Confi n ed by Carbon Fi ber Co mposite Sheets G U Xianglin1 L I Yupeng1 ZHANG W ei p ing1 OUY ANG Yu2 (1.Tongji University,Shanghai200020;2.Shanghai University,Shanghai200072) Abstract Thr ough axially comp ressed tests of32cylinder concrete colu mns,the perfor mance of concrete confined by carbon fiber composite sheets is studied.The different effects of the concrete strength,carbon fiber strengthening rati o and the secti onal di m ensi ons on the behavi or of the concrete are discussed res pective2 ly.Finally,a constitutive model of concrete confined by carbon fiber composite sheets is p r oposed,which has clear mechanical meaning and satisfied accuracy. Keywords carbon fiber composite sheet,confined concrete,strengthening rati o,size effect,stress-strain relati onshi p 1 引 言 用外贴碳纤维布约束混凝土是碳纤维复合材料加固混凝土结构的重要内容之一。了解碳纤维布约束混凝土的受力性能,建立合适的应力-应变关系模型,对完善纤维复合材料加固混凝土结构的设计理论,从而更好地指导工程实践,具有重要的意义。 目前,关于纤维材料约束混凝土本构关系的研究成果相对较多,且主要基于纤维约束混凝土圆柱试验和纤维约束混凝土方柱试验结果得出。其中,基于纤维约束混凝土圆形截面柱试验研究的约束混凝土本构模型主要有肖岩[1],周长东[2],Fardis和Khalili[3],Mander[4],Karbhari和 Gao,Sa maan[5],M iyauchi[6],Saafi[7],Toutanji[8]以及La m和Teng[9]等学者提出的约束混凝土本构模型。基于纤维约束混凝土方柱轴压试验得出的约束混凝土模型有吴刚[10],赵彤[11],金熙男[12],周长东[13]等模型,国外也有学者[9]在约束圆柱混凝土本构模型的基础上,引入截面形状因子来描述方柱的约束混凝土本构模型。 既有模型具有一定的参考价值,同时也有一些缺陷。约束混凝土圆柱试验建立的约束混凝土本构模型相对较多,各种模型形式多样,且形式复杂,不利于选择使用。由于方柱截面受力复杂,截面各处的应力状态不尽相同,由此建立的纤维约束混凝土本构关系在力学意义上不够明确。 作者认为材料的本构模型应反映材料的物理 3基金项目:上海市科学技术委员会科研攻关项目(编号:032112060)

混凝土结构原理.矩形箍筋约束混凝土

4.2 矩形箍筋约束混凝土 1.约束作用机理 (1)受力破坏过程 小配箍率时(3.0≤t λ)的破坏过程及特征 ● 应力接近素混凝土单轴抗压强度前,应力——应变曲线和素混凝土的应 力——应变曲线基本相同。其中c c f 4.0<σ时,应力——应变关系为直线, c c f 4.0≥σ后,应力——应变曲线开始微凸。 ● 应力接近单轴抗压强度时(()6101700~1500,-?≈→p c c f εσ),箍筋应 变较小(()610600~400-?≈st ε),约束效果不明显,混凝土抗压强度提高不多。 ● 混凝土纵向应力达到峰值(p pc c εεε>=)时,箍筋应力有所增长但仍未 屈服(()6101200~900-?≈st ε);混凝土应力较单轴抗压强度有所提高(c cc c f f >=σ),但增长不大。 ● 混凝土纵向应变在峰值应变前后(()pc c εε11.1~85.0=),试件出现沿纵 筋外缘的竖向裂缝,约束混凝土进入软化段。 ● 混凝土应变超过峰值应变后(pc c εε>),随着混凝土纵向压应变的增加, 裂缝不断出现、发展、贯通,混凝土膨胀急剧发展(泊松比增大),箍筋开始屈服,混凝土的应变达到()6104500~3000-?=c ε。此时箍筋的约束效应最大,混凝土尚未达到三轴抗压强度。 ● 接近破坏时,保护层混凝土开始剥落,钢筋全部外露。箍筋全部屈服甚 至个别拉断,约束区混凝土的破坏大多为斜剪破坏,由于箍筋未被全部拉断,混凝土存在残余抗压强度。此时混凝土的纵向压应变远远高于素 混凝土的极限压应变,达到()6106000~4000-?=c ε。 较高配箍率时(85.0~36.0=t λ)的破坏过程及特征 ● 上升段应力——应变曲线的斜率(约束混凝土的弹性模量)可能小于素 混凝土的弹性模量,原因是箍筋较多,保护层混凝土密实度难以保证、且箍筋内外混凝土的整体性不好。 ● 混凝土纵向裂缝出现后,混凝土的膨胀加大,箍筋对混凝土的约束效应 出现且很大。 ● 约束混凝土的应力——应变曲线没有明显的峰值。 ● 混凝土出现第一条纵向裂缝和箍筋开始屈服时的纵向应变值接近小配

约束混凝土本构关系试验

研究意义和现状:随着哥本哈根会议的结束,作为最大的发展中国家——中国遇到越来越大的“碳”减排压力。橡胶产业的迅猛发展、汽车工业的迅速崛起,废旧橡胶的数量每年以13%的速度递增。2009年我国的废轮胎大约为2.3亿条,约合645万吨。橡胶材料不能用热塑性加工方法进行回收利用,在自然界中很难自行降解。废轮胎产生的橡胶具有很强的抗热、抗机械和抗降解性,这都加速了蚊虫滋生、疾病传染、带来了火灾隐患。废旧橡胶的回收利用迫在眉睫。 阪神地震以后,钢管混凝土结构的抗震优越性在地震中得到有利的证实。钢管混凝土作为一种组合结构,借助钢管对核心橡胶混凝土的套箍约束作用,使核心混凝土处于三向受压状态,提高了核心混凝土抗压承载力,并且由于核心混凝土支撑,限制了外包钢管的局部屈曲,从而使钢管混凝土具有承载力高,塑性和韧性好,耐火性能和经济效益好等优点,还具有省工省料、施工速度快等优越的施工性能。因而钢管混凝土适应了现代土木工程结构向大跨、高耸、重载发展的趋势,并且符合现代化施工技术和工业化制造要求,发展前景广阔。 本课题提出了一种新的结构构件形式:钢管橡胶混凝土柱,其能充分利用橡胶的粘弹性耗能性能及钢管混凝土优良的变形性能。设有钢管橡胶混凝土柱的框架结构在地震时,既能满足竖向承载力及变形要求,又能在吸收大量能量。既提高了结构构件的性能,又能合理利用废旧橡胶。本课题具有发展生态、绿色环保等优点,实现建筑、资源、环境可持续发展。 在罕遇地震作用下,建筑结构难以避免的会进入塑性阶段。人们已经意识到合理的结构屈服机制对结构抗震具有重要意义。从保证结构整体抗震性能角度出发,只要最终能使结构形成整体型屈服机制,可不必受框架节点满足“强柱弱梁”条件的限制。河野昭彦、徐培蓁针对钢管混凝土结构提出了允许部分柱屈服的混合机制型框架结构设计理论。允许屈服的柱采用钢管橡胶混凝土,可利用内填的橡胶颗粒的弹塑性变形充分耗能,从而提高结构的抗震性能。 2、国内外研究现状 国内外学者在对Conctete Filled Steel Tube(即钢管混凝土,以下简称CFT)构件的工作机理和力学性能研究方面已取得一系列重要成果,自上一世纪六十年代由前苏联引入我国以来,也取得了大量的研究成果,在我国得到广泛的应用。在CFT结构的基本理论研究方面,钟善桐[1]提出了“钢管混凝土统一理论”,把CFT 视为统一体,它的工作性能随着材料的物理参数,统一体的几何参数和截面形式,以及应力状态的改变而改变。变化是连续的,相关的,计算是统一的;在CFT结构的静力性能研究,建立了基于统一理论的CFT轴压构件、弯曲构件、偏压构件等的设计方法和计算公式,并且在圆钢管、方钢管和矩形钢管混凝土构件等方面都取得了相应的成果。在CFT柱的抗震性能研究方面,1923年日本关西地震后,人们发现CFT结构在该次地震中没有明显破坏,1995年阪神地震后,CFT结构更显示了其抗震优越性,研究者对CFT柱的抗震性能进行了大量的实验研究,但目前对于CFT整体结构抗震性能的研究还较少。河野昭彦、徐培蓁等提出了一种有别于传统的梁铰屈服机制的新型屈服机制形式-混合屈服机制。通过弹塑性时程分析,提出了形成整体性屈服机制所需的最小层间柱梁强度比,研究了屈服柱的损伤评价,从而放松了框架结构节点柱梁强度比的要求。 在橡胶混凝土材料性能研究方面,国内外学者也取得了一系列重要成果。自上世纪九十年代橡胶应用到土木工程中以来,橡胶混凝土力学性能研究方面取得大量研究成果,并得到广泛应用。在弹性橡胶混凝土压、弯变形性能试验研究方面,王婧一对普通混凝土、橡胶混凝土及橡胶纤维混凝土进行了单轴受压及四点弯曲荷载作用下变形性能的试验研究,得到了各组混凝土的单轴受压应力一应变全曲线及弯曲荷载作用下的荷载一挠度曲线,确定橡胶及纤维的掺人大大提高了普通水泥混凝土的韧性及变性性能。王涛,洪锦祥等研究了80目橡胶粉在四种掺量(0、30、6O、90 kg/m3 )下混凝土的拌合物性能、强度、弹性模量和冻融耐久性,确定了橡胶混凝土的力学性能衰减幅度的大小关系:抗压强度损失>轴心抗压强度损失>抗压弹性模量损失>弯拉弹性模量损失>弯拉强度损失。橡胶粉能增加混凝土的韧性,其掺量越大,混凝土的韧性越好。 国内尚未将钢管与橡胶混凝土两种材料组合到一起形成钢管橡胶混凝土的相关研究。本项目拟通过研

第三强度理论.

第七章 应力和应变分析 强度理论 §7.1应力状态概述 过构件上一点有无数的截面,这一点的各个截面上应力情况的集合,称为这点的应力状态 §7.2二向和三向应力状态的实例 §7.3二向应力状态分析—解析法 1.任意斜截面上的应力 在基本单元体上取任一截面位置,截面的法线n 。 在外法线n 和切线t 上列平衡方程 αασαατσc o s )c o s (s i n )c o s (dA dA dA x xy a -+ 0s i n )s i n (c o s )s i n (=-+αασαατdA dA y yx αασαατ τsin )cos (cos )cos (dA dA dA x xy a -- 0sin )sin (cos )sin (=++ααταασdA dA yx y 根据剪应力互等定理,yx xy ττ=,并考虑到下列三角关系 22sin 1sin ,22cos 1cos 22 α ααα-=+= , ααα2sin cos sin 2= 简化两个平衡方程,得 ατασσσσσα2sin 2cos 2 2 xy y x y x --+ += xy τyx τn α t

ατασστα2cos 2sin 2 xy y x +-= 2.极值应力 将正应力公式对α取导数,得 ?? ????+--=ατασσασα 2cos 2sin 22xy y x d d 若0αα=时,能使导数 0=α σα d d ,则 02cos 2sin 2 00=+-ατασσxy y x y x xy tg σστα-- =220 上式有两个解:即0α和 900±α。在它们所确定的两个互相垂直的平面上,正应力取得极值。且绝对值小的角度所对应平面为最大正应力所在的平面,另一个是最小正应力所在的平面。求得最大或最小正应力为 2 2min max )2 (2xy y x y x τσσσσσσ+-±+= ??? 0α代入剪力公式,0ατ为零。这就是说,正应力为最大或最小所在的平面,就是主平 面。所以,主应力就是最大或最小的正应力。 将切应力公式对α求导,令 02sin 22cos )(=--=ατασσα τα xy y x d d 若1αα=时,能使导数0=α τα d d ,则在1α所确定的截面上,剪应力取得极值。通过求导可得 02sin 22cos )(11=--ατασσxy y x xy y x tg τσσα221-= 求得剪应力的最大值和最小值是: 2 2min max )2 ( xy y x τσσττ+-±=??? 与正应力的极值和所在两个平面方位的对应关系相似,剪应力的极值与所在两个平面方

应力状态与应变状态分析

第8章典型习题解析 1. 试画出下图所示简支梁A 点处的原始单元体。 图8.1 解:(1)原始单元体要求其六个截面上的应力应已知或可利用公式直接计算,因此应选取如下三对平面:A 点左右侧的横截面,此对截面上的应力可直接计算得到;与梁xy 平面平行的一对平面,其中靠前的平面是自由表面,所以该对平面应力均为零。再取A 点偏上和偏下的一对与xz 平行的平面。截取出的单元体如图(d)所示。 (2)分析单元体各面上的应力: A 点偏右横截面的正应力和切应力如图(b)、(c)所示,将A 点的坐标x 、y 代入正应力和切应力公式得A 点单元体左右侧面的应力为: z M y I σ= b I QS z z *= τ 由切应力互等定律知,单元体的上下面有切应力τ ;前后边面为自由表面,应力为零。在单元体各面上画上应力,得到A 点单元体如图(d)。 2.图(a)所示的单元体,试求(1)图示斜截面上的应力;(2)主方向和主应力,画出主单元体;(3)主切应力作用平面的位置及该平面上的正应力,并画出该单元体。 解:(1)求斜截面上的正应力 ?30-σ和切应力?30-τ

由公式 MPa 5.64)60sin()60()60cos(2100 5021005030-=?---?---++-= ?-σ MPa 95.34)60cos()60()60sin(2100 5030=?--+?---= ?-τ (2)求主方向及主应力 8 .010050120 22tan -=----=-- =y x x σστα ?-=66.382α ?=? -=67.7033.1921αα 最大主应力在第一象限中,对应的角度为 070.67α=?,主应力的大小为 1 5010050100cos(270.67)(60)sin(270.67)121.0MPa 22σ= ??--??=-+--+ 由 y x σσσσαα+=+2 1 可解出 2 1 (50)100(121.0)71.0MPa x y ασσσσ=+=-+-=-- 因有一个为零的主应力,因此 )33.19(MPa 0.7133?--=第三主方向=ασ 画出主单元体如图8.2(b)。 (3)主切应力作用面的法线方向 25 .1120100 502tan =---= 'α ?='34.512α ?='? ='67.11567.2521αα 主切应力为 ' 2 ' 1 MPa 04.96)34.51cos()60()34.51sin(2100 50ααττ-=-=?-+?--= 此两截面上的正应力为 MPa 0.25)34.51sin()60()34.51cos(2100 502100501 =?--?--++-= 'ασ MPa 0.25)34.231sin()60()34.231cos(2100 502100502 =?--?--++-= 'ασ 主切应力单元体如图所示。

材料力学习题第六章应力状态分析答案详解

第6章 应力状态分析 一、选择题 1、对于图示各点应力状态,属于单向应力状态的是(A )。 20 (MPa ) 20 d 20 (A )a 点;(B )b 点;(C )c 点;(D )d 点 。 2、在平面应力状态下,对于任意两斜截面上的正应力αβσσ=成立的充分必要条件,有下列四种答案,正确答案是( B )。 (A ),0x y xy σστ=≠;(B ),0x y xy σστ==;(C ),0x y xy σστ≠=;(D )x y xy σστ==。 3、已知单元体AB 、BC 面上只作用有切应力τ,现关于AC 面上应力有下列四种答案,正确答案是( C )。 (A )AC AC /2,0 ττσ==; (B )AC AC /2,/2τ τσ==; (C )AC AC /2,/2τ τσ==;(D )AC AC /2,/2ττσ=-=。 4、矩形截面简支梁受力如图(a )所示,横截面上各点的应力状态如图(b )所示。关

于它们的正确性,现有四种答案,正确答案是( D )。 (b) (a) (A)点1、2的应力状态是正确的;(B)点2、3的应力状态是正确的; (C)点3、4的应力状态是正确的;(D)点1、5的应力状态是正确的。 5、对于图示三种应力状态(a)、(b)、(c)之间的关系,有下列四种答案,正确答案是( D )。 τ (a) (b) (c) (A)三种应力状态均相同;(B)三种应力状态均不同; (C)(b)和(c)相同;(D)( a)和(c)相同; 6、关于图示主应力单元体的最大切应力作用面有下列四种答案,正确答案是( B )。 (A) (B) (D) (C) 解答: max τ发生在 1 σ成45o的斜截面上 7、广义胡克定律适用范围,有下列四种答案,正确答案是( C )。 (A)脆性材料;(B)塑性材料; (C)材料为各向同性,且处于线弹性范围内;(D)任何材料;

本章应力和应变分析与强度理论的知识结构框图

本章应力和应变分析与强度理论重点、难点、考点 本章重点是应力状态分析,要掌握二向应力状态下斜截面上的应力、主应力、主平面方位及最大切应力的计算。能够用广义胡克定律求解应力和应变关系。理解强度理论的概念,能够

按材料可能发生的破坏形式,选择适当的强度理论。 难点主要有 ① 主平面方位的判断。当由解析法求主平面方位时,结果有两个相差 90 ”的方位角,一般不容易直接判断出它们分别对应哪一个主应力,除去直接将两个方位角代人式中验算确定的方法外,最简明直观的方法是利用应力圆判定,即使用应力圆草图。还可约定y x σσ≥,则两个方位中绝对值较小的角度对应max σ所在平面。 ② 最大切应力。无论何种应力状态,最大切应力均为2/)(31max σστ-=,而由式( 7 一 l )中第二式取导数0d d =α τα得到的切应力只是单元体的极值切应力,也称为面内最大切应力,它仅对垂直于Oxy 坐标平面的方向而言。面内最大切应力不一定是一点的所有方位面中切应力的最大值,在解题时要特别注意,不要掉人“陷阱”中。 本章主要考点: ① 建立一点应力状态的概念,能够准确地从构件中截取单元体。 ② 二向应力状态下求解主应力、主平面方位,并会用主单元体表示。会计算任意斜截面上的应力分量。 ③ 计算单元体的最大切应力。 ④ 广义胡克定律的应用。 ⑤ 能够选择适当的强度理论进行复杂应力状态下的强度计算,会分析简单强度破坏问题的原因。 本章习题大致可分为四类: ( l )从构件中截取单元体这类题一般沿构件截面截取一正六面体,根据轴力、弯矩判断横截面上的正应力方向,由扭矩、剪力判断切应力方向,单元体其他侧面上的应力分量由力平衡和切应力互等定理画完整。特别是当单元体包括构件表面(自由面)时,其上应力分量为零。 ( 2 )复杂应力状态分析一般考题都不限制采用哪一种方法解题,故最好采用应力圆分析,它常常能快速而有效地解决一些复杂的问题。 ( 3 )广义胡克定律的应用在求解应力与应变关系的题目中,不论构件的受力状态,均采用广义胡克定律,即可避免产生不必要的错误,因为广义胡克定律中包含了其他形式的胡克定律。 ( 4 )强度理论的应用对分析破坏原因的概念题,一般先分析危险点的应力状态,根据应力状态和材料性质,判断可能发生哪种类型的破坏,并选择相应的强度理论加以解释。计算题一般为组合变形构件的强度分析(详见第 8 章)与薄壁容器的强度分析,薄壁容器可利用平衡条件求出横截面与纵向截面上的正应力,由于容器的对称性,两平面上无切应力,故该应力即为主应力,并选择第三或第四强度理论进行强度计算。

相关主题
文本预览
相关文档 最新文档