当前位置:文档之家› 中考压轴题——二次函数与四边形综合训练(含答案)

中考压轴题——二次函数与四边形综合训练(含答案)

中考压轴题——二次函数与四边形综合训练(含答案)
中考压轴题——二次函数与四边形综合训练(含答案)

72

x =

B(0,4)

A(6,0)

E

F

x

y

O

二次函数与四边形

一.二次函数与四边形的形状

例1.(浙江义乌市) 如图,抛物线2

23y x x =--与x 轴交A 、B 两点(A

点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中 C 点的横坐标为2.

(1)求A 、B 两点的坐标及直线AC 的函数表达式; (2)P 是线段AC 上的一个动点,过P 点作y 轴的平 行线交抛物线于E 点,求线段PE 长度的最大值; (3)点G 是抛物线上的动点,在x 轴上是否存在点F , 使A 、C 、F 、G 这样的四个点为顶点的四边形是 平行四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由.

练习1.(河南省实验区) 23.如图,对称轴为直线7

2

x =的抛物线经过点A (6,0)和 B ( 0,4).

(1)求抛物线解析式及顶点坐标; (2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形.求平行四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围; ①当平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形?

②是否存在点E ,使平行四边形OEAF 为正方形?若存在,求出点E 的坐标;若不存在,请说明理由.

练习2.(四川省德阳市)25.如图,已知与x 轴交于点(10)A ,

和(50)B ,的抛物线1l 的顶点为(34)C ,,抛物线2l 与1l 关于x 轴对称,顶点为C '.

A

(1)求抛物线2l 的函数关系式;

(2)已知原点O ,定点(04)D ,,2l 上的点P 与1l 上的点P '始终关于x 轴对称,则当点P 运动到何处时,以点D O P P ',,,为顶点的四边形是平行四边形?

(3)在2l 上是否存在点M ,使ABM △是以AB 为斜边且一个角为30o 的直角三角形?若存,求

出点M 的坐标;若不存在,说明理由.

练习3.(山西卷)如图,已知抛物线1C 与坐标轴的交点依次是(40)A -,,(20)B -,,(08)E ,. (1)求抛物线1C 关于原点对称的抛物线2C 的解析式; (2)设抛物线1C 的顶点为M ,抛物线2C 与x 轴分别交于C D ,两点(点C 在点D 的左侧),顶点为N ,四边形MDNA 的面积为S .若点A ,点D 同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点

M ,点N 同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A 与点D 重合为止.求出四边形

MDNA 的面积S 与运动时间t 之间的关系式,

并写出自变量t 的取值范围;

(3)当t 为何值时,四边形MDNA 的面积S 有最大值,

并求出此最大值;

(4)在运动过程中,四边形MDNA 能否形成矩形?若能,求出此时t 的值;若不能,请说明理由.

二.二次函数与四边形的面积

例1.(资阳市)25.如图10,已知抛物线P :y=ax 2+bx+c(a ≠0) 与x 轴交于A 、B 两点(点A 在

x 轴的正半轴上),与y 轴交于点C ,矩形DEFG 的一条边DE 在线段AB 上,顶点F 、G 分别在线段BC 、AC x … -3 -2 1 2 …

y

-5

2

-4

-52

0 …

5-

4- 3- 2- 1- 1

2 3 4 5

5

4

3

2

1 A

E

B

C '

1- O 2l 1l

x

y

(1) 求A、B、C三点的坐标;

(2) 若点D的坐标为(m,0),矩形DEFG的面积为S,

求S与m的函数关系,并指出m的取值范围;

(3) 当矩形DEFG的面积S取最大值时,连接DF并延

长至点M,使FM=k·DF,若点M不在抛物线P上,求k的

取值范围.

练习1.(辽宁省十二市2007年第26题).如图,平面直角坐标系中有一直角梯形OMNH,点H的坐标为(-8,0),点N的坐标为(-6,-4).

(1)画出直角梯形OMNH绕点O旋转180°的图形OABC,并写出顶点A,B,C的坐标(点M的对应点为A,点N的对应点为B,点H的对应点为C);

(2)求出过A,B,C三点的抛物线的表达式;

(3)截取CE=OF=AG=m,且E,F,G分别在线段CO,OA,AB上,求四边形BEFG 的面积S与m之间的函数关系式,并写出自变量m的取值范围;面积S是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由;

(4)在(3)的情况下,四边形BEFG是否存在邻边相等的情况,若存在,请直接写出此时m的值,并指出相等的邻边;若不存在,说明理由.

练习3.(吉林课改卷)如图,正方形ABCD的边长为2cm,在对称中心O处有一钉子.动点P,Q同时从点A出发,点P沿A B C

→→方向以每秒2cm的速度运动,到点C停止,点Q沿A D

→方向以每秒1cm的速度运动,到点D停止.P,Q两点用一条可伸缩的细橡皮筋联结,设x秒后橡皮筋扫过的面积为2

cm

y.(1)当01

x

≤≤时,求y与x之间的函数关系式;

(2)当橡皮筋刚好触及钉子时,求x值;

图10

(3)当12x ≤≤时,求y 与x 之间的函数关系式,并写出橡皮筋从触及钉子到运

动停止时POQ ∠的变化范围;

(4)当02x ≤≤时,请在给出的直角坐标系中画出y 与x 之间的函数图象.

练习4.(四川资阳卷)如图,已知抛物线l 1:y =x 2-4的图象与x 轴相交于A 、C 两点,B 是抛物线l 1上的动点(B 不与A 、C 重合),抛物线l 2与l 1关于x 轴对称,以AC 为

对角线的平行四边形ABCD 的第四个顶点为D . (1) 求l 2的解析式;

(2) 求证:点D 一定在l 2上;

(3) □ABCD 能否为矩形?如果能为矩形,求这些矩形公共部分的面积(若只有一个矩形符合条件,则求此矩形的面积);如果不能为矩形,请说明理由. 注:计算结果不取近似值

.

三.二次函数与四边形的动态探究 例1.(

荆门市)28. 如图1,在平面直角坐标系中,有一张矩形纸片OABC ,已知O (0,0),A (4,0),C (0,

3),点P 是OA 边上的动点(与点O 、A 不重合).现将△PAB 沿PB 翻折,得到△PDB ;再在OC 边上选取适当的点E ,将△POE 沿PE 翻折,得到△PFE ,并使直线PD 、PF 重合. (1)设P (x ,0),E (0,y ),求y 关于x 的函数关系式,并求y 的最大值;

(2)如图2,若翻折后点D 落在BC 边上,求过点P 、B 、E 的抛物线的函数关系式;

(3)在(2)的情况下,在该抛物线上是否存在点Q ,使△PEQ 是以PE 为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q 的坐标.

B C

P

O D Q

A B

P

C

O

D

Q

A

y

3

2 1 O

1 2 x

例2.(2007年沈阳市第26题)、已知抛物线y =ax2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB

(1)求A 、B 、C 三点的坐标; (2)求此抛物线的表达式;

(3)连接AC 、BC ,若点E 是线段AB 上的一个动点(与点A 、点B 不重合),过点E 作EF ∥AC 交BC 于点F ,连接CE ,设AE 的长为m ,△CEF 的面积为S ,求S 与m 之间的函数关系式,并写

出自变量m 的取值范围;

(4)在(3)的基础上试说明S 是否存在最大值,若存在,请求出S 的最大值,并求出此时点E 的坐标,判断此时△BCE 的形状;若不存在,请说明理由.

例3..(湖南省郴州) 27.如图,矩形ABCD 中,AB =3,BC =4,将矩形ABCD 沿对角线A 平移,平移后的矩形为EFGH (A 、E 、C 、G 始终在同一条直线上),当点E 与C 重时停止移动.平移中EF 与BC 交于点N ,GH 与BC 的延长线交于点M ,EH 与DC 交于点P ,FG 与DC 的延长线交于点Q .设S 表示矩形PCMH 的面积,

S '表示矩形NFQC 的面积.

(1) S 与S '相等吗?请说明理由.

(2)设AE =x ,写出S 和x 之间的函数关系式,并求出x 取何值时S 有最大值,最大值是多少? (3)如图11,连结BE ,当AE 为何值时,ABE ?是等腰三角形.

图2

O

C

A B

x

y

D

P

E F 图1

F

E P

D y x

B

A C O

x

M

P

H

E D

B

A P M

H E D C

B

A

练习1.(07年河池市)如图12, 四边形OABC 为直角梯形,A (4,0),B (3,4),C (0,4). 点

M 从O 出发以每秒2个单位长度的速度向A 运动;点N 从B 同时出发,以每秒1个单位长度的速度向C 运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N 作NP 垂直x 轴于点P ,连结AC 交NP

于Q ,连结MQ .

(1)点 (填M 或N )能到达终点;

(2)求△AQM 的面积S 与运动时间t 的函数关系式,并写出自变量t 的取值范围,当t 为何值时,S 的值最大;

(3)是否存在点M ,使得△AQM

练习2..(江西省) 25.实验与探究

(1)在图1,2,3中,给出平行四边形ABCD 的顶点A B D ,,的坐标(如图所示),写出图1,2,3中的

顶点C 的坐标,它们分别是(52),

, , ;

(2)在图4中,给出平行四边形ABCD 的顶点A B D ,,的坐标(如图所示),求出顶点C 的坐标(C 点坐标用含a b c d e f ,,,,,的代数式表示);

x

图1

x

图2

x

图3

图12

(第25题图②)

归纳与发现

(3)通过对图1,2,3,4的观察和顶点C 的坐标的探究,你会发现:无论平行四边形ABCD 处于直角坐标系中哪个位置,当其顶点坐标为()()()()A a b B c d C m n D e f ,,,,,,,(如图4)时,则四个顶点的横坐标a c m e ,,,之间的等量关系为 ;纵坐标b d n f ,,,之间的等量关系为 (不必证明); 运用与推广

(4)在同一直角坐标系中有抛物线2

(53)y x c x c =---和三个点15192222G c c S c c ????

-

? ?????

,,,,(20)H c ,(其中0c >).问当c 为何值时,该抛物线上存在点P ,使得以G S H P ,,,为顶点的四边形是平行四边形?并

求出所有符合条件的P 点坐标.

练习3.(武汉市) 如图①,在平面直角坐标系中,Rt △AOB ≌Rt △CDA ,且A(-1,0)、B(0,2),抛物线y =ax 2+ax -2经过点C 。

(1)求抛物线的解析式;

(2)在抛物线(对称轴的右侧)上是否存在两点P 、Q ,使四边形ABPQ 是正方形?若存在,求点P 、Q 的坐标,若不存在,请说明理由;

(3)如图②,E 为BC 延长线上一动点,过A 、B 、E 三点作⊙O ’,连结AE ,在⊙O ’上另有一点F ,且AF =AE ,AF 交BC 于点G ,+BF

的值不变;②

AG

BG

AF BF =

个成立,

的结论。

)

x

图4

答案:

一.二次函数与四边形的形状

例1.解:(1)令y=0,解得11x =-或23x = ∴A (-1,0)B (3,0);

将C 点的横坐标x=2代入2

23y x x =--得y=-3,∴C (2,-3) ∴直线AC 的函数解析式是y=-x-1 (2)设P 点的横坐标为x (-1≤x ≤2) 则P 、E 的坐标分别为:P (x ,-x-1), E (2

(,23)x x x --

∵P 点在E 点的上方,PE=2

2

(1)(23)2x x x x x -----=-++ ∴当12x =

时,PE 的最大值=94

(3)存在4个这样的点F ,分别是1234(1,0),(3,0),(4(4F F F F - 练习 1.解:(1)由抛物线的对称轴是7

2

x =

把A 、B 两点坐标代入上式,得

227(60,27(0 4.

2

a k a k ?-+=???

?-+=?? 解之,得225,.36a k ==- 故抛物线解析式为22725

(326

y x =

--

,顶点为725

(,26

- (2)∵点(,)E x y 22725

(326

y x =--,

∴y<0,即 -y>0,-y 表示点E 到OA 的距离. ∵OA 是OEAF Y 的对角线,

∴2

1

72264(2522

OAE S S OA y y ==???=-=--+V .

因为抛物线与x 轴的两个交点是(1,0)的(6,0),所以,自变量x 的 取值范围是1<x <6.

① 根据题意,当S = 24时,即2

74(25242

x --+=.

化简,得2

71

(.2

4

x -=

解之,得123, 4.x x == 故所求的点E 有两个,分别为E 1(3,-4),E 2(4,-4). 点E 1(3,-4)满足OE = AE ,所以OEAF Y 是菱形;

点E 2(4,-4)不满足OE = AE ,所以OEAF Y 不是菱形.

② 当OA ⊥EF ,且OA = EF 时,OEAF Y 是正方形,此时点E 的 坐标只能是(3,-3).

而坐标为(3,-3)的点不在抛物线上,故不存在这样的点E , 使OEAF Y 为正方形.

练习2.解:(1)由题意知点C '的坐标为(34)-,

. 设2l 的函数关系式为2(3)4y a x =--.

又Q 点(10)A ,

在抛物线2(3)4y a x =--上, 2(13)40a ∴--=,解得1a =. ∴抛物线2l 的函数关系式为2(3)4y x =

--(或26y x =-(2)P Q 与P '始终关于x 轴对称,

5

-4-3-2

-1

-1

2 3

D

5

5

4 3

2 1 A

C

E

M B

C '

1-O

2

l 1

l x

y

PP '∴与y 轴平行.

设点P 的横坐标为m ,则其纵坐标为265m m -+,

4OD =Q ,22654m m ∴-+=,即2652m m -+=±. 当2652m m -+=时,解得36m =±. 当2652m m -+=-时,解得32m =±.

∴当点P 运动到(362)-,

或(362)+,或(322)--,或(322)+-,时, P P OD ' ∥,以点D O P P ',,,为顶点的四边形是平行四边形.

(3)满足条件的点M 不存在.理由如下:若存在满足条件的点M 在2l 上,则

90AMB ∠=o ,30BAM ∠=o Q (或30ABM ∠=o ),

11

4222

BM AB ∴=

=?=. 过点M 作ME AB ⊥于点E ,可得30BME BAM ∠=∠=o .

11

2122

EB BM ∴=

=?=,3EM =,4OE =. ∴点M 的坐标为(43)-,

. 但

是,当4x =时,

2

46451624533y =-?+=-+=-≠-. ∴不存在这样的点M 构成满足条件的直角三角形.

练习3. [解] (1)点(40)A -,

,点(20)B -,,点(08)E ,关于原点的对称点分别为(40)D ,,(20)C ,,(08)F -,

. 设抛物线2C 的解析式是

2(0)y ax bx c a =++≠,

则16404208a b c a b c c ++=??

++=??=-?

,,.

解得168a b c =-??

=??=-?

,,.

所以所求抛物线的解析式是2

68y x x =-+-. (2)由(1)可计算得点(31)(31)M N --,,,.

过点N 作NH AD ⊥,垂足为H .

当运动到时刻t 时,282AD OD t ==-,12NH t =+. 根据中心对称的性质OA OD OM ON ==,,所以四边形MDNA 是平行四边形. 所以2ADN S S =△.

所以,四边形MDNA 的面积2

(82)(12)4148S t t t t =-+=-++. 因为运动至点A 与点D 重合为止,据题意可知04t <≤.

所以,所求关系式是2

4148S t t =-++,t 的取值范围是04t <≤. (3)781

444

S t ?

?=--+ ???,(04t <≤). 所以74t =

时,S 有最大值814

. 提示:也可用顶点坐标公式来求.

(4)在运动过程中四边形MDNA 能形成矩形.

由(2)知四边形MDNA 是平行四边形,对角线是AD MN ,,所以当AD MN =时四边形MDNA 是矩形. 所以OD ON =.所以2

2

2

2

OD ON OH NH ==+.

所以2

2

420t t +-=

.解之得1222t t ==,(舍). 所以在运动过程中四边形MDNA

可以形成矩形,此时2t =

[点评]本题以二次函数为背景,结合动态问题、存在性问题、最值问题,是一道较传统的压轴题,能力要求较高。

二.二次函数与四边形的面积

例1. 解:(1)解法一:设)0(2≠++=a c bx ax y ,

任取x,y 的三组值代入,求出解析式2

142

y x x =

+-, 令y=0,求出124,2x x =-=;令x=0,得y=-4,

∴ A 、B 、C 三点的坐标分别是A(2,0),B(-4,0),C(0,-4) . 解法二:由抛物线P 过点(1,-52

),(-3,5

2

-)可知, 抛物线P 的对称轴方程为x=-1,

又∵ 抛物线P 过(2,0)、(-2,-4),则由抛物线的对称性可知,

点A 、B 、C 的坐标分别为 A(2,0),B(-4,0),C(0,-4) . (2)由题意,AD DG

AO OC

=

,而AO=2,OC=4,AD=2-m ,故DG=4-2m , 又

BE EF

BO OC

=

,EF=DG ,得BE=4-2m ,∴ DE=3m , ∴DEFG s =DG·DE=(4-2m) 3m=12m-6m 2 (0<m <2) .

注:也可通过解Rt△BOC 及Rt △AOC ,或依据△BOC 是等腰直角三角形建立关系求解. (3)∵SDEFG=12m-6m 2 (0<m <2),∴m=1时,矩形的面积最大,且最大面积是6 . 当矩形面积最大时,其顶点为D(1,0),G(1,-2),F(-2,-2),E(-2,0), 设直线DF 的解析式为y=kx+b ,易知,k=23

,b=-23

,∴2233

y x =-, 又可求得抛物线P 的解析式为:2

142

y x x =+-, 令223

3x -=2

142x x +-,可求出3

611--=x . 设射线DF 与抛物线P 相交于点N , 则N

,过N 作x 轴的垂线交x 轴于H ,有

FN HE

DF DE

=

=233

--

点M 不在抛物线P 上,即点M 不与N 重合时,此时k 的取值范围是

k >0. 说明:若以上两条件错漏一个,本步不得分. 若选择另一问题:

(2)∵

AD DG

AO OC =

,而AD=1,AO=2,OC=4,则DG=2, 又∵FG CP AB OC

=

, 而AB=6,CP=2,OC=4,则FG=3, ∴DEFG s =DG·FG=6.

练习1.解:利用中心对称性质,画出梯形OABC . ················ 1分

∵A ,B ,C 三点与M ,N ,H 分别关于点O 中心对称,

∴A (0,4),B (6,4),C (8,0) ··················· 3分 (写错一个点的坐标扣1分)

(2)设过A,B,C三点的抛物线关系式为,

∵抛物线过点A(0,4),

∴.则抛物线关系式为

.·············· 4分将B(6,4),C(8,0)两点坐标代入关系式,得

···························· 5AB,

垂足为G,则sin∠FEG=sin∠CAB=分

解得 (6)

所求抛物线关系式为:.········ 7分

(3)∵OA=4,OC=8,∴AF=4-m,OE=8-m.·········· 8分

OA(AB+OC)AF·AG OE·OF CE·OA

(0<<4)········ 10分

. ∴当

时,S 的取最小值.

又∵0<m <4,∴不存在m 值,使S 的取得最小值. ······· 12分

(4)当时,GB =GF ,当

时,BE =BG . 14分

练习3.[解] (1)当01x ≤≤时,2AP x =,AQ x =,21

2

y AQ AP x ==g , 即2

y x =.

(2)当1

2

ABCD ABPQ S S =

正方形四边形时,橡皮筋刚好触及钉子, 22BP x =-,AQ x =,()211222222

x x -+?=?,4

3x ∴=.

(3)当4

13

x ≤≤时,2AB =, 22PB x =-,AQ x =,

22

23222

AQ BP x x y AB x ++-∴=

=?=-g , 即32y x =-.

作OE AB ⊥,E 为垂足.

4

23

x ≤≤时,22BP x =-,AQ x =,1OE =, BEOP OEAQ y S S =+梯形梯形12211122

x x +-+=?+?3

2x =,

即32

y x =.

90180POQ o

o

≤∠≤或180270POQ o o

≤∠≤ (4)如图所示:

练习4.[解] (1) 设l 2的解析式为y =ax 2+bx +c (a ≠0),

∵l 1与x 轴的交点为A (-2,0),C (2,0),顶点坐标是(0,- 4),l 2与l 1关于x 轴对称, ∴l 2过A (-2,0),C (2,0),顶点坐标是(0,4), ∴420,420,4.

a b c a b c c -+=??++=?=?? ∴ a =-1,b =0,c =4,即l 2的解析式为y = -x 2+4 . (还可利用顶点式、对称性关系等方法解答)

(2) 设点B (m ,n )为l 1:y =x 2-4上任意一点,则n = m 2-4 (*). ∵ 四边形ABCD 是平行四边形,点A 、C 关于原点O 对称, ∴ B 、D 关于原点O 对称, ∴ 点D 的坐标为D (-m ,-n ) .

由(*)式可知, -n =-(m 2-4)= -(-m )2+4, 即点D 的坐标满足y = -x 2+4, ∴ 点D 在l 2上.

(3) □ABCD 能为矩形.

过点B 作BH ⊥x 轴于H ,由点B 在l 1:y =x 2-4上,可设点B 的坐标为 (x 0,x 02-4), 则OH =| x 0|,BH =| x 02-4| .

易知,当且仅当BO = AO =2时,□ABCD 为矩形. 在Rt △OBH 中,由勾股定理得,| x 0|2+| x 02-4|2=22, (x 02-4)( x 02-3)=0,∴x 0=±2(舍去)、x 0=±3 .

所以,当点B 坐标为B ( 3 ,-1)或B ′(- 3 ,-1)时,□ABCD 为矩形,此时,点D 的坐标分别是D (- 3 ,1)、D ′( 3 ,1).

因此,符合条件的矩形有且只有2个,即矩形ABCD 和矩形AB ′CD ′ . 设直线AB 与y 轴交于E ,显然,△AOE ∽△AHB , ∴ EO AO = BH AH ,∴1

223

EO =+.

3

2 1 O

1 2 x

y 4

3

∴ EO =4-

.

由该图形的对称性知矩形ABCD 与矩形AB ′CD ′重合部分是菱形,其面积为

S =2S ΔACE =2×12 × AC ×EO =2×1

2 ×4×(4-2

3 )=16 - 8 3 .

三.二次函数与四边形的动态探究

例1.解:(1)由已知PB 平分∠APD ,PE 平分∠OPF ,且PD 、PF 重合,则∠BPE =90°.∴∠OPE +∠APB =90°.又∠APB +∠ABP =90°,∴∠OPE =∠PBA . ∴Rt △POE ∽Rt △BPA . ∴

PO BA OE AP =

.即34x y x =-.∴y =2114

(4)333

x x x x -=-+(0<x <4). 且当x =2时,y 有最大值1

3

(2)由已知,△PAB 、△POE 均为等腰三角形,可得P (1,0),E (0,1),B (4,3). 设过此三点的抛物线为y =ax 2+bx +c ,则1,0,164 3.c a b c a b c =??

++=??++=?∴1,23,21.

a b c ?=??

?=-??

=???

y =

213

122

x x -+. (3)由(2)知∠EPB =90°,即点Q 与点B 重合时满足条件. 直线PB 为y =x -1,与y 轴交于点(0,-1). 将PB 向上平移2个单位则过点E (0,1), ∴该直线为y =x +1. 由21,

13

1,22y x y x x =+??

?=-+??

得5,6.x y =??=?∴Q(5,6). 故该抛物线上存在两点Q (4,3)、(5,6)满足条件.

例2.解:(1)解方程x 2-10x +16=0得x 1=2,x 2=8 ……………………1分 ∵点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,且OB <OC ∴点B 的坐标为(2,0),点C 的坐标为(0,8) 又∵抛物线y =ax 2+bx +c 的对称轴是直线x =-2

∴由抛物线的对称性可得点A 的坐标为(-6,0) …………………4分 (2)∵点C (0,8)在抛物线y =ax 2+bx +c 的图象上 ∴c =8,将A (-6,0)、B (2,0)代入表达式,得

中考二次函数压轴题经典题型

中考二次函数压轴题经典题型 1、如图,已知;边长为4的正方形截去一角成为五边形ABCDE,其中AF=2,BF=l,在AB上的一点P,使矩形PNDM 有最大面积,求矩形PNDM的面积最大值? 2、如图,二次函数的图象经过点D(0, 3 9 7 ),且顶点C的横坐标为4,该图象在x 轴上截得的线段AB的长为6. ⑴求二次函数的解析式; ⑵在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标; ⑶在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由. 3.如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(1 2 , 5 2 )和B(4,m),点P是线段AB 上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C. (1)求抛物线的解析式; (2)是否存在这样的P点,使线段PC的长有最大值,若存在,求出这个最大值;若不存在,请说明理由; (3)求△PAC为直角三角形时点P的坐标.

4、如图,二次函数y=a+bx的图象经过点A(2,4)与B(6,0). (1)求a,b的值; (2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB 的面积S关于点C的横坐标x的函数表达式,并求S的最大值。 5、如图1,对称轴x=为直线的抛物线经过B(2,0)、C(0,4)两点,抛物线与轴的另一交点为A.(1)求抛物线的解析式; (2)若点P为第一象限内抛物线上一点,设四边形COBP的面积为S,求S的最大值; (3)如图2,若M是线段BC上一动点,在轴上是否存在这样有点Q,使△MQC为等腰三角形且△MQB 为直角三角形?若存在,求出Q点坐标;若不存在,请说明理由.

二次函数压轴题题型归纳

一、二次函数常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:??? ??++22 B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定 此抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ;∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立) 小结.. :关于x 的方程b ax =有无数解????==0 b a

2020-2021中考数学压轴题之平行四边形(中考题型整理,突破提升)及答案

2020-2021中考数学压轴题之平行四边形(中考题型整理,突破提升)及答案 一、平行四边形 1.问题发现: (1)如图①,点P 为平行四边形ABCD 内一点,请过点P 画一条直线l ,使其同时平分平行四边形ABCD 的面积和周长. 问题探究: (2)如图②,在平面直角坐标系xOy 中,矩形OABC 的边OA 、OC 分别在x 轴、y 轴正半轴上,点B 坐标为(8,6).已知点(6,7)P 为矩形外一点,请过点P 画一条同时平分矩形OABC 面积和周长的直线l ,说明理由并求出直线l ,说明理由并求出直线l 被矩形 ABCD 截得线段的长度. 问题解决: (3)如图③,在平面直角坐标系xOy 中,矩形OABCD 的边OA 、OD 分别在x 轴、y 轴正半轴上,DC x ∥轴,AB y ∥轴,且8OA OD ==,2AB CD ==,点 (1052,1052)P --为五边形内一点.请问:是否存在过点P 的直线l ,分别与边OA 与BC 交于点E 、F ,且同时平分五边形OABCD 的面积和周长?若存在,请求出点E 和点F 的坐标:若不存在,请说明理由. 【答案】(1)作图见解析;(2)25y x =-,353)(0,0)E ,(5,5)F . 【解析】 试题分析:(1)连接AC 、BD 交于点O ,作直线PO ,直线PO 将平行四边形ABCD 的面积和周长分别相等的两部分. (2)连接AC ,BD 交于点O ',过O '、P 点的直线将矩形ABCD 的面积和周长分为分别相等的两部分. (3)存在,直线y x =平分五边形OABCD 面积、周长. 试题解析:(1)作图如下:

二次函数压轴题四边形面积

四边形面积最值 除了关于三角形的各种面积问题之外,四边形问题也是中考题中常见的一种问法,鉴于四边形一般是普普通通的四边形,因此问题一般也是普普通通的问题,本文分享一点关于四边形面积的题目. 思考:如何求一个普通的四边形的面积? 解法也很普通,连对角线分割为两个三角形即可求得面积,至于三角形面积参考铅垂法. 就是这么的简单粗暴,甚至还有一点无聊~ 搞定了四边形的面积,就可以看看四边形面积的最值了,还是来看点例子吧:

已知抛物线24y ax bx =+-经过点(2,0)A 、(4,0)B -,与y 轴交于点C . (1)求这条抛物线的解析式; (2)如图,点P 是第三象限内抛物线上的一个动点,当四边形ABPC 的面积最大时,求点P 的坐标. 【分析】 (1)2 142 y x x = +-; (2)此处四边形ABPC 并非特殊四边形,所以可以考虑连接对角线将四边形拆为两个三角 形求面积. 若连接AP ,则△ABP 和△APC 均为动三角形,非最佳选择; 若连接BC ,可得定△ABC 和动△BPC ,只要△BPC 面积最大,四边形ABPC 的面积便最大. 考虑A (2,0)、B (-4,0)、C (0,-4),故1 64122 ABC S =??=, 接下来求△BPC 的面积,设P 点坐标为21,42m m m ?? +- ??? , 连接BC ,则直线BC 的解析式为:y =-x -4 过点P 作PQ ⊥x 轴交BC 于点Q ,则Q 点坐标为(m ,-m -4), 故221144222PQ m m m m m ?? =---+-=-- ??? , 当m =-2时,PQ 取到最大值2,此时△BPC 面积最大,四边形ABPC 面积最大. 此时P 点坐标为(-2,-4).

2019中考数学压轴题精选

2019中考数学压轴题 1.(眉山)如图1,在平面直角坐标系中,抛物线y =﹣9 4x 2 +bx+c 经过点A (﹣5,0)和点B (1,0). (1)求抛物线的解析式及顶点D 的坐标; (2)点P 是抛物线上A 、D 之间的一点,过点P 作PE ⊥x 轴于点E ,PG ⊥y 轴,交抛物线于点G.过点G 作GF ⊥x 轴于点F.当矩形PEFG 的周长最大时,求点P 的横坐标; (3)如图2,连接AD 、BD ,点M 在线段AB 上(不与A 、B 重合),作∠DMN =∠DBA , MN 交线段AD 于点N ,是否存在这样点M ,使得△DMN 为等腰三角形?若存在,求出AN 的长;若不存在,请说明理由. O

2.(甘肃)如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y轴 交于点C. (1)求二次函数的解析式; (2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标; (3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标.

3.(广安)如图,抛物线与x轴交于A、B两点在B的左侧,与y轴交于点N,过A点的直线l:与y轴交于点C,与抛物线的另一个交点为D,已知,,P点为抛物线上一动点不与A、D重合.求抛物线和直线l的解析式; 当点P在直线l上方的抛物线上时,过P点作轴交直线l于点E,作轴交直线l 于点F,求的最大值; 设M为直线l上的点,探究是否存在点M,使得以点N、C,M、P为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.

2020-2021中考数学平行四边形-经典压轴题附详细答案

2020-2021中考数学平行四边形-经典压轴题附详细答案 一、平行四边形 1.操作:如图,边长为2的正方形ABCD,点P在射线BC上,将△ABP沿AP向右翻折,得到△AEP,DE所在直线与AP所在直线交于点F. 探究:(1)如图1,当点P在线段BC上时,①若∠BAP=30°,求∠AFE的度数;②若点E 恰为线段DF的中点时,请通过运算说明点P会在线段BC的什么位置?并求出此时∠AFD 的度数. 归纳:(2)若点P是线段BC上任意一点时(不与B,C重合),∠AFD的度数是否会发生变化?试证明你的结论; 猜想:(3)如图2,若点P在BC边的延长线上时,∠AFD的度数是否会发生变化?试在图中画出图形,并直接写出结论. 【答案】(1)①45°;②BC的中点,45°;(2)不会发生变化,证明参见解析;(3)不会发生变化,作图参见解析. 【解析】 试题分析:(1)当点P在线段BC上时,①由折叠得到一对角相等,再利用正方形性质求出∠DAE度数,在三角形AFD中,利用内角和定理求出所求角度数即可;②由E为DF中点,得到P为BC中点,如图1,连接BE交AF于点O,作EG∥AD,得EG∥BC,得到AF 垂直平分BE,进而得到三角形BOP与三角形EOG全等,利用全等三角形对应边相等得到BP=EG=1,得到P为BC中点,进而求出所求角度数即可;(2)若点P是线段BC上任意一点时(不与B,C重合),∠AFD的度数不会发生变化,作AG⊥DF于点G,如图1(a)所示,利用折叠的性质及三线合一性质,根据等式的性质求出∠1+∠2的度数,即为∠FAG 度数,即可求出∠F度数;(3)作出相应图形,如图2所示,若点P在BC边的延长线上时,∠AFD的度数不会发生变化,理由为:作AG⊥DE于G,得∠DAG=∠EAG,设 ∠DAG=∠EAG=α,根据∠FAE为∠BAE一半求出所求角度数即可. 试题解析:(1)①当点P在线段BC上时,∵∠EAP=∠BAP=30°,∴∠DAE=90°﹣ 30°×2=30°,在△ADE中,AD=AE,∠DAE=30°,∴∠ADE=∠AED=(180°﹣30°)÷2=75°,在△AFD中,∠FAD=30°+30°=60°,∠ADF=75°,∴∠AFE=180°﹣60°﹣75°=45°;②点E为DF 的中点时,P也为BC的中点,理由如下:

精选四边形压轴题及其答案

精选四边形(菱形、矩形、正方形)压轴题及答案 1.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动. (1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的数量关系和位置关系,并说明理由; (2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明);连接AC,请你直接写出△ACE为等腰三角形时CE:CD的值; (3)如图3,当E,F分别在直线DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最大值. 【分析】(1)根据正方形的性质得出AD=DC,∠ADE=∠DCF=90°,求出DE=CF,根据SAS推出△ADE≌△DCF,根据全等三角形的性质得出AE=DF,∠DAE=∠FDC 即可; (2)有两种情况:①当AC=CE时,设正方形ABCD的边长为a,由勾股定理求 出AC=CE=a即可;②当AE=AC时,设正方形ABCD的边长为a,由勾股定理求 出AC=AE=a,根据正方形的性质∠ADC=90°,根据等腰三角形的性质得出DE=CD=a即可; (3)根据(1)(2)知:点P在运动中保持∠APD=90°,得出点P的路径是以AD 为直径的圆,设AD的中点为Q,连接CQ并延长交圆弧于点P,此时CP的长度最大,求出QC即可. 【解答】解:(1)AE=DF,AE⊥DF,

理由是:∵四边形ABCD是正方形, ∴AD=DC,∠ADE=∠DCF=90°, ∵动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动,∴DE=CF, 在△ADE和△DCF中 , ∴△ADE≌△DCF, ∴AE=DF,∠DAE=∠FDC, ∵∠ADE=90°, ∴∠ADP+○CDF=90°, ∴∠ADP+∠DAE=90°, ∴∠APD=180°﹣90°=90°, ∴AE⊥DF; (2) (1)中的结论还成立,CE:CD=或2, 理由是:有两种情况: ①如图1,当AC=CE时, 设正方形ABCD的边长为a,由勾股定理得:AC=CE==a, 则CE:CD=a:a=; ②如图2,当AE=AC时,

2018年中考四边形综合题集压轴题

四边形综合题集 评卷人得分 一.选择题(共9小题) 1.如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论: ①△AED≌△DFB;②S 四边形BCDG =CG2;③若AF=2DF,则BG=6GF;④CG与BD 一定不垂直;⑤∠BGE的大小为定值. 其中正确的结论个数为() A.4 B.3 C.2 D.1 2.如图,正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,连接AC交EF于点G,下列结论:①CE=CF,②∠AEB=75°,③AG=2GC,④BE+DF=EF, ⑤S △CEF =2S △ABE ,其中结论正确的个数为() A.2个 B.3个 C.4个 D.5个 3.如图,边长为2的正方形ABCD中,AE平分∠DAC,AE交CD于点F,CE⊥AE,垂足为点E,EG⊥CD,垂足为点G,点H在边BC上,BH=DF,连接AH、FH,FH 与AC交于点M,以下结论: ①FH=2BH;②AC⊥FH;③S △ACF =1;④CE=AF;⑤EG2=FG?D G,

其中正确结论的个数为( ) A .2 B .3 C .4 D .5 4.如图,在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,连接AE ,BF 交于点G ,将△BCF 沿BF 对折,得到△BPF ,延长FP 交BA 延长线于点Q ,下列结论正确的个数是( ) ①AE=BF ;②AE ⊥BF ;③sin ∠BQP=;④S 四边形ECFG =2S △BGE . A .4 B .3 C .2 D .1 5.如图,在矩形ABCD 中,BC= AB ,∠ADC 的平分线交边BC 于点E ,AH ⊥DE 于点H ,连接CH 并延长交边AB 于点F ,连接AE 交CF 于点O ,给出下列命题: (1)∠AEB=∠AEH (2)DH=2 EH (3)OH=AE (4)BC ﹣BF= EH 其中正确命题的序号( ) A .(1)(2)(3) B .(2)(3)(4) C .(2)(4) D .(1)(3) 6.如图,在边长为1的正方形ABCD 中,动点F ,E 分别以相同的速度从D ,C 两点同时出发向C 和B 运动(任何一个点到达即停止),过点P 作PM ∥CD 交BC

中考数学二次函数压轴题(含答案)

中考数学二次函数压轴题(含答案) 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有: , 解得;

故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标. 解答:

解:(1)将B(4,0)代入抛物线的解析式中,得: 0=16a﹣×4﹣2,即:a=; ∴抛物线的解析式为:y=x2﹣x﹣2. (2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2); ∴OA=1,OC=2,OB=4, 即:OC2=OA?OB,又:OC⊥AB, ∴△OAC∽△OCB,得:∠OCA=∠OBC; ∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°, ∴△ABC为直角三角形,AB为△ABC外接圆的直径; 所以该外接圆的圆心为AB的中点,且坐标为:(,0). (3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2; 设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0; ∴4﹣4×(﹣2﹣b)=0,即b=﹣4; ∴直线l:y=x﹣4. 所以点M即直线l和抛物线的唯一交点,有: ,解得:即M(2,﹣3). 过M点作MN⊥x轴于N, S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4.

中考数学—平行四边形的综合压轴题专题复习含答案解析

一、平行四边形真题与模拟题分类汇编(难题易错题) 1.如图①,在等腰Rt ABC 中,90BAC ∠=,点E 在AC 上(且不与点A 、C 重合), 在ABC △的外部作等腰Rt CED △,使90CED ∠=,连接AD ,分别以AB ,AD 为邻边作平行四边形ABFD ,连接AF . ()1请直接写出线段AF ,AE 的数量关系; ()2①将CED 绕点C 逆时针旋转,当点E 在线段BC 上时,如图②,连接AE ,请判断 线段AF ,AE 的数量关系,并证明你的结论; ②若25AB =,2CE =,在图②的基础上将CED 绕点C 继续逆时针旋转一周的过 程中,当平行四边形ABFD 为菱形时,直接写出线段AE 的长度. 【答案】(1)证明见解析;(2)①AF 2AE =②42或22. 【解析】 【分析】 ()1如图①中,结论:AF 2AE =,只要证明AEF 是等腰直角三角形即可; ()2①如图②中,结论:AF 2AE =,连接EF ,DF 交BC 于K ,先证明 EKF ≌EDA 再证明AEF 是等腰直角三角形即可; ②分两种情形a 、如图③中,当AD AC =时,四边形ABFD 是菱形.b 、如图④中当AD AC =时,四边形ABFD 是菱形.分别求解即可. 【详解】 ()1如图①中,结论:AF 2AE = .

理由:四边形ABFD 是平行四边形, AB DF ∴=, AB AC =, AC DF ∴=, DE EC =, AE EF ∴=, DEC AEF 90∠∠==, AEF ∴是等腰直角三角形, AF 2AE ∴=. 故答案为AF 2AE = . ()2①如图②中,结论:AF 2AE = . 理由:连接EF ,DF 交BC 于K . 四边形ABFD 是平行四边形, AB//DF ∴, DKE ABC 45∠∠∴==, EKF 180DKE 135∠∠∴=-=,EK ED =, ADE 180EDC 18045135∠∠=-=-=, EKF ADE ∠∠∴=, DKC C ∠∠=, DK DC ∴=, DF AB AC ==, KF AD ∴=, 在EKF 和EDA 中, EK ED EKF ADE KF AD =?? ∠=∠??=? , EKF ∴≌EDA , EF EA ∴=,KEF AED ∠∠=, FEA BED 90∠∠∴==,

二次函数与几何综合(有答案)中考数学压轴题必做(经典)

二次函数与几何综合
题目背景
07 年课改后,最后一题普遍为抛物线和几何结合(主要是与三角形结合)的 代数几何综合题,计算量较大。几何题可能想很久都不能动笔,而代数题则可以 想到哪里写到哪里,这就让很多考生能够拿到一些步骤分。因此,课改之后,武 汉市数学中考最后一题相对来说要比以前简单不少,而这也符合教育部要求给学 生减轻负担的主旨,因此也会继续下去。要做好这最后一题,主要是要在有限的 时间里面找到的简便的计算方法。要做到这一点,一是要加强本身的观察力,二 是需要在平时要多积累一些好的算法,并能够熟练运用,最后就是培养计算的耐 心,做到计算又快又准。
题型分析
题目分析及对考生要求 (1)第一问通常为求点坐标、解析式:本小问要求学生能够熟练地掌握待定系 数法求函数解析式,属于送分题。 (2)第二问为代数几何综合题,题型不固定。解题偏代数,要求学生能够熟练 掌握函数的平移,左加右减,上加下减。要求学生有较好的计算能力,能够把题 目中所给的几何信息进行转化,得到相应的点坐标,再进行相应的代数计算。 (3)第三问为几何代数综合,题型不固定。解题偏几何,要求学生能够对题目 所给条件进行转化,合理设参数,将点坐标转化为相应的线段长,再根据题目条 件合理构造相似、全等,或者利用锐角三角函数,将这些线段与题目构建起联系, 再进行相应计算求解,此处要求学生能够熟练运用韦达定理,本小问综合性较强。
在我们解题时,往往有一些几何条件,我们直接在坐标系中话不是很好用, 这时我们需要对它进行相应的条件转化,变成方便我们使用的条件,以下为两种 常见的条件转化思想。 1、遇到面积条件:a.不规则图形先进行分割,变成规则的图形面积;b.在第一 步变化后仍不是很好使用时,根据同底等高,或者等底同高的三角形面积相等这 一性质,将面积进行转化;c.当面积转化为一边与坐标轴平行时,以这条边为底, 根据面积公式转化为线段条件。 2、遇到角度条件:找到所有与这些角相等的角,以这些角为基础构造相似、全 等或者利用锐角三角函数,转化为线段条件。
二次函数与三角形综合
【例1】. (2012 武汉中考)如图 1,点 A 为抛物线 C1:y= x2﹣2 的顶点,点 B 的坐标为(1,
0)直线 AB 交抛物线 C1 于另一点 C

中考数学压轴题专项训练:四边形的综合(含答案)

2020年数学中考压轴题专项训练:四边形的综合 1.如图,四边形ABCD是直角梯形,AD∥BC,AB⊥AD,且AB=AD+BC,E是DC的中点,连结BE并延长交AD的延长线于G. (1)求证:DG=BC; (2)F是AB边上的动点,当F点在什么位置时,FD∥BG;说明理由. (3)在(2)的条件下,连结AE交FD于H,FH与HD长度关系如何?说明理由. (1)证明:∵AD∥BC, ∴∠DGE=∠CBE,∠GDE=∠BCE, ∵E是DC的中点,即DE=CE, ∴△DEG≌△CEB(AAS), ∴DG=BC. (2)解:当F运动到AF=AD时,FD∥BG. 理由:由(1)知DG=BC, ∵AB=AD+BC,AF=AD, ∴BF=BC=DG, ∴AB=AG, ∵∠BAG=90°, ∴∠AFD=∠ABG=45°, ∴FD∥BG. (3)解:结论:FH=HD. 理由:由(1)知GE=BG,又由(2)知△ABG为等腰直角三角形,所以AE⊥BG, ∵FD∥BG,

∴AE⊥FD, ∵△AFD为等腰直角三角形, ∴FH=HD. 2.如图,在矩形ABCD中,过BD的中点O作EF⊥BD,分别与AB、CD交于点E、F.连接DE、BF. (1)求证:四边形BEDF是菱形; (2)若M是AD中点,联结OM与DE交于点N,AD=OM=4,则ON的长是多少? (1)证明:∵四边形ABCD是矩形, ∴AB∥CD, ∴∠DFO=∠BEO, ∵∠DOF=∠EOB,OD=OB, ∴△DOF≌△BOE(AAS), ∴DF=BE, ∴四边形BEDF是平行四边形, ∵EF⊥BD, ∴四边形BEDF是菱形. (2)解:∵DM=AM,DO=OB, ∴OM∥AB,AB=2OM=8,

人教版中考数学压轴题型24道:二次函数专题含答案解析

人教版中考数学压轴题24道:二次函数专题 1.如图,直线y=﹣x+4与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c经过B,C两点,与x轴另一交点为A.点P以每秒个单位长度的速度在线段BC上由点B向点C运动(点P不与点B和点C重合),设运动时间为t秒,过点P作x轴垂线交x轴于点E,交抛物线于点M. (1)求抛物线的解析式; (2)如图①,过点P作y轴垂线交y轴于点N,连接MN交BC于点Q,当=时,求t的值; (3)如图②,连接AM交BC于点D,当△PDM是等腰三角形时,直接写出t的值. 2.如图,抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C(0,3)三点.(1)求抛物线的函数表达式; (2)如图1,P为抛物线上在第二象限内的一点,若△PAC面积为3,求点P的坐标; (3)如图2,D为抛物线的顶点,在线段AD上是否存在点M,使得以M,A,O为顶点的三角形与△ABC相似?若存在,求点M的坐标;若不存在,请说明理由. 3.如图1,在平面直角坐标系中,直线y=﹣5x+5与x轴,y轴分别交于A,C两点,抛物线y=x2+bx+c经过A,C两点,与x轴的另一交点为B. (1)求抛物线解析式及B点坐标; (2)若点M为x轴下方抛物线上一动点,连接MA、MB、BC,当点M运动到某一位置时,四边形AMBC面积最大,求此时点M的坐标及四边形AMBC的面积; (3)如图2,若P点是半径为2的⊙B上一动点,连接PC、PA,当点P运动到某一位

置时,PC+PA 的值最小,请求出这个最小值,并说明理由. 4.已知函数y =(n 为常数) (1)当n =5, ①点P (4,b )在此函数图象上,求b 的值; ②求此函数的最大值.(2)已知线段AB 的两个端点坐标分别为A (2,2)、B (4,2),当此函数的图象与线段 AB 只有一个交点时,直接写出n 的取值范围. (3)当此函数图象上有4个点到x 轴的距离等于 4,求n 的取值范围. 5.在平面直角坐标系 xOy 中(如图),已知抛物线 y =x 2 ﹣2x ,其顶点为A . (1)写出这条抛物线的开口方向、顶点A 的坐标,并说明它的变化情况; (2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点” . ①试求抛物线y =x 2 ﹣2x 的“不动点”的坐标; ②平移抛物线y =x 2﹣2x ,使所得新抛物线的顶点 B 是该抛物线的“不动点”,其对称轴 与x 轴交于点C ,且四边形OABC 是梯形,求新抛物线的表达式.

二次函数压轴题——角的存在性

一.解答题(共5小题) 例1.(2013?河南)如图,抛物线y=﹣x2+bx+c与直线y=x+2交于C、D两点,其中点C在y轴上,点D的坐标为(3,).点P是y轴右侧的抛物线上一动点,过点P作 PE⊥x轴于点E,交CD于点F. (1)求抛物线的解析式; (2)若点P的横坐标为m,当m为何值时,以O、C、P、F为顶点的四边形是平行四边形?请说明理由. (3)若存在点P,使∠PCF=45°,请直接写出相应的点P的坐标. 例2.(2012?惠山区校级模拟)如图,抛物线y=ax2+bx﹣3a经过A(﹣1,0)、C(0, ﹣3)两点,与x轴交于另一点B. (1)求此抛物线的解析式; (2)已知点D(m,﹣m﹣1)在第四象限的抛物线上,求点D关于直线BC对称的点D'的坐标. (3)在(2)的条件下,连接BD,问在x轴上是否存在点P,使∠PCB=∠CBD?若存在,请求出P点的坐标;若不存在,请说明理由.

例3.(2014?湖州)如图,已知在平面直角坐标系xOy中,O是坐标原点,抛物线 y=﹣x2+bx+c(c>0)的顶点为D,与y轴的交点为C,过点C作CA∥x轴交抛物线于点 A,在AC延长线上取点B,使BC=AC,连接OA,OB,BD和AD. (1)若点A的坐标是(﹣4,4). ①求b,c的值; ②试判断四边形AOBD的形状,并说明理由; (2)是否存在这样的点A,使得四边形AOBD是矩形?若存在,请直接写出一个符合条件的点A的坐标;若不存在,请说明理由. 练习1.(2013?十堰)已知抛物线y=x2﹣2x+c与x轴交于A.B两点,与y轴交于 C点,抛物线的顶点为D点,点A的坐标为(﹣1,0). (1)求D点的坐标; (2)如图1,连接AC,BD并延长交于点E,求∠E的度数; (3)如图2,已知点P(﹣4,0),点Q在x轴下方的抛物线上,直线PQ交线段AC于点M,当∠PMA=∠E时,求点Q的坐标.

人教版数学中考冲刺压轴题《四边形综合》专题训练

中考数学压轴题强化训练:四边形综合 1、如图,在菱形ABCD中,G是BD上一点,连接CG并延长交BA的延长线于点 F,交AD于点E. (1)求证:AG=CG.(2)求证:AG2=GE?GF. 2、如图,已知EC∥AB,∠EDA=∠ABF. (1)求证:四边形ABCD是平行四边形;(2)求证:OA2=OE?OF. 3、如图,在Rt△ABC中,∠B=90°,点E是AC的中点,AC=2AB,∠BAC的平分 线AD交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接 FC.求证:四边形ADCF是菱形.

4、如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,AD的中点,连接BM,MN,BN. (1)求证:B M=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长. 5、如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形. (l)若固定三根木条AB,BC,AD不动,AB=AD=2cm,BC=5cm,如图,量得第四根木条CD=5cm,判断此时∠B与∠D是否相等,并说明理由. (2)若固定二根木条AB,BC不动,AB=2cm,BC=5cm,量得木条CD=5cm, ∠B=90°,写出木条AD的长度可能取到的一个值(直接写出一个即可).

(3)若固定一根木条 AB 不动,AB =2cm ,量得木条 CD = 5cm .如果木条 AD , BC 的长度不变,当点 D 移到 BA 的延长线上时,点 C 也在 BA 的延长线上;当点 C 移到 AB 的延长线上时,点 A ,C ,D 能构成周长为 30cm 的三 角形,求出木条 AD , BC 的长度. 6、如图,AC 为矩形 ABCD 的对角线,将边 AB 沿 AE 折叠,使点 B 落在 AC 上的点 M 处,将边 CD 沿 CF 折叠,使点 D 落在 AC 上的点 N 处。 (1)求证:四边形 AECF 是平行四边形;(2)若 AB=6,AC=10,求四边形 AECF 的面积。 7、如图,矩形 ABCD 中,点 E 为 BC 上一点,F 为 DE 的中点,且∠BFC =90°. (1)但 E 为 BC 中点时,求证:△BCF ≌△DEC ; (2)但 BE -2EC 时,求 的值; BD (3)设 CE =1,BE =n ,作点 C 关于 DE 的对称点 C ' ,连结 FC ' 若点 C ' 到 AF 的距离 CD

2019年中考二次函数压轴题整理

中考数学冲刺复习资料:二次函数压轴题 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C 点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标. 平行四边形类 3.如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,﹣3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.

(1)分别求出直线AB和这条抛物线的解析式. (2)若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积. (3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由. 4.如图,在平面直角坐标系中放置一直角三角板,其顶点为A(0,1),B(2,0),O(0,0),将此三角板绕原点O逆时针旋转90°,得到△A′B′O. (1)一抛物线经过点A′、B′、B,求该抛物线的解析式; (2)设点P是在第一象限内抛物线上的一动点,是否存在点P,使四边形PB′A′B的面积是△A′B′O面积4倍?若存在,请求出P的坐标;若不存在,请说明理由. (3)在(2)的条件下,试指出四边形PB′A′B是哪种形状的四边形?并写出四边形PB′A′B 的两条性质. 5.如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上. (1)求抛物线顶点A的坐标; (2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD的形状;

中考数学中二次函数压轴题四边形

关于二次函数的压轴题 四、抛物线与四边形 例题 1. 如图,抛物线经过A (-1,0),B (5,0),C (0,-52 )三点. (1)求抛物线的解析式; (2)在抛物线的对称轴上有一点P ,使PA +PC 的值最小,求点P 的坐标; (3)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使以A ,C ,M ,N 四点构成的四边形为平行四边形若存在,求点N 的坐标;若不存在,请说明理由. ! 2. 如图,已知二次函数图像的顶点坐标为(2,0),直线1+=x y 与二次函数的图像交于A 、B 两点,其中点A 在y 轴上. (1)二次函数的解析式为y = ; (2)证明点(,21)m m --不在(1)中所求的二次函数的图像上; (3)若C 为线段AB 的中点,过C 点作x CE ⊥轴于E 点,CE 与二次函数的图像交于D 点. ① y 轴上存在点K ,使以K 、A 、D 、C 为顶点的四边形是平行四边形,则K 点的坐标是 ; ②二次函数的图像上是否存在点P ,使得ABD POE S S ??=2若存在,求出P 点坐标;若不存在,请 说明理由. y x O " B C

练习: 1. 如图,抛物线14 17 452++- =x x y 与y 轴交于A 点,过点A 的直线与抛物线交于另一点B ,过点B 作BC ⊥x 轴,垂足为点C (3,0). (1)求直线AB 的函数关系式; (2)动点P 在线段OC 上从原点出发以每秒一个单位的速度向C 移动,过点P 作PN ⊥x 轴,交直线AB 于点M ,交抛物线于点N . 设点P 移动的时间为t 秒,MN 的长度为s 个单位,求s 与t 的函数关系式,并写出t 的取值范围; (3)设在(2)的条件下(不考虑点P 与点O ,点C 重合的情况),连接CM ,BN ,当t 为何值时,四边形BCMN 为平行四边形对于所求的t 值,平行四边形BCMN 是否菱形请说明理由. ( 2. 如图所示,在平面直角坐标系x O y 中,正方形OABC 的边长为2cm ,点A 、C 分别在y 轴的负半 轴和x 轴的正半轴上,抛物线2y ax bx c =++经过点A 、B 和D (4,2 3 -). (1)求抛物线的表达式. (2)如果点P 由点A 出发沿AB 边以2cm/s 的速度向点C 运动,当其中一点到达终点时,另一点也随之停止运动,设S=2PQ (2cm ). ①试求出S 与运动时间t 之间的函数关系式,并写出t 的取值范围; ! ②当S 取5 4 时,在抛物线上是否存在点R ,使得以点P 、B 、Q 、R 为顶点的四边形是平行四边形如 O x , M N B P C

人教中考数学平行四边形-经典压轴题及答案

一、平行四边形真题与模拟题分类汇编(难题易错题) 1.已知,在矩形ABCD中,AB=a,BC=b,动点M从点A出发沿边AD向点D运动. (1)如图1,当b=2a,点M运动到边AD的中点时,请证明∠BMC=90°; (2)如图2,当b>2a时,点M在运动的过程中,是否存在∠BMC=90°,若存在,请给与证明;若不存在,请说明理由; (3)如图3,当b<2a时,(2)中的结论是否仍然成立?请说明理由. 【答案】(1)见解析; (2)存在,理由见解析; (3)不成立.理由如下见解析. 【解析】 试题分析:(1)由b=2a,点M是AD的中点,可得AB=AM=MD=DC=a,又由四边形ABCD 是矩形,即可求得∠AMB=∠DMC=45°,则可求得∠BMC=90°; (2)由∠BMC=90°,易证得△ABM∽△DMC,设AM=x,根据相似三角形的对应边成比例,即可得方程:x2﹣bx+a2=0,由b>2a,a>0,b>0,即可判定△>0,即可确定方程有两个不相等的实数根,且两根均大于零,符合题意; (3)由(2),当b<2a,a>0,b>0,判定方程x2﹣bx+a2=0的根的情况,即可求得答案. 试题解析:(1)∵b=2a,点M是AD的中点, ∴AB=AM=MD=DC=a, 又∵在矩形ABCD中,∠A=∠D=90°, ∴∠AMB=∠DMC=45°, ∴∠BMC=90°. (2)存在, 理由:若∠BMC=90°, 则∠AMB+∠DMC=90°, 又∵∠AMB+∠ABM=90°, ∴∠ABM=∠DMC, 又∵∠A=∠D=90°, ∴△ABM∽△DMC, ∴AM AB CD DM =, 设AM=x,则x a a b x = - ,

2016-2017年全国中考二次函数与平行四边形压轴题

二次函数和平行四边形 1.如图,已知抛物线y=ax 2+c 过点(﹣2,2),(4,5),过定点F (0,2)的直线l :y=kx+2和抛物线交于A 、B 两点,点B 在点A 的右侧,过点B 作x 轴的垂线,垂足为C . (1)求抛物线的分析式; (2)当点B 在抛物线上运动时,判断线段BF 和BC 的数量关系(>、<、=),并证明你的判断; (3)P 为y 轴上一点,以B 、C 、F 、P 为顶点的四边形是菱形,设点P (0,m ),求自然数m 的值; (4)若k=1,在直线l 下方的抛物线上是否存在点Q ,使得△QBF 的面积最大?若存在,求出点Q 的坐标及△QBF 的最大面积;若不存在,请说明理由. 2.如图,抛物线c bx x y ++=22 1和x 轴交于B A 、两点,和y 轴交于点C ,其对称轴交抛物线于点D ,交x 轴于点E ,已知6==OC OB . ⑴求抛物线的分析式及点D 的坐标; ⑵连接F BD ,为抛物线上一动点,当EDB FAB ∠=∠时,求点F 的坐标; ⑶平行于x 轴的直线交抛物线于N M ,两点,以线段MN 为对角线作菱形MPNQ ,当点P

在x 轴上,且MN PQ 2 1=时,求菱形对角线MN 的长. 3如图,矩形OABC 的两边在坐标轴上,点A 的坐标为()10,0,抛物线24y ax bx =++过 ,B C 两点,且和x 轴的一个交点为()2,0D -,点P 是线段CB 上的动点,设 ()010CP t t =<<. (1)请直接写出,B C 两点的坐标及抛物线的分析式; (2)过点P 作PE BC ⊥,交抛物线于点E ,连接BE ,当t 为何值时,PBE OCD ∠=∠? (3)点Q 是x 轴上的动点,过点P 作//PM BQ ,交CQ 于点M ,作//PN CQ ,交BQ 于点N .当四边形PMQN 为正方形时,请求出t 的值. 4(10分)如图,抛物线y=x 2+bx+c 经过点B (3,0),C (0,﹣2),直线l :y=﹣x ﹣交y 轴于点E ,且和抛物线交于A ,D 两点,P 为抛物线上一动点(不和A ,D 重合). (1)求抛物线的分析式; (2)当点P 在直线l 下方时,过点P 作PM ∥x 轴交l 于点M ,PN ∥y 轴交l 于点N ,求PM+PN 的最大值. (3)设F 为直线l 上的点,以E ,C ,P ,F 为顶点的四边形能否构成平行四边形?若能,求出点F 的坐标;若不能,请说明理由.

全国中考二次函数压轴题集锦(附详细答案)

1.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4, 抛物线y=x2+bx+c经过A,B两点. (1)求抛物线的解析式; (2)点E是直角△ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于 点F,当线段EF的长度最大时,求点E、F的坐标; (3)在(2)的条件下:在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由. 2.如图,关于x的二次函数y=x2+b x+c的图象与x轴交于点A(1,0)和点B,与y轴交于点 C(0,3),抛物线的对称轴与x轴交于点D. (1)求二次函数的表达式; (2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标; (3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积. 3.如图,已知二次函数y=ax2+b x+c(a≠0)的图象经过A(﹣1,0)、B(4,0)、C(0,2) 三点. (1)求该二次函数的解析式; (2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标; (3)点P是该二次函数图象上位于第一象限上的一动点,连接PA分别交BC、y轴于点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1﹣S2的最大值. 4.如图1,已知二次函数y=ax2+b x+c(a、b、c为常数,a≠0)的图象过点O(0,0)和点A (4,0),函数图象最低点M的纵坐标为﹣,直线l的解析式为y=x.

相关主题
文本预览
相关文档 最新文档