当前位置:文档之家› 表面缺陷无损检测方法的比较

表面缺陷无损检测方法的比较

表面缺陷无损检测方法的比较
表面缺陷无损检测方法的比较

表面缺陷无损检测方法的比较

方法

项目

磁粉检测(MT)漏磁检测(MLF)渗透检测(PT)涡流检测(ET)方法原理磁力作用磁力作用毛细渗透作用电磁感应作用

能检出的缺陷表面和近表面缺陷表面和近表面缺陷表面开口缺陷表面及表层缺陷

缺陷部位的显示形式漏磁场吸附磁粉形成

磁痕

漏磁场大小分布渗透液的渗出

检测线圈输出电压和

相位发生变化

显示信息的器材磁粉计算机显示屏渗透液、显像剂

记录仪、示波器或电

压表

适用的材料铁磁性材料铁磁性材料非多孔性材料导电材料

主要检测对象铸钢件、锻钢件、压

延件、管材、棒材、

型材、焊接件、机加

工件在役使用的上述

工件检测

铸钢件、锻钢件、压

延件、管材、棒材、

型材、焊接件、机加

工件在役使用的上述

工件检测

任何非多孔性材

料、工件及在役使

用过的上述工件检

管材、线材和工件检

测;材料状态检验和

分选;镀层、涂层厚

度测量

主要检测缺陷裂纹、发纹、白点、

折叠、夹渣物、冷隔

裂纹、发纹、白点、

折叠、夹渣物、冷隔

裂纹、白点、疏松、

针孔、夹渣物

裂纹、材质变化、厚

度变化

缺陷显示直观直观直观不直观缺陷性质判断能大致确定能大致确定能基本确定难以判断灵敏度高高高较低

检测速度较快快慢很快

污染较轻无污染较重无污染

相对优点可检测出铁磁性材料

表面和近表面(开口

和不开口)的缺陷。

能直接的观察出缺陷

的位置、形状、大小

和严重程度。

具有较高的检测灵敏

度,可检测微米级宽

度的缺陷。

单个工件的检测速度

快、工艺简单,成本

低、污染轻。

综合使用各种磁化方

法,几乎不受工件大

a) 易于实现自动化

b) 较高的检测可靠

c) 可以实现缺陷的

初步量化

d) 在管道的检查中,

在厚度高达30mm的

壁厚范围內,可同时

检测內外壁缺陷

e) 高效、无污染,可以

获得很高的检测效率.

可检测出任何非松

孔性材料表面开口

性缺陷。

能直接的观察出缺

陷的位置、形状、

大小和严重程度。

具有较高的灵敏

度。

着色检测时不用设

备,可以不用水电,

特别适用于现场检

验。

检测不受工件几何

形状和缺陷方向的

非接触法检测,适用

于对管件、棒材和丝

材进行自动化检测,

速度快。

可用检测材料导电率

代替硬度检测。了解

材料的热处理状态和

进行材料分选。

污染很小。

方法

项目

磁粉检测(MT)漏磁检测(MLF)渗透检测(PT)涡流检测(ET)

小和几何形状的影响。

检测缺陷重复性好。可检测受腐蚀的在役情况。影响。

对针孔和疏松缺陷的检测灵敏度较高。

相对局限性只能检测铁磁性材料

及其制品,不能检测

奥氏体材料及其焊接

接头和非铁磁性材

料。

只能检测表面和近表

面位置的缺陷。

表面的划伤,针孔缺

陷等缺陷不易发现。

受几何形状影响,易

产生非相关显示。

用通电法和触头法磁

化时,易产生电弧烧

伤工件,电接触的非

导电覆盖层必须打磨

掉。

只适用于铁磁材料。

检测灵敏度低。

缺陷的量化粗略。

受被检测工件的形状

限制: 由于采用传感

器检测漏磁通,漏磁

场方法不适合检测形

形状复杂的试件。

漏磁探伤不适合开裂

很窄的裂纹,尤其是

闭合型裂纹。实验上

发现,开裂很窄的疲

劳裂纹,疲劳裂纹,

磁粉探伤和漏磁探伤

都没能产生伤显示和

伤信号。:

只能检测表面开口

性缺陷(表面开口

性缺陷被堵塞时也

检测不出来)。

单个工件检测效率

低,成本高。

检测时缺陷的重复

性不好。

污染较严重。

对表面下的较深的缺

陷不能检测。

对形状较复杂的工件

不适用,有边界效应

影响。

对缺陷性质难以判

断。

对铁磁性材料检测灵

敏度,不如磁粉检测。

常见的无损探伤方法

无损检测方法很多据美国国家宇航局调研分析,认为可分为六大类约70余种。但在实际应用中比较常见的有以下几种: 常规无损检测方法有: ●超声检测 Ultrasonic Testing(缩写 UT); ●射线检测 Radiographic Testing(缩写 RT); ●磁粉检测 Magnetic particle Testing(缩写 MT); ●渗透检验 Penetrant Testing (缩写 PT); ●涡流检测Eddy current Testing(缩写 ET); 非常规无损检测技术有: ●声发射Acoustic Emission(缩写 AE); ●泄漏检测Leak Testing(缩写 UT); ●光全息照相Optical Holography; ●红外热成象Infrared Thermography; ●微波检测 Microwave Testing X光射线探伤、超声波探伤对内部探伤适用,不适用表面探伤.磁粉探伤主要探表层深度3mm内缺陷.渗透探伤.着色探伤主要探工件表面缺陷(对不锈钢探伤比较适用). 常见的无损探伤方法 常见的无损探伤方法 VT-Visual Testing目测 RT-Radiographic Testing射线检测 UT-Ultrasonic Testing超声检测 PT-(Dye) Penetrant Testing渗透检测 MT-Magnetic particle Testing磁粉检测 ST-Spectrum Testing光谱测试 ET-Eddy Current Testing涡流检测 HT-Hardness Testing硬度检测 -Hydrostatic Testing 水压试验 MPT-Mechanical performance test机械性能 WT-Wall thickness Testing测厚 DT-Diameter Testing管径测试 MST-Metallographic inspection金相检验 ORT-Out of roundness testing不圆度检查 MMT-磁记忆

带钢表面缺陷检测

带钢表面缺陷检测 姓名:朱士娟学号:1110121137 摘要 表面质量的好坏是带钢的一项重要指标,随着科学技术的不断发展,后续加工工业对带钢的表面质量要求越来越高。如何检测出带钢表面缺陷并加以控制,引起带钢生产企业的高度关注。随着计算机视觉技术的发展和计算机性能的不断提高,由带钢图像在线检测其表面质量已成为国内外学者研究的热点课题。在本课题中,首先提出了带钢表面监测系统的总体设计方案,从硬件和软件上保汪系统的实时性和精确度。其次设计一种获得噪声图像的方法,分析图像的噪声特性。并在此基础上针对传统中值滤波算法复杂、处理时间长等缺点,提出一种改进的迭代的中值滤波方法,这种方法在有效滤掉噪声的同时尽可能地保存了图像的细节,并比传统的中值滤波方法大大地减少了处理时间。在对图像进行滤波处理后,本文分别提出了BP神经网络法,区域灰度羞绝对值闽值法和基于背景差分的小区域闽值法三种方法,对带钢表面缺陷进行检测。本文选取300幅带钢图片进行实验,结果表明这三种方法的漏检率和错判率均在5%以下,且速度至少能达到10毫秒/每帧,满足实时检测系统低漏检率、低错判率和快速检测的要求。其中BP网络检测方法适应性好,可以通过样本学习适应相应的环境变化,并且不但能检测出已知样本的缺陷,而且对未知缺陷样本的检测效果也很好。区域灰度差绝对值检测方法算法简单,运算速度最快,能实现5毫秒/每帧的检测速度。基于背景差分的小区域闽值法除了算法简单,速度快以外,它还能有效地检测出微小的、对比度低的缺陷,并且背景图像的不断更新能使系统适应带钢表面质量的不断变化,使系统能满足不同生产环境的检测需要。通过本论文的研究和探索,使带钢表面监测系统的实用化更前迸一步,为进一步的带钢表面质量在线控制识别奠定了基础。 关键词带钢,图像处理,滤波,缺陷检测 1检测原理 设轧制带钢速度为ν,在钢板的上下表面各安置一套检测装置(图1),在平行于钢板表面且垂直于速度方向处放置一个高强度线光源,光源经过聚焦光学系统照亮钢板表面。根据表面主要缺陷特点可将缺陷分为亮域缺陷(捕捉和

四种常用探伤方法特点及区别

四种常规无损检测方法的比较 无损检测就是利用声、光、磁和电等特性,在不损害或不影响被检对象使用性能的前提下,检测被检对象中是否存在缺陷或不均匀性,给出缺陷的大小、位置、性质和数量等信息,进而判定被检对象所处技术状态(如合格与否、剩余寿命等)的所有技术手段的总称。常用的无损检测方法: 超声检测(UT)、磁粉检测(MT)、液体渗透检测(PT)及X射线检测(RT)。 超声波检测(UT) 1、超声波检测的定义: 通过超声波与试件相互作用,就反射、透射和散射的波进行研究,对试件进行宏观缺陷检测、几何特性测量、组织结构和力学性能变化的检测和表征,并进而对其特定应用性进行评价的技术。 2、超声波工作的原理: 主要是基于超声波在试件中的传播特性。声源产生超声波,采用一定的方式使超声波进入试件;超声波在试件中传播并与试件材料以及其中的缺陷相互作用,使其传播方向或特征被改变;改变后的超声波通过检测设备被接收,并可对其进行处理和分析;根据接收的超声波的特征,评估试件本身及其内部是否存在缺陷及缺陷的特性。 3、超声波检测的优点: a.适用于所有金属、非金属和复合材料等多种制件的无损检测; b.穿透能力强,可对较大厚度范围内的试件内部缺陷进行检测。如对金属材料,可检测厚度为1~2mm的薄壁管材和板材,也可检测几米长的钢锻件; c.缺陷定位较准确; d.对面积型缺陷的检出率较高; e.灵敏度高,可检测试件内部尺寸很小的缺陷;

f.检测成本低、速度快,设备轻便,对人体及环境无害,使用较方便。 4、超声波检测的局限性 a.对试件中的缺陷进行精确的定性、定量仍须作深入研究; b.对具有复杂形状或不规则外形的试件进行超声检测有困难; c.缺陷的位置、取向和形状对检测结果有一定影响; d.材质、晶粒度等对检测有较大影响; e.以常用的手工A型脉冲反射法检测时结果显示不直观,且检测结果无直接见证记录。 5、超声检测的适用范围 a.从检测对象的材料来说,可用于金属、非金属和复合材料; b.从检测对象的制造工艺来说,可用于锻件、铸件、焊接件、胶结件等; c.从检测对象的形状来说,可用于板材、棒材、管材等; d.从检测对象的尺寸来说,厚度可小至1mm,也可大至几米; e.从缺陷部位来说,既可以是表面缺陷,也可以是内部缺陷。锻件是金属被施加压力,通过塑性变形塑造要求的形状或合适的压缩力的物件。这种力量典型的通过使用铁锤或压力来实现。铸件过程建造了精致的颗粒结构,并改进了金属的物理属性。在零部件的现实使用中,一个正确的设计能使颗粒流在主压力的方向。 磁粉检测(MT) 1.磁粉检测的原理: 铁磁性材料和工件被磁化后,由于不连续性的存在,使工件表面和近表面的磁力线发生局部畸变而产生漏磁场,吸附施加在工件表面的磁粉,形成在合适光照下目视可见的磁痕,从而显示出不连续性的位置、形状和大小

无损探伤常见问题汇总

无损探伤常见问题汇总 资料整理:无损检测资源网 沧州市欧谱检测仪器有限公司

物理探伤就是不产生化学变化的情况下进行无损探伤。 一、什么是无损探伤? 答:无损探伤是在不损坏工件或原材料工作状态的前提下,对被检验部件的表面和内部质量进行检查的一种测试手段。 二、常用的探伤方法有哪些? 答:常用的无损探伤方法有:X光射线探伤、超声波探伤、磁粉探伤、渗透探伤、涡流探伤、γ射线探伤、萤光探伤、着色探伤等方法。 三、试述磁粉探伤的原理? 答:它的基本原理是:当工件磁化时,若工件表面有缺陷存在,由于缺陷处的磁阻增大而产生漏磁,形成局部磁场,磁粉便在此处显示缺陷的形状和位置,从而判断缺陷的存在。 四、试述磁粉探伤的种类? 1、按工件磁化方向的不同,可分为周向磁化法、纵向磁化法、复合磁化法和旋转磁化法。 2、按采用磁化电流的不同可分为:直流磁化法、半波直流磁化法、和交流磁化法。 3、按探伤所采用磁粉的配制不同,可分为干粉法和湿粉法。 五、磁粉探伤的缺陷有哪些? 答:磁粉探伤设备简单、操作容易、检验迅速、具有较高的探伤灵敏度,无损检测资源网可用来发现铁磁材料镍、钴及其合金、碳素钢及某些合金钢的表面或近表面的缺陷;它适于薄壁件或焊缝表面裂纹的检验,也能显露出一定深度和大小的未焊透缺陷;但难于发现气孔、夹碴及隐藏在焊缝深处的缺陷。 六、缺陷磁痕可分为几类? 答:1、各种工艺性质缺陷的磁痕; 2、材料夹渣带来的发纹磁痕; 3、夹渣、气孔带来的点状磁痕。

七、试述产生漏磁的原因? 答:由于铁磁性材料的磁率远大于非铁磁材料的导磁率,根据工件被磁化后的磁通密度B=μH来分析,在工件的单位面积上穿过B根磁线,而在缺陷区域的单位面积上不能容许B根磁力线通过,就迫使一部分磁力线挤到缺陷下面的材料里,其它磁力线不得不被迫逸出工件表面以外出形成漏磁,磁粉将被这样所引起的漏磁所吸引。 八、试述产生漏磁的影响因素? 答:1、缺陷的磁导率:缺陷的磁导率越小、则漏磁越强。 2、磁化磁场强度(磁化力)大小:磁化力越大、漏磁越强。 3、被检工件的形状和尺寸、缺陷的形状大小、埋藏深度等:当其他条件相同时,埋藏在表面下深度相同的气孔产生的漏磁要比横向裂纹所产生的漏磁要小。 九、某些零件在磁粉探伤后为什么要退磁? 答:某些转动部件的剩磁将会吸引铁屑而使部件在转动中产生摩擦损坏,如轴类轴承等。某些零件的剩磁将会使附近的仪表指示失常。因此某些零件在磁粉探伤后为什么要退磁处理。 十、超声波探伤的基本原理是什么? 答:超声波探伤是利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺陷的一种方法,当超声波束自零件表面由探头通至金属内部,遇到缺陷与零件底面时就分别发生反射波来,在萤光屏上形成脉冲波形,根据这些脉冲波形来判断缺陷位置和大小。 十一、超声波探伤与X射线探伤相比较有何优的缺点? 答:超声波探伤比X射线探伤具有较高的探伤灵敏度、周期短、成本低、灵活方便、效率高,对人体无害等优点;缺点是对工作表面要求平滑、要求富有经验的检验人员才能辨别缺陷种类、对缺陷没有直观性;超声波探伤适合于厚度较大的零件检验。 十二、超声波探伤的主要特性有哪些? 答:1、超声波在介质中传播时,在不同质界面上具有反射的特性,如

无损检测(热处理)

第七章无损检测 无损检测是利用射线、超声、红外、电磁、渗透等方法在不损害被检物(材料,零件,构件等)的前提下,掌握其内部状况的现代检测技术。无损检测包括缺陷检测(无损探戈伤)及材质与热处理质量检测两部分。 7.1.1.目视检测(VT) 目视检测,在国内实施的比较少,但在国际上非常重视的无损检测第一阶段首要方法。按照国际惯例,目视检测要先做,以确认不会影响后面的检验,再接着做四大常规检验。例如BINDT的PCN认证,就有专门的VT1、2、3级考核,更有专门的持证要求。VT常常用于目视检查焊缝,焊缝本身有工艺评定标准,都是可以通过目测和直接测量尺寸来做初步检验,发现咬边等不合格的外观缺陷,就要先打磨或者修整,之后才做其他深入的仪器检测。例如焊接件表面和铸件表面较多VT做的比较多,而锻件就很少,并且其检查标准是基本相符的。 7.1.2.射线照相法(RT) 是指用X射线或γ射线穿透试件,以胶片作为记录信息的器材的无损检测方法,该方法是最基本的,应用最广泛的一种非破坏性检验方法。 原理:射线能穿透肉眼无法穿透的物质使胶片感光,当X射线或r射线照射胶片时,与普通光线一样,能使胶片乳剂层中的卤化银产生潜影,由于不同密度的物质对射线的吸收系数不同,照射到胶片各处的射线强度也就会产生差异,便可根据暗室处理后的底片各处黑度差来判别缺陷。 总的来说,RT的定性更准确,有可供长期保存的直观图像,总体成本相对较高,而且射线对人体有害,检验速度会较慢。 7.1.3.超声波检测(UT) 原理:通过超声波与试件相互作用,就反射、透射和散射的波进行研 究,对试件进行宏观缺陷检测、几何特性测量、组织结构和力学性能变化的检测和表征,并进而对其特定应用性进行评价的技术。 适用于金属、非金属和复合材料等多种试件的无损检测;可对较大厚度范围内的试件内部缺陷进行检测。如对金属材料,可检测厚度为1~2mm的薄壁管材和板材,也可检测几米长的钢锻件;而且缺陷定位较准确,对面积型缺陷的检出率较高;灵敏度高,可检测试件内部尺寸很小的缺陷;并且检测成本低、速度快,设备轻便,对人体及环境无害,现场使用较方便。 但其对具有复杂形状或不规则外形的试件进行超声检测有困难;并且缺陷的位置、取向和形状以及材质和晶粒度都对检测结果有一定影响,检测结果也无直接见证记录。

各种常见无损探伤方法简介与比较

各种常见无损探伤方法简介与比较 三种常规无损检测方法的比较 无损检测就是利用声、光、磁和电等特性,在不损害或不影响被检对象使用性能的前提下,检测被检对象中是否存在缺陷或不均匀性,给出缺陷的大小、位置、性质和数量等信息,进而判定被检对象所处技术状态(如合格与否、剩余寿命等)的所有技术手段的总称。 常用的无损检测方法:超声检测(UT)、磁粉检测(MT)和液体渗透检测(PT)。 超声波检测(UT) 1、超声波检测的定义: 通过超声波与试件相互作用,就反射、透射和散射的波进行研究,对试件进行宏观缺陷检测、几何特性测量、组织结构和力学性能变化的检测和表征,并进而对其特定应用性进行评价的技术。 2、超声波工作的原理: 主要是基于超声波在试件中的传播特性。声源产生超声波,采用一定的方式使超声波进入试件;超声波在试件中传播并与试件材料以及其中的缺陷相互作用,使其传播方向或特征被改变;改变后的超声波通过检测设备被接收,并可对其进行处理和分析;根据接收的超声波的特征,评估试件本身及其内部是否存在缺陷及缺陷的特性。 3、超声波检测的优点: a.适用于金属、非金属和复合材料等多种制件的无损检测; b.穿透能力强,可对较大厚度范围内的试件内部缺陷进行检测。如对金属材料,可检测厚度为1~2mm的薄壁管材和板材,也可检测几米长的钢锻件; c.缺陷定位较准确; d.对面积型缺陷的检出率较高; e.灵敏度高,可检测试件内部尺寸很小的缺陷; f.检测成本低、速度快,设备轻便,对人体及环境无害,使用较方便。 4、超声波检测的局限性

a.对试件中的缺陷进行精确的定性、定量仍须作深入研究; b.对具有复杂形状或不规则外形的试件进行超声检测有困难; c.缺陷的位置、取向和形状对检测结果有一定影响; d.材质、晶粒度等对检测有较大影响; e.以常用的手工A型脉冲反射法检测时结果显示不直观,且检测结果无直接见证记录。 5、超声检测的适用范围 a.从检测对象的材料来说,可用于金属、非金属和复合材料; b.从检测对象的制造工艺来说,可用于锻件、铸件、焊接件、胶结件等; c.从检测对象的形状来说,可用于板材、棒材、管材等; d.从检测对象的尺寸来说,厚度可小至1mm,也可大至几米; e.从缺陷部位来说,既可以是表面缺陷,也可以是内部缺陷。锻件是金属被施加压力,通过塑性变形塑造要求的形状或合适的压缩力的物件。这种力量典型的通过使用铁锤或压力来实现。铸件过程建造了精致的颗粒结构,并改进了金属的物理属性。在零部件的现实使用中,一个正确的设计能使颗粒流在主压力的方向。 磁粉检测(MT) 1. 磁粉检测的原理: 铁磁性材料和工件被磁化后,由于不连续性的存在,使工件表面和近表面的磁力线发生局部畸变而产生漏磁场,吸附施加在工件表面的磁粉,形成在合适光照下目视可见的磁痕,从而显示出不连续性的位置、形状和大小 2. 磁粉检测的适用性和局限性: a.磁粉探伤适用于检测铁磁性材料表面和近表面尺寸很小、间隙极窄(如可检测出长0.1mm、宽为微米级的裂纹),目视难以看出的不连续性。 b.磁粉检测可对原材料、半成品、成品工件和在役的零部件检测,还可对板材、型材、管材、棒材、焊接件、铸钢件及锻钢件进行检测。 c.可发现裂纹、夹杂、发纹、白点、折叠、冷隔和疏松等缺陷。 d.磁粉检测不能检测奥氏体不锈钢材料和用奥氏体不锈钢焊条焊接的焊缝,也不能检测铜、铝、镁、钛等非磁性材料。对于表面浅的划伤、埋藏较深的孔洞和与工件表面夹角小于20°的分层和折叠难以发现。 渗透检测(PT) 1.液体渗透检测的基本原理: 零件表面被施涂含有荧光染料或着色染料的渗透剂后,在毛细管作用下,经过一段时间,渗透液可以渗透进表面开口缺陷中;经去除零件表面多余的渗透液后,再在零件表面施涂显像剂,同样,在毛细管的作用下,显像剂将吸引缺陷中保留的渗透液,渗透液回渗到显像剂中,在一定的光源下(紫外线光或白光),缺陷处的渗透液痕迹被现实,(黄绿色荧光或鲜艳红色),从而探测出缺陷的形貌及分布状态。 2.渗透检测的优点: a.可检测各种材料;金属、非金属材料;磁性、非磁性材料;焊接、锻造、轧制等加工方式; b.具有较高的灵敏度(可发现0.1μm宽缺陷) c.显示直观、操作方便、检测费用低。 3.渗透检测的缺点及局限性: a.它只能检出表面开口的缺陷; b.不适于检查多孔性疏松材料制成的工件和表面粗糙的工件; c.渗透检测只能检出缺陷的表面分布,难以确定缺陷的实际深度,因而很难对缺陷做出定量评价。检出结果受操作者的影响也较大。 由于各种检测方法都具有一定的特点,为提高检测结果可靠性,应根据设备材质、制造方法、工作介质、使用条件和失效模式,预计可能产生的缺陷种类、形状、部位和取向,选择最适当无损检测方法。 任何一种无损检测方法都不是万能的,每种方法都有自己的优点和缺点。应尽可能多用几种检测方法,互相取长补短,以保障承压设备安全运行。

无损检测综合试题

无损检测综合试题 选择题(选择一个正确答案) 1.超声波检测中,产生和接收超声波的方法,通常是利用某些晶体的(c ) a.电磁效应 b.磁致伸缩效应 c.压电效应 d.磁敏效应 2.目前工业超声波检测应用的波型是(f ) a.爬行纵波 b.瑞利波 c.压缩波 d.剪切波 e.兰姆波 f.以上都是 3.工件内部裂纹属于面积型缺陷,最适宜的检测方法应该是(a ) a.超声波检测 b.渗透检测 c.目视检测 d.磁粉检测 e.涡流检测 f.射线检测 4.被检件中缺陷的取向与超声波的入射方向(a )时,可获得最大超声波反射: a.垂直 b.平行 c.倾斜45° d.都可以 5.工业射线照相检测中常用的射线有(f ): a.X射线 b.α射线 c.中子射线 d.γ射线 e.β射线 f.a和d 6.射线检测法适用于检验的缺陷是(e ) a.锻钢件中的折叠 b.铸件金属中的气孔 c.金属板材中的分层 d.金属焊缝中的夹渣 e. b和d 7.10居里钴60γ射线源衰减到1.25居里,需要的时间约为(c ): a.5年 b.1年 c.16年 d.21年 8.X射线照相检测工艺参数主要是(e ): a.焦距 b.管电压 c.管电流 d.曝光时间 e.以上都是 9.X射线照相的主要目的是(c ): a.检验晶粒度; b.检验表面质量; c.检验内部质量; d.以上全是 10.工件中缺陷的取向与X射线入射方向(b )时,在底片上能获得最清晰的缺陷影 像:a.垂直 b.平行 c.倾斜45°d.都可以 11.渗透检测法适用于检验的缺陷是(a ): a.表面开口缺陷 b.近表面缺陷 c.内部缺陷 d.以上都对 12.渗透检测法可以发现下述哪种缺陷?(c ) a.锻件中的残余缩孔 b.钢板中的分层 c.齿轮的磨削裂纹 d.锻钢件中的夹杂物 13.着色渗透探伤能发现的缺陷是(a ): a.表面开口缺陷 b.近表面缺陷 c.内部未焊透

承压类特种设备常用无损检测方法

承压类特种设备常用无损检测方法 发表时间:2019-07-02T15:56:47.013Z 来源:《基层建设》2019年第10期作者:王新磊许世强王尚峰 [导读] 摘要:现如今各类承压类特种设备被广泛应用到各大企业实际生产过程中,在给人们生活提供便捷的同时,其危险系数也不容小觑。 新疆心连心能源化工有限公司新疆昌吉 832200 摘要:现如今各类承压类特种设备被广泛应用到各大企业实际生产过程中,在给人们生活提供便捷的同时,其危险系数也不容小觑。无损检测就是不损害被检测对象的使用性能的高级测试方法,通过物理化学手段对被检测对象的结构、性质、状态进行充分检查,进而生成恰当的报告。 关键词:承压;特种设备;常用;无损检测 前言:进入21世纪后,我国特种设备数量也进入了一个快速增长的时期。特种设备数量的增长在一定程度上折射出我国工业化水平的提升,同时也在一定程度上给政府的监管带来了巨大的挑战。日常监督检查和专项监督检查都是特种设备监管必不可少的方式,但在特种设备数量激增的大背景下,显得效率低下、力不从心。尤其是在面对辖区内一些大型石油化工企业动辄数以千计的特种设备,传统的监管方式急需改进升级。 1 承压设备无损检测与评价的重要性 无损检测通常来说是在保障检测目标不受损害的情况下进行的综合评价,这种检测方法不影响检测对象的使用性能,对检测对象的构成材料、涉及结构同样不产生影响。其起到的主要作用是通过综合的技术手段评价设备表面及内部存在的问题,对设备的所有性能、状态进行科学评估,对于承压设备来说,进行无损检测可以使用的技术手段包括目测、渗透、泄漏、射线、超声波、涡流等。从目前的实际应用来看,比较成熟的技术包括辐射检测、声学检测以及电磁检测等。 承压设备的安全性依赖于生产的各个环节,设备生产环节,材料的选用、设计的合理性、制造安装的正确性都是保障承压设备最终能投入安全生产的因素。在上述各个环节进行无损检测,及时发现存在的问题,例如原材料的生产缺陷、焊接过程的疏漏等,都可以成功避免问题的产生。采用无损检测技术,可以在设备的使用过程中发现开裂、受腐蚀、机械疲劳、高温蠕变等。及时发现才能及时弥补,科学的无损检测可以对问题的严重程度进行分析,及时采取有效措施,不会造成资源的二次浪费。 2 承压类特种设备无损检测方法分析 2.1 射线检测技术(RT) 射线检测技术是通过射线与被检测对象发生的相互作用得到射线信号,形成检测对象的内部图像,从而显现出被检测对象的有效信息,反映出存在的问题。 CR技术:这项技术是通过光线激励荧光粉,在成像板上记录X射线穿透设备形成的影像,形成一个潜影,再利用激光扫描技术,激发与潜影能量一致的可见光,通过技术手段,将光信号转化为电信号,进而生成数字图像。与传统的无损检测方法相比,其成本更低、所需时间更短,同时,数字图像的传输更为便捷直观。一般来说,在承压设备的检测中,这项技术主要用于焊接接头及铸件的检测过程。 DR技术:其技术支撑基础依然是x射线检测法。检测设备的改进基础源于电荷耦合图像传感器。最新型的DR技术应用的是探测器与X 射线交互介质材料,将X射线闪络晶体安装在二极管阵列,同时连接图像采集系统,这种技术可以使计算机与检验设备同步,数据实时传输及存储,便于综合分析。这种设备的优点在于检测效率高、环境辐射小的特点,与此同时,可以高速处理图像和数据,存储和输出的效率极高。 CT技术:这项技术发展的根源在医学领域。其组成系统包括射线源、探测装置及精密器械。相关的配套软件可以帮助我们在检测的过程中获取有效的数据、进行图像的高清重建,同时对图像进行有效应用。这项技术的优点在于分辨率高、高精度定位,成像的过程中没有影像的重叠。同时需要的设备便捷,适于携带。在科技不断进步的前提下,CT检测技术也在飞速发展,根据不同的需求,更小更便捷及大型高能是两个发展方向。结合其他检测技术,必将有更好的发展。 2.2 超声检测技术(UT) 超声检测技术主要针对承压类设备的内部环境进行检测,面对设备焊缝内部所隐藏的缺陷,人类肉眼无法观测,也不容易拆解设备验伤。承压类设备外部覆盖保温层,利用超声检测技术可从设备裂缝处实施无损检测,检测的部位有设备的锻件、高压螺栓、焊缝表层等。超声检测技术相对与其他几种仪器体积小,便于携带,重量较轻在操作上十分方便。同时,超声检测技术对人体伤害最小,它在检测时所发出的声波对人体基本无害,这些年技术的更新演替给超声检测技术带来了发展新契机,TOFD等先进的超声检测技术层出不穷,给承压类特种设备的无损检测带来新光彩。 2.3 磁粉检测技术(MT) 磁粉检测技术是承压类设备常用的检测技术,属于无损检测常规检测方法,它通过表面检测法对设备的表层进行重点检测,像设备的角焊缝、对接焊缝、高强螺栓等都是磁粉检测技术的勘察对象,部分设备有焊疤情况,在表面检测中将作为核心检查。相对于其他几种检测方式,磁粉检测技术更为成熟,它作为传统的承压类特种设备检测方式有悠久的检测历史,也有相配套的全系列主机和附件,我国磁粉检测技术是最接近国际无损检测水平的一种,由磁粉技术开始,计算机的承压类特种设备中的无损检测才得到更广泛的使用。 2.4 渗透检测技术(PT) 渗透检测又称为渗透探伤检测,它是以毛细作用为原理对承压类特种设备的内里进行检测的方法,它的着色渗透在无损检测中发挥重要作用,在很多工业、机械业中,利用着色渗透检查设备表面的光照度和内里环境,以此确定特总设备的使用情况。渗透检测又分为荧光和非荧光两种,两者皆以物理化学与材料科学为基础,对设备的零件和产品进行有效检验,尤其对锅炉、压力容器的使用频繁,也是维护特种设备的必要手段。 2.5 涡流检测技术(ET) 涡流检测的原理在于把交流电的线圈放置于待测的金属板上,让线圈周边产生磁场,磁场恒定后设备能感应到磁场带来的电流,因此涡流检测技术就形成了。涡流检测技术与设备的大小、线圈的匝数、交流电流有直接关系,同时与设备的电导率与磁导率有间接关系。使用涡流检测技术对承压类特种设备进行无损检测,要按照设备的形状选择线圈,譬如穿过式、插入式,每一种线圈的管材、线材不同,像

带钢常见缺陷及其图谱

结疤(重皮) 图1 图2 1.缺陷特征 附着在钢带表面,形状不规则翘起的金属薄片称结疤。呈现叶状、羽状、条状、鱼鳞状、舌端状等。结疤分为两种,一种是与钢的本体相连结,并折合到板面上不易脱落;另一种是与钢的本体没有连结,但粘合到板面上,易于脱落,脱落后形成较光滑的凹坑。 2.产生原因及危害 产生原因: ①板坯表面原有的结疤、重皮等缺陷未清理干净,轧后残留在钢带表面上;

②板坯表面留有火焰清理后的残渣,经轧制压入钢带表面。 危害:导致后序加工使用过程中出现金属剥离或产生孔洞。 3.预防及消除方法 加强板坯质量验收,发现板坯表面存在结疤和火焰清理后残渣应清理干净。气泡 图1 开口气泡 图2 开口气泡 1.缺陷特征

钢带表面无规律分布的圆形或椭圆形凸包缺陷称气泡。其外缘较光滑,气泡轧破后,钢带表面出现破裂或起皮。某些气泡不凸起,经平整后,表面光亮,剪切断面呈分层状。 2.产生原因及危害 产生原因: ①因脱氧不良、吹氮不当等导致板坯内部聚集过多气体; ②板坯在炉时间长,皮下气泡暴露或聚集长大。 危害:可能导致后序加工使用过程中产生分层或焊接不良。 3.预防及消除方法 ①加强板坯质量验收,不使用气泡缺陷暴露的板坯; ②严格按规程加热板坯,避免板坯在炉时间过长。

压入氧化铁皮 图1 一次(炉生)氧化铁皮(压入) 图2 二次氧化铁皮(轧制过程产生)

图3 二次氧化铁皮(轧辊氧化膜脱落) 1.缺陷特征 热轧过程中氧化铁皮压入钢带表面形成的一种表面缺陷称压入氧化铁皮。按其产生原因不同可分为炉生(一次)氧化铁皮、轧制过程中产生的(二次)氧化铁皮或轧辊氧化膜脱落压入带钢表面形成的(二次)氧化铁皮。 2.产生原因及危害 产生原因: ①钢坯表面存在严重纵裂纹; ②钢坯加热工艺或加热操作不当,导致炉生铁皮难以除尽; ③高压除鳞水压力低、喷嘴堵塞等导致轧制过程中产生的氧化铁皮压入带钢表面; ④轧制节奏过快、轧辊冷却不良等导致轧辊表面氧化膜脱落压入带钢表面。 危害:影响钢带表面质量和涂装效果。 3.预防及消除方法 ①加强钢坯质量验收,表面存在严重纵裂纹的板坯应清理合格后使用; ②合理制订钢坯加热工艺,按规程要求加热板坯; ③定期检查高压除鳞水系统设备,保证除鳞水压力,避免喷嘴堵塞;

无损探伤原理、无损检测原理、常用方法、相关问题(20101119094353)

无损探伤原理、无损检测原理、常用方法、相关问题 什么是无损探伤? 答:无损探伤是在不损坏工件或原材料工作状态的前提下,对被检验部件的表面和内部质量进行检查的一种测试手段。 二、常用的探伤方法有哪些? 答:常用的无损探伤方法有:X光射线探伤、超声波探伤、磁粉探伤、渗透探伤、涡流探伤、γ射线探伤、萤光探伤、着色探伤等方法。 三、试述磁粉探伤的原理? 答:它的基本原理是:当工件磁化时,若工件表面有缺陷存在,由于缺陷处的磁阻增大而产生漏磁,形成局部磁场,磁粉便在此处显示缺陷的形状和位置,从而判断缺陷的存在。 四、试述磁粉探伤的种类? 1、按工件磁化方向的不同,可分为周向磁化法、纵向磁化法、复合磁化法和旋转磁化法。 2、按采用磁化电流的不同可分为:直流磁化法、半波直流磁化法、和交流磁化法。 3、按探伤所采用磁粉的配制不同,可分为干粉法和湿粉法。 五、磁粉探伤的缺陷有哪些? 答:磁粉探伤设备简单、操作容易、检验迅速、具有较高的探伤灵敏度,可用来发现铁磁材料镍、钴及其合金、碳素钢及某些合金钢的表面或近表面的缺陷;它适于薄壁件或焊缝表面裂纹的检验,也能显露出一定深度和大小的未焊透缺陷;但难于发现气孔、夹碴及隐藏在焊缝深处的缺陷。 六、缺陷磁痕可分为几类? 答:1、各种工艺性质缺陷的磁痕; 2、材料夹渣带来的发纹磁痕; 3、夹渣、气孔带来的点状磁痕。 七、试述产生漏磁的原因? 答:由于铁磁性材料的磁率远大于非铁磁材料的导磁率,根据工件被磁化后的磁通密度B =μH来分析,在工件的单位面积上穿过B根磁线,而在缺陷区域的单位面积上不能容许B 根磁力线通过,就迫使一部分磁力线挤到缺陷下面的材料里,其它磁力线不得不被迫逸出工件表面以外出形成漏磁,磁粉将被这样所引起的漏磁所吸引。 八、试述产生漏磁的影响因素? 答:1、缺陷的磁导率:缺陷的磁导率越小、则漏磁越强。 2、磁化磁场强度(磁化力)大小:磁化力越大、漏磁越强。 3、被检工件的形状和尺寸、缺陷的形状大小、埋藏深度等:当其他条件相同时,埋藏在表面下深度相同的气孔产生的漏磁要比横向裂纹所产生的漏磁要小。 九、某些零件在磁粉探伤后为什么要退磁? 答:某些转动部件的剩磁将会吸引铁屑而使部件在转动中产生摩擦损坏,如轴类轴承等。某

无损探伤方法

五大常规探伤方法概述 五大常规方法是指射线探伤法、超声波探伤法、磁粉探伤法、涡流探伤法和渗透探伤法。 1、射线探伤方法 射线探伤是利用射线的穿透性和直线性来探伤的方法。这些射线虽然不会像可见光那样凭肉眼就能直接察知,但它可使照相底片感光,也可用特殊的接收器来接收。常用于探伤的射线有x光和同位素发出的γ射线,分别称为x光探伤和γ射线探伤。当这些射线穿过(照射)物质时,该物质的密度越大,射线强度减弱得越多,即射线能穿透过该物质的强度就越小。此时,若用照相底片接收,则底片的感光量就小;若用仪器来接收,获得的信号就弱。因此,用射线来照射待探伤的零部件时,若其内部有气孔、夹渣等缺陷,射线穿过有缺陷的路径比没有缺陷的路径所透过的物质密度要小得多,其强度就减弱得少些,即透过的强度就大些,若用底片接收,则感光量就大些,就可以从底片上反映出缺陷垂直于射线方向的平面投影;若用其它接收器也同样可以用仪表来反映缺陷垂直于射线方向的平面投影和射线的透过量。由此可见,一般情况下,射线探伤是不易发现裂纹的,或者说,射线探伤对裂纹是不敏感的。因此,射线探伤对气孔、夹渣、未焊透等体积型缺陷最敏感。即射线探伤适宜用于体积型缺陷探伤,而不适宜面积型缺陷探伤。 2、超声波探伤方法 人们的耳朵能直接接收到的声波的频率范围通常是20Hz到20kHz,即音(声)频。频率低于20 Hz的称为次声波,高于20 kHz的称为超声波。工业上常用数兆赫兹超声波来探伤。超声波频率高,则传播的直线性强,又易于在固体中传播,并且遇到两种不同介质形成的界面时易于反射,这样就可以用它来探伤。通常用超声波探头与待探工件表面良好的接触,探头则可有效地向工件发射超声波,并能接收(缺陷)界面反射来的超声波,同时转换成电信号,再传输给仪器进行处理。根据超声波在介质中传播的速度(常称声速)和传播的时间,就可知道缺陷的位置。当缺陷越大,反射面则越大,其反射的能量也就越大,故可根据反射能量的大小来查知各缺陷(当量)的大小。常用的探伤波

冷轧常见缺陷

冷轧缺陷 冷轧常见缺陷 冷轧带钢得质量指标中,带钢得尺寸偏差、板形以及表面粗糙度等要求就是很主要得项目,消除产品在这些方面得缺陷就是冷轧生产中质量提高得关键之一。 一、表面缺陷 大多就是由于热轧带钢坯质量不高,酸洗不良或冷轧轧辊表面有缺陷,冷轧时得工作环境不佳以及操作上得不注意等原因造成得。鉴于表面缺陷所导致得废品比重很大,特别就是要求高得产品,表面缺陷必需严加控制。常见得表面缺陷有: (1) 结疤带钢表面呈“舌状”或“鳞状”得金属薄片,外形近似一个闭合得曲线。结疤一般有两种,一就是嵌在表面上不易脱落,另一就是粘合到表面上易脱落。 产生原因就是:由于轧制过程中带钢内部靠近表面层分布得细气泡及夹杂层在轧制中破裂变成结疤,钢锭由于浇注条件不同而产生得结疤;重皮也就是轧制带钢表面产生结疤得主要原因,此外在剧烈磨损了得轧辊或有缺陷(如砂眼)得轧辊上热轧,均能使带钢出现结疤;如果所轧带钢得表面上形成局部凸点等,则在轧制时由于受辗压而产生结疤状得细小凸瘤。 (2) 气泡带钢表面上分布有无规则且大小不同得圆形凸包。沿凸包切断后,在大多数情况下均成分层状露出。 产生原因:钢锭凝固时气体析出形成气泡,或酸洗时带钢内部孔隙进入氢原子形成气泡。

(3) 分层带钢截面上有局部得,明显得金属结构分离层。 产生原因:钢质不良,带钢中存在非金属夹杂,主要就是三氧化二铅与二氧化矽,另外,坯料有缩孔残余或严重得疏松等也能形成分层,从而使酸洗得带钢在有分层得地方形成突起与气泡出露。 (4)裂纹带钢表面完整性比较严重得破裂,它就是以纵向、横向或一定角度得形式出现得裂缝。 产生原因:轧制前带钢不均匀加热或过热,轧制时带钢不均匀延伸,或带钢表面有缺陷清除不彻底,以及带钢上有非金属夹杂及皮下气泡,另外,冷轧时不正确地调整轧辊与不正确得设计辊型,同样会产生裂纹,再有,用落槽得轧辊轧制带钢,张力太大,化学成分不合适等也可能会出现裂纹。 (4) 表面夹杂带钢表面上具有轧制方向上伸长得红棕色,淡黄色,灰白色得点状,条状与块状得非金属夹杂物。 产生原因:热轧时坯料在加热过程中,炉渣或耐火材料碎块粒附在坯料上,以及冶炼时造渣不好或盛钢桶不净所致。 (1) 麻点带钢表面缺陷中较常见得一种缺陷,其表面存在细小凹坑群与局部得粗糙面。一般其形状不规则,面积也小,但数量多。 产生原因:热轧时压入了氧化铁皮,酸洗未净,又经冷轧造成,或冷轧时粘在轧辊上得氧化铁皮压入带钢表面。轧辊磨损严重同样可造成带钢得麻面。冷轧时,带钢表面不干净及粘有杂质或杂质压入带钢表面后脱落,也会造成带钢得麻点。除此以外,带钢得严重锈蚀及酸洗过度都可成形麻点。 (2) 凹坑带钢表面存在得凹面,一般数量少,面积大。 产生原因;轧制时辊面上缺陷或异物(硬杂质)与氧化铁皮被轧入带钢表面脱

无损检测方法有哪些

无损检测方法有哪些? 无损检测方法很多,据美国国家宇航局调研分析,认为可分为六大类约70余种。但在实际应用中比较常见的有以下几种:常规无损检测方法有: 超声检测Ultrasonic Testing(缩写UT); 射线检测Radiographic Testing(缩写RT); 磁粉检测Magnetic particle Testing(缩写MT); 渗透检验Penetrant Testing (缩写PT); 涡流检测Eddy current Testing(缩写ET); 非常规无损检测技术有: 声发射Acoustic Emission(缩写AE); 泄漏检测Leak Testing(缩写UT); 光全息照相Optical Holography; 红外热成象Infrared Thermography; 微波检测Microwave Testing 1.什么是射线检测? 利用射线(X射线、γ射线、中子射线等)穿过材料或工件时的强度衰减,检测其内部结构不连续性的技术称为射线检测。 穿过材料或工件的射线由于强度不同在X射线胶片上的感光程度也不同,由此生成内部不连续的图象。 2. 什么是超声检测?

超声波在被检测材料中传播时,材料的声学特性和内部组织的变化对超声波的传播产生一定的影响,通过对超声波受影响程度和状况的探测了解材料性能和结构变化的技术称为超声检测。 3. 什么是磁粉检测? 利用漏磁和合适的检验介质发现试件表面和近表面的不连续性的无损检测方法。 4. 什么是渗透检测? 利用液体的毛细管作用,将渗透液渗入固体材料表面开口缺陷处。再通过显象剂将渗入的渗透液吸出到表面显示缺陷的存在。这种无损检测方法称为渗透检测。 5. 什么是涡流检测? 利用铁磁线圈在工件中感生的涡流,分析工件内部质量状况的无损检测方法称为涡流检测。

五大常规无损检测原理

五大常规无损检测原理 无损检测技术不破坏零件或材料,可以直接在现场进行检测,而且效率高。目前,最常用的无损检测主要有五种:超声检测(Ultrasonic Testing)、射线检测(Radiographic Testing)、磁粉检测(Magnetic particle Testing)、渗透检测(Penetrant Testing)、涡流检测(Eddy current Testing)。 超声检测原理 超声波是频率高于20千赫的机械波。在超声探伤中常用的频率为0.5-5兆赫。这种机械波在材料中能以一定的速度和方向传播,遇到声阻抗不同的异质界面(如缺陷或被测物件的底面等)就会产生反射。 这种反射现象可被用来进行超声波探伤,最常用的是脉冲回波探伤法探伤时,脉冲振荡器发出的电压加在探头上(用压电陶瓷或石英晶片制成的探测元件),探头发出的超声波脉冲通过声耦合介质(如机油或水等)进入材料并在其中传播,遇到缺陷后,部分反射能量沿原途径返回探头,探头又将其转变为电脉冲,经仪器放大而显示在示波管的荧光屏上。

根据缺陷反射波在荧光屏上的位置和幅度(与参考试块中人工缺陷的反射波幅度作比较),即可测定缺陷的位置和大致尺寸。除回波法外,还有用另一探头在工件另一侧接受信号的穿透法。利用超声法检测材料的物理特性时,还经常利用超声波在工件中的声速、衰减和共振等特性。 射线检测原理 射线的种类很多,其中易于穿透物质的有X射线、γ射线、中子射线三种。这三种射线都被用于无损检测,其中X射线和γ射线广泛用于锅炉压力容器焊缝和其他工业产品、结构材料的缺陷检测,而中子射线仅用于一些特殊场合。 射线检测最主要的应用是探测试件内部的宏观几何缺陷(探伤)。按照不同特征,例如使用的射线种类、记录的器材、工艺和技术特点等,可将射线检测分为许多种不同的方法。射线照相法是指用X射线或γ射线穿透试件,以胶片作为记录信息的器材的无损的检测方法。 该方法是最基本的,应用最广泛的一种射线检测方法。射线检测适用于绝大多数材质和产品形式,如焊件、铸件、复合材料等。射线检测胶片对材质内部结构可生成缺陷的直观图象,定性

热轧带钢氧化铁皮表面缺陷的产生及对策

热轧带钢氧化铁皮表面缺陷的产生及对策 [我的钢铁] 2009-02-16 07:02:16 1氧化铁皮分类 氧化铁皮是热轧钢带较常见的一种产品质量缺陷,按照生成部位不同一般分为炉生氧化铁皮、粗轧和精轧氧化铁皮和卷取后氧化铁皮和保护渣去除不净铁皮。 2氧化铁皮产生机理 氧化铁皮的生成一般是由于钢坯在加热炉内加热或高温状态下与氧化性气氛接触后发生化学反应生成Fe304、Fe203、FeO的一种混合物。当温度高于700℃时,FeO在最接近钢坯的内层形成,占95%;Fe304在中间层形成,占4%;Fe203在最外层形成,占1%。 3炉生氧化铁皮 炉生氧化发生在加热炉内,同化学成分、加热温度、在炉时间、炉内气氛有关。加热温度越高、在炉时间越长、炉内氧化性气氛越强则越容易生成铁皮。化学成分中C、Si、Ni、Cu等元素促进氧化铁皮生成,Mn、Al、Cr可以减缓氧化铁皮的生成。例如:生产中常见的含Si钢、高碳钢和高强钢在钢带通条长度,整个板面均有分布的氧化铁皮,且下表面较上表面重,由于含Si钢中低熔点(1170℃)的化合物FeSi204在氧化铁皮和钢基体之间产生,这种呈楔形的氧化物在随后的轧制过程中保留下来形成棕红色的氧化铁皮。 4轧制过程氧化铁皮 粗轧氧化铁皮的清除与粗轧除鳞水压力、水嘴角度、水质、立辊侧压能力等有关,除鳞水压力越高、立辊侧压越大则氧化铁皮除鳞效果越好。

精轧区氧化铁皮分为水系统铁皮和轧辊生成铁皮。水系统铁皮是指除鳞水、侧喷水、除尘水等压力不足,水嘴角度、高度不正确,或不投入、堵塞,在高温下钢带与空气中的氧结合而生成氧化铁皮不能及时扫射掉由工作辊压入而生成的氧化铁皮。另外,侧喷水也可以抑制氧化铁皮的生成。正常生产时,精轧除鳞水、除尘水必须投入使用。但有时生产薄规格产品时,为了保证板形,降低钢板边部温降,提高轧制稳定性,防止甩尾,往往不投入侧喷水,导致精轧机架内生成的铁皮不能及时被除去,氧化铁皮压入钢板表面。 精轧机组的另一种氧化铁皮缺陷是所谓辊生氧化铁皮,其产生机理见图3。影响辊生氧化铁皮的主要因素有轧辊材质以及轧辊温度。轧辊表面与钢板表面接触时,瞬间高温,表面温度急剧升高而膨胀(一般热轧轧辊接触瞬间温度为600~800℃),呈现较高的压应力;轧件离开轧辊时,轧辊由于冷却水的冷却而急剧降温(精轧机架轧辊温度一般为60~90℃),表面转呈拉应力,如此反复,在轧辊表面易出现疲劳裂纹,造成表面氧化膜破损,破损表面印入钢板表面,形成辊生氧化铁皮缺陷。 一般辊生氧化铁皮发生在精轧前三机架,即F1、F2和F3,主要是由于前三架轧辊表面温度高,导致轧辊表面氧化膜破裂,产生辊生氧化铁皮。由图4可见,加热温度1230℃,进精轧温度950~1010℃时,即图中阴影为无铁皮区域。进精轧温度1030~1080℃之间氧化铁皮严重,进精轧温度在950~1030℃之间,没有氧化铁皮或氧化铁皮较轻。根据各热轧厂设备及所生产钢质不同,进精轧温度控制在950℃生产高强钢或高碳钢时,前三架轧制力过高,可能损坏设备,建议根据轧辊材质不同进精轧温度应控制在950~1030℃,可有效降低上游机架轧辊温度,减少辊生氧化铁皮的发生。 5卷取产生氧化铁皮 卷取后氧化铁皮转变速度非常快,钢卷刚刚从卷取机出来时,表面呈现白色粉末状条带分布,宽窄不一,十几分钟后转变成深色氧化铁皮,作用机理目前尚不清楚。同一钢卷出卷取机瞬间和15分钟之后步进梁上表面生成氧化铁皮表面形貌

混凝土结构常用无损检测方法

混凝土结构常用无损检测方法 摘要:介绍了回弹法、超声波法、雷达法等各种混凝土无损检测方法的工作原理,分析了各自的特点及适用范围。在实际工程中,宜使用两种或两种以上方法进行检测,以互相验证,提高检测的效率及可靠性。? 无论是工业及民用建筑,还是公路、铁路、水利及水电工程等都广泛使用混凝土材料,混凝土的质量关系到整个工程的质量。传统的混凝土强度检验方法是在浇筑地点随机抽取试样,对试样进行抗压强度试验,由试验结果来评定混凝土的强度。由于试样的制作条件、养护环境及受力状态与原位混凝土均存在着明显的差异,试样的实验结果难以全面、准确地反映原位混凝土的质量状况,显然无损检测是获得原位混凝土真实质量的有效方法。早在20 世纪30 年代,人们就开始研究混凝土无损检测技术。1948 年,瑞士科学家施密特( E. Schmidt )研制成回弹仪;1949 年莱斯利(Leslie )等人用超声脉冲成功检测混凝土;60年代费格瓦洛(I. Facaoaru)提岀用声速、回弹综合法估算混凝土强度;80年代中期,美国的Mary Sansalone 等用机械波反射法进行混凝土无损检测;90 年代以来,随着科学技术的快速发展,涌现岀一批新的测试方法,如微波吸收、雷达扫描、红外线谱、脉冲回波等方法。我国从50年代开始引进瑞士、英国、波兰等国的超声波仪器和回弹仪,并结合工程应用开展了一定的研究工作;60 年代初我国研制成功多种型号的超声波仪器,随后广泛进行了混凝土无损检测技术的研究和应用;80 年代混凝土无损检测技术在我国得到快速发展,并取得了一定的研究成果,除了超声、回弹等无损检测方法外,还进行了钻芯法、后装拔岀法的研究;90 年代以来,雷达技术、红外成像技术、冲击回 波技术等进入实用阶段,同时超声波检测仪器也由模拟式发展为数字式,可将测试数据传入计算机进行各种数据处理,以进一步提高检测的可靠性。 混凝土无损检测的方法主要有回弹法、超声法、超声回弹综合法、雷达法、冲击回波法、红外成像法、钻芯法、拔岀法及超声波CT 法等,其中钻芯法和拔岀法属局部破损或半破损检测方法。以下就各种方法的工作原理、特点及适用范围作以述评。 各种无损检测方法工作原理及其特点述评 1.1 回弹法 回弹法是以在混凝土结构或构件上测得的回弹值和碳化深度来评定混凝土结构或构件强度的一种方法,它不会对结构或构件的力学性质和承载能力产生不利影响,在工程上已得到广泛应用。 回弹法使用的仪器为回弹仪,它是一种直射锤击式仪器,是用一弹击锤来冲击与混凝土表面接触的弹击杆,然后弹击锤向后弹回,并在回弹仪的刻度标尺上指示岀回弹数值。回弹值的大小取决于与冲击能量有关的回弹能量,而回弹能量则反映了混凝土表层硬度与混凝土抗压强度之间的函数关系,即可以在混凝土的抗压强度与回弹值之间建立起一种函数关系,以回弹值来表示混凝土的抗压强度。回弹法只能测得混凝土表层的质量状况,内部情况却无法得知,这便限制了回弹法的应用范围,但由于回弹法操作简便,价格低廉,在工程上还是得到了广泛应用。 回弹法的基本原理是利用混凝土强度与表面硬度之间的关系,通过一定动能的钢杆件弹击混凝土表 面,并测得杆件回弹的距离(回弹值),利用回弹值与强度之间的相关关系来推定混凝土强度。 通常采用试验的方法得到回弹值与强度之间的相关关系,即建立混凝土强度f c cu与回弹值R之间 的一元回归公式,或混凝土强度与回弹值R及主要影响因素(如碳化深度)之间的二元回归公式。回归 的公式可采用各种不同的函数方程形式,根据大量试验数据进行回归拟合,择其相关系数较大者作为实用经验公式。目常常用的形式主要有以下几种: 直线方程 f c cu A BR 幂函数方程 f c cu AR B

相关主题
文本预览
相关文档 最新文档