当前位置:文档之家› 第六章 留数理论及应用

第六章 留数理论及应用

第六章 留数理论及应用
第六章 留数理论及应用

第六章 留数理论及应用

第一节 留数

1、留数定理:

设函数f (z )在点0z 解析。作圆r z z C =-|:|0,使f (z )在以它为边界的闭圆盘上解析,那么根据柯西定理,积分

?

C

dz z f )(

等于零。

设函数f (z )在区域R z z <-<||00内解析。选取r ,使0

r z z C =-|:|0,那么如果f (z )在0z 也解析,则上面的积分也等于零;如果0z 是f (z )的孤立奇点,则上述积分就不一定等于零;这时,我们把积分

?C dz z f i

)(21

π 定义为f (z )在孤立奇点0z 的留数,记作),(Res 0z f ,这里积分是沿着C 按逆时针方向取的。

注解1、我们定义的留数),(Res 0z f 与圆C 的半径r 无关:事实上,在

R z z <-<||00内,f (z )有洛朗展式:

∑+∞

-∞

=-=

n n n

z z z f )()(0α

而且这一展式在C 上一致收敛。逐项积分,我们有

,2)

()(10

-+∞

-∞

==-=

∑??

απαi dz z z dz z f n C

n

n C

因此,10),(Res -=αz f 。

注解2、即f (z )在孤立奇点0z 的留数等于其洛朗级数展式中

1

z z -的系

数。

注解3、如果0z 是f (z )的可去奇点,那么.0),(Res 0=z f

定理1.1(留数定理)设D 是在复平面上的一个有界区域,其边界是一条或有限条简单闭曲线C 。设f (z )在D 内除去有孤立奇点n z z z ,...,,21外,在每一点都解析,并且它在C 上每一点都解析,那么我们有:

),,(Res 2)(1

k n

k C

z f i dz z f ∑?

==π

这里沿C 的积分按关于区域D 的正向取。

证明:以D 内每一个孤立奇点k z 为心,作圆k γ,使以它为边界的闭圆盘上每一点都在D 内,并且使任意两个这样的闭圆盘彼此无公共点。从D 中除去以这些k γ为边界的闭圆盘的一个区域G ,其边界是C 以及k γ,

在G 及其边界所组成的闭区域G 上,f (z )解析。因此根据柯西定理, ,)()(1

∑??

==n

k C

k

dz z f dz z f γ

这里沿C 的积分按关于区域D 的正向取的,沿k γ的积分按反时针方向取的。根据留数的定义,得定理的结论成立。 2、留数的计算:

本节讲述几种常见的情形下,如何计算留数。

首先考虑一阶极点的情形。设0z 是f (z )的一个一阶极点。因此在去掉中心0z 的某一圆盘内(0z z ≠),

),(1

)(0

z z z z f ?-=

其中)(z ?在这个圆盘内包括0z z =解析,其泰勒级数展式是:

()(),n

n n z z z α

+∞

==-?∑ 而且0)(00≠=z ?α。显然,在f (z )的洛朗级数中,0

1

z z -的系数等于)(0z ?,因此

),()(lim ),(Res 000

z f z z z f z z -=→

如果容易求出)(z ?的泰勒级数展式,那么由此可得00),(Res α=z f ;否则要采用其他方法求留数。

如果在上述去掉中心0z 的圆盘内(0z z ≠),

,)

()

()(z Q z P z f =

其中P (z )及Q (z )在这圆盘内包括在0z z =解析,0)(0≠z P ,0z 是Q (z )的一阶零点,并且Q (z )在这圆盘内没有其他零点,那么0z 是f (z )的一阶极点,因而

).('/)( )

()()

()

(lim )()(lim ),(Res 0000000

z Q z P z Q z Q z P z z z f z z z f z z z z =--=-=→→

例6.1.1、函数

,1)(2

z

e z

f iz

+= 有两个一阶极点i z ±=,这时

,21

)(')(iz e z

z Q z P = 因此 .2

),(R e s ,2),(

R e s e i

i f e i i f =--= 其次,我们考虑高阶极点的情形。设0z 是f (z )的一个k 阶极点(k>1)。这就是说,在去掉中心0z 的某一圆盘内(0z z ≠),

),()(1

)(0z z z z f k

?-=

其中)(z ?在这个圆盘内包括0z z =解析,而且0)(0≠z ?。在这个圆盘内,

)(z ?泰勒级数展式是:

00

()(),n n n z z z α+∞

=?=-∑

由此可见,

,),(Res 10-=k z f α

因此问题转化为求)(z ?泰勒级数展式的系数。如果容易求出)(z ?的泰勒级数展式,那么由此可得10),(Res -=k z f α;否则要采用其他方法求留数。

显然,

,)!

1()

(lim

)!

1()

()1(0)1(10

-=-=

-→--k z k z k z z k k ??α

因此,我们也可根据下列公式计算),(Res 0z f :

.)]()[(lim )!1(1

),(Res 1

0100--→--=k k k z z dz z f z z d k z f

例6.1.2、函数

,sec )(3

z z

z f =

在z =0有三阶极点,则

...,!

45!211sec )(4

2+++

==z z z z ? 因此.2

1

)0,(Res =f

由上述公式也可得:

.2

1

)sec (lim 21)0,(Res 33220=?=→z z z dz d f z z

例6.1.3、函数

,)

1()(2

2+=z z e z f iz

在z =i 有二阶极点。这时

,)()(2

i z z e z iz

+=?

令z=i+t ,那么在

,)2)(()(2

)

(t i t i e t h i t i ++=+

的泰勒展式中,t 的系数就是f (z )在i 的留数。写出h (t )中每个因子的到t 的一次项,我们有:当|t|<1时

()1(1...),

i t i e e it +-=++...),1(11++-=--=+it i it

i t i ...),1(4

1

)2

1(141)2(122++-=--=+it it t i 因此当|t|<1时,...),31(4)(++=it e

i

t h

于是.43

),(Res e i f -=由上述公式也可得:.43])([lim ),(Res 2e

i z z e dz d i f iz i z -=+=→

第二节 留数定理的应用

积分的计算:

在数学分析中以及许多实际问题中,往往要求计算出一些定积分或反常积分的值,而这些积分中的被积函数的原函数,不能用初等函数表示出来;或者有时可以求出原函数,但计算也往往非常复杂。 利用留数计算积分的特点:

(1)、利用留数定理,我们把计算一些积分的问题,转化为计算某些解析函数在孤立奇点的留数,从而大大化简了计算;

(2)、利用留数计算积分,没有一些通用的方法,我们主要通过例子进行讨论;

(3)我们只讨论应用单值解析函数来计算积分,应用多值解析函数来计算积分在课本中有讨论。由于时间的关系,我们不讨论应用多值解析函数来计算积分的问题,同学们可以自学。 例6.2.1、 计算积分

?

+=π20

,sin t

a dt

I 其中常数a>1。 解:令z e it =,那么iz

dz dt z z i t =-=

),1(21sin 。而且当t 从0增加到π2时,z 按逆时针方向绕圆C :|z |=1一周。因此

,1

222?

-+=C iaz z dz

I 于是应用留数定理,只需计算1

22

2-+iaz z 在|z |<1内极点处的留数,就

可求出I 。

上面的被积函数有两个极点:121-+-=a i ia z 及122---=a i ia z 。显然1||,1||21>

.1

1

222),(Res 211-=+=

a i ia z z f 于是求得

.1

21

122

2

-=

-=a a i i

I ππ

注解1、应用同样得方法,我们可以计算一般形如

,)cos ,(sin 20?=π

dt t t R I

的积分,其中R (x,y )是有理分式,并且在圆C :|z |=1上,分母不等于零。

例6.2.2、 计算积分

2201 ,2(1)

dx

I x ∞=+? 解:首先,这是一个广义积分,它显然是收敛的。我们应用留数定理来计算它。考虑函数2

2)1(1

z +,这个函数有两个二阶极点,在上半平

面上的一个是z=i 。

作以O 为心、r 为半径的圆盘。考虑这一圆盘在上半平面的部分,设其边界为r C 。取r >1,那么z=i 包含在r C 的内区域内。沿r C 取2

2)1(1z +的积分,则有

.2

412),)1(1(Res 2)1()1(222

222π

ππ==+=+++??-Γi i i z i z dz x dx r

r r 其中r Γ表示r C 上的圆弧部分,沿它的积分是按幅角增加的方向取的。

现在估计积分?Γ

+r z dz

2

2)1(。我们有

22221

||,(1)(1)

r dz r z r πΓ≤?++?

因此

,

0)1(lim 22=+?

Γ+∞→r z dz

r 令+∞→r ,就得到

.

2)1(22π

=+?+∞

∞-x dx

从而

.

4

)1(2122π

=+=

?+∞∞-x dx I

注解1、我们计算所得的值是这个广义积分的柯西主值,但由于此积分收敛,所以积分值等于主值。

注解2、应用同样的方法,我们可以计算一般形如

,)(?+∞

∞-=dx x R I

的积分,其中R (x )是有理分式,分母在实轴上不为零,并且分母的次数比分子的次数至少高2次。

引理 设f (z )是闭区域),0,0(||,210021πθθθθ≤≤≥+∞≤≤≤≤r z r Argz 上连续的复变函数,并且设r Γ是以O 为心、r 为半径的圆弧在这闭区域上的一段)(0r r ≥。如果当z 在这闭区域上时,

,0)(lim =→∞

z f z

那么我们有

.0)(lim =?Γ+∞→r

dz e z f iz r

证明:设M (r )是f (z )在r Γ上的最大值,则有

.)(2)()(|)(|20

sin 0

sin sin ????--Γ-Γ=≤≤π

θπ

θ

θ

θθθrd e r M rd e

r M rd e

r M dz e z f r r t iz

r

r

因为当2

θ<

<时,

,1sin 2

≤≤

θ

θ

π

所以

.2

220

220

sin π

θθθθ

π

π

θ

π

πθ

=

<≤???

+---rd e

rd e

rd e

r r r

又因为,0)(lim =→∞

z f z ,所以

.

0)(lim =?Γ+∞→r

dz e z f iz r

例6.2.3、 计算积分

?

+∞+=0

2

,1

cos dx x x

I 解:取r>0,则有

,1

21)1(21cos 2020

2???

--+=++=+r r ix

r ix ix r

dx x e dx x e e dx x x 函数1

2+z e iz

在0≥y 除去有一阶极点z=i 外,在其他每一点都解析。取积

分区域如图,而只要取r >1。于是我们有

2222Re (,),111

r ix iz iz r

r

e e e dx d i s i e x z z π

π-Γ+==+++?

? 其中r Γ表示r C 上的圆弧部分,沿它的积分是按幅角增加的方向取的。

现在应用引理3.1,取2,,0,1

1

)(0212===+=

r z z f πθθ,那么在这引理中所设各条件显然成立。因此,令+∞→r ,就得到

2l i m ,1ix r

r r e dx x e

π

-→+∞=+?从而可见积分I 收敛,并且2I e

π=

注解1、应用同样得方法,我们可以计算一般形如

,)(?+∞

∞-=dt e x f I ix

的积分,其中f (x )在0Im ≥z 上可能有有限个孤立奇点外,在其他每一点解析,而且当z 在0Im ≥z 上时,引理中的条件满足。 注解2、上面求出的广义积分也是其柯西主值。

注解3、如果函数f (x )在0Im ≥z 上可能有有限个孤立奇点外,在其他每一点解析,而且在实轴上有孤立奇点,我们也可以计算某些积分,如下例:

例6.2.4、 计算积分

?

+∞=0

,sin dx x

x

I 解:取r 及ε,使0>>εr ,我们有

],[22sin ????---+-=-=r ix r ix

r ix ix r

dx x e dx x e i dx ix e e dx x x εεεε 函数z

e iz

只是在z =0有一个一阶极点。作积分路径如图,在上半平面

上作以原点为心、r 与ε为半径的半圆r ΓΓ与ε。于是我们有

,0=+++????Γ--Γεεεdz z e dx x e dz z e dx x e iz

r ix iz r

ix r 在这里沿r ΓΓ与ε的积分分别是按幅角减小与增加的方向取的。

现在求当ε趋近于0时,?Γ

ε

dz z

e iz

的极限。当0z ≠时 ),(1

z h z

z e iz += 其中h (z )是在z =0的解析函数。因此

,)()(1

????ΓΓΓΓ+-=+=εεεεπdz z h i dz z h dz z dz z e iz

由于,h (z )在z =0的解析,在z =0的一个邻域内,| f (z )|有上界+∞

|()|2,

h z dz M ε

πεΓ≤??

从而

,lim 0i dz z

e iz

πε

ε-=?

Γ→ 令+∞→→r ,0ε,应用引理3.1,可以得到所求积分收敛,并且2

π

=

I 。

第三节 辐角原理及其应用

亚纯函数的零点与极点的个数、儒歇定理:

应用留数定理,我们也可以解决有关零点与极点的个数问题,因为教学时间的关系,我们只介绍儒歇定理,并应用它来决定方程在一些区域内根的个数。

儒歇定理:设D 是在复平面上的一个有界区域,其边界C 是一条或有限条简单闭曲线。设函数f (z )及g (z )在D 及C 所组成的闭区域D 上解析,并且在C 上,|f (z )|>|g (z )|,那么在D 上,f (z )及 f (z )+g (z )的零点的个数相同。

注解1、应用此定理时,我们只要估计和在区域边界上模的值。 注解2、选择f (z )及g (z )的原则是,f (z )在区域D 内的零点个数好计算。 例6.3.1、 求方程

,012558=+--z z z

在|z|<1内根的个数。 解:令

,2)(,15)(85z z z g z z f -=+-=

由于当|z|=1时,我们有

,41|5||)(|5=--≥z z f

,3|2||||)(|8=+≤z z z g

已给方程在|z|<1内根的个数与155+-z 在|z|<1内根的个数相同,即5个。

例1、 如果a>e ,求证方程n z az e =在单位圆内有n 个根。 证明:令

,)(,)(n z az z f e z g =-=

由于当1||||==θi e z 时,

,

|||)(|,|||)(|cos e a az z f e e e z g n z >==≤=-=θ

z n e az -在|z|<1内的零点的个数与n az 相同,即n 个,因此方程n z az e =在

单位圆内有n 个根。

《应用数理统计》吴翊李永乐第三章 假设检验课后作业参考答案

第三章 假设检验 课后作业参考答案 3.1 某电器元件平均电阻值一直保持2.64Ω,今测得采用新工艺生产36个元件的平均电阻值为2.61Ω。假设在正常条件下,电阻值服从正态分布,而且新工艺不改变电阻值的标准偏差。已知改变工艺前的标准差为0.06Ω,问新工艺对产品的电阻值是否有显著影响?(01.0=α) 解:(1)提出假设64.2:64.2:10≠=μμH H , (2)构造统计量36 /06.064 .261.2/u 00 -=-= -= n X σμ (3)否定域???? ??>=???? ??>?? ??? ??<=--21212 αααu u u u u u V (4)给定显著性水平01.0=α时,临界值575.2575.22 12 =-=- α αu u , (5) 2 αu u <,落入否定域,故拒绝原假设,认为新工艺对电阻值有显著性影响。 3.2 一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件, 测得其寿命平均值为950(小时)。已知这种元件寿命服从标准差100σ=(小时)的正态分 布,试在显著水平0.05下确定这批元件是否合格。 解: {}01001:1000, H :1000 X 950 100 n=25 10002.5 V=u 0.05H x u αμμσμα-≥<====->=提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得: 拒绝域: 本题中:0.950.950 u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信水平5下这批元件不合格。

3.3某厂生产的某种钢索的断裂强度服从正态分布( )2 ,σ μN ,其中()2 /40cm kg =σ。现从 一批这种钢索的容量为9的一个子样测得断裂强度平均值为X ,与以往正常生产时的μ相比,X 较μ大20(2 /cm kg )。设总体方差不变,问在01.0=α下能否认为这批钢索质量显著提高? 解: (1)提出假设0100::μμμμ>=H H , (2)构造统计量5.13 /4020 /u 00 == -= n X σμ (3)否定域{}α->=1u u V (4)给定显著性水平01.0=α时,临界值33.21=-αu (5) α-<1u u ,在否定域之外,故接受原假设,认为这批钢索质量没有显著提高。 3.4某批矿砂的五个样品中镍含量经测定为(%): 3.25 3.27 3.24 3.26 3.24 设测定值服从正态分布,问在0.01α=下能否接受假设,这批矿砂的镍含量为3.25? 解: 010110 2: 3.25 H :t X 3.252, S=0.0117, n=5 0.3419 H x μμμμσ==≠==提出假设:构造统计量:本题属于未知的情形,可用检验,即取检验统计量为:本题中,代入上式得:否定域为:1-20.99512 0 V=t>t (1)0.01,(4) 4.6041, 3.25n t t t H ααα- ??-?? ?? ==<∴本题中,接受认为这批矿砂的镍含量为。

医药应用数理统计第三章测试题(卷)(卷)

第三章测试卷一、单选题 1. (2分)设随机变量X的分布列如下表,则常数c = (). ? A. 0 ? B. 1 ? C. ? D. C 2. (2分) ? A. 0.9 ? B. 0.5 ? C. 0.75 ? D. 以上都不对 C 3. (2分)

? A. ? B. ? C. ? D. A 4. (2分) 设随机变量X的概率密度函数为f(x),分布函数为F(x),对于任意实数x,下列正确的是(). ? A. ? B. ? C. ? D. B 5. (2分) ? A. 0 ? B. 1 ? C.

? D. C 6. (2分) ? A. 0.625 ? B. 0.25 ? C. 0.5 ? D. 0.0625 D 7. (2分) ? A. ? B. ? C. ? D. C 8. (2分)

? A. 1 ? B. 2 ? C. 3 ? D. 4 B 9. (2分)某车床一天生产的零件中所含次品数ξ的概率分布如下表所示,则平均每天生产的次品数为()件. ? A. 0.3 ? B. 0.5 ? C. 0.2 ? D. 0.9 D 10. (2分) ? A. 0.5

? C. 1.5 ? D. 0 C 11. (2分) ? A. 9 ? B. 6 ? C. 30 ? D. 36 B 12. (2分) 设连续型随机变量的分布函数和密度函数分别为F(x)、f(x),则下列选项中正确的是(). ? A. ? B. ? C. ? D. A 13. (2分)

? B. 0.2 ? C. 0.7 ? D. 条件不足,无法计算B 14. (2分) ? A. 1 ? B. 2 ? C. 3 ? D. π/2 C 15. (2分) ? A. 1 ? B. 0 ? C.

应用数理统计试题库

一 填空题 1 设 6 21,,,X X X 是总体 ) 1,0(~N X 的一个样本, 26542321)()(X X X X X X Y +++++=。当常数C = 1/3 时,CY 服从2χ分布。 2 设统计量)(~n t X ,则~2X F(1,n) , ~1 2 X F(n,1) 。 3 设n X X X ,,,21 是总体),(~2 σu N X 的一个样本,当常数C = 1/2(n-1) 时, ∑-=+-=1 1 212 )(n i i i X X C S 为2σ的无偏估计。 4 设)),0(~(2σεε βαN x y ++=,),,2,1)(,(n i y x i i =为观测数据。对于固定的0x , 则0x βα+~ () 2 0201,x x N x n Lxx αβσ?? ? ?- ???++ ??? ?????? ? 。 5.设总体X 服从参数为λ的泊松分布,,2,2,, 为样本,则λ的矩估计值为?λ = 。 6.设总体2 12~(,),,,...,n X N X X X μσ为样本,μ、σ2 未知,则σ2的置信度为1-α的 置信区间为 ()()()()22 2212211,11n S n S n n ααχχ-??--????--???? 。 7.设X 服从二维正态),(2∑μN 分布,其中??? ? ??=∑??? ? ??=8221, 10μ 令Y =X Y Y ???? ??=???? ??202121,则Y 的分布为 ()12,02T N A A A A μ??= ??? ∑ 。 8.某试验的极差分析结果如下表(设指标越大越好): 表2 极差分析数据表

应用数理统计复习题

《应用数理统计》复习题 第一章 概率知识 一、一袋中有5个球,编号1、2、3、4、5. 现从中任取3个,以X 表示所取球的号码的最大值, 求X 的概率分布律. 解:X 的可能取值为3、4、5, 1.010 1 }3{35 33== ==C C X P , 3.0103 }4{352311====C C C X P , 6.010 6 }5{35 2411== = =C C C X P , 故X 的概率分布律为 6 .03.01.05 43k p X . 二、设连续型随机变量X 的密度函数为?? ?<≤=., 0, 10,)(其它x Ax x f (1)求常数A ;(2)求X 的分布函数)(x F . 解:(1)由完备性:? ∞+∞ -=1)(dx x f , 有 11 =?Ax , 解得2=A . (2)t d t f x F x ?∞ -=)()( 当0≤x 时, 0)(}{)(?∞ -==≤=x dt t f x X P x F , 当10≤x 时,1)(=x F . 所以 .1,10,0,1,,0)(2 >≤<≤?? ???=x x x x x F 三、设X 的概率密度为 ????? ≤ ≤-=其它, 022,cos )(ππx x C x f , 1、求常数C ; 2、均值EX 和方差DX . 解:1、由完备性,C xdx C dx x f 2cos )(122 ?? -∞ ∞ -=== π π, 2 1 = ∴C ;

2、0cos 21 )(22 ??∞ ∞--===π πxdx x dx x xf EX ; ???∞ ∞---====22202 2 22 2 14cos cos 21)(πππ πxdx x xdx x dx x f x EX ; 14 )(2 2 2-= -=∴πEX EX DX . 四、若随机(X ,Y )在以原点为中心的单位圆上服从均匀分布,证明X ,Y 不相互独立. 解:依题意有(X ,Y )的概率密度为221/, 1; (,)0, x y f x y π?+≤=??其它. . 故 11, 11()(,)0, 0, X x x f x f x y dy +∞ -∞ ?-≤≤-≤≤?===????? ? 其它其它; 同理 11()0, Y y f y -≤≤=??其它 . 于是(,)()()X Y f x y f x f y ≠, X 与Y 不相互独立. 五、设X 的概率密度为? ? ?≤≤+=.,0,10,)(其它x bx a x f ,且已知EX =127求DX . 解:由概率密度的完备性有: 1= ?? += ∞+∞ -1 d )(d )(x bx a x x f =b a 5.0+, 且有12 7 =EX = ? ? += ∞+∞ -10 d )(d )(x bx a x x x xf = 3 2b a +, 联立上述两式解得: 1,5.0== b a 又= )(2X E 12 5 d )5.0(1 02= +? x x x , 于是 =DX =-22)()(EX X E 2)12 7(125-14411=. 六、1.设随机变量)3,2(~2 N X ,)()(C X P C X P >=<,则=C ( A ). A . 2 B . 3 C . 9 D . 0 2. 设随机变量),(~2 σμN X ,则随σ增大,}|{|σμ<-X P ( C ). (A) 单调增大; (B) 单调减小; (C) 保持不变; (D) 增减不定

应用数理统计作业题及参考答案(第二章)(2)

第二章 参数估计(续) P68 2.13 设总体X 服从几何分布:{}()1 1k P X k p p -==-,12k = ,,,01p <<,证明 样本均值1 1 n i i X X n == ∑是()E X 的相合、无偏和有效估计量。 证明: 总体X 服从几何分布, ∴()1= E X p ,()2 1-= p D X p . 1 () ()1 11 11 11==????===??== ? ????? ∑ ∑ n n i i i i E X E X E X n E X n n n p p . ∴样本均值11n i i X X n == ∑ 是()E X 的无偏估计量。 2 () 2222 1 11 1111==--???? ===??= ? ?????∑ ∑n n i i i i p p D X D X D X n n n n p np . ()()()()11 11 ln ln 1ln 1ln 1-??=-=+--??;X f X p p p p X p . () 111ln 111111f X p X X p p p p p ?--= - =+?--;. () () 2 11 2 2 2 ln 11 1f X p X p p p ?-=- + ?-;. ()()()()21112 2 2 22ln 11 1111f X p X X I p E E E p p p p p ???? ?? ?--=-=--+=+???????--?????? ? ?? ? ; () ()() ()12 2 2 2 2 211 11 111111111??-= + -= + ?-=+? ?---?? p E X p p p p p p p p ()()() () 2 2 2 111 1 111-+= + = = ---p p p p p p p p p .

应用数理统计试题

应用数理统计复习题 1.设总体~(20,3)X N ,有容量分别为10,15的两个独立样本,求它们的样本均值之差的绝对值小于0.3的概率. 解:设两样本均值分别为,X Y ,则1~(0,)2 X Y N - (||0.3)(0.424)(0.424)0.328P X Y -<=Φ-Φ-= 其中(01)θθ<<为未知参数,已知取得了样本值1231,2,1x x x ===,求θ的矩估计和最大似然估计. 解:(1)矩估计:2 2 22(1)3(1)23EX θθθθθ=+?-+-=-+ 14 (121)33 X =++= 令EX X =,得5?6 θ=. (2)最大似然估计: 2 2 5 6 ()2(1)22L θθθθθθθ=??-=- 45ln() 10120d d θθθθ=-= 得5?6 θ= 3. 设某厂产品的重量服从正态分布,但它的数学期望μ和方差2 σ均未知,抽查10件,测得重量为i X 斤10,,2,1Λ=i 。算出 10 11 5.410i i X X ===∑ 10 21 () 3.6i i X X =-=∑ 给定检验水平0.05 α=,能否认为该厂产品的平均重量为5.0斤? 附:t 1-0.025(9)=2.2622 t 1-0.025(10)=2.2281 t 1-0.05(9)=1.8331 t 1-0.05(10)=1.8125 解: 检验统计量为0 | |/X T S n m -=

将已知数据代入,得2t = = 1/2 0.975(1)(9) 2.26222t n t a - -==> 所以接受0H 。 4. 在单因素方差分析中,因素A 有3个水平,每个水平各做4次重复实验,完成下列方差分析表,在显著水平0.05α=下对因素A 是否显著做检验。 解: 0.95(2,9) 4.26F =,7.5 4.26F =>,认为因素A 是显著的. 5. 现收集了16组合金钢中的碳含量x 及强度y 的数据,求得 0.125,45.7886,0.3024,25.5218xx xy x y L L ====,2432.4566yy L =. (1)建立y 关于x 的一元线性回归方程01 ???y x ββ=+; (2)对回归系数1β做显著性检验(0.05α=). 解:(1)1 25.5218 ?84.39750.3024 xy xx l l β== = 01 ??35.2389y x ββ=-= 所以,?35.238984.3975y x =+ (2)1?2432.456684.397525.5218278.4805e yy xy Q l l β=-=-?= 2 278.4805 ?19.8915214 e Q n σ ===- ? 4.46σ ==

北航2010应用数理统计考试题及参考解答

北航2010《应用数理统计》考试题及参考解答 09B 一、填空题(每小题3分,共15分) 1,设总体X 服从正态分布(0,4)N ,而12 15(,,)X X X 是来自X 的样本,则22 110 22 11152() X X U X X ++=++服从的分布是_______ . 解:(10,5)F . 2,?n θ是总体未知参数θ的相合估计量的一个充分条件是_______ . 解:??lim (), lim Var()0n n n n E θθθ→∞ →∞ ==. 3,分布拟合检验方法有_______ 与____ ___. 解:2 χ检验、柯尔莫哥洛夫检验. 4,方差分析的目的是_______ . 解:推断各因素对试验结果影响是否显著. 5,多元线性回归模型=+Y βX ε中,β的最小二乘估计?β的协方差矩阵?βCov()=_______ . 解:1?σ-'2Cov(β) =()X X . 二、单项选择题(每小题3分,共15分) 1,设总体~(1,9)X N ,129(,, ,)X X X 是X 的样本,则___B___ . (A ) 1~(0,1)3X N -; (B )1 ~(0,1)1X N -; (C ) 1 ~(0,1) 9X N -; (D ~(0,1)N . 2,若总体2(,)X N μσ,其中2σ已知,当样本容量n 保持不变时,如果置信度1α-减小,则μ的 置信区间____B___ . (A )长度变大; (B )长度变小; (C )长度不变; (D )前述都有可能. 3,在假设检验中,就检验结果而言,以下说法正确的是____B___ . (A )拒绝和接受原假设的理由都是充分的; (B )拒绝原假设的理由是充分的,接受原假设的理由是不充分的; (C )拒绝原假设的理由是不充分的,接受原假设的理由是充分的; (D )拒绝和接受原假设的理由都是不充分的. 4,对于单因素试验方差分析的数学模型,设T S 为总离差平方和,e S 为误差平方和,A S 为效应平方和,则总有___A___ .

医药应用数理统计第一章测试卷

第一章测试卷 一、单选题 1。 (2分)数值型数据的离散趋势测度中,受极端值影响最大的是() ? A. 标准差 ?B。方差 ?C。极差 ?D。样本标准误 A 2。 (2分)对于对称分布的数据,众数、中位数、平均数的大小关系是(). ?A。众数>中位数>平均数 ?B。众数=中位数=平均数 ? C. 众数<中位数<平均数 ? D. 中位数>众数>平均数 D 3. (2分)关于样本标准差,以下选项错误的是()。 ?A。反应样本观察值的离散程度,

?B。度量了数据偏离样本均值的大小 ? C. 反应了均值代表性的好坏 ?D。不会小于样本均值 D 4. (2分)可以计算平均数的数据类型是( ) ? A. 定类数据 ? B. 定序数据 ?C。数值型数据 ?D。所有数据 C 5. (2分) ?A。2。2, 3。7 ?B。2。75, 3。7 ?C。2。2, 2。96 ?D。 2.75, 2.96 A

6。 (2分)比较腰围和体重两组数据变异程度大小宜采用(). ?A。变异系数(CV) ? B. 方差(s2) ? C. 极差(R) ?D。方差(s) A 7。 (2分)各样本观察值均加同一个常数c后( ) ?A。样本均值不变,样本标准差改变 ?B。样本均值改变,样本标准差不变 ? C. 两者均不变 ?D。两者均改变 B 8. (2分)若样本观察值为2,1,3,0,5,则中位数是() ?A。 3 ?B。 2 ? C. 1

?D。 5 C 9。 (2分)数值型数据的集中趋势测度中,受极端值影响最大的是() ?A。平均值 ?B。中位数 ? C. 众数 ? D. 以上都不对 A

北航数理统计期末考试题

材料学院研究生会 学术部 2011 年12 月 2007-2008学年第一学期期末试卷 一、(6 分,A 班不做)设x1,x2,?,x n是来自正态总体N( , 2) 的样本,令 2(x1 x2) T (x3 x4)2 (x5 x6)2 , 试证明T 服从t-分布t(2) 二、( 6 分, B 班不做 ) 统计量F-F(n,m) 分布,证明 1的 (0< <1)的分位点x 是1。 F F1 (n,m) 。 三、(8分)设总体X 的密度函数为 其中1,是位置参数。x1,x2,?,x n是来自总体X 的简单样本, 试求参数的矩估计和极大似然估计。 四、(12分)设总体X 的密度函数为 1x exp ,x p(x; ) 0 , 其它 其中, 已知,0, 是未知参数。x1,x2,?,x n 是来自总体X 的简单样本。

1)试求参数的一致最小方差无偏估计; 2) 是否为的有效估计?证明你的结论。 五、(6分,A 班不做)设x1,x2,?,x n是来自正态总体N( 1, 12) 的 简单样本,y1,y2,?,y n 是来自正态总体N( 2, 22) 的简单样本,且两样本相互独立,其中1, 12, 2, 22是未知参数,1222。为检验假设H0 : 可令z i x i y i, i 1,2,..., n ,1 2 , 1 2, H1 : 1 2, 则上述假设检验问题等价于H0 : 1 0, H1: 1 0,这样双样本检验问题就变为单检验问题。基于变换后样本z1,z2,?,z n,在显著性水平下,试构造检验上述问题的t-检验统计量及相应的拒绝域。 六、(6 分,B 班不做)设x1,x2,?,x n是来自正态总体N( 0, 2) 的简单样本,0 已知,2未知,试求假设检验问题 H0: 202, H1: 202的水平为的UMPT。 七、(6 分)根据大作业情况,试简述你在应用线性回归分析解决实际问题时应该注意哪些方面? 八、(6 分)设方差分析模型为 总离差平方和 试求E(S A ) ,并根据直观分析给出检验假设H0 : 1 2 ... P 0的拒绝域形式。 九、(8分)某个四因素二水平试验,除考察因子A、B、C、D 外,还需考察 A B ,B C 。今选用表L8(27 ) ,表头设计及试验数据如表所示。试用极差分析指出因子的主次顺序和较优工艺条件。

应用数理统计课后习题参考答案

习题五 1 某钢厂检查一月上旬内的五天中生产的钢锭重量,结果如下:(单位:k g) 日期重旦量 1 5500 5800 5740 5710 2 5440 5680 5240 5600 4 5400 5410 5430 5400 9 5640 5700 5660 5700 10 5610 5700 5610 5400 试检验不同日期生产的钢锭的平均重量有无显著差异? ( =0.05) 解根据问题,因素A表示日期,试验指标为钢锭重量,水平为 5. 2 假设样本观测值y j(j 123,4)来源于正态总体Y~N(i, ),i 1,2,...,5 检验的问题:H。:i 2 L 5, H i : i不全相等. 计算结果: 注释当=0.001表示非常显著,标记为*** '类似地,=0.01,0.05,分别标记为 查表F0.95(4,15) 3.06,因为F 3.9496 F0.95(4,15),或p = 0.02199<0.05 ,所 以拒绝H。,认为不同日期生产的钢锭的平均重量有显著差异 2 考察四种不同催化剂对某一化工产品的得率的影响,在四种不同催化剂下分别做试验 解 根据问题,设因素A表示催化剂,试验指标为化工产品的得率,水平为 4 . 2 假设样本观测值y j(j 1,2,..., nJ来源于正态总体Y~N(i, ), i 1,2,...,5 .其中样本容量不等,n分别取值为6,5,3,4 .

日产量 操作工 查表 F O .95(3,14) 3.34,因为 F 2.4264 F °.95(3,14),或 p = 0.1089 > 0.05, 所以接受H 。,认为在四种不同催化剂下平均得率无显著差异 3 试验某种钢的冲击值(kg Xm/cm2 ),影响该指标的因素有两个,一是含铜量 A ,另 一个是温度 试检验含铜量和试验温度是否会对钢的冲击值产生显著差异? ( =0.05 ) 解 根据问题,这是一个双因素无重复试验的问题,不考虑交互作用 设因素A,B 分别表示为含铜量和温度,试验指标为钢的冲击力,水平为 12. 2 假设样本观测值y j (i 1,2,3, j 1,2,3,4)来源于正态总体 Y j ~N (j , ),i 1,2,3, j 1,2,3,4 .记i 为对应于A 的主效应;记 j 为对应于B j 的主效应; 检验的问题:(1) H i 。: i 全部等于零,H i — i 不全等于零; (2) H 20 : j 全部等于零,H 21: j 不全等于零; 计算结果: 查表F 0.95(2,6) 5.143 ,局.95(3,6) 4.757 ,显然计算值F A , F B 分别大于查表值, 或p = 0.0005 , 0.0009均显著小于0.05,所以拒绝H i°,H 20,认为含铜量和试验温度 都会对钢的冲击值产生显著影响作用 . 4 下面记录了三位操作工分别在四台不同的机器上操作三天的日产量: 检验的问题:H 0: 1 计算结果: H i : i 不全相等

应用数理统计试题

应用数理统计复习题 1.设总体,有容量分别为10,15的两个独立样本,求它们的样本均值之差的绝对值小于0.3的概率. 解:设两样本均值分别为,则 2. 设总体具有分布律 1 2 3 其中为未知参数,已知取得了样本值,求的矩估计和最大似然估计. 解:(1)矩估计: 令,得. (2)最大似然估计: 得 3. 设某厂产品的重量服从正态分布,但它的数学期望和方差均未知,抽查10件,测得重量为斤。算出 给定检验水平,能否认为该厂产品的平均重量为5.0斤? 附:t1-0.025(9)=2.2622 t1-0.025(10)=2.2281 t1- 0.05(9)=1.8331 t1-0.05(10)=1.8125 解: 检验统计量为

将已知数据代入,得 所以接受。 4. 在单因素方差分析中,因素有3个水平,每个水平各做4次重复实验,完成下列方差分析表,在显著水平下对因素是否显著做检验。 来源平方和自由度均方和F比 因素 4.2 误差 2.5 总和 6.7 解: 来源平方和自由度均方和F比 因素 4.2 2 2.1 7.5 误差 2.5 9 0.28 总和 6.7 11 ,,认为因素是显著的. 5. 现收集了16组合金钢中的碳含量及强度的数据,求得 ,. (1)建立关于的一元线性回归方程; (2)对回归系数做显著性检验(). 解:(1) 所以, (2)

拒绝原假设,故回归效果显著. 6.某正交试验结果如下 列号 试验号A B C 1 2 3 结果 1 2 3 4 1 1 1 1 2 2 2 1 2 2 2 1 13.25 16.54 12.11 18.75 (1)找出对结果影响最大的因素; (2)找出“算一算”的较优生产条件;(指标越大越好) (3)写出第4号实验的数据结构模型。 解: 列号 试验号A B C 1 2 3 结果 1 2 3 4 1 1 1 1 2 2 2 1 2 2 2 1 13.25 16.54 12.11 18.75 ⅠⅡR 29.79 25.36 32.0 30.86 35.29 28.65 1.07 9.9 3.35 (1)对结果影响最大的因素是B; (2)“算一算”的较优生产条件为 (3) 4号实验的数据结构模型为 ,

应用数理统计习题答案 西安交大 施雨

应用数理统计答案 学号: 姓名: 班级:

目录 第一章数理统计的基本概念 (2) 第二章参数估计 (14) 第三章假设检验 (24) 第四章方差分析与正交试验设计 (29) 第五章回归分析 (32) 第六章统计决策与贝叶斯推断 (35) 对应书目:《应用数理统计》施雨著西安交通大学出版社

第一章 数理统计的基本概念 1.1 解:∵ 2 (,)X N μσ ∴ 2 (,)n X N σμ ∴ (0,1)N 分布 ∴(1)0.95P X P μ-<=<= 又∵ 查表可得0.025 1.96u = ∴ 2 2 1.96n σ= 1.2 解:(1) ∵ (0.0015)X Exp ∴ 每个元件至800个小时没有失效的概率为: 800 0.00150 1.2 (800)1(800) 10.0015x P X P X e dx e -->==-<=-=? ∴ 6个元件都没失效的概率为: 1.267.2 ()P e e --== (2) ∵ (0.0015)X Exp ∴ 每个元件至3000个小时失效的概率为: 3000 0.00150 4.5 (3000)0.00151x P X e dx e --<===-? ∴ 6个元件没失效的概率为: 4.56 (1)P e -=- 1.4 解:

i n i n x n x e x x x P n i i 1 2 2 )(ln 2121)2(),.....,(1 22 =-- ∏∑ = =πσμσ 1.5证: 2 1 1 2 2)(na a x n x a x n i n i i i +-=-∑∑== ∑∑∑===-+-=+-+-=n i i n i i n i i a x n x x na a x n x x x x 1 2 2 2 2 11) ()(222 a) 证: ) (1111 1+=+++=∑n n i i n x x n x ) (1 1 )(1 1 11n n n n n x x n x x x n n -++=++=++

应用数理统计课后习题 清华大学出版社 杨虎 钟波第三章作业参考答案

第 三 章 作 业 参 考 答 案 2、解:计算矩估计:2 1)1(1 ++= +?= ? αααα dx x x EX , 令 X EX =++= 2 1αα ,解得 1 2-1?1-=X X α ; 计算极大似然估计:α α αα α)()1()1()()(1 1 1 ∏∏∏ ===+=+= = n i i n n i i n i i x x x f L )ln()1ln()(ln 1 ∏=++=?n i i x n L ααα0 )ln(1 )(ln 1 =++= ??? ∏=n i i x n L αα α 解得 ) ) ln(1(?1 2∏=+-=n i i x n α ; 将样本观测值代入,得到估计值分别为0.3077?1=α ,0.2112?2=α。 6、 解:(1)由例3.2.3可知,μ的极大似然估计分别为 X =μ ?, 05.0)(1)(=-Φ-=>μA A X P )645.1(95.0)(Φ==-Φ?μA 645 .1+=?μA ,由46页上极大似然估计的不变性可知645.1??+=μA ; (2)由例3.2.3可知,2 σμ,的极大似然估计分别为 ∑=-= =n i i X X n X 1 2 2 ) (1 ??σ μ,, 05.0)( 1)(=-Φ-=>σ μ A A X P )645.1(95.0)( Φ==-Φ?σ μ A σ μ645.1+=?A ,由46页上极大似然估计的不变性可知σμ?645.1??+=A 。 8、解:计算2 2 2 2222)()()(σσ μC n S CE X E CS X E -+ =-=-,由题意则有 2 2 2 2 μσ σ μ=-+ C n ,解得n C 1= 。

概率数理统计试题及答案

应用数理统计试题 1.设15,,X X 是独立且服从相同分布的随机变量,且每一个()1,2,,5i X i = 都服从()0,1.N (1)试给出常数c ,使得()22 12c X X +服从2χ公布,并指出它的自由度; (2)试给出常数,d 使得 服从t 分布,并指出它的自由度. 2.设总体X 的密度函数为 ???<<+=其他, 01 0,)1();(x x x f ααα 其中1->α是未知参数, ),,(1n X X 是一样本, 试求: (1) 参数α的矩估计量; (2) 参数α的最大似然估计量. 3.有一种新安眠剂,据说在一定剂量下能比某种旧安眠剂平均增加睡眠时间3小时,为了检验新安眠剂的这种说法是否正确,收集到一组使用新安眠剂的睡眠时间(单位:小时): 26.7, 22.0, 24.1, 21.0, 27.2, 25.0, 23.4. 根据资料用某种旧安眠剂时平均睡眠时间为20.8小时,假设用安眠剂后睡眠时间服从正态分布,试问这组数据能否说明新安眠剂的疗效?()0.05.α= 4.若总体X 服从正态分布() 22.1,1N ,样本n X X X ,,,21 来自总体X ,要使样本均值X 满足不等式{}95.01.19.0≥≤≤X P ,求样本容量n 最少应取多少? 5.在某种产品表明进行腐蚀刻线实验,得到腐蚀深度y 与腐蚀时间x 对应的一

(1)预测腐蚀时间75s 时,腐蚀深度的范围(α-1=95%); (2)若要求腐蚀深度在10~20um 之间,问腐蚀时间应如何控制? 6.简述方差分析,主成分分析的基本思想 附:统计查表数据 0.025(6) 2.447t =,0.025(7) 2.365t =,(1.96)0.975Φ= 参考答案: 1.设15,,X X 是独立且服从相同分布的随机变量,且每一个()1,2,,5i X i = 都服从()0,1.N (1)试给出常数c ,使得() 22 12c X X +服从2χ公布,并指出它的自由度; (2)试给出常数,d 使得服从t 分布,并指出它的自由度. 解 (1)由于()()()22 21212~0,1,~0,1, ~2X N X N X X +χ故 因此1c =,1222 X X +服从自由度为2的2χ分布. (2)由于()()~0,11,2,5i X N i = 且独立,则()12~0,2X X N + ()~0,1N 而 ()22223453X X X ++=χ ()~3,t ()~3t 所以d =自由度为3. 2. 设总体X 的密度函数为 ???<<+=其他, 01 0,)1();(x x x f ααα 其中1->α是未知参数, ),,(1n X X 是一样本, 试求:

研究生《应用数理统计基础》庄楚强 四五章部分课后答案

4-45. 自动车床加工中轴,从成品中抽取11根,并测得它们的直径(mm )如下: 10.52,10.41,10.32,10.18,10.64,10.77,10.82,10.67,10.59,10.38,10.49 试用W 检验法检验这批零件的直径是否服从正态分布?(显著性水平05.0=α) (参考数据:) 4-45. 解:数据的顺序统计量为: 10.18,10.32,10.38,10.41,10.49,10.52,10.59,10.64,10.67,10.77,10.82 所以 6131 .0][)()1(5 1 ) (=-= -+=∑k k n k k x x a L , 又 5264.10=x , 得 38197 .0)(11 1 2 =-∑=i i x x 故 984.0) (11 1 2 2 =-= ∑=i i x x L W , 又 当n = 11 时,85.005.0=W 即有 105.0<

清华大学杨虎应用数理统计课后习题参考答案

习题三 1 正常情况下,某炼铁炉的铁水含碳量2 (4.55,0.108)X N .现在测试了5炉铁水,其含碳量分别为4.28,4.40,4.42,4.35,4.37. 如果方差没有改变,问总体的均值有无显著变化?如果总体均值没有改变,问总体方差是否有显著变化(0.05α=)? 解 由题意知 2 ~(4.55,0.108),5,0.05X N n α==,1/20.975 1.96u u α-==,设立 统计原假设 0010:,:H H μμμμ=≠ 拒 绝 域 为 {} 00K x c μ=->,临界值 1/2 1.960.108/0.0947c u α-==?=, 由于 0 4.364 4.550.186x c μ-=-=>,所以拒绝0H ,总体的均值有显著性 变化. 设立统计原假设 2 2 2 2 0010:,:H H σσσσ=≠ 由于0μμ=,所以当0.05α=时 2 222 0.0250.9751 1()0.03694,(5)0.83,(5)12.83,n i i S X n μχχ==-===∑ 22 10.02520.975(5)/50.166,(5)/5 2.567c c χχ==== 拒绝域为 {} 2222 00201//K s c s c σσ=><或 由于22 0/ 3.167 2.567S σ=>,所以拒绝0H ,总体的方差有显著性变化. 2 一种电子元件,要求其寿命不得低于1000h .现抽测25件,得其均值为 x =950h .已知该种元件寿命2(100,)X N σ,问这批元件是否合格(0.05α=)? 解 由题意知 2 (100,)X N σ,设立统计原假设 0010:,:,100.0.05.H H μμμμσα≥<== 拒绝域为 {} 00K x c μ=-> 临界值为 0.050.0532.9c u u =?=?=- 由于 050x c μ-=-<,所以拒绝0H ,元件不合格.

最新研究生《应用数理统计基础》庄楚强-何春雄编制---课后答案

研究生 习题2: 2-7. 设 )1,0(~N ξ,),,,,,(654321ξξξξξξ为其一样本,而26542321)()(ξξξξξξη+++++=, 试求常数c ,使得随机变量ηc 服从2 χ分布。 2-7解:设3211ξξξη++=,所以 )3,0(~1N η 6542ξξξη++=,所以 )3,0(~2N η 所以 )1,0(~3 1 N η , )1,0(~3 2 N η )2(~)(3 1332 22212 22 1χηηηη+=??? ??+??? ?? 由于 2 22 1ηηη+= 因此 当 3 1=c 时,)2(~2 χηc 。 2-8. 设 ),,,(1021ξξξΛ为)3.0,0(2 N 的一个样本,求 ? ?? ???>∑=101244.1i i P ξ 。(参考数据:) 2-8解:因为 )3.0,0(~),,,(2 1021N ξξξξΛ=, 所以 )1,0(~3 .0N ξ , 即有)10(~3.0210 12 χξ∑=?? ? ??i i 所以 ??? ???>∑=101244.1i i P ξ??????>=∑=1012223.044.13.0i i P ξ??????>=∑=10122163.0i i P ξ ? ?? ???≤-=∑=10122163.01i i P ξ1.09.01=-= 2-14. 设总体)4,1(~N ξ,求{}20≤≤ξP 与{} 20≤≤ξP ,其中ξ是样本容量为16的样 本均值。(参考数据:)

2-14解: {}20≤≤ξP )0()2(F F -=)210()212( -Φ--Φ=)2 1 ()21(-Φ-Φ= 1)2 1 (2-Φ=3830.016915.02=-?= 由于 )4,1(~N ξ , 所以 )1,0(~21 1 16 21N -=-ξξ {} 20≤≤ξP ????? ?-≤-≤-=21122112110ξP ? ?? ???≤-≤-=22112ξP )2()2(-Φ-Φ=9545.019725.021)2(2=-?=-Φ= 2-17. 在总体)20,80(2 N 中随机抽取一容量为100的样本,问样本平均值与总体均值的差的 绝对值大于3的概率是多少?(参考数据:) 2-17解:因为 )20,80(~2 N ξ, 所以 )1,0(~2 80 100 20 80 N -= -ξξ 所以 {}380>-ξP {} 3801≤--=ξP ?? ? ?????? ?≤--=232801ξP ? ?? ???≤ -≤--=23280 231ξP )]5.1()5.1([1-Φ-Φ-= ]1)5.1(2[1-Φ-=1336.0)93319.01(2)5.1(22=-=Φ-= 2-25. 设总体ξ的密度函数为 ?? ?<<=其它 102)(x x x p 取出容量为4的样本),,,(4321ξξξξ,求: (1) 顺序统计量)3(ξ的密度函数)(3x p ;(2))3(ξ的分布函数)(3x F ;(3)??? ? ??>21)3(ξP 。 2-25解:(1)由 ()()[][])()(1)(! !1! )(1)(x p x F x F k n k n x p k n k k -----= ξ 所以 当 10<

应用数理统计试题

山东科技大学2016—2017学年第一学期硕士研究生 《应用统计》考试试卷 2017.06 班级 姓名 学号 一、填空题(每空3分,共36分) 1.当样本观测值12345(,,,,)(1,4,6,4,3)x x x x x =--时,对应次序统计量的观测值为 ;秩统计量的观测值为 . 2.设128,,,(0,4)X X X iid N L ,8118i i X X ==∑,则4814i i i i E X X ==?? ????=?? ????????? ∑∑ ; 821()i i E X X =??-=????∑ ;421()i i E X X =??-=???? ∑ . 3.设129,,,(1,1)X X X iid N L ,则() 9 2 11 1i i Y X == -∑服从 分布; () ()4 8 2 2 21 5 11i i i i Y X X ===--∑∑服从 分布;( 311Y X =-服从 分布. 4.设总体2(,)X N μσ:,样本1,n X X L ,2 σ已知, X 样本均值,2 S 为样本方差, 若 )~(0,1)X N μσ-,则μ的一个双侧1α-置信区间为 ;μ的一个单侧 1α-置信上限为 。 5.在样本量41n =、水平数5a =的单因子方差分析模型中,若总离差平方和200SS =,误 差平方和120e SS =,则因素平方和A SS = ;F 检验统计量的值= . 二、计算与证明(1、4小题每题20分,2、3小题每题12分,共64分) 1.设总体的分布密度函数为1 ,02()20,x f x θθ?≤≤? =???其他 ,1,n X X L 是从中抽取的样本,

应用数理统计 叶慈南 第五章1

第五章回归分析 §5.1 一元线性回归 在自然界的现象中,同一过程中的各种变量之间往往存在着一定的关系,这种关系大致可以分为两类: 确定性关系 例如电路中的电压V、电阻R和电流I三者之间服从欧姆定律V=IR只要知道其中两个变量的值,另一个变量的值就唯一确定了. 相关关系 例如人的年龄、身高、体重和血压之间也存在一定的关系,一般来说年龄大的、体重重的人血压也要相应的高一些,但这种关系并不是确定的,因为即使年龄和体重都相同的人,其血压也不一定相同. 又如在土地和耕作条件相同的条件,每亩的施肥量、播种量与农作物的产量之间也存在一定的关系,一般来说施肥量、播种量适当时产量较高,同样这种关系也不是确定的,具有某种随机性, 变量之间这种不确定性关系在社会现象和自然现象中普遍存在,其原因主要是由于一些随机因素的干扰和测量上的误差,我们称变量之间的这种不确定关系为相关关系. 回归分析就是分析和处理这些具有相关关系的变量之间关系的一种有效方法. 在研究具有相关关系的变量之间的关系时,往往要考虑一些变量的变化对另一些变量的影响,这其中的一些变量就相当于通常函数中的自变量,对它们能赋予一个需要的值(如施肥量、播种量)或能取到一个可观测但不能人为控制的值(如年龄、身高),这类变量称为自变量(预报变量),而因自变量变化而变化的这类变量称为因变量(响应变量). “回归”一词是英国统计学家高尔顿(P.Galton 1882-1911)在1889年发表的关于遗传的论文中首先应用的.他在研究前辈与后代身高之间的关系时,发现儿子的身高介于父亲身高与种族(父辈)平均身高之间,有回归于种族平均身高的趋势.后来他的朋友,英国著名统计学家K.Pearson等人搜集了上千个家庭成员的身高数据,分析出儿子的身高y与父亲的身高x大致可归结为以下关系: y = 0.516 x +33.73 (英寸) 从而进一步证明了Galton的回归定律.这就是“回归”一词最早在遗传学上的含义.发展到今天,回归的现代意义要比原始的意义广泛的多. 在回归分析中要研究的主要问题是: (1)确定因变量(响应变量)和自变量(预报变量)之间的定量关系表达式即建立回归模型. (2)对回归模型进行检验.

相关主题
文本预览
相关文档 最新文档