当前位置:文档之家› 钙钛矿型氧化物透明导电薄膜的制备与物理性质研究

钙钛矿型氧化物透明导电薄膜的制备与物理性质研究

钙钛矿型氧化物透明导电薄膜的制备与物理性质研究
钙钛矿型氧化物透明导电薄膜的制备与物理性质研究

中国科学技术大学

硕士学位论文

钙钛矿型氧化物透明导电薄膜的制备与物理性质研究

姓名:陈乐

申请学位级别:硕士

专业:凝聚态物理

指导教师:吴文彬

20081201

钙钛矿型复合氧化物材料

钙钛矿型复合氧化物材料 钙钛矿复合氧化物具有独特的晶体结构,尤其经掺杂后形成的晶体缺陷结构和性能,被应用或可被应用在固体燃料电池、固体电解质、传感器、高温加热材料、固体电阻器及替代贵金属的氧化还原催化剂等诸多领域,成为化学、物理和材料等领域的研究热点[1~4]。 1钙钛矿结构 钙钛矿型复合氧化物因具有天然钙钛矿(CaTiO3)结构而命名,与之相似的结构有正交、菱方、四方、单斜和三斜构型。标准钙钛矿结构中,A2+和O2_离子共同构成近似立方密堆积,A离子有12个氧配位,氧离子同时有属于8个BO6八面体共享角,每个氧离子有6个阳离子(4A~2B)连接,B2+离子有6个氧配位,占据着由氧离子形成的全部氧八面体空隙。钙钛矿结构的对称性较同种原子构成的最紧密堆积的对称性低,A、B离子大小匹配。各离子半径间满足下列关系: 其中RA、RB、RO分别为A离子、B离子和O2-离子的半径,但也存在不遵循该式的结构,可由Goldschmidt容忍因子t来度量: 理想结构只在t接近1或高温情况下出现,多数结构是它的不同畸变形式,这些畸变结构在高温时转变为立方结构,当t在0.77~1.1,以钙钛矿存在;t<0.77,以铁钛矿存在;t>1.1时以方解石或文石型存在。 2钙钛矿型氧化物材料的研究进展 标准钙钛矿中A或B位被其它金属离子取代或部分取代后可合成各种复合氧化物,形成阴离子缺陷或不同价态的B位离子,是一类性能优异、用途广泛的新型功能材料。 2.1固体氧化物燃料电池(SOFC)材料 钙钛矿氧化物燃料电池SOFC有以下优点:(1)全固态结构,不存在液态电解质所带来的腐蚀和电解液流失等问题;(2)无须使用贵金属电极,电池成本大大降低;(3)燃料适用范围广;(4)燃料可以在电池内部重整。通过电极材料中的掺杂来提高活性,优化碱锰电池的充放电性能(参见表1)。用含锰的钙钛矿氧化物作为碱性

金属氧化物透明导电材料地基本原理

金屬氧化物透明導電材料的基本原理 一、透明導電薄膜簡介 如果一種薄膜材料在可見光範圍內(波長380-760 nm)具有80%以上的透光率,而且導電性高,其比電阻值低於1×10-3 ·cm,則可稱為透明導電薄膜。Au, Ag, Pt, Cu, Rh, Pd, A1, Cr等金屬,在形成3-15 nm厚的薄膜時,都有某種程度的可見光透光性,因此在歷史上都曾被當成透明電極來使用。但金屬薄膜對光的吸收太大,硬度低而且穩定性差,因此人們開始研究氧化物、氮化物、氟化物等透明導電薄膜的形成方法及物性。其中,由金屬氧化物構成的透明導電材料(transparent conducting oxide, 以下簡稱為TCO),已經成為透明導電膜的主角,而且近年來的應用領域及需求量不斷地擴大。首先,隨著3C產業的蓬勃發展,以LCD為首的平面顯示器(FPD)產量逐年增加,目前在全球顯示器市場已佔有重要的地位,其中氧化銦錫(In2O3:Sn, 意指摻雜錫的氧化銦,以下簡稱為ITO)是FPD的透明電極材料。另外,利用SnO2等製成建築物上可反射紅外線的低放射玻璃(low-e window),早已成為透明導電膜的最大應用領域。未來,隨著功能要求增加與節約能源的全球趨勢,兼具調光性與節約能源效果的electrochromic (EC) window (一種透光性可隨施加的電壓而變化的玻璃)等也可望成為極重要的建築、汽車及多種日用品的材料,而且未來對於可適用於多種場合之透明導電膜的需求也會越來越多。 二、常用的透明導電膜

一些目前常用的透明導電膜如表1所示,我們可看出TCO佔了其中絕大部分。這是因為TCO具備離子性與適當的能隙(energy gap),在化學上也相當穩定,所以成為透明導電膜的重要材料。 表1 一些常用的透明導電膜 三、代表性的TCO材料 代表性的TCO材料有In2O3, SnO2, ZnO, CdO, CdIn2O4, Cd2SnO4,Zn2SnO4和In2O3-ZnO等。這些氧化物半導體的能隙都在3 eV以上,所以可見光(約1.6-3.3 eV)的能量不足以將價帶(valence band)的電子激發到導帶(conduction band),只有波長在350-400nm(紫外線)以下的光才可以。因此,由電子在能帶間遷移而產生的光吸收,在可見光範圍中不會發生,TCO對可見光為透明。

含镧钙钛矿型复合氧化物的制备方法评介_娄向东

!气体传感器研究! 文章编号"#$$%#%&’()$$$*$%$$’%$+收稿日期")$$$$&#$ 作者简介"娄向东(#,-.*/ 男/河南省新乡市人/河南师范大学副教授/主要从事气体传感器研究0第#.卷第%期郑州轻工业学院学报(自然科学版* 1230#.420%)$$$年#)月 567849:6;<=>4?<=67@4A B @B 7B >6;:@?=B @4C 7A B 8D (4E F G H E 3A I J K L I K *C K I M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M 0)$$$含镧钙钛矿型复合氧化物的制备方法评介 娄向东/田圣军/姜聚慧 ( 河南师范大学化学与环境科学学院/河南新乡%.+$$)* 摘要"介绍了溶胶N 凝胶法O 共沉淀法O 水热合成法O 络合法O 热解柠檬酸盐法O 喷雾热解法等几种制备含镧钙钛矿型复合氧化物的方法/讨论了不同制备方法的操作步骤及适宜的工艺条件/比较了各种方法的特点0结果说明"在实际应用时/根据不同的需要/选用合适的制备方法/才能获得满意的效果0 关键词"钙钛矿P 复合物P 氧化物P 气敏器件中图分类号"B Q )#)0)文献标识码"9 R 引言 钙钛矿型稀土复合氧化物具有特殊的光O 电O 磁性质S #T / 其中含镧钙钛矿型复合氧化物因其特殊的结构O 性能及广阔的应用前景引起了人们的普遍关注0如:E #UV 9V WL 6+(9X Y E /A H /Z E /Q [*/由于其具有特殊的电磁学性质/已在固体燃料电池O 固体电解质O 传感器和催化剂等方面得到广泛应用P 而:E V Z E #UV Y 26+系导电陶瓷可用于固体燃料电池的电极材料O 化学敏感材料O 高温加热材料O 固定电阻器以及替代贵金属等的氧化 还原催化剂S +T 等诸多方面0因此对含镧钙钛矿型复合氧化物的合成与开发/人们做了大量深入细致的研究工 作/取得了很大的进展0在早期传统陶瓷制备方法如高温固相法S %/.T O 粉末烧结法等的基础上/经过大量实验/又总结出一些更有效的合成方法/如溶胶N 凝胶法O 水热合成法等/这些新的合成方法克服了传统方法中的一些弊端/展现了更好的实用前景0 \制备方法 \0\溶胶N 凝胶法溶胶N 凝胶法在材料粉体的制备中具有产物粒径小O 均匀性好O 纯度高及反应易控制等优点0目前采用溶胶N 凝胶法制备材料的具体技术路线很多/用溶胶N 凝胶法合成镧的钙钛矿型复合氧化物非常普遍0溶胶N 凝 胶法制备粉末的过程是将所需的前驱体配制成混合溶液/经凝胶化处理/从而获得性能指标较好的粉末S -T 0 如用溶胶N 凝胶法合成镧的钙钛矿型铝酸盐:E 936+超微粉S &T 的方法是"将,,0,,]的:E ) 6+溶于=46+(98*中/然后按^:E +_‘^93+_‘^柠檬酸(98*X#‘%‘%的比例加入93(46+*+ !&=)6(98*和柠檬酸搅拌至完全溶解/得无色透明溶液/将该溶液于.$ab&$a 缓慢蒸发&c 后/ 得到具有一定黏度和流动性的淡黄色透明溶胶P 再继续蒸)c 得黄色黏滞透明的凝胶/该凝胶经#)$a 干燥)c /&.$a 灼烧#c / 即得粉色纯相的:E 936+超微细粉0又如用溶胶N 凝胶法制备含镧的复合氧化物:E Y H #UV ;K V 6+(V X$b#0$*超细粉末S ’T /其方法为/按实验所需的物质的量之比分别取定量:E (46+*+(98*/Y H (46+*(98*/;K (46*+ (98*溶液置于烧杯中混合/加入适量的水调至规定浓度/将此溶液以一定速度滴加到不断搅拌的乙醇N 氨水溶液(d =e#$*中生成溶胶/进而加热制得凝胶并将其干燥/把干凝胶置于马弗炉中加热至&$$a 保温)c 即得:E Y H #UV ;K V 6+超细粉末0

钙钛矿型复合氧化物光催化研究进展

第18卷第7期2006年7月化学研究与应用 Chem ica lR esea rch and A pp licati on V o.l 18,N o .7 J u.l ,2006 收稿日期:2004-11-22;修回日期:2005-05-17基金项目:河南省自然科学基金(0424270073)项目资助 联系人简介:牛新书(1954-),男,教授,主要从事无机纳米材料研究。Te:l 0373-******* 文章编号:1004-1656(2006)07-0770-06 钙钛矿型复合氧化物光催化研究进展 牛新书,曹志民 (河南师范大学化学与环境科学学院,河南省环境污染控制重点实验室,河南 新乡 453007) 摘要:扼要叙述了钙钛矿型复合氧化物(ABO 3)作为光催化剂的研究进展。包括结构,机理,制备,改性和研究现状。强调了结构与性能之间的关系并对其研究方向提出了自己的见解。关键词:钙钛矿型复合氧化物;光催化;半导体中图分类号:O 643 3 文献标识码:A Fu ji s hi m a 和H onda [1] 在1972年的发现标志着多相光催化新时代的开始。此后T i O 2因其稳定的结构和性能,低廉的价格且无毒无害等优点吸引了人们的注意,围绕T i O 2光催化性能的大量研究取得了一定的进展,但T i O 2较宽的能隙(3 2ev)决定了其只能吸收紫外光波。长期以来,受T i O 2自身结构和合成条件限制,大量研究集中于阳离子掺杂[2] ,目前较为前沿的是阴离子掺杂[3,4,5],但此方面的研究仅见有少量的文献报导,所得到的可见光催化活性还比较低[6] 。总体来说,在提高T i O 2对太阳能的利用率方面没有取得巨大突破,因此人们仍在寻找新的高效光催化剂。钙钛矿是地球上最多的矿物,由于其全范围的电气性能,人们很早就开始了钙钛矿结构的人造晶体的合成以及对其在铁电、压电、超导等性能方面的研究与应用,另外,在气敏材料、汽车尾气净化、 催化有机合成[7,8,9,10] 等方面钙钛矿型复合氧化物也表现出了良好的性能。近年来,白树林、傅希贤[12,17] 等系统研究了钙钛矿型复合氧化物(ABO 3)在光催化方面的性能,结果显示了钙钛矿型复合氧化物在光催化方面具有潜在的应用价值。本文将对AB O 3型复合氧化物的光催化研究进展作一综述及评价。 1 A BO 3型复合氧化物的结构特征 图1 A BO 3结构示意图F i g .1 Sche m e o f ABO 3structure 理想的钙钛矿晶体为立方结构,满足空间群 Pm 3m Oh ,其中A 为较大的阳离子,与12个O 配位,位于立方体的中心。B 为较小的阳离子,与6个O 配位,位于6个O 组成的8面体中心(图1)。理想的钙钛矿结构中,R A >0 090nm,R B >0 051n m [13] ,A O 之间的距离应为20 5 a /2(a 为晶胞参数),B O 之间的距离应为0 5a ,3种离子半径应满足下列关系式: r A +r O =2 0 5 (r B +r O )实际情况下,许多ABO 3型复合氧化物不满足上述关系式时仍能保持立方结构,针对这种情况,Go l d schm idt [14]引入了允许因子,t 规定:

1 引言 钙钛矿型氧化物

1 引言钙钛矿型氧化物(ABO3)由于独特的电、光、磁、特性是目前国内外材料研究领域中的热点。其在超导材料、固体电介质、传感器、高温加热材料固体电阻器及替代贵金属的氧化还原催化剂[1]等方面有广阔的潜在应用前景。铁酸镧(LaFeO3,LFO)是钙钛矿型氧化物中的一员[2],是具有铁磁有序的绝缘介电材料。这类材料由于其电学特征敏感地依赖于其磁学有序,故在传感器和换能器等应用被寄予厚望。近年来,有关研究报道呈现快速增长趋势,主要集中在磁电耦合的机理性操作和具有优异性能材料与器件的制备与表征。薄膜的制备方法有很多,目前,主要采用四种方法:溶胶-凝胶法((Sol-Gel)、脉冲激光沉积法、溅射法、分子束外延法。其中,溶胶-凝胶法具有独特优点而备受人们的关注,已发展成为不可缺少的制备方法。本文简要介绍了用溶胶凝胶法(Sol-gel)制备LFO薄膜的基本原理、工艺过程及其特点。 2 溶胶-凝胶法原理溶胶凝胶法(Sol-gel)是属于化学溶液法范畴,它是将有机或无机盐溶于共同的有机溶剂中以形成均匀澄清的前驱体溶液,并将其旋转沉积于衬底上,然后经过适当的热处理,得到薄膜的过程。其制备薄膜的基本过程是原材料、溶胶、凝胶、热处理、薄膜,其中溶胶的配置和热处理是影响薄膜质量的关键。根据原材料的不同,所涉及的化学途径也不一致[3-5]。根据原材料不同,Sol-gel法主要分为两类:水溶液和醇盐法,其中,醇盐法是较为常见的制备方法。以金属醇盐为前驱体,在溶胶配置过程涉及了复杂的化学反应,主要包括有水解和聚合反应[6] 。实际的水解反应和聚合反应进行的程度和速率,取决于金属原料、溶剂、浓度、催化剂、稳定剂、温度等因素,这是一个相当复杂的反应过程。要得到稳定的前驱溶液,必须控制好醇盐的水解活性。采用So-Gel法最大优点是容易配制稳定前驱体溶液,易于控制组元成分。故选择合适的原料来配置前驱溶液十分重要。

【开题报告】ZnO-SnO2透明导电薄膜光电特性研究

开题报告 电气工程与自动化 ZnO-SnO2透明导电薄膜光电特性研究 一、选题的背景与意义: 随着电子信息产业的迅猛发展,透明导电薄膜材料被广泛应用于半导体集成电路、平面显示器、抗静电涂层等诸多领域,市场规模巨大。 1. 透明导电薄膜的概述 自然界中往往透明的物质不导电,如玻璃、水晶、水等,导电的或者说导电性好的物质往往又不透明,如金属材料、石墨等。但是在许多场合恰恰需要某一种物体既导电又透明,例如液晶显示器、等离子体显示器等平板显示器和太阳能电池光电板中的电极材料就是需要既导电又透明的物质。透明导电薄膜是薄膜材料科学中最重要的领域之一,它的基本特性是在可见光范围内,具有低电阻率,高透射率,也就是说,它是一种既有高的导电性,又对可见光有很好的透光性,而对红外光有较高反射性的薄膜。正是因为它优异的光电性能,它被广泛的应用在各种光电器件中,例如:平面液晶显示器(LCD),太阳能电池,节能视窗,汽车、飞机的挡风玻璃等。自从1907年Badeker制作出CdO透明导电薄膜以后,人们先后研制出了In2O3,SnO2,ZnO等为基体的透明导电薄膜。目前世界研究最多的是掺锡In2O3(简称ITO)透明导电薄膜,掺铝ZnO(简称AZO)透明导电薄膜。同时,人们还开发了CdInO4、Cd2SnO4、 Zn2SnO4等多元透明氧化物薄膜。 2. SnO2基薄膜 SnO2(Tin oxide,简称TO)是一种宽禁带半导体材料,其禁带宽度Eg=3.6eV,n 型半导体。本征SnO2薄膜导电性很差,因而得到广泛应用的是掺杂的SnO2薄膜。对于SnO2来说,五价元素的掺杂均能在禁带中形成浅施主能级,从而大大改善薄膜的导电性能。目前应用最多、应用最广的是掺氟二氧化锡(SnO2:F,简称FTO)薄膜和掺锑二氧化锡(SnO2:Sb,简称ATO)薄膜。SnO2:Sb薄膜中的Sb通常以替代原子的形式替代Sn的位置。掺杂Sb浓度不同,电阻率不同,最佳Sb浓度为0.4%-3%(mol)的范围对应电阻率为10-3Ω·cm,可见光透过率在80%-90%。SnO2:F薄膜热稳定性好、化学稳定性好、硬度高、生产设备简单、工艺周期短、原材料价格廉价、生产成本

透明导电薄膜研究进展

氧化锌基透明导电薄膜研究 汇报人:卢龙飞 导师:齐暑华 学号:2014201921 摘要:本文简要介绍了氧化锌基导电薄膜的基本特征、发展近况,并对其前景进行了展望。关键词:氧化锌导电薄膜参杂 Progess in research of ZnO based transparentconductinve films Abstract:Basic traits and latest development of ZnO based conductive thin films are introduced in this paper,and the prospect of ZnO conductive films was also forecased. Keywords:ZnO conductive thin films doping 0.引言 透明导电氧化物薄膜(transparent conductive oxide films)[1-3],简称TCO,由于本身的透明性和导电性,迅速发展成为重要的功能薄膜材料,在透明电极(太阳能电池、显示器、发光二极管LED、触摸屏等)、面发热膜(除霜玻璃)、红外反射族(汽车贴膜、建筑窗坡璃)、防静电膜、电磁屏蔽膜、电致变色密、气敏传感器、高密度存储、低波长激光器、光纤通信等领域得到广泛的应用透明导电材料是一类对可见光具有高透光率,同时又具有高导电率的特殊材料由于其特有的光电性能,透明导电材料在电子信息技术光电技术新能源技术以及国防技术中具有广泛的应用[4-7]。自20世纪80年代以来,人们开始关注Zn O薄膜。相比氧化铟锡(ITO)而言,ZnO具有原材料廉价无毒沉积温度低等优点,并且在H2等离子体环境下具有更好的稳定性尽管ITO薄膜目前仍是工业化应用最多的透明导电材料,但研究表明,在ZnO中通过掺杂Al、Ga、In等元素能有效提高薄膜光电性能,未来有望替代ITO成为最具竞争力的透明导电材料早期研究者大多在硬质材料衬底如硅片玻璃陶瓷上制备ZnO基透明导电薄膜。然而,科学技术的发展,越来越多的电子器件开始朝柔性化超薄化方向发展,比如触摸屏太阳能电池等,使得对柔性透明导电薄膜的需求日益迫切柔性透明导电薄膜有许多独特优点,例如可绕曲质量小不易碎易于大面积生产成本低便于运输等。因此,开发具有实用前景并且性能优异的柔性透明导电薄膜具有非常重要的现实意义。 1.ZnO基本特征 氧化锌(ZnO, Zinc Oxide)是一种新型的宽带隙II-VI 族化合物半导体材料,兼具有光电、压电、热电以及铁电等特性,可以方便地制备成薄膜以及各种形态的纳米结构。ZnO主要有四方岩盐矿立方闪锌矿和六方纤锌矿3种结构,通常情况下以纤锌矿结构存在,属六方晶系热稳定性好熔点1975℃,常温下禁带宽度为3.37eV对应于近紫外光阶段,作为一种压电材料,具有激活能大(60 meV)、压电常数大、发光性能强、热电导高等特点[8]。ZnO存在很多浅施主缺陷主要有氧空位V0和锌间隙Zni,使得ZnO偏离化学计量比表现为n型本身就有透明导电性,但高温下400K电稳定性不好同时红外反射率较低。 ZnO有较大的耦合系数;ZnO中掺杂Li 或Mg 时可作为铁电材料;ZnO与Mn元素合金化后是一种具有磁性的半导体材料;高质量的单晶或纳米结构ZnO可用于蓝光或紫外发光二极管(LEDs)和激光器(LDs);通过能带工程,如在ZnO中掺入适量的MgO或CdO形成三元合金,可以实现其禁带宽度在2.8~4.0 eV 之间的调控。通过掺杂III 族元素(B、Al、Ga、In、Sc、Y)或IV 族元素(Si、Ge、Ti、Zr、Hf)以及VII 族元素(F)之后,ZnO有优良的导电性,同时也有可见光高透过性,可用作透明导电氧化物薄膜材料,应用于平板显示器、薄膜太阳电池等多个领域[9]。ZnO基薄膜在氢等离子气氛下的化学稳定性良好,并且原材料丰富、价廉、无毒,所以近年来ZnO基透明导电薄膜被研究应用于薄膜太阳电池的透明电极[10]。 2.透明导电薄膜

(完整版)钙钛矿结构示意图

一、钙钛矿结构示意图 钙钛矿型复合氧化物是结构与钙钛矿CaTiO3相同的一大类化合物,钙钛矿结构可以用ABO3表示(见上图),A位为稀土元素,阳离子呈12配位结构,位于由八面体构成的空穴内;B位为过渡金属元素,阳离子与六个氧离子形成八面体配位。钙钛矿型催化剂在中高温活性高,热稳定性好,成本低。研究发现,表面吸附氧和晶格氧同时影响钙钛矿催化活性。较低温度时,表面吸附氧起主要的氧化作用,这类吸附氧能力由B位置金属决定;温度较高时,晶格氧起作用,不仅改变A、B 位置的金属元素可以调节晶格氧数量和活性,用+2或+4价的原子部分替代晶格中+3价的A、B原子也能产生晶格缺陷或晶格氧,进而提高催化活性。 二、双钙钛矿结构示意图 近年来,双钙钛矿型氧化物得到了越来越广泛的关注,双钙钛矿的通式可表示为A2B’B’’O6,标准的A2B’B’’O6型氧化物可以看作是由不同的BO6八面体规则的相间排列而成。一般情况下B′和B″是不同的过渡金属离子,其晶体结构如图2所示。A2B’B’’O6结构双层钙钛矿型复合氧化物呈NaCl型结构相见排列。多数情况下双层钙钛矿氧化物结构也将发生畸变,它的结构一般由离子

大小、电子组态和离子间相互作用等决定,而且双钙钛矿结构中B’O6和B’’O6八面体的稳定性对整个结构的稳定性起着很重要的作用,B′位、B″位离子相应的氧化物越稳定,则钙钛矿结构越稳定。双钙钛矿型复合氧化物的制备近年已成为材料科学的重要发展方向。从理论角度上看,双钙钛矿氧化物材料可以提供更加丰富的变换组合,给研究者提供了广阔的研究空间。 Sr2FeMoO6属于典型的A2B’B’’O6结构氧化物,其理想形式为Fe3+和Mo5+分别有序地占据B′和B″位置,FeO6八面体和MoO6八面体在三维空间以共角顶的方式相间排列组成三维框架,Sr2+则填充在由8个八面体所围成的空隙的中心位置,如上图所示。实际上,由于占据A位、B′位及B″位的Sr2+、Fe3+、Mo5+并不是像标准立方双钙钛矿结构那样完全匹配,因此,在常温下其结构并非为立方对称,而是沿c轴方向有一个拉伸,畸变为四方对称结构。大量的研究表明,Sr2FeMoO6中存在Fe/Mo离子的反位缺陷(反位缺陷是指Fe离子占据Mo位而Mo离子占据Fe位),而且反位缺陷对Sr2FeMoO6的电输运性质和磁学性质有很大的影响。

第八章 实验一 磁控溅射法制备透明导电氧化物ITO薄膜-2012

磁控溅射法制备透明导电氧化物ITO薄膜 授课老师:张群 材料科学系 实验目的: 1. 掌握磁控溅射镀膜系统的原理和操作方法 2. 掺锡氧化铟(ITO)透明导电氧化物薄膜的制备 一.引言 透明导电氧化物(Transparent Conductive Oxide, TCO)薄膜是一种高简并态的氧化物半导体材料,以其独特的透明性与导电性结合于一体而广泛应用于平板显示和太阳电池等领域。TCO薄膜材料一般具有载流子浓度高,费米能级(E F)位于导带能级(E C)以上,电阻率小(可低至10-4 Ω·cm),禁带宽度宽(>3 eV)等特点,使薄膜在具有良好的导电性的同时在可见光范围具有高的透射率(>80 %)。其中常见的TCO材料是掺锡氧化铟In2O3:Sn(ITO)、掺氟氧化锡SnO2:F(FTO)和掺铝氧化锌ZnO:Al(AZO)薄膜。由于ITO薄膜具有优良的电学和光学性能,获得了广泛的应用,几乎成为TCO薄膜的代名词。ITO薄膜除了具有上述TCO 薄膜的共性之外,还具有紫外线吸收率大,红外线反射率高,微波衰减性好等特点。另外,膜层具有很好的酸刻、光刻性能,便于细微加工,可以被刻蚀成不同的电极图案等良好的加工性能。图1是1970-2000年间报道的In2O3 , ZnO和SnO2基透明导电薄膜的电阻率,显然,ITO具有最小的电阻率。 图1 1970-2000年间报道的In2O3 (△), ZnO (●)和SnO2(□)基薄膜的电阻率

二. 磁控溅射镀膜 磁控溅射是二十世纪七十年代发展起来的一种新型溅射技术,目前在科学研究和大量生产方面都获得了广泛的应用。磁控溅射镀膜具有高速、低温和低损伤等优点。高速是指成膜速率快,低温和低损伤是指基板的温升低、薄膜表面损伤小。 1. 磁控溅射镀膜工作原理 所谓溅射是指将具有一定能量的粒子(离子)轰击靶材表面,使得靶材原子或分子从表面射出的现象。溅射镀膜就是利用溅射效应,使射出的原子或分子在基板表面沉积形成薄膜。如果真空室内充有氩气,电子在电场作用下加速飞向基板的过程中会与氩原子碰撞。假如电子具有 图2 磁控溅射工作原理示意图 足够的能量(约为30 eV),则碰撞将电离出Ar+并产生电子。电子飞向基板,Ar+在电场作用下加速飞向阴极(溅射靶)并以高能量轰击靶表面,使靶材发生溅射。 磁控溅射通常是在靶材的上方引入磁场。在溅射粒子中,中性的靶原子(或分子或离子)沉积在基板上形成薄膜,电子在加速飞向基板时受磁场B的洛仑兹力作用,以摆线和螺旋线状的复合形式在靶表面作圆周运动。电子不仅运动路径很长,而且被电磁场束缚在靠近靶表面的等离子体区域内,又在该区域内电离出大量的Ar+离子用来轰击靶材,所以磁控溅射具有沉积速率高的特点。另外,直接飞向基板的电子非常少,能量也小,避免了对所形成薄膜的轰击以及不可控升温现象的出现(如图2所示)。因此,磁控溅射的基本原理就是以磁场改变电子运动的方向,束缚和延长电子运动的路径,提高电子的电离几率,有效地利用了电子的

钙钛矿型复合氧化物材料(1)

钙钛矿复合氧化物具有独特的晶体结构,尤其经掺杂后形成的晶体缺陷结构和性能,被应用或可被应用在固体燃料电池、固体电解质、传感器、高温加热材料、固体电阻器及替代贵金属的氧化还原催化剂等诸多领域,成为化学、物理和材料等领域的研究热点[1~4]。1 钙钛矿结构钙钛矿型复合氧化物因具有天然钙钛矿(catio3)结构而命名,与之相似的结构有正交、菱方、四方、单斜和三斜构型。标准钙钛矿结构中,a2+和o2_离子共同构成近似立方密堆积,a离子有12个氧配位,氧离子同时有属于8个bo6八面体共享角,每个氧离子有6个阳离子(4a~2b)连接,b2+离子有6个氧配位,占据着由氧离子形成的全部氧八面体空隙。钙钛矿结构的对称性较同种原子构成的最紧密堆积的对称性低,a、b离子大小匹配。各离子半径间满足下列关系: 其中ra、rb、ro分别为a离子、b离子和o2-离子的半径,但也存在不遵循该式的结构,可由goldschmidt容忍因子t来度量: 理想结构只在t接近1或高温情况下出现,多数结构是它的不同畸变形式,这些畸变结构在高温时转变为立方结构,当t在0.77~1.1,以钙钛矿存在;t<0.77,以铁钛矿存在;t&1.1时以方解石或文石型存在。2 钙钛矿型氧化物材料的研究进展标准钙钛矿中a或b位被其它金属离子取代或部分取代后可合成各种复合氧化物,形成阴离子缺陷或不同价态的b位离子,是一类性能优异、用途广泛的新型功能材料。2.1 固体氧化物燃料电池(sofc)材料钙钛矿氧化物燃料电池sofc有以下优点:(1)全固态结构,不存在液态电解质所带来的腐蚀和电解液流失等问题;(2)无须使用贵金属电极,电池成本大大降低;(3)燃料适用范围广;(4)燃料可以在电池内部重整。通过电极材料中的掺杂来提高活性,优化碱锰电池的充放电性能(参见表1)。用含锰的钙钛矿氧化物作为碱性溶液中的阴极材料,获得了好的结果。因为元素锰的d电子结构在锰的三价和四价两种氧化物之间快速传递,表现出很高的电子导电性及良好的电极可充性[5]。通过掺杂pb、co、ba、ca、sr等元素的复合钙钛矿结构,获得掺杂后的改性电极材料,pb的掺入会对mn—o的成键状态和mno2晶格内的结晶水产生影响,使mn2p3.2能级产生化学位移,结合能增大,mn—o离子性增加,共价性减小。经过对改性电极的充放电机理实验,纳米掺杂后电池的放电容量提高40%以上[6]。la1-xsrxfe1-ycoyo3作为一种混合导体材料,具有优良的电子导电性能和离子导电性能,与la0.9sr0.1ca0.8mg0.2o3、ce0.9gd0.1o1.95等新一代中温固体氧化物电解质有很好的相容性。因此,la1-xsrxfe1-ycoyo3体系材料是一种很有发展前景的中温sofc阴极材料[7]。mather等[8]用硝酸盐与尿素熔融燃烧法制备了金属阳极陶瓷材料nisrce0.9yb0.1o3-δ,实验结果表明co的加入可降低烧结温度,可获得高的阳极孔隙率有利于阳极和电解质的吸附,经分析阳极上的亚微孔结构微粒由镍和钙钛矿粒子组成。然而,现有钙钛矿型复合氧化物的离子电导率低,高温下呈现电子或氧离子导电性。在燃料电池应用研究中,高温下器件可稳定运行,但器件的效率或功率较低。以钙钛矿型复合氧化物为电解质时,须在大于700℃的高温下使用。因此,离子导电性高、温度使用范围宽的固体电解质及电极材料研究是今后的主要目标。现有的基质材料mnceo3因稳定性和机械强度的问题,实现实用化仍存在一定难度;基质材料mnzro3虽具有较高的稳定性和机械强度,但材料离子电导率低,其燃料电池的功率很难满足要求。2.2 钙钛矿锰氧化物磁制冷材料磁制冷是利用固体磁性材料的磁热效应来达到制冷的目的。磁卡效应(magnetocaloriceffect,mce)是指当分别对磁性材料等温磁化和绝热退磁时该材料相应地放热和吸热的一种现象。对于钙钛矿氧化物磁制冷材料,利用振动样品磁强计或超导量子干涉仪测量其等温磁化m_h曲线或等磁场下的m_t曲线,计算样品在tc温度下的磁熵变(即最大磁熵变),以此判断该材料作为磁制冷工质的可行性[13]。如果a位被离子半径更小的离子或b位被离子半径更大的离子取代,那么取代的结果使容差因子减小,晶格收缩,铁磁耦合变小,从而使磁熵变减小。szewczyk等[14]、陈伟等[15]以lamno3为基质材料用ca、k、sr、ti为掺杂离子详尽研究了不同磁场下掺杂后lamno3的最大磁熵

透明导电薄膜的研究现状及应用

透明导电薄膜的研究现状及应用 李世涛乔学亮陈建国 (武汉华中科技大学模具技术国家重点实验室) 摘要:综述了当前透明导电薄膜的最新研究和应用状况,重点讨论了ITO膜的光电性能和当前的研究焦点。指出了目前需要进一步从材料选择、工艺参数制定、多层膜光学设计等方面来提高透明导电膜的综合性能,使其可见光平均透光率达到92%以上,从而满足高尖端技术的需要。 关键词:透明导电,薄膜,平均透光率,ITO,电导率 1 前言 透明导电薄膜的种类有很多,但氧化物膜占主导地位(例如ITO和AZO膜)。氧化铟锡(IndiumTinOxide简称为ITO)薄膜、氧化锌铝(Al-dopedZnO,简称AZO)膜都是重掺杂、高简并n型半导体。就电学和光学性能而言,它是具有实际应用价值的透明导电薄膜。金属氧化物透明导电薄膜(TCO:TransparentandConductiveOxide的缩写)的研究比较早,Bakdeker于1907年第一个报道了CdO透明导电薄膜。从此人们就对透明导电薄膜产生了浓厚的兴趣,因为从物理学角度看,透明导电薄膜把物质的透明性和导电性这一矛盾两面统一起来了。1950年前后出现了硬度高、化学稳定的SnO2基和综合光电性能优良的In2O3基薄膜,并制备出最早有应用价值的透明导电膜NESA(商品名)-SnO2薄膜。ZnO基薄膜在20世纪80年代开始研究得火热。TCO薄膜为晶粒尺寸数百纳米的多晶;晶粒取向单一,目前研究较多的是ITO、FTO(Sn2O:F)。1985年,TakeaOjioSizoMiyata首次用汽相聚合方法合成了导电的PPY-PVA复合膜,从而开创了导电高分子的光电领域,更重要的是他们使透明导电膜由传统的无机材料向加工性能较好的有机材料方面发展。 透明导电膜以其接近金属的导电率、可见光范围内的高透射比、红外高反射比以及其半导体特性,广泛地应用于太阳能电池、显示器、气敏元件、抗静电涂层以及半导体/绝缘体/半导体(SIS)异质结、现代战机和巡航导弹的窗口等。由于ITO薄膜材料具有优异的光电特性,因而近年来得以迅速发展,特别是在薄膜晶体管(TFT)制造、平板液晶显示(LCD)、太阳电池透明电极以及红外辐射反射镜涂层、火车飞机用玻璃除霜、建筑物幕墙玻璃等方面获得广泛应用,形成一定市场规模。 制备透明导电薄膜的方法很多:物理汽相沉积(PVD)(喷涂法、真空蒸发、磁控溅射、高密度等离子体增强(HDPE)蒸发、脉冲激光沉积(PulsedLaserDeposition,简称PLD)技术、化学汽相沉积(CVD)、原子层外延(ALE)技术、反应离子注入以及溶胶-凝胶(Sol-Gel)技术等。然而,适合于批量生产且已经形成产业的工艺,只有磁控溅射法和溶胶-凝胶法。特别是,溅射法由于具有良好的可控性和易于获得大面积均匀的薄膜,而被广泛应用于显示器件中ITO薄膜的制备。美欧和日本均在发展ITO产业,其中日本夏普、日本电气和东芝三大公司都在其工厂内开发ITO薄膜。深圳几家导电玻璃公司在进口和国产生产线上制造LCD用导电玻璃。而AZO薄膜由于其在实用上还有许多问题,现在还处于研究阶段。综上所述,ITO薄膜性能优异,制

透明导电薄膜

透明导电薄膜 引言:透明导电薄膜作为一种具有低电阻和高透光率的薄膜材料。被应用于显示器、太阳能电池、抗静电涂层、带电防护膜等各种光电材料中。目前广泛研究和应用的透明导电薄膜主要为In2O3∶Sn(ITO)、Sb∶SnO2(ATO)和ZnO∶A1(ZAO)等无机氧化物透明导电薄膜。氧化物薄膜具有透光性好、电阻率低和化学稳定性较好等优点但是作为无机材料,氧化物薄膜的脆性大、韧性差、合成温度高、且和柔性衬底的结合性较差。这些缺点限制了它们的进一步应用。例如.可折叠显示屏上要求透明导电薄膜具有可弯曲性.飞机有机玻璃窗户表面用于加热除霜的薄膜必须与有机基底结合牢固等。 薄膜的组成,设备和制作工艺 首先在室温下将3-巯丙基三甲氧基硅烷(MPTMS)和醋酸以一定物质的量比混合.并搅拌5 h后得到无机前驱体溶液。然后,用传统乳液聚合法制备得到十二烷基苯磺酸(DBSA)掺杂的导电聚苯胺。将一定量的导电聚苯胺溶于氯仿和间甲酚的混合溶剂中,并搅拌3 h;然后混合聚苯胺溶液和无机前驱体溶液。搅拌并陈化6 h后得到有机一无机杂化溶胶溶液实验中醋酸和MPTMS的物质的量比为0.1~1.0,定义为H1~H10:间甲酚与MPTMS的物质的量比为3~7,定义为M3~M7:聚苯胺和二氧化硅的质量比为15/85~50/50,定义为P15~P50。其中,溶胶溶液的浓度为0.5mol.L-1。 实验采用提拉法制备薄膜将用超声清洗并干燥的普通载玻片在杂化溶胶溶液中浸泡20 s后匀速提拉.控制提拉速度为1mm.s-1。然后将沉积有薄膜的载玻片在80℃烘箱中干燥30 min,并在室温中冷却后,重复浸渍提拉干燥过程,制备5层厚度的导电薄膜,最后在80℃烘箱中干燥。 薄膜分析方法、结果及性能 图1为3-巯丙基三甲氧基硅烷(MPTMS)、十二烷基苯磺酸掺杂的聚苯胺(DBSA—PANI)和H4M5P30干凝胶样品的红外光谱图。在MPTMS的红外图谱中,2850和810 cm一分别为硅氧烷的C,H和SiO,C振动吸收峰 1 084 cm一为Si,O基团的吸收峰。在2566 cm处的一个小吸收峰为MPTMS有机链中SH 的吸收峰。同时在DBSA.PANI的红外谱图中,1575和l471 cm一处的吸收峰分别对应聚苯胺中C=C吸收的醌式和苯式结构。为导电聚苯胺的特征吸收峰。此外l 122、l 327和l026 em一处的吸收峰分别为N-Q=N、C—N和S=O吸收峰。当导电聚苯胺和无机前驱体反应杂化后.聚苯胺链中C=C吸收的醌式和苯式结构所对应的峰位移至1580和1454.1 327 cm一所对应的C.N双峰红移至1 249 Cm.同时MPTMS中2 566 cm 所对应的SH吸收峰消失.说明3一巯丙基三甲氧基硅烷中的SH基团已和聚苯胺中氨基基团形成键合.得到杂化结构。另外在杂化干凝胶的红外谱图中,1 149和1 031 cm处出现了一个较大的双峰结构,主要为Si.0.Si结构的振动吸收峰此峰覆盖了聚苯胺的N=Q=N吸收峰原MPTMS 在810 cm 处的SiO—C吸收峰消失。Si.0一si峰的出现和SiO.C峰的消失充分说明硅的网络结构的形成从红外谱图分析看出,用溶胶一凝胶法可以得到无机网络完整的PANI—SiO 杂化材料。

透明导电氧化物薄膜与氧化铟锡薄膜

第一章 透明导电氧化物薄膜与 氧化铟锡薄膜1.1.透明导电氧化物薄膜 透明导电氧化物(Transparent Conducting Oxide简称TCO)薄膜主要包括In、Sn、Zn和Cd的氧化物及其复合多元氧化物薄膜材料,具有禁带宽、可见光谱区光透射率高和电阻率低等光电特性。氧化铟锡(或掺锡氧化铟,Indium Tin Oxide简称ITO)薄膜是综合性能最优异的透明电极材料,ITO是一种重掺杂、高简并的n型半导体,光学禁带宽度达到3.5eV以上,其载流子浓度可达到1021cm3,迁移率为15-450cm2V?1S?1,目前一般认为其半导体化机理为掺杂(掺锡)和组分缺陷(氧空位)。ITO作为优异的透明导电薄膜,其较低的电阻率可达到10?4?cm,可见光透过率可达85%以上,其优良的光电性质使其成为具有实用价值的TCO薄膜[1][2]。ITO透明导电膜除了具有高可见光透过率和低电阻,还具有一系列独特性能,如紫外线高吸收,红外线高反射,微波高衰减;加工性能良好,具有较好的酸刻、光刻性能;良好的机械强度和耐磨损性、耐碱化学稳定性;较高的表面功函数(约为4.7eV)等,ITO薄膜被广泛应用于平板显示器件、太

阳能电池、微波与射频屏蔽装置、触摸式开关和建筑玻璃等领域[3]。 对于TCO薄膜来说,目前的主要应用领域一般是作为单一的电学涂层或光学涂层,即利用其金属导电性和光学透明性,但其导电性和透明性仍需进一步提高,同时考虑到光电子器件在不同环境中的使用,TCO薄膜在恶劣环境中的稳定性也需要得到改善,应该开发出高质量的透明导电氧化物薄膜,以开拓更广的应用领域。在TCO薄膜的不同应用领域,对于TCO 薄膜的性能有不同的要求,单一的TCO薄膜难以满足各种性能的需要,虽然SnO2:F[4],ZnO:Al[5]和In2O3:Mo[6]等三元组分氧化物能够部分解决一些问题,但无法达到较好的综合性能。目前多元复合体系透明导电薄膜的研究得到了一定的发展,可以制备出一些具有独特性能的TCO薄膜[7]-[10],多元复合体系TCO薄膜能够保持传统TCO材料性能的前提下,可以通过改变组分而调整薄膜的电学、光学、物理和化学性质以及表面能,从而获得传统TCO材料所不具备的性能,以满足特定的需要。因此,如何进一步提高ITO薄膜的各种性能,拓展其应用前景,显得尤其重要。 对于ITO等透明导电氧化物来说,掺杂的有效性应满足三种基本要求:(1)掺杂离子与宿主离子之间存在价态差;(2)掺杂替代离子半径等于或小于宿主离子半径;(3)掺杂离子不会形成新的化合物,只存在In2O3的单一相。一般认为ITO的特性主要依赖于其氧化态和杂质的浓度,通过引入施主杂质可以调节载流子浓度,施主原子取代晶格的位置,提供了多余的自由电子而提高了导电性。高价态的金属离子(如Zr4+等)对ITO中In3+的取代可以成为ITO掺杂的关键所在,高价态的金属离子对In3+的取代可

ITO透明导电薄膜替代品发展现状

ITO透明导电薄膜替代品发展现状现在,薄膜液晶显示器的透明电极大量使用的是ITO和In,本文介绍作为其替代品的透明导电氧化物材料的发展现状与前景.用于LCDs透明电极ITO薄膜的最佳替代材料是掺Al ZnO和掺Ga ZnO(AZO与GZO)。从资源和环境的角度来看,AZO是最佳的候选材料。有关ZnO取代ITO用于LCDs透明电极的问题已在实验室实验中得到解决。目前看来,(射频和直流)磁控溅射是最好的沉积具有实用价值的掺杂ZnO薄膜的方法。在玻璃衬底上制备的AZO薄膜电阻率在10?4Ω?cm 数量级,并且拥有几乎均匀的面电阻分布,其厚度可以超过100nm。为了提高电阻率的稳定性,AZO和GZO共掺杂薄膜有了新进展。一个50nm厚的掺杂V的AZO薄膜具有足够的稳定性,可以作为实际应用中的透明电极。然而,如果薄膜的厚度小于30nm的话要获得与ITO相媲美的掺杂ZnO薄膜还是很困难的。 关键词:透明导电氧化物,薄膜,ITO,AZO, GZO,LCD,透明电极,磁控溅射 1 引言 ITO薄膜实际上作为绝大多数液晶显示器的透明电极。目前,铟已成为用于液晶显示器的ITO的主要原料。并且,最近用于平板显示,碱性电池,薄膜太阳能电池的铟显著增加。因为世界铟储量很有限,所以人们普遍认为在不久的将来铟将会短缺。除了资源的可用性问题,最近铟的价格也增加了约10倍。对于一个蓬勃发展的液晶显示器市场,ITO的稳定供应将很难实现。因此,发展LCDs 透明电极ITO薄膜的替代品显得尤为重要。最近,含少量铟或不含铟的透明导电氧化物作为候选材料备受关注。我们曾经指出ITO的替代品有AZO,GZO,ZnO-In2O3-SnO2或Zn-In-O等多元氧化物[1-5]。本文我们介绍一下作为替代ITO 用于液晶显示器透明电极的材料的现状及前景。特别地,有关AZO和GZO代替ITO用在LCDs存在的问题我们将会特别强调其解决方法。

氧化物透明导电薄膜研究进展综述

本科毕业设计说明书 氧化物透明导电薄膜研究进展综述Development of Transparent Conductive Oxide Films 学院(部): 专业班级: 学生姓名: 指导教师: 年月日

氧化物透明导电薄膜研究进展综述 摘要 通过介绍TCO薄膜的功能原理和制备工艺以及现实应用,了解TCO薄膜的特点、作用、研究现状,并由此对TCO的发展前景和研究方向做出总结。 关键词: 透明导电机理;制备工艺;发展前景;TCO

DEVELOPMENT OF TRANSPARENT CONDUCTING OXIDE FILMS ABSTRAC In this paper, Across to describe the transparent conducting mechanism and the latest researching progress in preparation methods of TCO thin films, to look into the distance the future and acton of TOC. Furthermore summarized the progress and research of TCO thin films. KEYWORDS:thin oxide films,transparent,preparation methods,TCO

目录

绪论 TCO薄膜分为P型和N型两种。TCO现如今被广泛应用于高温电子器件、透明导电电极等领域,如太阳能电池、液晶显示器、光探测器、窗口涂层等多个领域。 目前,已经商业化应用的TCO薄膜主要是In O :Sn(ITO)和SnO :F(FTO)2类,ITO 因为其透明性好,电阻率低,易刻蚀和易低温制备等优点,一直以来是显示器领域中的首选TCO薄膜。然而FTO薄膜由于其化学稳定性好,生产设备简单,生产成本低等优点在节能视窗等建筑用大面积TCO薄膜中,在应用方面具有很大的优势。 1 TCO薄膜的特性及机理研究 1.1 TCO薄膜的特性 一般意义上的TCO薄膜具有以下两种性质:(1)电导率高σ,>103Ω-1?cm-1。TCO 主要包括In、Sb、Zn、Cd、Sn等金属氧化物及其复合多元氧化物,以氧化铟锡(Indium Tin Oxide简称ITO)和氧化锌铝(Alum inum doped Zin cum Oxide简称AZO)为代表,其具有显著的综合光电性能。(2)在可见光区(400~800nm)透射率高,平均透射率Tavg>80%; TCO薄膜综合了物质的透明性与导电性的矛盾。透明材料的禁带宽度大(Eg>3eV)而载流子(自由电子)少,导电性差;而另一方面,导电材料如金属等,因大量自由电子对入射光子吸收引发内光电效应,呈现不透明的状态。为了使金属导电氧化物更好的呈现一定的透明性,必须使材料费米半球的中心偏离动量的空间原点。按照能带理论,在费米能级附近的能级分布是很密集的,被电子占据的能级(价带)和空能级(导带)之间不存在能隙(禁带)。入射光子很容易被吸收从而引起内光电效应,使其可见光无法透过。克服内光电效应必须使禁带宽度(Eg)大于可见光光子能量才能够使导电材料透明。利用“载流子密度”的杂质半导体技术能够制备出既有较低电阻率又有良好透光性的薄膜。现有TCO薄膜的制备原理主要有2种:替位掺杂和制造氧空位。 TCO薄膜为晶粒尺寸几十至数百纳米的多晶层,晶粒择优取向。晶粒尺寸变大,载流子迁移率因晶界散减少而增大,导电性增强;同时晶粒长大会导致薄膜表面粗糙度增大,光子散射增强,透光性下降。目前研究较多的有ITO(Sn∶In2O3)、AZO(Al∶ZnO)与FTO(F∶SnO2)。半导体机理为化学计量比偏移和掺杂,禁带宽度大并随组分的不同而变化。光电性能依赖金属的氧化态以及掺杂的特性和数量,具有高载流子浓度(1018~1021cm-3)和低载流子迁移率(1~50cm2V-1s-1),可见光透射率可高达80%~90%。 1.2 TCO薄膜的机理 1.2.1TCO薄膜的光学机理

相关主题
文本预览
相关文档 最新文档