当前位置:文档之家› 盾构区间隧道偏差超限案例(新、选)

盾构区间隧道偏差超限案例(新、选)

盾构区间隧道偏差超限案例(新、选)
盾构区间隧道偏差超限案例(新、选)

案例一

成都地铁1号线南延线华广区间盾构隧道偏差超限质量事故

成都地铁1号线南延线华阳站~广都北站右线(以下简称:华广区间右线)全长708.667m,采用盾构法施工。该盾构机于3月7日从广都北站始发,3月13日项目部测量组对1~12环进行管片姿态测量,测量成果显示隧道高程最大偏差为19mm;3月19日项目部对1~56环管片姿态进行复测,发现17-56环(GDYK25+533.3~+593.3)均出现不同程度的超限,其中56环垂直偏差达到+2010mm、水平偏差+52mm,但盾构机测量导向系统56环处显示的盾构垂直偏差为盾首-29mm、盾尾-25mm,水平偏差盾首+41mm、盾尾+35mm,成型隧道实测偏差与盾构机测量导向系统显示偏差严重不符。

经过调查,确认是盾构机VMT系统(盾构机上使用的一种测量自动导向系统)中输入了错误的盾构推进计划线数据文件,致使盾构机按照错误的计划线推进,导致盾构隧道轴线偏差。加之项目部未按照测量规定的频次(每20环人工复测一次)进行人工复核,致使偏差不断扩大而未能及时被发现。造成直接经济损失273万余元,构成市政基础设施工程质量一般事故。

一、工程概况

成都地铁1号线南延线土建1标盾构区间,由科技园站~锦江站~华阳北站~华阳站~广都北站4个区间组成,线路沿天府大道西侧辅道敷设,设计总长6039m。华阳站~广都北站盾构区间右线起点

里程YDK24+901.7,终点里程YDK25+617.3,短链6.933m,全长708.667m。

二、事故经过

1.该盾构所用的数据文件形成的经过

2013年10月,项目部完成华广区间左右线设计轴线计算后,将计算结果报三级公司精测队进行复核,设计轴线计算结果正确,项目部收到经复核后的电子文件为“华广区间右线.DT2”,该文件保存在测量组共用工作U盘中。三级公司复核后的书面材料于2014年2月23日返给项目部。

2013年11月,三级公司精测队队长郑某到工地对测量人员进行了VMT系统的使用培训。2014年1月,项目部测量人员汪某在自己的电脑上练习VMT系统(SLS-T版本)使用时,采用了华广区间右线的设计要素,生成了自己的练习文件“华广区间右线.DTA”,由于软件在试用期后其电脑无法打开“华广区间右线.DTA”练习文件,汪某将文件拷入测量组共用工作U盘,准备在其他电脑上打开继续练习(至此,埋下并初步形成了事故隐患)。

项目部测量组在始发前将三级公司精测队复核的计划线数据“华广区间右线.DT2”导入盾构机VMT系统,发现该文件只可用于左线盾构机,无法直接用于右线盾构机。原因在于左线隧道S-537盾构机VMT系统为高版本(SLS-SL版本),右线隧道S-395盾构机VMT系统为低版本(SLS-T版本),两个版本的区别在于导入的文件格式不同,后缀为“.DTA”文件只能用于“SLS-T”低版本VMT系统,后缀

为“.DT2”文件只能用于“SLS-SL”高版本VMT系统。

为解决导入问题,项目部测量组请三级公司邀请当地另一项目的测量主管陈某于2014年3月5日到现场指导,项目部测量人员郑某在指导下,在其电脑上安装的高版本(SLS-SL版本)VMT系统软件上将测量组共用工作U盘中的“华广区间右线.DT2”文件通过转换成为“华广区间右线.COO”数据文件(“.COO”格式文件是“SLS-T”版本和“SLS-SL”版本均可打开的中间格式文件),并存入共用工作U盘,拟作为导入右线盾构机VMT系统的隧道计划线数据。(该工作步骤为隐患继续发展成为事故又创造了一个条件,此时以上3人相互间未完全沟通可能诱发错误的其它文件信息。)

至此,测量组共用U盘中存在3个计划线数据文件,分别为:“华广区间右线.DTA”(后来实际导入VMT的文件)、“华广区间右

线.DT2”、“华广区间右线.COO”。

2.数据导入及人工复测

2014年3月5日下午,项目部测量人员3人和陈某一同来到右线盾构机上,进行始发前盾构机测量准备工作。在盾构机操作室,打开测量系统电脑时发现测量系统通讯出现故障,陈某等3人在盾构机上排查和处理通讯故障,由郑某在盾构操作室导入盾构隧道计划线数据(导入的数据实为汪某练习用的“华广区间右线.DTA”错误文件,但导入人员并不知情,成为隐患转化为事故的直接原因),数据导入完成后郑某也参与通讯故障的排查处理。故障排除后,郑某用VMT 系统进行了盾构始发姿态的测量,并显示盾构姿态正常,就离开了操

作室。

3月7日,项目部未对该盾构机进行始发前VMT系统计划线进行验收即开始盾构始发掘进,3月12日掘进至13环,项目部测量组对1-12环的管片姿态进行了测量,测量数据显示:高程方向上最大偏差20mm。

3月14日~18日,在华广区间右线盾构正常施工过程中,项目部安排所有测量人员到华广区间左线进行移交铺轨前的贯通测量和

资料整理,期间测量人员未按规定频率复测右线管片姿态。

3月19日盾构掘进至第57环,项目部测量组对1-56环管片姿态进行了人工复测,测量数据显示:高程方向上最大偏差为2010mm。

三、原因分析

1.直接原因

项目部测量人员未认真核对测量文件,因误操作而导入了错误的右线计划线数据,在盾构导向系统中生成了错误的推进计划线,造成华广区间右线盾构隧道严重超限,是导致此次事故的直接原因。

2.管理原因

⑴项目部上级公司(三级子公司)测量管理工作存在职责不清、责任不明的现象,管理流程上只重视了原始计划线的计算和复核工作,未建立现场原始计划线数据导入和导入后复核的制度,致使现场录入了错误的数据而未能发现,是导致此次事故的主要原因。

⑵项目部未严格执行人工复测的规定。华广区间右线盾构机从始发至56环止,在3月13日对第1~12环管片进行了第1次复测后,

未按每20环人工复测1次的规定在推进到第32环时进行人工复测,致使错误的计划线在施工中未能及时发现和纠正,是扩大此次事故损失的重要原因。

⑶项目部上级公司对盾构机自动导向系统相关知识培训不到位,导向系统管理的关键环节卡控不严密,是导致此次事故的重要原因。

⑷盾构项目部总工未对本项目盾构操作人员进行隧道线形技术交底,未按要求对工程部及测量组工作进行检查,是造成此次事故的原因之一。

⑸项目部上级公司对项目部管理不到位,对项目指导帮助不够,过程检查不力,未能及时发现项目管理中存在的问题,致使该项目测量管理工作存在的严重问题未能及时纠正,是导致此次事故的管理原因。

⑹二级公司指挥部和二级公司本部对该项目管理制度的建立健全和执行情况监督检查不力,对测量管理工作检查不到位,是导致此次事故的又一管理原因。

四、事故性质

此次事故是一起因导入了错误的计划线数据、测量复核不到位、教育培训不到位、项目管理不到位等因素造成的责任事故。

五、处理方案

事故发生后,采用增设吊出井将现有盾构机吊出,超限隧道采用暗挖法进行改造,将线路恢复至原设计标高,并增加1台盾构在华广

明挖区间始发,掘进剩余的盾构隧道。为消除质量事故造成的缺陷,造成了273万元返工损失,洞通工期延后2个月。

六、防范措施

1.组织对所有盾构掘进自动导向系统录入的计划线数据进行全

面核查,确保录入数据的正确可靠;对在建成型盾构隧道进行复测,对导线网、水准点、吊篮等进行全面复核测量,杜绝类似事故再次发生。

2.对所有盾构施工项目开展自动导向系统相关知识的专项技能

培训,确保项目相关人员能够熟练掌握相应的技能。

3.进一步规范盾构机自动导向系统管理工作流程和权限,对用于盾构自动导向系统的计算机和移动存储设备建立专项管理制度,确保数据安全可靠。

4.进一步完善项目测量管理制度,明确各级测量人员的职责和分工,并确保测量管理体系的有效运行。

5.深刻汲取事故教训,举一反三,组织开展测量工作专项检查,重点检查测量管理制度的建立健全和测量复核制的执行情况,对发现的问题,建立问题库并按照“五定”原则进行整改,确保测量管理工作可控。

6.编制测量事故典型案例,开展警示教育,以让所有项目汲取教训,全面强化测量管理工作。

案例二

一、工程概况

长沙市轨道交通2号线一期工程土建施工9标盾构隧道总长3864m,包括迎宾路站~袁家岭站区间、袁家岭站~长沙火车站站区间、长沙火车站站~锦泰广场站区间,共三个盾构隧道施工区间。根据地质资料显示,区间原始地貌单元属浏阳河二级侵蚀~堆积阶地,阶地主要由第四系上更新统粉质粘土、砂砾石层组成,具明显的二元结构。根据勘察各钻孔中潜水位初见水位埋深0.90~6.80m,潜水稳定水位埋深1.28~6.10m。

二、盾构施工中发现的质量问题简述及分析

在盾构隧道的施工过程中,通过对三个盾构区间质量情况的长期观察和总结,发现在隧道形成过程中出现轻微或严重的质量问题主要归纳成轴线超限问题、渗漏问题、管片错台问题、管片破损问题、裂缝问题五大类。现针对此五类质量问题的出现条件进行了说明,并就其后果影响的严重程度阐述如下:

(一)盾构隧道轴线超限问题

盾构隧道施工过程中尤其是在穿越长沙火车站既有铁路线路时,由于特殊且复杂的地质条件和测量误差等原因导致隧道轴线出现了偏差,并在采取一些补救措施时出现了地面沉降过大的情况。规范要求盾构隧道施工过程中高程和平面偏离中心线允许范围为±50mm;地铁建成后中线允许偏差为±100mm,当衬砌结构高程及平面偏差超过±100mm将侵入建筑限界(简称轴线侵限),一般通过调线调坡来

解决轴线超限问题,如果超出调线调坡允许范围,将会建筑物丧失部分使用功能,该质量问题一般被判定为严重质量缺陷。

三、盾构隧道轴线超限的原因、处理的对策和预防措施

1.主要有以下几种原因:

(1)工程施工测量误差引起盾构姿态超出轴线控制范围内,如仪器精度、测量内业计算误差大,甚至出现盾构测量数据输入错误的问题都会引起隧道轴线超限。

(2)盾构自动测量系统没有定期检定或自身故障原因导致未能自动修正环境、测量架变形及盾构体发生扭转等施工因素引起的误差。

(3)成型隧道后,由于外界地层因素导致隧道“上浮”“下沉”等变形,这种现象是目前引起隧道侵限最常见的原因,也是施工质量控制中最难掌握的因素。

(4)地质条件复杂,软硬不均、含水量丰富、水位高水压大,也是引起隧道侵限重要原因。比如局部地层遇到非常坚硬的岩石令盾构掘进缓慢,并导致盾构滑向软地层方向,这种情况纠偏非常困难,盾构姿态越来越差,最终超出设计轴线的允许范围。

2.针对以上四种原因,通常施工中从以下几方面采取预防措施控制:

(1)在测量方面要加强管理,通过组织专业测量队、勤测量、多级测量校核来确保隧道控制轴线测量成果的正确。

(2)在盾构掘进施工中,除了依靠盾构自动测量系统指导施工

外,还要加强人工测量来校核自动测量系统的误差,降低施工环境等外界因素引起的测量误差。

(3)首先要加强盾构施工的注浆管理,保证注浆程序和质量符合要求,提高管片与围岩的填充质量,减少变形。同时加强对隧道变形的监测,及时正确发现隧道变形的情况,采取有效的措施。当隧道管片“上浮”“下沉”变形量很大时,可通过同步注浆和背衬二次注浆提高填充的质量,并提高水泥用量和加入速凝剂双液注浆来保证注浆的效果,能减少隧道变形。

(4)在盾构掘进中,根据隧道变形监测的情况,通过调节盾尾各千斤顶的推力,适当改变盾构在轴线上的姿态,使隧道变形后轴线仍在受控制范围内。

案例三

深圳地铁9 线深圳湾公园站~下沙站区间左线长2927m,右线长3131m。本工程采用2台新购的直径6250mm中铁装备盾构机从下沙站东端先后始发,掘进到达风井,再空推穿过风井~竖井(约400m)矿山法路段后,继续向东掘进到达深圳湾公园站接收。

本区间盾构机从下沙站始发掘进到达风

井,空推到达竖井后开始进行后续的掘进施工,此时通过盾构机自动导向系统发现盾构机发生“低头”现象,其姿态发生竖向偏差,导致隧道轴线在竖直方向上偏离线路设计纵坡,且盾构纠偏困难。该段隧道设计平曲线半径R=990m,线路纵坡沿盾构推进方向(风井至

深圳湾公园站方向)为3.33‰的上坡,竖曲线半径R=5000m。再采用人工复测,结果显示第1362~1378环管片底标高低于设计轴线标高-91mm~1013mm,最大偏离轴线达1m以上。

2 轴线偏离原因及后果分析

2.1轴线偏离原因

(1)导向系统故障。盾构机在通过封堵墙后,导向系统发生故障,输出错误的导向信息数据,在盾构机已偏离隧道设计轴线的情况下仍然显示其姿态正常,客观上导致了盾构姿态发生偏差后未能及时采取纠偏措施,而继续沿偏差路径推进,直至人工复测发现轴线偏差。

(2)技术人员经验不足。盾构机导向系统自动化程度较高,属精密测量及计算仪器,盾构测量人员工作经验不丰富,对其可靠性的盲从在主观上导致人工复测管片轴线偏差及标高、盾构姿态不及时,造成盾构发生较大竖向偏差后未能及时发现和纠偏,尽管及时采取了纠偏措施,仍导致管片发生一1013mm的最大竖向偏差,间接导致盾构轴线发生较大偏差。

(3)施工管理不到位。盾构姿态出现波动、“突变”等情况后现场仅对全站仪固定螺栓进行简单处理即恢复掘进,而未对导向系统进行详细检修、检测;在未安装全站仪的情况下即恢复掘进,“盲推”掘进导致盾构姿态偏离隧道设计轴线,并形成一47mm/m的下行趋势,造成纠偏困难。从轴线偏差原因分析中可看出,造成偏差的主要原因是人为因素,是主观原因形成的。

2.2轴线偏离后果

竖向轴线偏离过大,主要影响盾构隧道顶部接触网的安装高度和底部整体道床的施工厚度,目前的轴线偏离值已超过该两项的允许极限值。

2.3线路初步调整后的情况

经充分利用接触网支架高度及整体道床厚度最大可调余量对原设计线路纵坡进行初步调整,YDK4+316.5~+345.3段隧道管片结构仍超出限界要求,长度约28.8m,共分为3处,需进行特殊处理以满足后续施工要求。

案例四

事故情况:2014年12月,华北某城市地铁XX区间盾构机接收时发现掘进轴线与设计轴线存在偏差159mm,造成盾构机姿态与洞门下缘相抵触,割除局部洞门钢环后,勉强接收,但造成洞口加固区出现小面积坍塌。

主要原因分析:洞内控制导线最末端的控制点,精度超限,未能及时检核发现,在精度超限的控制导线的指引下,盾构机掘进,导致接收段落成型隧道超限,并造成接收困难。

事故处理:通过调线调坡后,满足使用功能。

相关案例:2003年11月华南某城市地铁沥大区间隧道轴线超限

案例五

事故情况:2008年12月,华南某城市XX区间左线在掘进完成后,贯通测量时发现,约119m成型隧道偏离轴线,最大偏移量

1793mm。

主要原因分析:在盾构机接收前150m范围内,VMT系统出现异常,数据丢失,测量人员重新输入计划线数据时,出现错误,曲线要素少输入“-”号,导致曲线转为反向。掘进过程中,相关人员已觉察异常,但未引起重视。随后,测量人员自己发现了问题的所在,出于畏惧心理,没敢向上汇报实情,而是错上加错,私自设置了迂回曲线进行盾构机接收。

事故处理:对成型隧道调坡处理后,仍有70m隧道拆除重建。

相关案例:2014年西南某城市地铁也出现过类似事故

案例六

事故情况:2014年7月,中原某城市地铁XX区间盾构始发刚掘进16.5m时,发现盾尾间隙变化异常,经人工测量后,发现盾构机垂直姿态偏差达184mm。

主要原因分析:经检查发现,系导向系统中倾斜仪装反所致。本案例中的导向系统系日本演算工房,其售后服务能力在同类产品中较弱,所以厂商和施工单位均没能及时发现盾构机倾斜仪装反的错误,导致将下坡向指为上坡向,进而造成超限事故。

相关规范中,对于盾构机导向系统,均没有校准(检定)的要求,对于导向系统的使用也没有相应的技术监督管理。本案例充分说明,“导向系统零位检定“的必要性与重要性。

事故处理:将盾构机导向系统重新安装调试;隧道线路进行调坡

处理。

相关案例:2013年华东某城市有类似事件发生。

案例七:

事故情况:2015年1月,西南某城市地铁XX区间,受地质上软下硬影响,盾构机掘进过程出现上漂现象,为了躲避业主的视屏监控,在项目部领导不知情的情况下,现场测量人员通过私自修改计划线数据,使工业电脑操作界面上显示的姿态“合格”,后经第三方复核测量发现,管片姿态出现较大偏差,最大达235mm。

主要原因分析:项目部盾构测量工作存在管理缺陷,加之使用的测量导向系统未对操作权限进行详细分级设置,测量人员为逃避监控,违规操作,私自修改计划线数据,导致隧道超限问题发生。

事故处理:经调线调坡后满足运营限界要求。

相关案例:前述,华南某城市的XX区间,也存在私自修改计划线数据的情况。

最新文件仅供参考已改成word文本。方便更改

盾构下穿建筑物专项施工方案

盾构隧道下穿建筑物专项方案 一、编制依据 1、珠江三角洲城际快速轨道交通广州至佛山段工程18标南洲站?沥滘站区 间平纵断面及洞门设计布置图; 2、珠江三角洲城际快速轨道交通广州至佛山段18 标工程南洲站?中间风井建筑物调查报告; 3、珠江三角洲城际快速轨道交通广州至佛山段18 标工程南洲站?中间风井区间盾构推进监测方案; 4、《地下铁道工程施工及验收规范》 (GB 50299-1 999)(2003 年版); 5、《盾构法隧道施工与验收规范》 (GB 50446-2008) 6、《建筑地基基础设计规范》 (GB 50007-2011) 二、工程概况 2.1 工程简介珠江三角洲城际快速轨道交通广州至佛山段南洲站?沥滘站区间(简称“南沥区间”)位于广州市海珠区。本次设计起点为南洲站,终点为沥滘站。 根据广东广佛轨道交通有限公司穗铁广佛建会【2012】68 号会议纪要,盾构从南洲站始发,中间风井吊出;再根据拆迁情况而实施从沥滘站始发,中间风井吊出。起点为南洲客运站、向东南方延伸,途经南环立交、沥滘水道,进入沥滘村。区间沿线地形平坦,地面高程为7.87?10.32m,沥滘村沿线密布建筑物群。 盾构区间上方主要有南环高速公路等构筑物;沿线两边主要有南洲大酒店 (A7)、大量居民房等建筑物。 工程由两台①6250海瑞克复合式土压平衡盾构机进行施工。先后施工上行线和下行线隧道,盾构从南洲站东端头下井始发,掘进至中间风井吊出。 本区间隧道由上、下行线两条隧道构成,区间最大覆土厚约32.2 米,最小覆土9.5 米。区间最小曲线半径为350 米,线间距约12.5 米。线路纵坡设计为双向坡,最大坡度为29%°。 本区间穿越海珠区南洲街三滘经济社、南洲二手车市场,穿越土层主要为<3-1> 冲洪积层—砂层、<3-2>冲洪积层—砂层、<4-1 >冲洪积层—粉质粘土、<4-2> 河湖相沉积层一淤泥质土、<5-1>可塑状残积层一粉质粘土、<5-2>硬塑状残积层—粉质粘土、<6

盾构隧道施工工程事故的原因与对策_李希元

文章编号:1673-0836(2005)06-0968-04 盾构隧道施工工程事故的原因与对策 李希元1,闫静雅2,孙艳萍2 (1.广东晶通公路工程建设集团有限公司,广州 510635; 2.同济大学土木工程学院地下建筑与工程系,上海 200092) 摘 要:盾构隧道的施工技术在世界许多国家不断得到发展,但在推广与应用上发生了一些施工事故。本文在调查与分析上海、广州、北京、深圳、南京等地的盾构隧道施工事故的基础上,按盾构法的常见事故类型,对调查到的事故进行分类并对各种事故提出相应的工程对策,为避免同类事故再次发生提供一些有益参考。 关键词:盾构隧道;施工事故;工程对策 中图分类号:U455.43 文献标识码:A Reasons and Countermeasures of Accidents Happened during the Shield Tunnel Construction LI Xi-yuan1,YAN Jing-ya,SUN Yan-ping2 (1.G uangdong Road Engineering co nstructio n Co.Ltd.,G uangzhou510635,China; 2.Depa rtment of G eotechnical Engineering,Scho ol o f Civil Engineering,Tongji University,Shanghai200092,China) Abstract:Nowadays,the shield tunnel has been developed in many countries of the world.However,there are many accidents while spreading and applying the shield construction.Based on the investigation and analysis of the accidents hap-pened in Shanghai,Guan gzhou,Beijing and Shenzhen d urin g shield tunnel construction process,this paper classifies the ac-cidents according to the familiar types of shield accidents and suggests the corresponding solutions to avoid the similar acci-dents in the future. Keywords:shield tunnel;construction accident;countermeasure 1 引言 盾构法是建造城市地下隧道卓有成效的施工方法之一,自1818年法国工程师Brunel发明盾构以来,经过一百多年的应用与发展,已使盾构法能够适用于任何水文地质条件下的施工,无论是松软的,坚硬的,有地下水的,无地下水的暗挖隧道工程都可用盾构法。 目前,盾构隧道的施工技术在世界许多国家不断得到发展,但在推广与应用上出现了一些施工技术方面的事故。由于这些事故的发生,影响整个工程的工期,还造成了极大的经济损失和不必要的人员伤亡。本文在调查与分析上海、广州、北京等地的盾构隧道施工事故的基础上:①分析事故产生原因,对调查到的事故进行分类;②提出相应的工程对策为避免同类事故再次发生提供有益参考。 2 事故原因与分类 对近年来北京、上海、广东、台湾等地的盾构隧道施工事故进行调查统计分析,以下列举出其中25个典型事故: (1)2002年,深圳地铁一期工程四号线采用土压平衡式盾构掘进时,由于结饼而不得不停机开舱处理。由此引发了地面塌陷以及邻近建筑物的轻 第1卷 第6期2005年12月 地下空间与工程学报 Chinese Journal of Underground Space and Engineering Vol.1 Dec.2005 收稿日期:2005-08-05(修改稿) 作者简介:李希元(1961-),男,高级工程师,主要从事隧道工程方面研究,E-mail:fredlxyh@https://www.doczj.com/doc/9d11496034.html,。

盾构隧道下穿高铁施工变形控制

盾构隧道下穿高铁施工变形控制 发表时间:2019-07-17T15:20:04.323Z 来源:《基层建设》2019年第13期作者:卢雨田[导读] 摘要:本文介绍了杭州至海宁城际铁路某区间盾构隧道下穿高铁桥梁工程的施工情况。 中铁第四勘察设计院集团有限公司湖北武汉 430000摘要:本文介绍了杭州至海宁城际铁路某区间盾构隧道下穿高铁桥梁工程的施工情况。由有限元建模分析和现场施工可得到结论:施工按照沉降控制和位移控制的要求,通过建立盾构试验段,设置隔离防护桩,掘进过程中结合现场监测数据,合理选择土压力、推进速度、同步注浆、二次补偿注浆等掘进参数,这一系列技术措施可有效保证地表沉降、桥墩位移处于可控范围,达到了预期的施工效果,为 后续工程和类似工程提供参考。 关键词:盾构隧道;有限元分析;隔离桩;穿越施工;现场监测 Abstract:This paper introduces the construction of shield tunnel under the high-speed railway bridge project of hangzhou-haining intercity railway. Conclusions can be drawn from finite element modeling analysis and on-site construction, according to the requirements of settlement control and displacement control, a series of technical measures such as the shield test section is established, and the isolation guard pile is set. Combined with the in-situ monitoring data during the excavation process, the soil pressure, propulsion speed, synchronous grouting and secondary compensation grouting are reasonably selected,which ensure the surface settlement, the displacement of the pier is in a controllable range, and the expected construction effect is achieved. Key words:shield tunnel; finite element analysis; isolation piles; crossing construction; in-situ monitoring 0引言 近年来随着城市轨道交通开发受到越来越广泛的关注[1-2],盾构近距离穿越高铁桩基的问题就显得更为突出。杭州、无锡、南京等地的地铁施工都面临盾构超近距离穿越高铁桩基的情况,而高速铁路需严格控制变形,导致了盾构隧道下穿高铁工程施工的困难性、复杂性。而现在关于盾构超近距离穿越高铁桩基的工程经验相对较少,对于采用何种保护措施、怎样控制施工过程及效果如何等问题尚还处于探索阶段[3]。 本文结合杭州至海宁城际铁路(以下简称“杭海城际”)某区间盾构下穿高铁桩基的一个典型工程现场试验研究,先后进行有限元建模分析[4-5],设置隔离防护桩,掘进过程中结合现场监测数据,合理选择盾构隧道掘进参数,最终完成该区段的施工,积累了处理该类型工程的经验,得出一些有意义的结论,可为高铁桩基周边盾构穿越施工行为的理论研究提供参考。 1工程概况 杭海城际是浙江省都市圈城际铁路网中的一条放射型线路,该铁路工程第四标段为海宁高铁站~长安镇站区间地下区间部分,其中穿越桐海特大桥段受影响桩基为575号、576号、577号共3根桥桩,运营里程DK129+461.518~DK129+526.918,区间隧道与桐海特大桥夹角约50°,下穿大桥段长约18m。每个桥墩由8根Φ1000钻孔桩支撑,桩长69~85m,左线盾构隧道距离桥桩最小距离为6.2m,右线盾构隧道距离桥桩最小距离为5.9m。杭海城际区间隧道与桐海特大桥相对位置关系如图1所示。 区段工程施工工法为盾构法,施工采用内径5500mm、外径6200mm、衬砌厚度350mm、环宽1200mm单圆盾构衬砌。衬砌环全环由六块组成,即一块小封顶块K、两块邻接块L和三块标准块B构成,环间采用错缝拼接方式,管片采用M30弯螺栓连接。盾构机选用德国海瑞克公司生产的S-997土压平衡盾构机,并配备同步注浆系统。 盾构区间全区间处在淤泥质黏土和粉质黏土的软土地层中,其中下穿高铁区段埋深约5.5m,属于浅埋盾构软弱地层高标准下穿既有高铁桥梁施工,施工难度大技术要求高。且根据上海铁路局要求,施工期间高铁限速至200km/h,桥墩变化值控制在1mm以内,为全线的重难点工程之一。 图1杭海城际区间隧道与沪杭甬客运专线桥梁平面关系图 Fig.1 Plane relationship diagram between Hangzhou-Haining inter-city tunnel and Shanghai-Hangzhou-Ningbo passenger line 本区段工程隧道主要穿越土层为④1层淤泥质黏土(土层厚1.2~14.0m,流塑)、⑤1层粉质黏土(土层厚2.2~7.0m,硬塑)和⑤2层粉质黏土夹粉土(土层厚约2.7~5.6m,可塑)。本区间工程地表水属上塘河水系,地下水类型主要可分为第四系松散土类孔隙潜水和孔隙微承压水。根据周边环境调查情况显示,盾构区间除高铁桥梁及高速桥梁外无其他建构筑物,周边以农耕地及荒地为主。 2施工变形控制 2.1隔离桩加固施工 盾构施工将不可避免的造成地层损失和引起周边土体的扰动,从而盾构上方土体及地面将产生一定的沉降,对邻近铁路桥梁将产生一定的影响。本区间隧道已进入铁路保护影响范围,为保证盾构能够安全顺利通过且不影响既有高铁桥梁正常运营,使地铁盾构施工对沪杭高铁桥梁的影响降到最低,拟采用在盾构下穿前在洞外设置隔离桩的防护措施,王国富等研究了采用合理形式的隔离桩对变形控制效果的可操作性、适用性[6-7]。

铁路隧道施工安全事故案例及原因分析(正式)

编订:__________________ 审核:__________________ 单位:__________________ 铁路隧道施工安全事故案例及原因分析(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-3677-61 铁路隧道施工安全事故案例及原因 分析(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 一、铁路隧道施工安全事故类型及案例 (一)复杂岩溶隧道突水、突泥。 1、20xx年01月21日,宜万铁路马鹿箐隧道出口段平导开挖至DK255+978时发生突水、突泥,突水总量约18万方,在抢险抽水时又多次发生突水。马鹿箐隧道全长7879m,最大埋深约660m,隧道自进口至出口为连续15.3‰上坡。在线路左侧30m预留二线位置设置贯通平导,平导全长7850m。隧道穿越地层中灰岩地层为7408m,占隧道总长的94%,隧道区域漏斗、落水洞、暗河十分普遍,岩溶强烈发育,管道岩溶水系极为复杂。这次事故除多人逃生外,造成10人死亡,1人失踪。 2、20xx年08月05日凌晨1:00时左右,宜万

盾构隧道穿越既有建筑物施工应对技术

盾构隧道穿越既有建筑物施工应对技术 文章摘要: 盾构隧道穿越既有建筑物施工应对技术摘要:随着近几年地下工程建设的不断发展,盾构施工技术已越来越成熟,特别是在城市轨道交通建设中更显示出其优越性。但是,对于盾构施工过程中穿越障碍物或近距离通过既有建(构)筑物的施工还缺少相应的工程实例,经验相对也较少。近年来,我国城市轨道交通建设发展迅速,但是面临着越来越复杂的周边环境和施工条件,因此研究和制定相应的施工技术和应对措施十分必要。文章针对盾构施工穿越城市内河、下穿既有隧道以及湖底施工、下穿古城墙等工程实例进行分析研究,提出了针对类似情况的应对技术措施。 1 引言 随着国民经济的发展和城镇化建设的加速,国内城市轨道交通建设发展也越来越迅速。在轨道交通建设中,盾构工法由于其优越性在国内的应用越来越多。为了使轨道交通尽快形成网络达到预期的规模效应,轨道交通的建设也在加速。随着初期单条线的建成,后续线路建设的难度会越来越大。同时,伴随城市规划建设,特别是通常伴随地铁建设的沿线开发的增多,工程建设所面临的是越来越复杂的周边环境,穿越障碍物或近距离通过既有建(构)筑物的情况也越来越多。工程施工时既需要对既有建(构)筑物进行保护,又要确保工程本身的安全性和进展顺利,因此对不同的情况采用相应的应对技术十分必要。本文以南京地铁施工中已成功完成的盾构施工穿越障碍物的几个实例为基础,研究分析相应的应对技术。 2 下穿既有河流 2.1 工程实例 金川河宽10.4m,河堤深4m, 水深1.3m,为污水河。盾构隧道与 该河近正交下穿通过,盾构机与 河床底净间距6.2m。该段 地质情况自上而下分别是:② -1d3-4粉细砂(3.5m)、②-2c2-3 粉土(约6.0m)、②-2b4淤泥质粉 质粘土(约3m)、③-2-1b2粉质粘 土(4m)、③-3-1(a+b)1-2粉质粘 土(约 4.7m)。隧道主要在② -2c2-3粉土、②-2b4淤泥质粉质 粘土(上部)和③-2-1b2粉质粘土 (下部)地层中穿过(图1)。 该工程盾构机于2002年5月 9日~2002年5月10日和2002年 12月28日~2002年12月29日分 别在下行线和上行线顺利通过金 川河,沉降监测结果良好,没有采 用应急预案。但是在下行线掘进

盾构隧道工程事故案例分析1

盾构法隧道工程事故案例分析及风险控制 上海市土木工程学会 傅德明 盾构法隧道已经发展到十分先进和安全的技术,但是由于地质水文条件的复杂性,或由于施工操作的错误,还存在许多风险,近年来,我国的盾构隧道工程也出现一些工程故事,因此, 隧道工程的安全和风险控制十分重要. 1、盾构法隧道工程事故分析和风险控制 1.1 南京地铁盾构进洞事故 事故描述: 1.工程概况 南京某区间隧道为单圆盾构施工,采用1台土压平衡式盾构从区间右线始发,到站后吊出转运至始发站,从该站左线二次始发,到站后吊出、解体,完成区间盾构施工。 该区间属长江低漫滩地貌,地势较为平坦,场地地层呈二元结构,上部主要以淤泥质粉质粘土为主,下部以粉土和粉细砂为主,赋存于粘性土中的地下水类型为空隙潜水,赋存于砂性土中的地下水具一定的承压性,深部承压含水层中的地下水与长江及外秦淮河有一定的水力联系。到达端盾构穿越地层主要为中密、局部稍密粉土,上部局部为流塑状淤泥质粉质粘土,端头井6m采用高压旋喷桩配合三轴搅拌桩加固土体。 2. 事故经过 在盾构进洞即将到站时,盾构刀盘顶上地连墙外侧,人工开始破除钢筋,操作人员转动刀盘,方便割除钢筋,下部保护层破碎,刀盘下部突然出现较大的漏水漏砂点,并且迅速发展、扩大,瞬时涌水涌砂量约为260m3/h,十分钟后盾尾急剧沉降,隧道内局部管片角部及螺栓部位产生裂缝,洞内作业人员迅速调集方木及木楔,

对车架与管片紧邻部位进行加固,控制管片进一步变形。仅不到一小时,到达段地表产生陷坑,随之继续沉陷。所幸无人员伤亡,抢险小组决定采取封堵洞门方案。3.处理措施 抢险小组利用应急抽水泵排除积水,同时确定采取封闭两端洞门的方案,在该车站端头外层钢筋侧放置竹胶板,采用编织袋装砂土及袋装水泥封堵,迅速调集吊车及注浆设备进场,采用钢板封堵洞门;始发站洞内积极抢险,利用方木对车架与管片进行支顶,在无法控制抢险的情况下安全撤出作业人员,在洞内进行袋装水泥挡墙施工,共用水泥90t,码砌过程中有局部渗水,为确保挡墙稳固,决定在始发站洞口堵封,之后开始拆除洞口钢轨。 第二天,盾构到达车站端头继续洞门钢板封堵,并及时浇筑混凝土34m3,在钢板背面架设工字钢作为斜支撑;根据地表沉降情况,调集设备进行地表注浆加固。始发站洞口施工袋装水泥挡墙,利用管片小车用龙门吊吊运到井下,人工码砌并开始加工钢筋网片及模板。 第三天,接收车站端头2根型钢支撑已全部架好,继续向已封堵好的钢环内浇灌混凝土。但钢环下部又出现漏水、漏砂现象,现场组织人员用袋装水泥、棉被堵漏,并增加水泵抽水,晚上安装2根钢支撑,井下立模浇筑右线盾构井2m高范围内混凝土。 之后几天,始发站水泥挡墙施工完成,安装钢筋网片及模板,纵横向设置型钢支撑。端头井两侧继续钻孔并注双液浆,右线端头浇筑混凝土,地表沉陷处土方回填,端头井左侧立模。后向洞内注水,注水速度为51m3/h,并用聚氨酯堵漏。 事故发生10日后,接收车站端头部位继续浇筑混凝土,险情得到有效控制。

隧道安全事故案例

兰新铁路第二双线小平羌隧道“4·20”重大事故 由中国中铁二局集团承建的新建兰新铁路第二双线至段站前工程LXS-8标,设计里程为DK345+155~DK407+122,线路长61.363正线公里,位于省中牧山丹马场和市民乐县境,海拔高度3500米~2700米。小平羌隧道地处祁连山中高山区,位于省市山丹县西南方向祁连山小平羌沟至大平羌沟之间,平均海拔高度为3100~3800米。洞身地表起伏较大,地表自然坡度30~40度;隧道起讫里程为DK345+329~DK349+312,隧道长度3983m 。小平羌隧道距民乐县城约120公里,距市约187公里。 事故发生的经过: 2011年4月19日23时30分,钢筋班组安装完成DK349+035处最后一环工22a 型钢拱架,经领工员王伟检查无异常后,喷浆班组13人操作3台喷浆机喷浆。4月20日4时05分,带班员吓文出去组织后续施工材料,当走到距离作业面约40米处时突然听见身后一声巨响,回头看见隧道喷浆作业面上方围岩发生了坍塌,导致初期支护的工22型钢拱架及喷浆作业台架被砸跨,12名作业人员全部被埋入坍塌体中,事故发生后,中铁二局兰新线甘青项目部三工区立即组织抢险救援,于4时40分发现一名遇难者遗体,后因连续发生坍方,抢险工作被迫停止。经勘察事故现场,坍塌围里程为DK349+035~DK349+050,距离地表深度约100~110m 。坍塌岩石块体约400方(最大块径约1米左右),塌腔高8~10米。直接经济损失约908万元。 事故原因分析: 小平羌隧道位于祁连山区域地质构造带(纵向长约1000km, 横向宽200~300km )石炭系灰岩夹页岩、泥灰岩,泥盆系砂岩等软硬相间的地层中,由于多期构造运动挤压作用强烈,洞身发育多个向斜、背斜相间组成的复式褶皱。地表覆盖风化残积土层较厚,基岩露头较少。开挖揭示DK349+050~+035洞段总体位于背斜构造北翼,岩层倾角较陡,节理发育,岩体破碎;岩层的层间结合力较差,加之小平羌隧道洞顶地表冻土冬春后开始融化,冰雪融水下渗软化软弱结构面,致使围岩抗剪强度降低,是该起事故发生的潜在客观因素。

盾构下穿建筑物技术交底

布吉站~百鸽笼站区间 盾构下穿建筑物施工技术交底 一、工程概况 布?百区间隧道下穿越金鑫实业有限公司厂房、布吉永盛钟表厂、华年华美工业区集体宿舍等9栋建筑物。 区间过建筑物里程、对应环号及洞身地质情况详见下表 、掘进参数选择

、盾构施工下穿建筑注意事项 1、掘进过程中适当加大同步注浆压力及注浆量,每一环管片注浆量在6?8斥,1、4#注浆压力1.5?2.5Bar , 2、3#注浆压力2?3Bar,根据实际情况调整同步注浆浆液配合比,提高浆液的和易性和可泵性,缩短浆液凝固时间,及时有效地填满管片与围攻岩间的建筑空隙,防止地表下沉。注浆系统发生故障、注浆管发生堵塞时应停止掘进,待维修正常后方可继续掘进。盾构机停止掘进时严禁进行同步注浆,避免建筑物隆起。 2、在盾构掘进过程中要严格控制出土量,做到进尺与出土量保持均衡,并填写好 出土控制表,如发现一环出土量超过65m3或掘进过程中进尺与出土量保持不均衡,且初步估计是因刀盘位置土体塌方所致,应立即停止出土,继续往前掘进(此时总推力根据实际情况可调整至1000t,但各个控制按钮必须均匀增加)至顶部压力表显示为1.2bar 以上后停止掘进,并及时通知工程部及其它相关部门和领导,工程部立即派人到掌子 面里程对应的地表巡查,同时现场土木值班人员对渣样进行取样和分析,并取好渣样到地面供相关领导和部门分析。领导和相关部门结合渣样分析、设计院提供地质情况、地表建筑物沉降情况最后决定是否继续往前掘进,盾构操作手或机长不得擅自作主。 3、推进过程应保持盾构机有良好的姿态,严禁姿态的急剧起伏,水平和高程偏差 控制在土50mm以内。减小盾构机上下千斤顶压力差,上下千斤顶压力差控制在60Bar 以内。 4、根据地表监控量测数值,如发现管片在脱出盾尾后,地表沉降幅度较大(10mm v 沉降值v 20mm时对管片进行二次补注浆,以控制地表继续沉降,二次注浆采用双液浆。

盾构隧道下穿高铁既有线风险控制研究

盾构隧道下穿高铁既有线风险控制研究 发表时间:2019-01-16T15:02:18.230Z 来源:《基层建设》2018年第36期作者:叶余超 [导读] 摘要:随着城市化的不断发展,轨道交通的网络不断加密,也有着越来越多工程建设穿越既有隧道现象。 广东华隧建设集团股份有限公司 摘要:随着城市化的不断发展,轨道交通的网络不断加密,也有着越来越多工程建设穿越既有隧道现象。像是很多新建工程会影响到地铁线路,例如民用或者是工业建筑的基坑工程手工,基础设施中排水管道、热力管道、输水管道、供电电缆等在地下穿越,其中的交通中的公路、桥梁以及地铁隧道等公共交通设施的穿越。因此说明既有线隧道会受到盾构隧道施工的严重影响,和常规地铁隧道施工相比较更为复杂。近年来在城市交通不断发展的情况下,一些工程出现其穿越既有轨道线的现象,出现的问题会直接关系到既有轨道结构以及其安全问题,严重影响着既有线运行的稳定性和安全性,制约着建设和发展城市轨道交通,亟待解决。本文主要针对盾构隧道穿越既有线产生的沉降问题进行研究,首先分析其带来的风险,并对既有线沉降问题进行计算,首先建立计算模型,后进行具体计算,最后针对沉降问题提出相应的控制方法。 关键词:盾构隧道;下穿既有线;风险控制 引言:近些年来,我国不断地发展着社会经济,进而促进城市化进程的加快,我国的城市轨道交通是全球发展最迅速地国家之一。随着技术手段的发展,盾构隧道的特点是机械化有着很高的程度、掘进有着很快的速度、周边的环境很少会对其产生影响等,在修建城市轨道交通地下隧道中应用的范围比较广泛。现阶段,我国轨道交通方面发展的比较迅速,交通网络在不断进行优化,不断地扩大开发城市地下空间的规模,并加强利用效果。在这样的情况下,很难防止新建的盾构隧道穿越既有轨道线等复杂工程状况,并使得新建隧道与原有隧道间的距离在不断减小。这种隧道穿越工程不仅距离近,而且叠交复杂,隧道在这样的情况下穿越有着较大工程施工风险,可能会影响地铁结构沉降等风险,严重的影响着隧道的安全运营。本文主要有盾构隧道下穿而引起风险中的既有线沉降问题进行分析,并提出相应的控制方案。 1 隧道风险研究 盾构隧道施工不能避免和邻近既有线产生附加内力或者是结构变形,进而会对既有线列车的安全、可靠运行造成影响。在这样的状况下,结合保护既有线的要求,采取相应的措施将变形的情况减少,这其中要重视的就是对既有线运行安全性与稳定性的保障。还有,既有线的重要程度特别高,同时严格的要求着附加变形,从而使穿越工程难度非常大,风险也特别高。开挖隧道时,一般情况下上方沉降相较于下方围岩上有很大程度的浮隆现象,加之上方围岩有着复杂的受力,大量分布的剪切和压剪区域,对围岩的稳定性有着严重影响,下方围岩分布在卸载回弹区,围岩稳定性可以得到保障(如图一所示)。所以说明,在同样的近距离下,盾构隧道下穿既有线存在着很大的风险。 图一 其中:第1分区内关键开挖作用是压缩剪切,同时是剪切破坏重要区域;第2分区关键开挖作用是剪切;第3分区内主要开挖作用是卸载;第4分区是开挖隧道形成地表沉降的区域。 2 盾构隧道下穿既有线结构沉降的计算 2.1计算的模型 结合地铁车站实际运营中各种情况,进行深入的研究,选定一定范围的土体作为计算模型分析对象,利用有限元的计算软件进行分析,对盾构隧道下穿既有线所造成的地表沉降实施模拟。模型建立的过程中关键要对以下5个方面进行考虑:(1)物理模型的平面应变是其问题特征;(2)使用的计算方法是弹塑性分析;(3)假设隧道开挖不影响计算边界处,也就是指这一处是原始静止应力的状态,变形是零,选用约束进行模拟;(4)宽度计算采取隧道直径的5倍;计算隧道深度为地下隧道直径的3倍;(5)对时间效应以及开挖过程中产生的应力率做出充分考虑。 2.2计算结果 图二为右线盾构掘进时地面沉降曲线图,图三为左线盾构掘进时地面沉降曲线图,从这两幅图中可以看出:盾构隧道下穿时会有沉降差,沉降差值若是超出限度,则会导致车站发生沉降、弯曲结构以及扭曲变形等现象,原有的裂缝不仅会错动,畏怯还会拓展,这样的情况会引起轨道几何形位出现改变:比如说钢轨顶面高差产生相应的变化,水平面上轨道中心平顺性的变化,沿线路方向轨道竖向平顺性的变化等。这些变化不只会使既有线隧道结构增加内力,也极有可能是钢轨顶面水平超差,前后高低超差或者是轨向平顺超差。除此之外,对既有线道床与基层的整体刚度不相同进行考虑,由于变形过大,道床和基层间可能出现脱离的现象,对既有线运营的安全性有着威胁。

地铁盾构隧道下穿建筑物沉降规律分析

地铁盾构隧道下穿建筑物沉降规律分析 摘要:通过对成都地铁盾构隧道穿越建筑物引起的地表沉降进行动态监测与分析,得出了盾构地铁隧道在穿越建筑物时沉降发生时间及影响范围,并初步制定了用于指导施工的监测数据库,以便为今后类似工程提供参考。 关键词:成都地铁2 号线; 盾构隧道; 穿越; 地面建筑物; 沉降监测 1 .引言 随着国家、城市的经济发展,地铁成为交通繁忙、人口密集城市的重要交通工具。在地铁盾构隧道施工期间,不可避免地要近距离地下穿地面建筑物,在穿越期间,由于地层受扰动、超挖引起的地层损失及应力改变等原因都可能造成地面建筑物出现沉降、位移,从而引起建筑物出现裂缝、倾斜甚至倒塌,给人民的财产、安全带来威胁。为掌握盾构施工过程中地面建筑物的状态,在实施加固、保护等施工措施的同时,必须对地面建筑物进行监测,并将监测数据及时反馈到施工中,确保施工安全。本文对成都地铁盾构隧道某栋建筑物的监测成果进行研究分析,以便为今后类似工程提供参考。 2 .工程及地质概况 本工程为成都地铁线2 号线羊西二环路站~白果林站,在里程YCK26 + 332 ~YCK26 + 832 段穿越密集居民建筑群。盾构隧道埋深约14 米,地面建筑物为金琴路南段二巷2 号楼,主体上部为砖混7 层,下部为预制桩基础,基底约2.5m 中砂。 该隧道地处川西平原岷江I 级阶地,为侵蚀~堆积阶地地貌,地形平坦。隧道穿越地层主要为砂卵石层,局部夹中砂。第四系孔隙水是段内地下水的主要存在形式,主要赋存于各个时期沉积的卵石土及砂层中,土体透水性强、渗透系数大,水量丰富。场地内地质构造条件简单,未发现有断裂通过,无不良地质作用,在VII度地震作用下,不具备产生滑坡、崩塌、陷落等地震地质灾害的条件,环境工程地质条件较简单。综合判定,本工程场地稳定。 3 .监测方案设计 尽管盾构法施工隧道具有对周围环境影响小、掘进速度快、机械化程度高、施工安全等特点,但仍不可避免地引起地表以及地表建筑物沉降。因此在研究盾构隧道对建筑物沉降的影响,布设了建筑物沉降监测点,用以观测建筑物下沉量,判定建筑物的安全性,以便采取相应的保护措施。 3 .1 测点布置 建筑物沉降监测点位布设在建( 构) 筑物四角的结构柱、建筑物基础分界点( 基础沉降缝) 布设沉降观测点10 个监测点位,见图1。

地铁盾构下穿对近接高架桥桩基的影响

地铁盾构下穿对近接高架桥桩基的影响 摘要:运用MIDAS/GTS 三维有限元分析软件,模拟了盾构隧道动态施工对近接高架桥桩基的影响,重点分析了桩基水平位移及沉降的发展规律,为盾构安全通过提供依据。研究表明: 两侧桩基水平位移在隧道范围内呈现明显“凹槽”; 盾构推力是影响桩基水平位移的重要因素,对沿隧道方向水平位移的影响较沿垂直隧道方向大,对桩基沉降影响较小; 工程拟定袖阀管注浆加固措施将引起桩基产生附加沉降,对桩基水平位移控制无明显效果。分析结果认为,在不采取袖阀管注浆加固措施情况下,合理选取盾构推力,可完成盾构隧道对近接高架桥桩基的安全穿越。 关键词: 盾构下穿高架桥桩基三维数值模拟盾构推力水平位移沉降袖阀管注浆 随着城市轨道交通建设的快速发展,城市地铁盾构隧道将不可避免地穿越周边已建的建( 构) 筑物。特殊情况下,盾构隧道需穿越已有高架桥的桩基础。盾构施工将产生地层土体损失,从而导致隧道附近土体应力场发生重分布,近接桩基周边法向应力将有不同程度的释放,使得桩基的承载能力折减。同时,隧道施工引起隧道周围地层移动,其产生的自由土体位移场使得工作状态的桩基产生附加弯矩和变形[1-5],对桩基础的安全使用产生风险。地铁盾构隧道下穿对近接高架桥桩基的影响分析成为当前城市地下空间开发中的热点问题。 1 工程地质条件及近接桩基概况 1. 1 地质条件 本工程区段属于丘陵地貌,沿线为剥蚀残丘和丘间冲沟相间,因道路等工程建设,原地貌大多经过挖填。地下水以第四系孔隙水、基岩裂隙水赋存。该区段内冲积~洪积砂层不会产生地震液化,不良地质有:软土地层、砂层、花岗岩残积土及“球状风化孤石”。本工程范围区间隧道主要从冲积—洪积粉质黏土层( 4N-2) ,( 4N-3) ,残积土层( 5H-2) 中穿过。 该区段地层自上而下依次为素填土、冲积—洪积而成的可塑状粉质黏土、冲积—洪积而成的稍密中粗砂、硬塑状花岗岩残积土、全风化花岗岩、强风化花岗岩。 1. 2 近接高架桥桩基概况 广州地铁六号线萝岗~香雪区间下穿北二环高速公路高架桥桩基工程位于广州市萝岗区广深高速公路与北二环高速公路交汇处,位于地铁六号线右线设计里程YDK40 + 510. 544,左线设计里程ZDK40 +523. 849 附近。本区段拟采用盾构法施工,隧道埋深约15 m,所穿越的北二环高速公路立交桥,桥名为“萝岗分离式立交桥”,地铁盾构隧道距离两侧高架桥桩基的距离仅有2. 0 ~12. 5 m,上部构造采用预应力混凝土连续箱梁,下部构造为柱式墩,Ф1 800 mm钻孔灌注桩基础,为摩擦型桩,桩底均落入全风化花岗岩,桩基与隧道位置关系平面图见图1,高架桥桩基与盾构隧道剖面关系图见图2,桩基与隧道位置关系见表1。

地铁盾构隧道下穿建筑物的安全性分析

地铁盾构隧道下穿建筑物的安全性分析 李茂文,胡辉 (南昌城市规划设计研究总院,江西南昌330038) 摘要:本文以深圳地铁5号线翻身 灵芝盾构区间隧道下穿碧海花园小区建筑物施工为工程依托,运用有限差分程序FLAC3D模拟盾构隧道开挖的全过程,对施工产生的管片内力变化、地表沉降以及桩基的变形进行了预测分析。计算结果表明,只要能够正确合理的施工,采用土压平衡盾构施工,安全顺利地穿越建筑物是可行的。 关键词:盾构隧道下穿建筑物地表沉降桩基沉降数值模拟 有限差分法由于具有能够适应复杂边界、非均质、非线性本构模型,分析结果全面详细等优点,被广泛用来模拟盾构隧道施工对环境的影响的分析。本文以深圳地铁5号线翻身 灵芝盾构区间隧道下穿碧海花园小区施工掘进为工程依托,运用有限差分程序FLAC3D模拟盾构隧道开挖过程,对施工产生的管片内力变化、地表沉降以及桥梁桩基变形进行预测分析。1工程概况 深圳地铁5号线翻身至灵芝盾构区间隧道管片设计外径为6m,内径为5.4m,管片厚度为30cm。地铁右线隧道穿越碧海花园2层和8层的砼框架楼房。碧海花园桩基采用柱下独立基础,承台下桩基采用Φ480沉管灌注桩,有效桩长17m。该建筑物桩基与隧道拱顶最近距离为1.14m,断面埋深20.5m,地下水位埋深为3.2m,隧道位于砾质粘性土、全风化花岗岩及强风化花岗岩三种不同硬度的地层中,局部有硬岩突起,突起硬岩裂隙发育,地质条件复杂。 2盾构掘进数值模拟分析 2.1材料特性 (1)土体材料 目前,在土工计算中广泛采用的各向同性模型有两大类,一类是弹性非线性模型,另一类是弹塑性模型,两者都反映了土的非线性应力—应变关系特性。本文土体采用弹塑性本构关系,屈服准则为直线性Mohr-Coulomb准则。 (2)注浆材料和管片衬砌材料 注浆材料和衬砌单元在模拟过程中也采用适合混凝土材料的弹塑性模型。注浆材料的强度会随着时间的推移而增加,此时取其长期固化注浆材料,其弹性模量取400Mpa[4],管片衬砌采用C50钢筋混凝土,弹性模量为35GPa。 2.2实体模型建立 计算采用有限差分程序FLAC3D建立三维模型,横向取40m,向上取至地表,向下取隧道中心以下15m,沿隧道长度方向取40m。左、右、前、后边界施加水平方向约束,底面限制垂直位移,顶面为自由面。初始应力只考虑自重应力场的影响。地层、管片、注浆浆液均视为理想弹塑性材料,服从Mohr—Coulomb屈服准则;管片和同步注浆浆液均采用壳单元;地层和桩基则采用实体单元模拟。计算模型如图2,模型共有148192个单元,154755个节点。盾构机长7.5m,盾构外径6.25m,管片宽l.5m,厚300mm,盾尾间隙厚75mm。盾构隧道与桥梁桩基的位置关系如图2所示 。 图1 三维计算模型图 图2盾构隧道与建筑桩基的位置关系图 根据地质勘察资料,该段地质分层从上而下分别为:3m的素填土、6m的砾砂、10.5m的砾质粘性土、2.5m的全风化花岗岩及16m的强风化花岗岩。各土层的物理力学参数见表1。3数值模拟计算结果分析 3.1应力分布分析 盾构推进15m、30m和40m时最大主应力云图如图3、4和5所示。从图中可以看出,随着盾构的不断推进,已开挖的隧道衬砌的最大主应力增大,当隧道开挖到40m时,拱腰靠底部位置的最大值主应力值达到2.3MPa,最小值出现在隧道拱顶的位置,最小主应力在拱顶的位置,其值达到-6.7MPa,均远远小于盾构管片的设计强度,因此,盾构管片所受到的内力不足以使管片结果产生破坏,管片结构仍有较大的安全富余量。 · 402 · 2012年第6期(总第123期)江西建材交通工程

盾构法隧道施工引起的地面沉降的原因与对策

盾构法隧道施工引起的地面沉降机理与控制 摘要:本文首先分析了盾构法隧道引起的地面沉降规律和沉降 影响范围,总结了盾构隧道地面沉降的主要影响因素;指明地面沉 降主要源于开挖面的应力释放和附加应力等引起的地层变形,并对地铁施工中的地面沉降安全判断标准和控制原则进行了探讨,为城市地铁工程建设提供有益的参考。 关键词:盾构隧道地铁工程地面沉降沉降控制 中图分类号:u45 文献标识码:a 文章编 号:1672-3791(2012)06(b)-0071-02 abstract:this paper analyzes the shield tunnel caused by land subsidence law and settlement of affected areas,and summarizes the main factors of land subsidence of the shield tunnel;specified land subsidence is mainly due to the excavation surface stress release and the additional stress causedstrata deformation,land subsidence and subway construction safety criteria and control principles are discussed to provide a useful reference for the construction of urban subway project. key words:shield tunnel;subway project;land subsidence;subsidence control 盾构法具有不影响地面交通、对周围建(构)筑物影响小、适应复

盾构隧道近距离下穿武广高铁桥梁变形监测分析

盾构隧道近距离下穿武广高铁桥梁变形监测分析 阐述了全自动桥梁变形监测原理方法,并通过全自动桥梁变形监测系统,实时监测盾构下穿高铁过程中高铁桥墩及梁体的变形。监测数据表明,盾构下穿期间桥墩及梁体变形未达到报警值,全自动监测系统为区间盾构顺利下穿高铁桥梁及时提供了变形信息反馈,确保了高铁安全正常运营。 标签:轨道交通;盾构隧道;下穿高铁;桥梁变形监测 1 工程概况 武汉市轨道交通某区间盾构下穿武广高铁高架桥下行线和上行线。盾构左线从6#、7# 桥墩之间穿越,盾构右线从7#、8# 桥墩之间穿越,6#、7#、8# 桥墩桥跨间距均为32.6 m 简支梁。下穿处武广高铁线间距 5 m,设计速度350 km/h。6#、7#、8# 桥墩桩基桩长分别为18 m、18.5 m 和19 m,桩顶距地面约2.5 m,隧道底部距桩底分别为1.504 m、0.975 m 和0.473 m。区间隧道顶部覆土约15.06 m,与桥桩结构水平最小净距为8.12 m(图1)。 下穿处土层由杂填土、一般黏性土、老黏性土组成,基岩埋藏较浅。区间沿线为三级阶地剥蚀堆积垅岗区,下穿武广高铁盾构隧道洞身位于20a-2 中风化泥岩,地面至隧道顶地层主要为杂填土、10-2 粉质黏土、20a-1 强风化泥岩。 2 盾构施工 盾构机采用 2 台土压复合式平衡盾构机,盾构机外径 6.44 m。盾构隧道采用通用型管片错缝拼装,用M30彎螺栓连接,管片环宽 1.5 m,外径 6.2 m,内径5.5 m,厚度0.35 m,楔形量40 mm。左线盾构从2016 年11 月9日开始进入武广高铁核心保护区20 m 范围,2016 年11月13 日盾尾脱出高铁核心保护区20 m 影响范围;右线盾构从2016 年11 月15 日开始进入武广高铁核心保护区20 m 范围,2016 年11 月19 日盾尾脱出高铁核心保护区20 m 影响范围。左、右线盾构施工期间以12 环/天左右的速度向前推进。 3 桥梁变形监测 本工程采用全自动监测系统对武广高铁桥梁的变形进行实时监测,自动变形监测系统由测量机器人、监测站、控制计算机房、基准点和变形点等 5 部分组成(图2)。远程计算机通过因特网控制远程GPRS 模块或通过数据连接线远程监视和控制监测系统的运行,系统在无需操作人员干预的条件下实现自动观测、记录、处理、存储、变形量报表编制和变形趋势显示等功能。 3.1 监测原理方法 监测仪器为测量机器人,又称自动全站仪,是一种集自动目标识别、自动照

地铁隧道盾构法施工

地铁隧道盾构法施工 导语:盾构法施工是一种机械化和自动化程度较高的隧道掘进施工方法,从20世纪60年代开始,西方发达国家大量将这种技术应用于城市地铁和大型城市排水隧道施工。我国近年来也开始在城市地铁隧道、越江越海隧道、取排水隧道施工中采用此项技术,以替代原来落后的开槽明挖或浅埋暗挖等劳动密集型施工方法。 关键词:地铁盾构施工盾构施工技术盾构施工测量点击进入VIP充值通道 地铁盾构机分类及组成 地铁盾构机根据其适用的土质及工作方式的不同主要分为压缩空气式、泥浆式,土压平衡式等不同类型。盾构机主要由开挖系统、推进系统排土系统管片拼装系统、油压、电气、控制系统、资态控制装置、导向系统、壁后注浆装置、后方台车、集中润滑装置、超前钻机及预注浆、铰接装置、通风装置、土碴改良装置及其他一些重要装置如盾壳、稳定翼、人闸等组成。海瑞克公司在广州地铁使用的典型土压平衡式盾构机为主机结构(盾体及刀盘结构)断面形状:圆形、用钢板成型制成,材料为:S335J2G3。主要由已下部分构成:刀盘、主轴承、前体、中体、推进油缸、

铰接油缸、盾尾、管片安装机。主机外形尺寸:7565mm(L)X6250(前体)X6240(中体)X6230(盾尾)。 ①压缩空气式盾构 1886 年Greatbhad 首次在盾构掘进隧道中引了这种工法,该工法利用压缩空气使整个盾构都防止地下水的侵入, 它可在游离水体下或地下水位下运作。其工作原理是利用用压缩空气来平衡水压和土压。传统的压缩空气式盾构要求在隧道工作面和止水隧道之间封闭一个相对较大的工作腔,大部分工人经常处于压缩空气下, 这会对掘进隧道和衬砌造成干扰,为了解决这些问题,又出现了用无压工作腔及全断面开挖的压缩空气式盾构和带有无压工作腔及部分断面开挖的压缩空气式盾构等。 ②土压平衡式盾构 20 世纪70 年代日本就开发土压平衡式盾构,不用辅助的支撑介质,切割轮开挖出的材料可作为支撑介质。该法用旋转的刀盘开挖地层,挖下的渣料通过切割轮的开口被压入开挖腔,然后在开挖腔内与塑性土浆混合。推力由压力舱壁传递到土浆上。当开挖腔内的土浆不再被当地的土和水压固化时就达到平衡。如果土浆的支撑压增大超过了平衡,开挖腔的土浆和在工作面的地层将进一步固化。与泥浆式盾构相比优点在于:无分离设备在淤泥或粘土地层中使用,覆盖层浅时无贯穿浆化的支撑泥浆泄露的危险。 ③泥浆式盾构 1912 年,Grauel 首次建造了泥浆式盾构。该法可以适用于各种松

相关主题
文本预览
相关文档 最新文档