当前位置:文档之家› 高中数学复习——数列的极限

高中数学复习——数列的极限

高中数学复习——数列的极限
高中数学复习——数列的极限

●知识梳理

1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n }的项a n 无限地趋近于某个常数a (即|a n -a |无限地接近于0),那么就说数列{a n }以a 为极限.

注:a 不一定是{a n }中的项.

2.几个常用的极限:①∞

→n lim C =C (C 为常数);②∞

→n lim

n

1

=0;③∞→n lim q n =0(|q |<1).

3.数列极限的四则运算法则:设数列{a n }、{b n }, 当∞

→n lim a n =a , ∞

→n lim b n =b 时,∞

→n lim (a n ±b n )=a ±b ;

→n lim (a n ·b n )=a ·b ; ∞

→n lim

n n b a =b

a

(b ≠0). 特别提示

(1)a n 、b n 的极限都存在时才能用四则运算法则; (2)可推广到有限多个.

1.下列极限正确的个数是

①∞→n lim αn 1

=0(α>0) ②∞→n lim q n =0 ③∞

→n lim

n

n n n 3232+-=-1 ④∞

→n lim C =C (C 为常数)

A.2

B.3

C.4

D.都不正确 解析:①③④正确. 答案:B 2. ∞

→n lim [n (1-

31)(1-41)(1-51)…(1-2

1+n )]等于 A.0

B.1

C.2

D.3

解析: ∞→n lim [n (1-31)(1-41)(1-51)…(1-2

1

+n )]

=∞→n lim [n ×32×43×54×…×2

1

++n n ] =∞→n lim 2

2+n n

=2. 答案:C

3.下列四个命题中正确的是 A.若∞

→n lim a n 2=A 2,则∞

→n lim a n =A

B.若a n >0,∞

→n lim a n =A ,则A >0

C.若∞

→n lim a n =A ,则∞

→n lim a n 2=A 2

D.若∞

→n lim (a n -b )=0,则∞

→n lim a n =∞

→n lim b n

解析:排除法,取a n =(-1)n ,排除A ; 取a n =n

1

,排除B;取a n =b n =n ,排除D . 答案:C

4.(2005年春季上海,2) ∞→n lim

n

n ++++ 212

=__________.

解析:原式=∞→n lim 2)1(2

++n n n =∞→n lim 2

21212n

n n +

+=0.

答案:0

5.(2005年春季北京,9) ∞→n lim 3

2222-+n n

n =____________.

解析:原式=∞→n lim

2

322

1n

n -+

=2

1. 答案:

21

【例1】 求下列极限: (1)∞

→n lim

7

57222+++n n n ;(2) ∞

→n lim (n n +2-n );

(3)∞

→n lim (

22n +24n +…+2

2n n ). 剖析:(1)因为分子分母都无极限,故不能直接运用商的极限运算法则,可通过变形分子分母同除以n 2后再求极限;(2)因n n +2与n 都没有极限,可先分子有理化再求极限;(3)因为极限的运算法则只适用于有限个数列,需先求和再求极限.

解:(1)∞

→n lim

7

57

222

+++n n n =∞→n lim 2

2

757

12n

n n +++

=52.

(2)∞

→n lim (n n +2-n )= ∞

→n lim

n

n n n ++2=∞

→n lim

1111++

n

=

2

1. (3)原式=∞

→n lim

22642n n ++++ =∞→n lim 2)1(n n n +=∞→n lim (1+n

1)=1. 评述:对于(1)要避免下面两种错误:①原式=)

75(lim )72(lim 22+++∞

→∞→n n n n n =∞∞

=1,②∵∞→n lim (2n 2

+n +7), ∞

→n lim (5n 2+7)不存在,∴原式无极限.对于(2)要避免出现下面两种错误:

①∞

→n lim (n n +2-n )= ∞

→n lim

n n +2-∞

→n lim n =∞-∞=0;②原式=∞

→n lim

n n +2-∞

→n lim n =

∞-∞不存在.对于(3)要避免出现原式=∞

→n lim

22n +∞→n lim 2

4n +…+∞→n lim

22n n

=0+0+…+0=0这样的错误.

【例2】 已知数列{a n }是由正数构成的数列,a 1=3,且满足lg a n =lg a n -1+lg c ,其中n 是大于1的整数,c 是正数.

(1)求数列{a n }的通项公式及前n 和S n ;

(2)求∞

→n lim

1

122+-+-n n

n n a a 的值.

解:(1)由已知得a n =c·a n -1,

∴{a n }是以a 1=3,公比为c 的等比数列,则a n =3·cn -

1.

∴S n =?

??

??≠>--=).

10(1)

1(3)1(3c c c

c c n n 且

(2) ∞

→n lim

1

122+-+-n n n n a a =∞→n lim n

n n n c c 32321

1+---. ①当c =2时,原式=-

4

1; ②当c>2时,原式=∞→n lim c c c n n 3)2(23

)2

(11+?---=-c 1;

③当0<c<2时,原式=∞→n lim 11

)2

(32)2(31--?+-n n c c c =21.

评述:求数列极限时要注意分类讨论思想的应用.

【例3】 已知直线l :x -ny =0(n ∈N *),圆M :(x +1)2+(y +1)2=1,抛物线?:y =(x -1)

2

,又l 与M 交于点A 、B ,l 与?交于点C 、D ,求∞→n lim 2

2

||||CD AB .

剖析:要求∞→n lim 2

2

||||CD AB 的值,必须先求它与n 的关系.

解:设圆心M (-1,-1)到直线l 的距离为d ,则d 2

=1

)1(22

+-n n .

又r =1,∴|AB |2=4(1-d 2)=

2

18n

n

+. 设点C (x 1,y 1), D (x 2,y 2),

由???-==-2

)

1(0x y ny x ?nx 2-(2n +1)x +n =0, ∴x 1+x 2=

n

n 1

2+, x 1·x 2=1. ∵(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=2

14n n +,(y 1-y 2

)2

=(n x 1-n x 2)2=414n n +, ∴|CD |2=(x 1-x 2)2+(y 1-y 2)2 =41

n

(4n +1)(n 2+1). ∴∞→n lim 22||||CD AB =∞→n lim 225)1)(14(8++n n n =∞→n lim 2

)

11)(14(8

n

n ++=2. 评述:本题属于解析几何与数列极限的综合题.要求极限,需先求2

2

|

|||CD AB ,这就要求掌握求弦长的方法.

【例4】 若数列{a n }的首项为a 1=1,且对任意n ∈N *,a n 与a n +1恰为方程x 2-b n x +c n =0的两根,其中0<|c |<1,当∞

→n lim (b 1+b 2+…+b n )≤3,求c 的取值范围.

解:首先,由题意对任意n ∈N *,a n ·a n +1=c n 恒成立.

∴121+++??n n n n a a a a =n n a a 2+=n n c

c 1+=c .又a 1·a 2=a 2=c .

∴a 1,a 3,a 5,…,a 2n -1,…是首项为1,公比为c 的等比数列,a 2,a 4,a 6,…,a 2n ,…是首项为c ,公比为

c 的等比数列.其次,由于对任意n ∈N *,a n +a n +1=b n 恒成立.

n

n b b 2+=13

2+++++n n n n a a a a =c .又b 1=a 1+a 2=1+c ,b 2=a 2+a 3=2c , ∴b 1,b 3,b 5,…,b 2n -1,…是首项为1+c ,公比为c 的等比数列,b 2,b 4,b 6,…,b 2n ,…是首项为2c ,公

比为c 的等比数列,

∴∞

→n lim (b 1+b 2+b 3+…+b n )= ∞

→n lim (b 1+b 3+b 5+…)+ ∞

→n lim (b 2+b 4+…)=

c c -+11+c

c

-12≤3. 解得c ≤

31或c >1.∵0<|c |<1,∴0<c ≤3

1

或-1<c <0. 故c 的取值范围是(-1,0)∪(0,3

1

].

评述:本题的关键在于将题设中的极限不等式转化为关于c 的不等式,即将{b n }的各项和表示为关于c 的解析式,显然“桥梁”应是一元二次方程根与系数的关系,故以根与系数的关系为突破口.

夯实基础

1.已知a 、b 、c 是实常数,且∞→n lim c bn c

an ++=2, ∞→n lim b cn c bn --22=3,则∞→n lim a

cn c an ++22的值是

A.2

B.3

C.2

1

D.6 解析:由∞

→n lim

c

bn c

an ++=2,得a =2b . 由∞→n lim b cn c bn --22=3,得b =3c ,∴c =3

1b . ∴

c

a =6. ∴∞→n lim a cn c an ++22

=∞→n lim

2

2n

a c n c a ++

=c

a =6. 答案:D

2.(2003年北京)若数列{a n }的通项公式是a n =2

)

23()1(23n n n n n ------++,n =1,2,…,

则∞

→n lim (a 1+a 2+…+a n )等于

A.

2411 B.2417 C.2419 D.24

25 解析:a n =???

?

???-++--+--------),

(2

2

323),

(2

)

23(23为偶数为奇数n n n

n n

n

n n n n 即a n =????

?--).

3

),

(2(

为偶数为奇数n n n n

∴a 1+a 2+…+a n =(2-

1+2-

3+2-

5+…)+(3-

2+3-

4+3-

6+…).

∴∞→n lim (a 1+a 2+…+a n )=4112

13132122

2

21-=-+-----+9

1191

-

=.2419

答案:C

3.(2004年春季上海)在数列{a n }中,a 1=3,且对任意大于1的正整数n ,点(n a ,1-n a )在直线x -y -3=0上,则∞

→n lim

2

)1(+n a n =__________________.

解析:由题意得n a -1-n a =3 (n ≥2). ∴{n a }是公差为3的等差数列,1a =3. ∴n a =3+(n -1)·3=3n . ∴a n =3n 2.

∴∞→n lim 2)1(+n a n

=∞→n lim 1

2322++n n n =∞

→n lim

2

1213

n

n ++=3.

答案:3

4.(2004年 上海,4)设等比数列{a n }(n ∈N )的公比q =-

2

1

,且∞→n lim (a 1+a 3+a 5+…+a 2n

-1

)=

3

8

,则a 1=_________________. 解析:∵q =-2

1,∴∞→n lim (a 1+a 3+a 5+…+a 2n -1)=4

111-

a =38

.∴a 1=2.

答案:2

5.(2004年湖南,理8)数列{a n }中,a 1=

5

1

,a n +a n +1=156+n ,n ∈N *,则∞→n lim (a 1+a 2+…+a n )等

A.

52 B.72 C.41 D.25

4

解析:2(a 1+a 2+…+a n )=a 1+[(a 1+a 2)+(a 2+a 3)+(a 3+a 4)+…+(a n -1+a n )]+a n =51

+[25

6+356+…+n 56]+a n .

∴原式=21[51+5

11256

-+∞→n lim a n ]=21(51+103

+∞→n lim a n ).

∵a n +a n +1=

1

56+n ,∴∞

→n lim a n +∞

→n lim a n +1=0.

∴∞

→n lim a n =0.

答案:C

6.已知数列{a n }满足(n -1)a n +1=(n +1)(a n -1)且a 2=6,设b n =a n +n (n ∈N *). (1)求{b n }的通项公式; (2)求∞

→n lim (

212-b +213-b +214-b +…+2

1

-n b )的值. 解:(1)n =1时,由(n -1)a n +1=(n +1)(a n -1),得a 1=1.

n =2时,a 2=6代入得a 3=15.同理a 4=28,再代入b n =a n +n ,有b 1=2,b 2=8,b 3=18,b 4=32,由此猜想b n =2n 2.

要证b n =2n 2,只需证a n =2n 2-n . ①当n =1时,a 1=2×12-1=1成立. ②假设当n =k 时,a k =2k 2-k 成立.

那么当n =k +1时,由(k -1)a k +1=(k +1)(a k -1),得a k +1=1

1

-+k k (a k -1) =

11-+k k (2k 2-k -1)=1

1

-+k k (2k +1)(k -1)=(k +1)(2k +1)=2(k +1)2-(k +1). ∴当n =k +1时,a n =2n 2-n 正确,从而b n =2n 2. (2)∞

→n lim (

212-b +213-b +…+21-n b )=∞→n lim (61+16

1

+…+2212-n )

=

21∞→n lim [

311?+4

21

?+…+)1)(1(1+-n n ] =

41∞→n lim [1-31+21-41+…+

11-n -11

+n ] =41∞→n lim [1+21-n 1-11+n ]=8

3. 能力提高

7.已知数列{a n }、{b n }都是无穷等差数列,其中a 1=3,b 1=2,b 2是a 2与a 3的等差中项,且

→n lim

n n b a =21,求极限∞→n lim (111b a +221b a +…+n

n b a 1)的值.

解:{a n }、{b n }的公差分别为d 1、d 2.

∵2b 2=a 2+a 3,即2(2+d 2)=(3+d 1)+(3+2d 1), ∴2d 2-3d 1=2.

又∞

→n lim

n n b a =∞→n lim 21)1(2)1(3d n d n -+-+=21d d =2

1,即d 2=2d 1, ∴d 1=2,d 2=4.

∴a n =a 1+(n -1)d 1=2n +1,b n =b 1+(n -1)d 2=4n -2. ∴

n n b a 1=)24()12(1-?+n n =41(121-n -1

21+n ). ∴原式=∞

→n lim

41(1-1

21+n )=41. 8.已知数列{a n }、{b n }都是由正数组成的等比数列,公比分别为p 、q ,其中p >q 且p ≠1,q ≠1,设c n =a n +b n ,S n 为数列{c n }的前n 项和,求∞

→n lim

1

-n n

S S . 解:S n =p p a n --1)1(1+q

q b n --1)1(1,

.1)

1(1)1(1)

1(1)1(1111111

q

q b p p a q q b p p a S S n n n n n n --+

----+

--=--- 当p >1时,p >q >0,得0<

p

q <1,上式分子、分母同除以p n -

1,得 .1]

)(1

[1)11(1)1

(1)1

(11111111111

q

p q p

b p p a q p

q p b p p p a S S n n n n n

n n n n --+

----+

--=-------

∴∞

→n lim

1

-n n

S S =p . 当p <1时,0<q <p <1, ∞

→n lim

1

-n n S S =q

b p a q b

p a -+

--+-11111

11

1=1. 探究创新

9.已知数列{a n }满足a 1=0,a 2=1,a n =2

2

1--+n n a a ,求∞→n lim a n . 解:由a n =

2

2

1--+n n a a ,得

2a n +a n -1=2a n -1+a n -2,∴{2a n +a n -1}是常数列. ∵2a 2+a 1=2,∴2a n +a n -1=2.

∴a n -32=-21(a n -1-32). ∴{a n -32}是公比为-21,首项为-32

的等比数列.

∴a n -32=-32×(-21)n -

1.

∴a n =32-32×(-2

1)n -

1.

∴∞→n lim a n =3

2

.

教学点睛

1.数列极限的几种类型:∞-∞,

,0-0,00等形式,必须先化简成可求极限的类型再用

四则运算求极限,另外还有先求和,约分后再求极限,对含参数的题目一定要控制好难度,

不要太难了.

拓展题例

【例题】 已知等比数列{a n }的首项为a 1,公比为q ,且有∞

→n lim (

q a +11-q n )=2

1

,求首项a 1

的取值范围.

解: ∞

→n lim (

q a +11-q n )=2

1

, ∴∞

→n lim q n 一定存在.∴0<|q |<1或q =1.

当q =1时,

2

1a -1=21

,∴a 1=3.

当0<|q |<1时,由∞

→n lim (

q a +11-q n )=21得q a +11=2

1

,∴2a 1-1=q . ∴0<|2a 1-1|<1.∴0<a 1<1且a 1≠2

1

. 综上,得0<a 1<1且a 1≠2

1

或a 1=3.

数列的极限-高中数学知识点讲解

数列的极限 1.数列的极限 【知识点的知识】 1、数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列{a n}的项a n 无限趋近于某个常数a(即|a n﹣a|无限地接近于 0), 那么就说数列{a n}以a 为极限,记作???a n=a.(注:a 不一定是{a n}中的项) ?→∞ 2、几个重要极限: 3、数列极限的运算法则: 4、无穷等比数列的各项和: (1)公比的绝对值小于 1 的无穷等比数列前n 项的和,当n 无限增大时的极限,叫做这个无穷等比数列各项的和,记做S =???S n. ?→∞ (2) 1/ 3

【典型例题分析】 典例 1:已知数列{a n}的各项均为正数,满足:对于所有n∈N*,有4??=(??+1)2,其中S n 表示数列{a n}的前n 项? 和.则??? ? ? =() ?→∞ 1 A.0 B.1 C. 2D.2 解:∵4S1=4a1=(a1+1)2, ∴a1=1.当n≥2 时,4a n=4S n﹣4S n﹣1=(a n+1)2﹣(a n﹣1+1)2, ∴2(a n+a n﹣1)=a n2﹣a n﹣12,又{a n}各项均为正数, ∴a n﹣a n﹣1=2.数列{a n}是等差数列, ∴a n=2n﹣1. ??1∴???2?―1= ???2―1 ? ? =??? ?→∞?→∞?→∞ ?= 1 2 . 故选:C. 典例 2:已知点P n(a n,b n)在直线l:y=2x+1 上,P1 为直线l 与y 轴的交点,等差数列{a n}的公差为 1(n∈N*).(1)求数列{a n}、{b n}的通项公式; (2)设 c n = 1 ?|?1??|(?≥2),求???(?2+?3+?+ ? ? )的值; ?→∞ (3)若d n=2d n﹣1+a n﹣1(n≥2),且d1=1,求证:数列{d n+n}为等比数列,并求{d n}的通项公式.解:(1)∵点P n(a n,b n)在直线l:y=2x+1 上,P1 为直线l 与y 轴的交点, ∴b n=2a n+1,a1=0, ∵等差数列{a n}的公差为 1(n∈N*), ∴a n=0+(n﹣1)=n﹣1. b n=2(n﹣1)+1=2n﹣1. (2)解:由(1)可得a n﹣a1=n﹣1,b n﹣b1=2n﹣1﹣1=2n﹣2,

高中数学复习――数列的极限

●知识梳理 1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n }的项a n 无限地趋近于某个常数a (即|a n -a |无限地接近于0),那么就说数列{a n }以a 为极限. 注:a 不一定是{a n }中的项. 2.几个常用的极限:①∞→n lim C =C (C 为常数);②∞→n lim n 1 =0;③∞ →n lim q n =0(|q |<1). 3.数列极限的四则运算法则:设数列{a n }、{b n }, 当∞ →n lim a n =a , ∞ →n lim b n =b 时,∞ →n lim (a n ±b n )=a ±b ; ∞ →n lim (a n ·b n )=a ·b ; ∞ →n lim n n b a =b a (b ≠0). 特别提示 (1)a n 、b n 的极限都存在时才能用四则运算法则; (2)可推广到有限多个. 1.下列极限正确的个数是 ①∞→n lim αn 1 =0(α>0) ②∞→n lim q n =0 ③∞ →n lim n n n n 3232+-=-1 ④∞ →n lim C =C (C 为常数) A.2 B.3 C.4 D.都不正确 解析:①③④正确. 答案:B 2. ∞→n lim [n (1-31)(1-41)(1-51)…(1-21 +n )]等于 A.0 B.1 C.2 D.3 解析: ∞→n lim [n (1-31)(1-41)(1-51)…(1-2 1 +n )] =∞→n lim [n ×32×43×54×…×2 1 ++n n ] =∞→n lim 22+n n =2. 答案:C 3.下列四个命题中正确的是 A.若∞ →n lim a n 2=A 2,则∞ →n lim a n =A B.若a n >0,∞ →n lim a n =A ,则A >0 C.若∞ →n lim a n =A ,则∞ →n lim a n 2=A 2

数列极限的概念(经典课件)

第二章 数列极限 引言: 在第一章中我们已经指出,数学分析课程研究的对象是定义在实数集上的函数,那么数学分析用什么方法研究实数集上的函数呢?从本质上来说,这个方法就是极限。极限思想和方法贯穿于数学分析课程的始终,几乎所有的概念都离不开极限,是我们数学分析课程的基础。 §1 数列极限的概念 教学内容:数列极限的概念,应用定义证明简单数列的极限,无穷小数列。 教学要求:使学生逐步建立起数列极限的N ε-定义的清晰概念。深刻理解数列发散、单调、有界和无穷小 数列等有关概念。会应用数列极限的N ε-定义证明数列的有关命题,并能运用N ε-语言正确表述数列不以某实数为极限等相应陈述。 教学重点:数列极限的概念。 教学难点:数列极限的N ε-定义及其应用。 教学方法:讲授为主。 教学学时:2学时。 一、数列概念: 1.数列的定义: 简单的说,数列就是“一列数”,是有一定的规律,有一定次序性的“一列数”。 若函数f 的定义域为全体正整数集合N +,则称:f N R +→或+∈N n n f ),(为数列。 若记()n f n a =,则数列n n n f ,2,1),(=就可写作为:12,,,, n a a a ,简记为{}n a ,其中n a 称为 该数列的通项。 2.数列的例子: (1)(1)111:1,,,, 234n n ??---???? ; (2)11111:2,1,1,1,435 n ? ?+ +++???? (3){}2 :1,4,9,16,25, n ; (4){}1 1(1) :2,0,2,0,2, n ++- 二、数列极限的概念: 1.引言: 对于这个问题,先看一个例子:古代哲学家庄周所著的《庄子. 天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭”。把每天截下的部分的长度列出如下(单位为尺): 第1天截下 12,第2天截下2111222?=,第3天截下23111222?=,…,第n 天截下1111 222 n n -?=,… 得到一个数列:? ?? ?? ?n 21: 231111 ,,,,,2222n 不难看出,数列12n ?? ? ??? 的通项12n 随着n 的无限增大而无限地接近于零。 一般地说,对于数列{}n a ,若当n 无限增大时,n a 能无限地接近某一个常数a ,则称此数列为收敛数列,常数a 称为它的极限。不具有这种特性的数列就不是收敛的数列,或称为发散数列。

上海高中数学数列的极限(完整资料)

【最新整理,下载后即可编辑】 7.6 数列的极限 课标解读: 1、理解数列极限的意义; 2、掌握数列极限的四则运算法则。 目标分解: 1、数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{}n a 的项n a 无限地趋近于某个常数a (即||a a n -无限地接近于0),那么就说数列{}n a 以a 为极限。 注:a 不一定是{}n a 中的项。 2、几个常用的极限:①C C n =∞→lim (C 为常数);②01lim =∞→n n ;③ ) 1|(|0lim <=∞ →q q n n ; 3、数列极限的四则运算法则:设数列{}n a 、{}n b , 当 a a n n =∞ →lim , b b n n =∞ →lim 时,b a b a n n n ±=±∞→)(lim ; b a b a n n n ?=?∞ →)(lim ; )0(lim ≠=∞→b b a b a n n n 4、两个重要极限: ① ?? ???<=>=∞→00100 1lim c c c n c n 不存在

②?? ???-=>=<=∞ →11||111||0 lim r r r r r n n 或不存在 问题解析: 一、求极限: 例1:求下列极限: (1) 3 21 4lim 22 +++∞→n n n n (2) 2 4323lim n n n n n -+∞→ (3) )(lim 2n n n n -+∞ → 例2:求下列极限: (1) )23741(lim 2222n n n n n n -++++∞→ ; (2) ])23()13(11181851521[lim +?-++?+?+?∞→n n n 例3:求下式的极限:

高中数学教案:极限与导数极限的概念

极 限 的 概 念(4月27日) 教学目的:理解数列和函数极限的概念; 教学重点:会判断一些简单数列和函数的极限; 教学难点:数列和函数极限的理解 教学过程: 一、实例引入: 例:战国时代哲学家庄周所著的《庄子·天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭。”也就是说一根长为一尺的木棒,每天截去一半,这样的过程可以无限制地进行下去。(1)求第n 天剩余的木棒长度n a (尺),并分析变化趋势;(2)求前n 天截下的木棒的总长度n b (尺),并分析变化趋势。 观察以上两个数列都具有这样的特点:当项数n 无限增大时,数列的项n a 无限趋近于某个常数A (即A a n -无限趋近于0)。n a 无限趋近于常数A ,意指“n a 可以任意地靠近A ,希望它有多近就有多近,只要n 充分大,就能达到我们所希望的那么近。”即“动点n a 到A 的距离A a n -可以任意小。 二、新课讲授 1、数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于..... 某个常数A (即A a n -无限趋近于0) ,那么就说数列}{n a 的极限是A ,记作 A a n n =∞ →lim 注:①上式读作“当n 趋向于无穷大时,n a 的极限等于A ”。“n →∞”表示“n 趋向于无穷大”,即n 无限增大的意思。A a n n =∞ →lim 有时也记作当n →∞时,n a →A ②引例中的两个数列的极限可分别表示为_____________________,____________________ ③思考:是否所有的无穷数列都有极限? 例1:判断下列数列是否有极限,若有,写出极限;若没有,说明理由 (1)1, 21,31,…,n 1,… ;(2)21,32,43,…,1 +n n ,…;

高中数学--极限

高中数学-极 限 考试内容: 教学归纳法.数学归纳法应用. 数列的极限. 函数的极限.根限的四则运算.函数的连续性. 考试要求: (1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. (2)了解数列极限和函数极限的概念. (3)掌握极限的四则运算法则;会求某些数列与函数的极限. (4)了解函数连续的意义,了解闭区间上连续函数有最大值和最小值的性质. §13. 极 限 知识要点 1. ⑴第一数学归纳法:①证明当n 取第一个0n 时结论正确;②假设当k n =(0,n k N k ≥∈+)时,结论正确,证明当1+=k n 时,结论成立. ⑵第二数学归纳法:设)(n P 是一个与正整数n 有关的命题,如果 ①当0n n =(+∈N n 0)时,)(n P 成立; ②假设当k n ≤(0,n k N k ≥∈+)时,)(n P 成立,推得1+=k n 时,)(n P 也成立. 那么,根据①②对一切自然数0n n ≥时,)(n P 都成立. 2. ⑴数列极限的表示方法: ①a a n n =∞ →lim ②当∞→n 时,a a n →. ⑵几个常用极限: ①C C n =∞ →lim (C 为常数) ②),(01 lim 是常数k N k n k n ∈=∞→ ③对于任意实常数, 当1|| a 时,0lim =∞ →n n a 当1=a 时,若a = 1,则1lim =∞→n n a ;若1-=a ,则n n n n a )1(lim lim -=∞ →∞→不存在 当1 a 时,n n a ∞ →lim 不存在 ⑶数列极限的四则运算法则: 如果b b a a b n n n ==∞ →∞→lim ,lim ,那么 ①b a b a n n n ±=±∞ →)(lim

《数列极限的运算法则》教案(优质课)

《数列极限的运算法则》教案 【教学目标】:掌握数列极限的运算法则,并会求简单的数列极限的极限。 【教学重点】:运用数列极限的运算法则求极限 【教学难点】:数列极限法则的运用 【教学过程】: 一、复习引入: 函数极限的运算法则:如果,)(lim ,)(lim 0 B x g A x f x x x x ==→→则[]= ±→)()(lim 0 x g x f x x ___ []=→)().(lim 0 x g x f x x ____,=→) () (lim x g x f x x ____(B 0≠) 二、新授课: 数列极限的运算法则与函数极限的运算法则类似: 如果,lim ,lim B b A a n n n n ==∞ →∞ →那么 B A b a n n n +=+∞ →)(lim B A b a n n n -=-∞ →)(lim B A b a n n n .).(lim =∞ → )0(lim ≠=∞→B B A b a n n n 推广:上面法则可以推广到有限..多个数列的情况。例如,若{}n a ,{}n b ,{} n c 有极限,则:n n n n n n n n n n c b a c b a ∞ →∞ →∞ →∞ →++=++lim lim lim )(lim 特别地,如果C 是常数,那么CA a C a C n n n n n ==∞ →∞ →∞ →lim .lim ).(lim 三、例题: 例1.已知,5lim =∞ →n n a 3lim =∞→n n b ,求).43(lim n n n b a -∞ →

例2.求下列极限: (1))45(lim n n +∞→; (2)2)11 (lim -∞→n n 例3.求下列有限: (1)1312lim ++∞→n n n (2)1 lim 2-∞→n n n 分析:(1)(2)当n 无限增大时,分式的分子、分母都无限增大,分子、分母都没有极限,上面的极限运算法则不能直接运用。 例4.求下列极限: (1) )1 1 2171513( lim 2222+++++++++∞ →n n n n n n (2))39312421( lim 1 1 --∞→++++++++n n n

高一数学思维导图

高一数学思维导图 (0)=01、函数在某个区间递增(或减)与单调区间是某个区间的含义不同; 2、证明单调性:作差(商); 3、复合函数的单调性最值二次函数、基本不等式、双钩(耐克)函数、三角函数有界性、数形结合、导数、幂函数对数函数三角函数基本初等函数抽象函数复合函数赋值法、典型的函数函数与方程二分法、图象法、二次及三次方程根的分布零点函数的应用建立函数模型使解析式有意义函数表示方法换元法求解析式分段函数注意应用函数的单调性求值域周期为T的奇函数→f (T)=f ()=f (0)=0复合函数的单调性:同增异减一次、二次函数、反比例函数指数函数图象、性质和应用平移变换对称变换翻折变换伸缩变换图象及其变换必修二 立体几何点与线空间点、线、面的位置关系点在直线上点在直线外点与面点在面内点在面外线与线共面直线异面直线相交平行没有公共点只有一个公共点线与面平行相交有公共点没有公共点直线在平面外直线在平面内面与面平行相交平行关系的相互转化垂直关系的相互转化线线平行线面平行面面平行线线垂直线面垂直面面垂直空间的角异面直线所成的角直线与平面所成的角二面角范围:(0,90]范围:[0,90]范围:[0,180]点到面的距离直线与平面的距离平行平面之间的距离相互之间的转化空间的距

离空间几何体柱体棱柱圆柱正棱柱、长方体、正方体台体棱台圆台锥体棱锥圆锥球三棱锥、四面体、正四面体直观图侧面积、表面积三视图体积长对正高平齐宽相等必修二 解析几何倾斜角和斜率直线的方程位置关系直线方程的形式倾斜角的变化与斜率的变化重合平行相交垂直A1B2-A2B1=0A1B2-A2B1≠0A1A2+B1B2=0点斜式:y-y0=k(x-x0)斜截式:y=kx+b两点式:=截距式:+=1一般式:Ax+By+C=0注意各种形式的转化和运用范围、两直线的交点距离点到线的距离:d=,平行线间距离:d=圆的方程圆的标准方程圆的一般方程直线与圆的位置关系两圆的位置关系相离相切相交D<0,或d>rD=0,或d=rD>0,或d<r截距注意:截距可正、可负,也可为0、必修三 统计、概率、算法统计随机抽样抽签法随机数表法简单随机抽样系统抽样分层抽样共同特点:抽样过程中每个个体被抽到的可能性(概率)相等用样本估计总体样本频率分布估计总体总体密度曲线频率分布表和频率分布直方图茎叶图样本数字特征估计总体众数、中位数、平均数方差、标准差变量间的相关关系两个变量的线性相关散点图回归直线概率概率的基本性质互斥事件对立事件古典概型几何概型P(A+B)=P(A)+P(B)P(`A)=1-P(A)概括性、逻辑性、有穷性、不唯一性、普遍性顺序结构条件结构循环结构算法语言算法的特征程序框图基本算法语言算法案例辗转相除法、更相减损术、秦九韶算法、进位制必修四

高中数学复习数列的极限

●知识梳理 1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n }的项a n 无限地趋近于某个常数a (即|a n -a |无限地接近于0),那么就说数列{a n }以a 为极限. 注:a 不一定是{a n }中的项. 2.几个常用的极限:①∞ →n lim C =C (C 为常数);②∞ →n lim n 1 =0;③∞→n lim q n =0(|q |<1). 3.数列极限的四则运算法则:设数列{a n }、{b n }, 当∞ →n lim a n =a , ∞ →n lim b n =b 时,∞ →n lim (a n ±b n )=a ±b ; ∞ →n lim (a n ·b n )=a ·b ; ∞ →n lim n n b a =b a (b ≠0). 特别提示 (1)a n 、b n 的极限都存在时才能用四则运算法则; (2)可推广到有限多个. 1.下列极限正确的个数是 ①∞→n lim αn 1 =0(α>0) ②∞→n lim q n =0 ③∞ →n lim n n n n 3232+-=-1 ④∞ →n lim C =C (C 为常数) A.2 B.3 C.4 D.都不正确 解析:①③④正确. 答案:B 2. ∞→n lim [n (1- 31)(1-41)(1-51)…(1-21+n )]等于 A.0 B.1 C.2 D.3 解析: ∞→n lim [n (1-31)(1-41)(1-51)…(1-2 1 +n )] =∞→n lim [n ×32×43×54×…×2 1 ++n n ] =∞→n lim 22+n n =2. 答案:C 3.下列四个命题中正确的是 A.若∞ →n lim a n 2=A 2,则∞ →n lim a n =A B.若a n >0,∞ →n lim a n =A ,则A >0 C.若∞ →n lim a n =A ,则∞ →n lim a n 2=A 2

高中数学极限知识点

极限 一、数列的极限: 对于数列{}n x ,如果当n 无限增大时,数列的相应项n x 无限趋近一个确定的常数A ,则称当n 趋于无穷时,数列{}n x 以A 为极限,记为 )(lim ∞→→=∞ →n A x A x n n n 或 式子中“→”读作“趋于”,这时也称数列{}n x 是收敛的,若数列{}n x 没有极限,则称数列{}n x 是发散的 二、函数的极限 1.当∞→x 时函数的极限 2.当+∞→x 或-∞→x 时函数的极限 得到一个充要条件是:A x f x =∞→)(lim 的充要条件是A x f x f x x ==-∞ →+∞→)(lim )(lim 3.当0x x →时函数的极限 4.当+→0x x 或- →0x x 时函数的极限 得到一个充要条件是:A x f x x =→)(lim 0的充要条件是A x f x f x x x x ==-+→→)(lim )(lim 00 三、极限的运算法则 (1)极限的唯一性 如果极限)(lim 0x f x x →存在,则它只有一个极限,即若A x f x x =→)(lim 0,B x f x x =→)(lim 0,则A=B (2)极限的运算法则 设B x v A x u ==)(lim ,)(lim 则有 (1)[]B A x v x u x v x u ±=±=±)(lim )(lim )()(lim (2)[]B A x v x u x v x u ?=?=?)(lim )(lim )()(lim (3)当0)(lim ≠=B x v 时,B A x v x u x v x u ==)(lim )(lim )()(lim 推论1 如果)(lim 0 x u x x →存在,c 为常数,则)(lim ))((lim 00x u c x cu x x x x →→= 推论2 如果)(lim 0x u x x →存在,N n ∈,则n x x n x x x u x u )](lim [)]([lim 0 0→→= 四、函数的间断点 间断点的分类:

高三数学试题数列的极限

数列的极限 1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n }的项a n 无限地趋近于某个常数a (即|a n -a |无限地接近于0),那么就说数列{a n }以a 为极限. 注:a 不一定是{a n }中的项. 2.几个常用的极限:①∞ →n lim C =C (C 为常数);②∞ →n lim n 1 =0;③∞→n lim q n =0 (|q |<1). 3.数列极限的四则运算法则:设数列{a n }、{b n }, 当∞ →n lim a n =a , ∞ →n lim b n =b 时,∞ →n lim (a n ±b n )=a ±b ; ∞ →n lim (a n ·b n )=a ·b ; ∞ →n lim n n b a =b a ( b ≠0). ●点击双基 1.下列极限正确的个数是 ①∞ →n lim α n 1=0(α>0) ②∞ →n lim q n =0 ③∞ →n lim n n n n 3 232+-=-1 ④∞ →n lim C =C (C 为常数) A.2 B.3 C.4 D.都不正确 解析:①③④正确. 答案:B 2. ∞ →n lim [n (1-3 1)(1-4 1)(1-51) (1) 2 1 +n )]等于 A.0 B.1 C.2 D.3 解析: ∞ →n lim [n (1-3 1)(1-4 1)(1-5 1) (1) 2 1 +n )]

=∞ →n lim [n ×32×43×54×…×2 1++n n ] =∞ →n lim 2 2+n n =2. 答案:C ●典例剖析 【例1】 求下列极限: (1)∞ →n lim 7 5722 2+++n n n ;(2) ∞ →n lim ( n n +2-n ); (3)∞ →n lim ( 2 2n + 2 4n +…+2 2n n ). 剖析:(1)因为分子分母都无极限,故不能直接运用商的极限运算法则,可通过变形分子分母同除以n 2后再求极限;(2)因 n n +2与 n 都没有极限,可先分子有理化再求极限;(3)因为极限的运算法则只适用于有限个数列,需先求和再求极限. 解:(1)∞ →n lim 7 57 222 +++n n n =∞→n lim 2 2757 12n n n +++ =5 2. (2)∞ →n lim ( n n +2-n )= ∞ →n lim n n n n ++2=∞ →n lim 1111++ n =2 1. (3)原式=∞ →n lim 2 2642n n ++++Λ=∞ →n lim 2 )1(n n n +=∞→n lim (1+n 1 )=1. 评述:对于(1)要避免下面两种错误:①原式=) 75(lim ) 72(lim 22+++∞ →∞ →n n n n n =∞ ∞=1, ②∵∞ →n lim (2n 2+n +7), ∞ →n lim (5n 2+7)不存在,∴原式无极限.对于(2) 要避免出现下面两种错误: ①∞ →n lim ( n n +2-n )= ∞ →n lim n n +2-∞ →n lim n =∞-∞=0;②原式=∞ →n lim n n +2-∞ →n lim n =∞-∞不存在.

上海高中数学数列的极限

7.6 数列的极限 课标解读: 1、理解数列极限的意义; 2、掌握数列极限的四则运算法则。 目标分解: 1、数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{}n a 的项n a 无 限地趋近于某个常数 a (即||a a n -无限地接近于0),那么就说数列{}n a 以a 为极限。 注: a 不一定是{}n a 中的项。 2、几个常用的极限:①C C n =∞→lim (C 为常数);②01l i m =∞→n n ;③ ) 1|(|0lim <=∞ →q q n n ; 3、数列极限的四则运算法则:设数列{}n a 、{}n b , 当 a a n n =∞ →lim , b b n n =∞ →lim 时,b a b a n n n ±=±∞ →)(lim ; b a b a n n n ?=?∞ →)(lim ;)0(lim ≠=∞→b b a b a n n n 4、两个重要极限: ① ?? ???<=>=∞→00100 1lim c c c n c n 不存在 ②?? ?? ?-=>=<=∞→11||111||0 lim r r r r r n n 或不存在

问题解析: 一、求极限: 例1:求下列极限: (1) 3 21 4lim 22 +++∞→n n n n (2) 2 4 323lim n n n n n -+∞→ (3) )(lim 2n n n n -+∞ → 例2:求下列极限: (1) )23741( lim 2222n n n n n n -++++∞→ ; (2) ]) 23()13(11181851521[lim +?-++?+?+?∞→n n n 例3:求下式的极限: )2 ,0(,sin cos sin cos lim πθθθθθ∈+-∞→n n n n n 二、极限中的分数讨论: 例4:已知数列 {}n a 是由正数构成的数列,31=a ,且满足 c a a n n lg lg lg 1+=-,其中n 是大于1的整数,c 是正数。 (1) 求数列 {}n a 的通项公式及前n 项和n S ;

高中数学极限问题

第九讲 极限与探索性问题 【考点透视】 1.理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. 2.了解数列极限和函数极限的概念. 3.掌握极限的四则运算法则;会求某些数列与函数的极限. 4.了解函数连续的意义,了解闭区间上连续函数有最大值和最小值的性质. 【例题解析】 考点1 数列的极限 1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n }的项a n 无限地趋近于某个常数a (即|a n -a |无限地接近于0),那么就说数列{a n }以a 为极限. 注意:a 不一定是{a n }中的项. 2.几个常用的极限:①∞ →n lim C =C (C 为常数);②∞ →n lim n 1=0;③∞ →n lim q n =0(|q |<1). 3.数列极限的四则运算法则:设数列{a n }、{b n }, 当∞ →n lim a n =a , ∞ →n lim b n =b 时,∞ →n lim (a n ±b n )=a ±b ; 例1.数列{n a }满足:113 a =,且对于任意的正整数m,n 都有m n m n a a a +=?,则12lim()n n a a a →∞ ++ += ( ) A.12 B.23 C.32 D.2 [考查目的]本题考查无穷递缩等比数列求和公式和公式lim 0(1)n n q q →∞ =< 的应用. [解答过程]由113 a =和m n m n a a a +=?得23111,,.9273 n n a a a ==∴= 1211(1) 13 3lim()lim .1213 n n x x a a a →∞→∞-∴++???+==- 故选A. 例2.设常数0a >,4 21ax x ??+ ?? ?展开式中3 x 的系数为32,则2lim()n n a a a →∞++???+=_____. [考查目的]本题考查利用二项式定理求出关键数, 再求极限的能力.

高一数学思维导图

必修一集合与函数 集合映射 概念元素、集合之间的关系 运算:交、并、补数轴、Venn图、函数图象 性质确定性、互异性、无序性 定义表示 解析法 列表法 三要素 图象法 定义域 对应关系 值域 性质 奇偶性 周期性 对称性 单调性 定义域关于原点对称,在x=0处有定义的奇函数→f (0)=0 1、函数在某个区间递增(或减)与单调区间是某个区间的含义不同; 2、证明单调性:作差(商); 3、复合函数的单调性 最值 二次函数、基本不等式、双钩(耐克)函 数、三角函数有界性、数形结合、导数. 幂函数 对数函数 三角函数 基本初等函数 抽象函数 复合函数 赋值法、典型的函数 函数与方程二分法、图象法、二次及三次方程根的分布 零点 函数的应用建立函数模型 使解析式有意义 函数 表示方法 换元法求解析式 分段函数 注意应用函数的单调性求值域 周期为T的奇函数→f (T)=f (T 2 )=f (0)=0 复合函数的单调性:同增异减 一次、二次函数、反比例函数 指数函数 图象、性质 和应用 平移变换 对称变换 翻折变换 伸缩变换 图象及其变换

点与线 空间点、 线、面的 位置关系 点在直线上 点在直线外 点与面 点在面内 点在面外 线与线 共面直线 异面直线 相交 平行 没有公共点 只有一个公共点 线与面 平行 相交 有公共点 没有公共点 直线在平面外 直线在平面内 面与面 平行 相交 平行关系的相互转化 垂直关系的相互转化 线线 平行 线面 平行 面面 平行 线线 垂直 线面 垂直 面面 垂直 空间的角 异面直线所成的角 直线与平面所成的角 二面角 范围:(0?,90?] 范围:[0?,90?] 范围:[0?,180?] 点到面的距离 直线与平面的距离 平行平面之间的距离 相互之间的转化 空间的距离 空间几何体 柱体 棱柱 圆柱 正棱柱、长方体、正方体 台体 棱台 圆台 锥体 棱锥 圆锥 球 三棱锥、四面体、正四面体 直观图 侧面积、表面积 三视图 体积 长对正 高平齐 宽相等

高中数学 数列及数列的极限试题及答案

数列 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)在数列2,5,22,11,…中,如果52是这个数列中的一项,那么它的项数是( ). A .6 B .7 C .10 D .11 (2)数列0,2,0,2,…的通项为n a ,下列公式不能作为已知数列的通项公式的是( ). A .n n a )1(1-+= B . 2π )1(sin 22 -=n a n C .π)1cos(1+-=n a n D .1 )1(1--+=n n a (3)已知数列{n a }中,11=a ,32=a ,且 *)()1(1 221N ∈-=--++n a a a n n n n ,那么4a 等于( ). A .365 B .21 C .17 D .10 (4)n S 是数列}{n a 的前n 项和,且),3,2,1(log 3 ==n n S n ,那么数列}{n a ( ). A .是公比为3的等比数列 B .是公差为3的等差数列 C .是公比为31 的等比数列 D .既非等差数列也非等比数列 (5)等差数列}{n a 中,81073=-+a a a ,4411=-a a ,那么它的前13项和为( ). A .168 B .156 C .78 D .152 (6)等比数列}{n a 中,0>n a ,且362867564=+++a a a a a a ,则75a a +等于( ). A .6 B .12 C .18 D .24 (7)数列}{n a 中, n n a n ++= 11 ,若其前n 项和9=n S ,则n 等于( ). A .9 B .10 C .99 D .100 (8)若a ,b ,c 成等比数列,a ,m ,b 成等差数列,n 是b ,c 的等差中项,则n c m a + 的值为( ). A .4 B .3 C .2 D .1 (9)数列}{n a 中,已知n a n 211-=,记||||||||321n n a a a a S ++++= ,那么等

高中数学《数列的极限》教学设计

高中数学《数列的极限》教学设计 一、教学目标 1.知识与能力目标 ①使学生理解数列极限的概念和描述性定义。 ②使学生会判断一些简单数列的极限,了解数列极限的“e-N"定义,能利用逐步分析的方法证明一些数列的极限。 ③通过观察运动和变化的过程,归纳总结数列与其极限的特定关系,提高学生的数学概括能力和抽象思维能力。 2.过程与方法目标培养学生的极限的思想方法和独立学习的能力。 3.情感、态度、价值观目标使学生初步认识有限与无限、近似与精确、量变与质变的辩证关系,培养学生的辩证唯物主义观点。 二、教学重点和难点 教学重点:数列极限的概念和定义。教学难点:数列极限的“ε―N”定义的理解。

三、教学对象分析 这节课是数列极限的第一节课,足学生学习极限的入门课,对于学生来说是一个全新的内容,学生的思维正处于由经验型抽象思维向理论型抽象思维过渡阶段,在《立体几何》内容求球的表面积和体积时对极限思想已有接触,而学生在以往的数学学习中主要接触的是关于“有限”的问题,很少涉及“无限”的问题。极限这一抽象概念能够使他们做基于直观的理解,并引导他们作出描述性定义“当n无限增大时,数列{an}中的项an无限趋近于常数A,也就是an 与A的差的绝对值无限趋近于0”,并能用这个定义判断一些简单数列的极限。但要使他们在一节课内掌握“ε-N”语言求极限要求过高。因此不宜讲得太难,能够通过具体的几个例子,归纳研究一些简单的数列的极限。使学生理解极限的基本概念,认识什么叫做数列的极限以及数列极限的定义即可。 四、教学策略及教法设计 本课是采用启发式讲授教学法,通过多媒体课件演示及学生讨论的方法进行教学。通过学生比较熟悉的一个实际问

高中数学知识点精讲——极限和导数

第十二章 极限和导数 第十四章 极限与导数 一、基础知识 1.极限定义:(1)若数列{u n }满足,对任意给定的正数ε,总存在正数m ,当n>m 且n ∈N 时,恒有|u n -A|<ε成立(A 为常数),则称A 为数列u n 当n 趋向于无穷大时的极限,记为)(lim ),(lim x f x f x x -∞ →+∞ →, 另外)(lim 0 x f x x +→=A 表示x 大于x 0且趋向于x 0时f(x)极限为A ,称右极限。类似地)(lim 0 x f x x -→表示x 小 于x 0且趋向于x 0时f(x)的左极限。 2 极限的四则运算:如果0 lim x x →f(x)=a, 0 lim x x →g(x)=b ,那么0 lim x x →[f(x)±g(x)]=a ±b, lim x x →[f(x)?g(x)]=ab, 0 lim x x →).0()()(≠=b b a x g x f 3.连续:如果函数f(x)在x=x 0处有定义,且0 lim x x →f(x)存在,并且0 lim x x →f(x)=f(x 0),则称f(x)在x=x 0处连续。 4.最大值最小值定理:如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在[a,b]上有最大值和最小值。 5.导数:若函数f(x)在x0附近有定义,当自变量x 在x 0处取得一个增量Δx 时(Δx 充分小),因

变量y 也随之取得增量Δy(Δy=f(x 0+Δx)-f(x 0)).若x y x ??→?0lim 存在,则称f(x)在x 0处可导,此极限 值称为f(x)在点x 0处的导数(或变化率),记作'f (x 0)或0'x x y =或 x dx dy ,即 00) ()(lim )('0 x x x f x f x f x x --=→。由定义知f(x)在点x 0连续是f(x)在x 0可导的必要条件。若f(x)在 区间I 上有定义,且在每一点可导,则称它在此敬意上可导。导数的几何意义是:f(x)在点x 0处导数'f (x 0)等于曲线y=f(x)在点P(x 0,f(x 0))处切线的斜率。 6.几个常用函数的导数:(1))'(c =0(c 为常数);(2)1 )'(-=a a ax x (a 为任意常数);(3) ;cos )'(sin x x =(4)x x sin )'(cos -=;(5)a a a x x ln )'(=;(6)x x e e =)'(;(7))'(log x a x x a log 1 = ;(8).1)'(ln x x = 7.导数的运算法则:若u(x),v(x)在x 处可导,且u(x)≠0,则 (1))(')(')]'()([x v x u x v x u ±=±;(2))(')()()(')]'()([x v x u x v x u x v x u +=;(3))(')]'([x u c x cu ?=(c 为常数);(4)) ()(']')(1[ 2x u x u x u -=;(5))() ()(')(')(]')()([2 x u x v x u x v x u x u x u -=。 8.复合函数求导法:设函数y=f(u),u=?(x),已知?(x)在x 处可导,f(u)在对应的点u(u=?(x))处可导,则复合函数y=f[?(x)]在点x 处可导,且(f[?(x)])'=)(')](['x x f ??. 9.导数与函数的性质:(1)若f(x)在区间I 上可导,则f(x)在I 上连续;(2)若对一切x ∈(a,b)有0)('>x f ,则f(x)在(a,b)单调递增;(3)若对一切x ∈(a,b)有0)('x f ,则f(x)在x 0处取得极小值;(2)若0)(''0

上海高中数学数列的极限(供参考)

7.6 数列的极限 课标解读: 1、理解数列极限的意义; 2、掌握数列极限的四则运算法则。 目标分解: 1、数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{}n a 的项n a 无 限地趋近于某个常数 a (即| |a a n -无限地接近于0),那么就说数列 {}n a 以a 为极限。 注: a 不一定是{}n a 中的项。 2、几个常用的极限:① C C n =∞ →lim (C 为常数);②01lim =∞→n n ;③ ) 1|(|0lim <=∞ →q q n n ; 3、数列极限的四则运算法则:设数列{}n a 、{}n b , 当 a a n n =∞ →lim , b b n n =∞ →lim 时,b a b a n n n ±=±∞ →)(lim ; b a b a n n n ?=?∞ →)(lim ; )0(lim ≠=∞→b b a b a n n n 4、两个重要极限: ① ?? ???<=>=∞→00100 1lim c c c n c n 不存在 ②?? ?? ?-=>=<=∞→11||111||0 lim r r r r r n n 或不存在 问题解析: 一、求极限: 例1:求下列极限:

(1) 3 214lim 22 +++∞→n n n n (2) 2 4 323lim n n n n n -+∞→ (3) )(lim 2n n n n -+∞ → 例2:求下列极限: (1) )23741(lim 2222n n n n n n -++++∞→ ; (2) ]) 23()13(1 1181851521[ lim +?-++?+?+?∞ →n n n 例3:求下式的极限: 二、极限中的分数讨论: 例4:已知数列 {}n a 是由正数构成的数列,31=a ,且满足 c a a n n lg lg lg 1+=-,其中n 是大于1的整数,c 是正数。 (1) 求数列{}n a 的通项公式及前n 项和n S ; (2) 求1 122lim +-∞→+-n n n n n a a 的值。 三、极限的应用: 例5:已知p 、q 是两个不相等的正整数,且2≥q ,求1 )11(1 )1 1(lim -+-+∞→q p n n n 的值。 知识内化: 1、=++++∞→n n n 212 lim __________________。 2、=+-+++++∞ →]) 1(23)1(1)1(1[lim n n n n n n n n ______________。

年高考第一轮复习数学数列的极限

13.2 数列的极限 ●知识梳理 1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n }的项a n 无限地趋近于某个常数a (即|a n -a |无限地接近于0),那么就说数列{a n }以a 为极限. 注:a 不一定是{a n }中的项. 2.几个常用的极限:①∞ →n lim C =C (C 为常数);②∞ →n lim n 1 =0;③∞→n lim q n =0(|q |<1). 3.数列极限的四则运算法则:设数列{a n }、{b n }, 当∞ →n lim a n =a , ∞ →n lim b n =b 时,∞ →n lim (a n ±b n )=a ±b ; ∞ →n lim (a n ·b n )=a ·b ; ∞ →n lim n n b a =b a (b ≠0). 特别提示 (1)a n 、b n 的极限都存在时才能用四则运算法则; (2)可推广到有限多个. ●点击双基 1.下列极限正确的个数是 ①∞→n lim αn 1 =0(α>0) ②∞→n lim q n =0 ③∞ →n lim n n n n 3 232+-=-1 ④∞ →n lim C =C (C 为常数) A.2 B.3 C.4 D.都不正确 解析:①③④正确. 答案:B 2. ∞→n lim [n (1- 31)(1-41)(1-51)…(1-21+n )]等于 A.0 B.1 C.2 D.3 解析: ∞→n lim [n (1-31)(1-41)(1-51)…(1-2 1 +n )] =∞→n lim [n ×32×43×54×…×2 1 ++n n ] =∞→n lim 22+n n =2. 答案:C 3.下列四个命题中正确的是 A.若∞ →n lim a n 2=A 2,则∞ →n lim a n =A

相关主题
文本预览
相关文档 最新文档