当前位置:文档之家› MATLAB串行通信的实现方法

MATLAB串行通信的实现方法

MATLAB串行通信的实现方法
MATLAB串行通信的实现方法

MATLAB串行通信的实现方法

摘要本文介绍MATLAB环境下上位机与下位机通过RS232接口进行串行通信的实现方法;详细叙述了在MATLAB环境下使用其自带的控制工具箱中的串

口事件回调函数,实时接收下位机输出串行信号的实现过程。

关键词 MATLAB7.0,串口通信,回调函数

MATLAB是由美国MATHWORKS公司开发的面向理论分析研究和工程设计处理的一套具有强大功能的软件系统。在设计研究单位和工业部门,MATLAB被认作进行高效研究、开发的首选软件工具。其编程语法规则与一般的结构化编程语言大同小异,而且使用更方便,具有一般编程基础的用户都可以很快熟练掌握。MATLAB内置大量的数学算法函数,只要几个语句就能实现诸如矩阵/行列式运算、FIR/IIR滤波等数据分析处理、复杂的图形显示等。在实际应用中常常要通过各种方式将数据传入计算机,进而借助MATLAB的强大分析处理能力对数据进行分析、处理和图形显示。

本文提出在上位机MATLAB 7.0环境下,使用RS232串行接口实时接收。该方法较之使用VC/VB高级语言编程,极大地缩减了开发时间,提高了开发效率。

一、总体框图

本设计的总体原理框图可见图1, 系统主要由上位机(PC机)和下位机(PC104)部分。上位机和下位机通过RS232进行通讯。上位机负责数据处理和图形化显示,它是在MATLAB7.0环境下进行的,应用了仪器控制工具箱中关于串行通信的函数,通过程序控制整个系统的工作并进行数据处理。下位机负责数据采集和响应主机的控制处理信号。

二、通信原理

在MATLAB7.0中的设备控制工具条(INSTRUMENT CONTROL TOOLBOX)用来负责上、下位机之间的通信。该设备控制工具箱的特色如下:INSTRUMENT CONTROL TOOLBOX包括两大部件:M文件函数和接口驱动适配器。这两部件提供了MATLAB 与外设的通讯功能如图1所示。

图1 串行通讯端口的通讯原理

由图1可见,MATLAB的两大部件提供了一条外设与MATLAB之间的交互通道,使用户与外设之间进行信息获取和传送。同许多高级语言一样,MATLAB 通过调用M文件函数来创建设备对象,得到设备的文件句柄,而设备驱动程序作为操作系统中直接控制硬件的模块,是链接操作系统内核与系统外部设备I/O操作的关键模块。它将具体的硬件细节隐藏实现对外设操作的透明,因此MATLAB可以象操作文件一样实现对外设的读、写操作。同时MATLAB支持二进制和文本(ASCII)两种串行通信方式,文本方式支持SCPI(STANDARD COMMANDS FOR PROGRAMMABLE INSTRUMENTS)语言;支持异步通信和同步通信;支持查询和基于事件驱动的两种串行通信方式。

三、MATLAB串行通信

在MATLAB环境下,读取串口数据的方式可以分为两种:查询法和事件驱动法。以查询的方式进行串行通信时,如下位有大量的数据分时分批传送给PC机,上位机就需要不停查询串行口的缓冲区,有数据就读取;虽然编程容易,但这样无法实现对数据进行实时处理和图形显示,系统实时性不高,而且会极大地占用系统的资源和出现丢帧现象。以事件驱动的方式对串口进行控制实现串行通信,就可以实时处理下位机传送的数据;但编程相对复杂一些,需要采用MATLAB的事件和回调函数机制。

1.查询法

MATLAB使用查询法对进行串行通讯的程序如下:

g =serial('com1'); %创建串口对象

g.baudrate=115200; %设置波特率,缺省9600bit/s

g.parity='none'; %设置校验位无奇偶校验

g.stopbits=1; %设置停止位

g.inputbuffersize=256; %设置输入缓冲区为256b,缺省值为512b

g.Terminator='LF'; %设置输入缓冲区为256b,缺省值

recbuf=zeros(1,40); %清接收缓冲区(40)

framelen=23; %帧长度(每帧23byte)

framenum=0; %清接收帧数

rectr=0; %接收计数器清零

xctr=0; %输入接收的数据帧数

recnum= input('请输入要接收的数据帧数:\n');

%打开串口设备

fopen(g); %打开串口设备对象g

fwrite(g,255) ; %以二进制的方式发送握手信号

0xFF

%进入接收循环

while framenum

recdta=fread(g,1,'uint8'); %以二进制的方式读入数据

if recdta==255 %找帧头

rectr=rectr+1; %接收计数器加1

recbuf(rectr)=recdta; %送入接收缓冲区

elseif recdta==framelen&rcbuf(1)==255 %验证接收长度和帧头

framelen=recdta; %取帧长度

rectr=rectr+1; %接收计数器加1

recbuf(rectr)=recdta; %送入接收缓冲区

elseif rectr>1&rectr

rectr=rectr+1; %接收计数器加1

recbuf(rectr)=recdta; %送入接收缓冲区

if rectr==framelen %如果接收完进行处理

rectr=0; %清接收计数器

framenum=framenum+1; %帧数累加

%根据具体通讯协议提取数据

%接收滤波后的数据

….

plot(…) %输出显示

end

else rectr=0; %未找到帧头清计数器

end %接收结束

end %主循环结

%程序结束关闭串口类

fclose(g); %关闭串

delete(g); %删除串口对象

clear g ; %清除变量

注意:串口的读写操作有文本方式和二进制方式两种。在文本方式下,串口设备只接收可以显示的ASCII字符,将0X00H~0X1FH范围内的字符解释为控制字符。使用文本方式对串口的读写函数分别为FPRINTF()(写)、FSCANF()(读)。

2.事件驱动法

在MATLAB环境下以事件驱动的方式进行串行通信,类似于VC中的MSCOMM 控件中ONCOMM事件的实现方法。MATLAB7.0提供了INSTRCALLBACK(OBJ,EVENT)回调函数,用户根据需要可以自行设置具体的串行通信事件。MATLAB常用的串行口通信中断事件有:缓冲区有指定字节数目的数据可用事件(BYTES-AVAILABLE EVENT)、串口接收到的数据长时间处于非激活状态事件(BREAK-INTERRUPT EVENT)、串行口引脚状态改变事件(PIN-STATUS EVENT)、输出缓冲区为空事件(OUTPUT EMPTY EVENT)等。当串口上有监视的事件发生时,MATLAB会自动调用回调函数进行通信事件的处理。因此,事件驱动实质上是一种中断机制,而回调函数实质上相当于一个中断服务子程序。MATLAB端实时串行通信的程序流程如图4所示,以下是具体的编程步骤。

(1)主程序

g =serial('com1'); %创建串口对象

g.baudrate=115200; %设置波特率,缺省9600bit/s

g.parity='none'; %设置校验位无奇偶校验

g.stopbits=1; %设置停止位

g.BytesAvaibleFcnMode='byte';% 设置中断触发事件为‘bytes-available Event’

g.BytesAvailableFcnCount=30; % 设置接收缓冲区每收到30个字节时,触发回调函数

g.BytesAvailableFcn=@instrcallback;得到回调函数句柄

fopen(g);%连接串口设备对象

fwrite(g,255);%写串口,发送握手信号0xFF(等价于十进制下的数值255)(2)中断调用程序

MATLAB缺省的回调函数INSTRCALLBACK(OBJ,EVENT)存在于INSTRCALLBACK.M文件中。该文件类似于VC中的ONCOMM事件函数模块。需用户自行添加相应的中断处理程序代码。

MATLAB安装目标盘下有两个INSTRCALLBACK.M文件,我们只需要修改MATLAB7\TOOLBOX\MATLAB\IOFUN\@INSTRUMENT目录下的INSTRCALLBACK.M文件即可。注意,在修改INSTRCALLBACK.M文件之前,最好对进行备份。另外,需要注意的是:程序调试过程中如果再次修改了该回调函数,要重新启动MATLAB,才能使得新的回调函数文件生效。

%修改后的instrcallback.m文件如下:

function instrcallback(obj, event)

%以下是用户自行添加的通信事件处理及通信数据处理的中断服务程序代码

%定义存储串口30个字节通信数据的数组

Inbuffer1=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0];

inbuffer2=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0];

%以下程序用以对串口通信事件处理

out= fread (obj, 30, 'uint8') %接下位机发送的30个数据(每个数据占一个字节)

%以下程序用以数据进行滤波

inbuffer2=filter(…., Inbuffer1);

%以下程序用以对滤波后数据进行文件存储

fid = fopen('C:\MATLAB7\work\data.txt','a+'); %创建并data.txt文件fprintf(fid,'%3d',inbuffer2); %将滤波后数据存储到fid文件设备中fclose(fid); %关闭fid文件设备

%数据计算

% 进行实时图形输出显示

plot(…);

end

实验证明,基于MATLAB事件驱动方式的实时串行通信稳定可靠,处理数据方便,编程简单,开发效率大大提高。

四、结论

本文介绍的基于MATLAB环境下PC机与PIC单片机串行通信的实现方法,利用MATLAB的INSTRUMENT CONTROL TOLLBOX的SERIAL类及INSTRCALLBACK()回调函数,实现基于事件驱动的实时通信。使开发人员使用MATLAB工具箱中的现有函数,方便地实现串行通信,充分的利用MATLAB中独有数据分析处理和图形显示函数,大大简化系统上位机软件的编程工作量,使系统开发人员可以专注于系统的算法实现和优化。

% 主要用到的命令及函数

% 所有注释文字均为原创,用词并非一定准确,仅供参考

% 没有写GUI的程序,若用VC或.NET写串口通讯的界面程序,需要考虑到多线程任务的处理,比较复杂,因为MATLAB有中断响应事件instrcallback,大大简化了程序的编写;

% 设置串口号,字符串形式

strSerialPortNum = input('串口号(数字):');

strSerialPortName = ['COM',num2str(strSerialPortNum)];

% 设置串口参数

% 设置串口对象

s = serial(strSerialPortName);

% 设置串口波特率(38400),校验位(偶校验)

% 其他参数可查看MATLAB帮助文档

set(s,'BaudRate',38400,'parity','even');

% 设置中断反馈函数

set(s, 'BytesAvailableFcn', {'instrcallback'});

% 注意函数“instrcallback”的位置,比如我的是

D:\Program Files\MATLAB\R2011b\toolbox\shared\instrument\@instrument\in strcallback.m,经验证,把instrcallback.m复制到主程序目录下并不产生作用,应该是只能修改安装目录

下%toolbox\shared\instrument\@instrument\instrcallback.m的文件中的程序才有用。

% 设置中断响应(有10个可用字节时,产生中断)

set(s, 'BytesAvailableFcnCount', 10);

% 设置中断响应模式(有“byte”和“Terminator”两种模式可选,“byte”是达到一定字节数产生中断,“Terminator”可用作键盘某个按键事件来产生中断)

set(s, 'BytesAvailableFcnMode', 'byte');

% 设置串口数据最大读写时间,如果超过这个时间,仍读取不到数据,那么则终止读写

% 注:串口的一些参数必须在打开串口之前进行设置,即在串口状态是“Close”的情况下来进行设置

set(s, 'TimeOut', 1);

% 打开串口

fopen(s);

% 向串口发送数据(这里发送一个大写字母“S”,这是我的硬件数据通信握手指令;本来用fprintf(s,'S')命令发送,但是结果只产生一帧的数据,后来在中断响应函数instrcallback中也加入fprintf(s,'S')命令来不断的向硬件发送握手请求,但发现数据的传输速率慢了好几倍,本来是硬件中设置的是发送一次“S”指令,即可不断的产生数据,这样数据传输速率基本能达到每9ms接收10KB的数据,而在上位机MATLAB中循环发送握手指令,数据传输速率慢且不稳定,平均25-40ms接收10KB的数据。查看MATLAB的帮助文档,发现fprintf(s,'S')命令其实是向串口发送了“S\n”这样的指令,所以才会出现只能接收一帧数据(我这里是10KB)的情况。我需要的是单发送字符“S”,需用fprintf(s,'%c','S')指令);

fprintf(s,'%c','S');

% 逐帧读取串口数据,这里一帧是10个字节,以2进制方式读取,用uint8(8位无符号整型)参数;

receiveData = fread(s,10,'uint8');

% 上面这句命令我是写在中断响应函数instrcallback中的,还有一些数据处理的代码,有时间会详细写在以后的博文中;这句之后即可加上N多的数据处理代码了(instrcallback函数的作用也在于此);

% 关闭串口对象

fclose(s);

% 删除串口对象(并非必须)

delete(s);

% 清楚串口对象所占内存(并非必须)

clear s;

《应用计算方法教程》matlab作业二

6-1 试验目的计算特征值,实现算法 试验容:随机产生一个10阶整数矩阵,各数均在-5和5之间。 (1) 用MATLAB 函数“eig ”求矩阵全部特征值。 (2) 用幂法求A 的主特征值及对应的特征向量。 (3) 用基本QR 算法求全部特征值(可用MATLAB 函数“qr ”实现矩阵的QR 分解)。 原理 幂法:设矩阵A 的特征值为12n ||>||||λλλ≥???≥并设A 有完全的特征向量系12,,,n χχχ???(它们线性无关),则对任意一个非零向量0n V R ∈所构造的向量序列1k k V AV -=有11()lim ()k j k k j V V λ→∞ -=, 其中()k j V 表示向量的第j 个分量。 为避免逐次迭代向量k V 不为零的分量变得很大(1||1λ>时)或很小(1||1λ<时),将每一步的k V 按其模最大的元素进行归一化。具体过程如下: 选择初始向量0V ,令1max(),,,1k k k k k k k V m V U V AU k m +===≥,当k 充分大时1111,max()max() k k U V χλχ+≈ ≈。 QR 法求全部特征值: 111 11222 111 ,1,2,3,k k k k k A A Q R R Q A Q R k R Q A Q R +++==????==??=???? ??????==?? 由于此题的矩阵是10阶的,上述算法计算时间过长,考虑采用改进算法——移位加速。迭 代格式如下: 1 k k k k k k k k A q I Q R A R Q q I +-=?? =+? 计算k A 右下角的二阶矩阵() () 1,1 1,() (),1 ,k k n n n n k k n n n n a a a a ----?? ? ??? 的特征值()()1,k k n n λλ-,当()()1,k k n n λλ-为实数时,选k q 为()()1,k k n n λλ-中最接近(),k n n a 的。 程序

0.618法的matlab实现

实验报告 实验题目: 0.618法的MATLAB实现学生姓名: 学号: 实验时间: 2013-5-13

一.实验名称: 0.618法求解单峰函数极小点 二.实验目的及要求: 1. 了解并熟悉0.618法的方法原理, 以及它的MATLAB 实现. 2. 运用0.618法解单峰函数的极小点. 三.实验内容: 1. 0.618法方法原理: 定理: 设f 是区间],[b a 上的单峰函数, ] ,[ ,)2()1(b a x x ∈, 且)2()1(x x <. 如果)()()2()1(x f x f >, 则对每一个],[)1(x a x ∈, 有)()()2(x f x f >; 如果)()()2()1(x f x f ≤, 则对每一个] ,[) 2(b x x ∈, 有)()()1(x f x f ≥. 根据上述定理, 只需选择两个试探点, 就可将包含极小点的区间缩短. 事实上, 必有 如果)()()2()1(x f x f >, 则],[)1(b x x ∈; 如果)()() 2()1(x f x f ≤, 则][)2(x a x ,∈. 0.618 法的基本思想是, 根据上述定理, 通过取试探点使包含极小点的区间(不确定区间)不断缩短, 当区间长度小到一定程度时, 区间上各点的函数值均接近极小值, 因此任意一点都可作为极小点的近似. 0.618 法计算试探点的公式: ). (618.0),(382.0k k k k k k k k a b a a b a -+=-+=μλ 2. 0.618法的算法步骤: ①置初始区间],[11b a 及精度要求0>L , 计算试探点1λ和1μ, 计算函数值)(1λf 和)(1μf . 计算公式是 ).(618.0 ),(382.011111111a b a a b a -+=-+=μλ 令1=k . ②若L a b k k <-, 则停止计算. 否则, 当)()(k k f f μλ>时, 转步骤③; 当)()(k k f f μλ≤时, 转步骤④. ③置k k a λ=+1, k k b b =+1, k k μλ=+1,)(618.01111++++-+=k k k k a b a μ, 计算函数值)(1+k f μ, 转步骤⑤.

计算方法_全主元消去法_matlab程序

%求四阶线性方程组的MA TLAB程序 clear Ab=[0.001 2 1 5 1; 3 - 4 0.1 -2 2; 2 -1 2 0.01 3; 1.1 6 2.3 9 4];%增广矩阵 num=[1 2 3 4];%未知量x的对应序号 for i=1:3 A=abs(Ab(i:4,i:4));%系数矩阵取绝对值 [r,c]=find(A==max(A(:))); r=r+i-1;%最大值对应行号 c=c+i-1;%最大值对应列号 q=Ab(r,:),Ab(r,:)=Ab(i,:),Ab(i,:)=q;%行变换 w=Ab(:,c),Ab(:,c)=Ab(:,i),Ab(:,i)=w;%列变换 n=num(i),num(i)=num(c),num(c)=n;%列变换引起未知量x次序变化for j=i:3 Ab(j+1,:)=-Ab(j+1,i)*Ab(i,:)/Ab(i,i)+Ab(j+1,:);%消去过程 end end %最后得到系数矩阵为上三角矩阵 %回代算法求解上三角形方程组 x(4)=Ab(4,5)/Ab(4,4); x(3)=(Ab(3,5)-Ab(3,4)*x(4))/Ab(3,3); x(2)=(Ab(2,5)-Ab(2,3)*x(3)-Ab(2,4)*x(4))/Ab(2,2); x(1)=(Ab(1,5)-Ab(1,2)*x(2)-Ab(1,3)*x(3)-Ab(1,4)*x(4))/Ab(1,1); for s=1:4 fprintf('未知量x%g =%g\n',num(s),x(s)) end %验证如下 %A=[0.001 2 1 5 1; 3 -4 0.1 -2 2;2 -1 2 0.01 3; 1.1 6 2.3 9 4]; %b=[1 2 3 4]'; %x=A\b; %x1= 1.0308 %x2= 0.3144 %x3= 0.6267 %x4= -0.0513

Matlab与51单片机的串口通信

数字信号处理2012电子信息工程专业答辩报告

Matlab与51单片机的串口通信 一、简介 从Matlab6.0版本开始,Mathworks公司在软件中增加了设备控制箱(instrument control toolbox),提供了对RS-232/RS-485通信标准串口(九针串口)通信正式支持(本实验采用USB转串口)利用该工具箱serial类及instrcallback()回调函数,能可靠地进行实时串地通信。Matlab支持面向对象技术,用一个对象将计算机串口封装起来,只要创建串口对象,对串口对象操作就是对串口操作,非常方便。使用serial函数就可创建串口对象,通过定义串口对象的属性,能定义串口的通信模式,从串口对象属性也能了解串口的状态,即可以通过MATLAB的串口通讯函数读写数据。 二、 Matlab串口函数 serial 创建一个串口对象,格式:s = serial('coml' ) fopen 打开串口对象,格式:fopen(s) fwrite 其他程序能对该串口进行读写操作fwrite(s,’’) fread 读取串口数据,格式: fread(s) fclose 关闭串口对象,格式:fclose(s) free 解除Matlab对串口对象的控制,使 delete 删除对象s,格式:delete(s) clear 从工作空间中删除对象s,格式:clear(s) 三、实现功能 利用MATLAB串口通信函数,读写51单片机(STC89C52R+)数据,运用keil编写时钟程序,烧录到单片机中,时钟程序实现的功能是实现时钟的显示,并且能用开发板上的三个按钮进行时钟的修改,一个按钮进入修改模式(复位),另两个实现时间的增减。编辑MATLAB程序,实现对单片机的控制。读写串口操作。初始化并打开串口调协对象之后,现在可以对串口设备对象进行读写操作,串口读写操作支持二进制和文本(ASCII)两种方式。当Matlab通信数据采用西方(ASCII)方式时,读写串口设备命令分别是fscanf、fpritf;当Matlab通信数据采用二进制方式时,读写串口设备命令分别是fread、fwrite。

最优化方法的Matlab实现(公式(完整版))

第九章最优化方法的MatIab实现 在生活和工作中,人们对于同一个问题往往会提出多个解决方案,并通过各方面的论证从中提取最佳方案。最优化方法就是专门研究如何从多个方案中科学合理地提取出最佳方案的科学。由于优化问题无所不在,目前最优化方法的应用和研究已经深入到了生产和科研的各个领域,如土木工程、机械工程、化学工程、运输调度、生产控制、经济规划、经济管理等,并取得了显著的经济效益和社会效益。 用最优化方法解决最优化问题的技术称为最优化技术,它包含两个方面的内容: 1)建立数学模型即用数学语言来描述最优化问题。模型中的数学关系式反映了最优化问题所要达到的目标和各种约束条件。 2)数学求解数学模型建好以后,选择合理的最优化方法进行求解。 最优化方法的发展很快,现在已经包含有多个分支,如线性规划、整数规划、非线性规划、动态规划、多目标规划等。 9.1 概述 利用Matlab的优化工具箱,可以求解线性规划、非线性规划和多目标规划问题。 具体而言,包括线性、非线性最小化,最大最小化,二次规划,半无限问题,线性、非线性方程(组)的求解,线性、非线性的最小二乘问题。另外,该工具箱还提供了线性、非线性最小化,方程求解,曲线拟合,二次规划等问题中大型课题的求解方法,为优化方法在工程中的实际应用提供了更方便快捷的途径。 9.1.1优化工具箱中的函数 优化工具箱中的函数包括下面几类: 1 ?最小化函数

2.方程求解函数 3.最小—乘(曲线拟合)函数

4?实用函数 5 ?大型方法的演示函数 6.中型方法的演示函数 9.1.3参数设置 利用OPtimSet函数,可以创建和编辑参数结构;利用OPtimget函数,可以获得o PtiOns优化参数。 ? OPtimget 函数 功能:获得OPtiOns优化参数。 语法:

matlab串口实时波形显示

作者:GG 功能:实现matalb与PC外设通讯 本例:串口232与外设单片机51通讯。实时监控51数据并且实时图形显示 时间:2011—9—16 简介:实现该功能使用M脚本文件和函数文件。 第一个文件连接串口和打开串口,设置了串口的一些参数和触发事件。连接串口COM5。有关该方面的知识请自行百度I/O文字流。 第二个文件是时间回调函数,相当于其他语言中例如C语言的中断函数 第三文件是关闭串口和清除列连接。并且清除中间TXT中介文件内容 下面是源文件 第一个: clear all s=serial('COM5');%打开串口 s.BytesAvailableFcnMode='byte';%设置事件触发为接受触发 s.InputBufferSize=5000;%设置接受缓冲区大小为5000个字节 s.BytesAvailableFcnCount=10;%每次接受到50个数据时候触发事件 s.BaudRate=19200;%设置通讯波特率 s.BytesAvailableFcn=@my_callback;%指向触发事件函数 fopen(s);%打开串口 第二个 function my_callback(obj,event) out=fread(obj,10,'uint8');%串口处读出50个数据 fid=fopen('G1.txt','a+');%打开文件并且追加 fprintf(fid,'%3d',out); fclose(fid); speed=textread('G1.txt','%u'); plot(speed); disp('save ok!'); end 第三个 fclose(s);%关闭串口 delete(s);%删除串口变量 clear all; fid=fopen('G1.txt','w');%清除中间文件txt a=[]; fprintf(fid,'%s',a); fclose(fid); clear all;%清除所以变量

matlab串口通信

摘要:结合单片机和Matlab两者优点,基于事件驱动中断通信机制,提出一种Matlab环境下PC机与单片机实时串行通信及数据处理方法;完成单片机数据采集系统与PC机RS-232/RS-485串行通信及其通信数据分析处理、文件存储、FIR滤波及图形显示;简化系统开发流程,提高开发效率。该方法已成功应用于一个PIC16F876单片机应用系统实例之中。 关键词:PIC16F876 Matlab 串口通信 RS-232 事件驱动回调函数 引言 Matlab是由美国Mathworks公司开发面向理论分析研究、工程计算数据处理和缓图一套具有强大功能软件系统。其中Matlab语言是一种以矩阵为基本运算单元解释执行高级语言,编程简例,只要几条语句就能实现诸如FFT变换、FIR/IIR滤波等数据分析处理,易于掌握。从Matlab6.0版本开始,Mathworks 公司在软件中增加了设备控制箱(instrument control toolbox),提供了对RS-232/RS-485通信标准串口通信正式支持。利用该工具箱serial类及instrcallback()回调函数,能可靠地进行实时串地通信。为此,笔者充分结合单片机和Matlab优点,基于事件驱动中断通信机制,提出了一种Matlab环境下PC机与单片机实时串行通信数据处理方法,极大地简化开发流程,提高了系统开发效率。另外,与目前普遍采用基于Matlab查询方式下非实时串行通信技术相比,这种方法实用性也大大增强了。 https://www.doczj.com/doc/9515292855.html,提示请看下图: 1 系统总体设计简介 下面以Mircochip公司PIC16F876单片机为下位机,PC机为上位机组成实时数据采集处理系统为例,介绍基于Matlab环境下PC机与单片机串行通信实时数据处理方法实现。数据采集系统结构框图如图1所示。PC机串口与单片机USART 口通过MAX232电平转换芯片相连,系统工作时,Matlab通过调用设备控制工具箱中serial类及相关函数。来创建串口设备对象,得到设备文件句柄,从而以操作文件方式实现对PC机串行口读写操作。因而PC机可以通过Matlab向串行

王能超 计算方法——算法设计及MATLAB实现课后代码

第一章插值方法 1.1Lagrange插值 1.2逐步插值 1.3分段三次Hermite插值 1.4分段三次样条插值 第二章数值积分 2.1 Simpson公式 2.2 变步长梯形法 2.3 Romberg加速算法 2.4 三点Gauss公式 第三章常微分方程德差分方法 3.1 改进的Euler方法 3.2 四阶Runge-Kutta方法 3.3 二阶Adams预报校正系统 3.4 改进的四阶Adams预报校正系统 第四章方程求根 4.1 二分法 4.2 开方法 4.3 Newton下山法 4.4 快速弦截法 第五章线性方程组的迭代法 5.1 Jacobi迭代 5.2 Gauss-Seidel迭代 5.3 超松弛迭代 5.4 对称超松弛迭代 第六章线性方程组的直接法 6.1 追赶法 6.2 Cholesky方法 6.3 矩阵分解方法 6.4 Gauss列主元消去法

第一章插值方法 1.1Lagrange插值 计算Lagrange插值多项式在x=x0处的值. MATLAB文件:(文件名:Lagrange_eval.m)function [y0,N]= Lagrange_eval(X,Y,x0) %X,Y是已知插值点坐标 %x0是插值点 %y0是Lagrange插值多项式在x0处的值 %N是Lagrange插值函数的权系数 m=length(X); N=zeros(m,1); y0=0; for i=1:m N(i)=1; for j=1:m if j~=i; N(i)=N(i)*(x0-X(j))/(X(i)-X(j)); end end y0=y0+Y(i)*N(i); end 用法》X=[…];Y=[…]; 》x0= ; 》[y0,N]= Lagrange_eval(X,Y,x0) 1.2逐步插值 计算逐步插值多项式在x=x0处的值. MATLAB文件:(文件名:Neville_eval.m)function y0=Neville_eval(X,Y,x0) %X,Y是已知插值点坐标 %x0是插值点 %y0是Neville逐步插值多项式在x0处的值 m=length(X); P=zeros(m,1); P1=zeros(m,1); P=Y; for i=1:m P1=P; k=1; for j=i+1:m k=k+1;

MATLAB串口通信

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%本程序主要实现串口控制三轴转台进行自动标定,%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%查找串口对象,若串口一开始被占用,需要加上这段程序释放串口,若串口没有被占用,则不需要这段程序 scoms=instrfind; %%尝试停止、关闭删除串口对象 stopasync(scoms); fclose(scoms);%关闭串口 delete(scoms);%释放串口%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% clear all;clc; %%%%%串口配置通道1 global s; s=serial('COM13');%设置串口号 s.baudrate=57600;%设置波特率 s.parity='none';%校验位 s.stopbits=1;%停止位 s.databits=7;%数据位 s.timeout=2;%一次读/写的时间最长为0.5s s.InputBufferSize=1024;%输入缓冲区 s.OutputBufferSize=1024;%输出缓冲区 %s.BytesAvailableFcnMode='byte';%中断触发事件为'bytes-available event' %s.BytesAvailableFcnCount=8;%接收缓冲区每收到n个字节时,触发回调函数%s.BytesAvailableFcn={'cmd_rec_callback',handles};%得到回调函数句柄fopen(s);%%%%打开串口 fclose(s); %%%%%串口配置通道2 global s2; s2=serial('COM15');%设置串口号 s2.baudrate=460800;%设置波特率 s2.parity='none';%校验位 s2.stopbits=1;%停止位 s2.databits=8;%数据位 s2.timeout=2;%一次读/写的时间最长为0.5s s2.InputBufferSize=1024;%输入缓冲区 s2.OutputBufferSize=1024;%输出缓冲区 %s.BytesAvailableFcnMode='byte';%中断触发事件为'bytes-available event' %s.BytesAvailableFcnCount=8;%接收缓冲区每收到n个字节时,触发回调函数%s.BytesAvailableFcn={'cmd_rec_callback',handles};%得到回调函数句柄fopen(s2);%%%%打开串口 fclose(s2); %InitPos(1)=InitPos(1)+0.3 %Pos1=num2str(InitPos(1)'); %Pos1=['Q010',Pos1(1,:),'$']; %A=[00000000000]; %fwrite(s2,A,'uint8') %AA=fread(s2,11,'uint8')

(整理)matlab16常用计算方法.

常用计算方法 1.超越方程的求解 一超越方程为 x (2ln x – 3) -100 = 0 求超越方程的解。 [算法]方法一:用迭代算法。将方程改为 01002ln()3 x x =- 其中x 0是一个初始值,由此计算终值x 。取最大误差为e = 10-4,当| x - x 0| > e 时,就用x 的值换成x 0的值,重新进行计算;否则| x - x 0| < e 为止。 [程序]P1_1abs.m 如下。 %超越方程的迭代算法 clear %清除变量 x0=30; %初始值 xx=[]; %空向量 while 1 %无限循环 x=100/(2*log(x0)-3); %迭代运算 xx=[xx,x]; %连接结果 if length(xx)>1000,break ,end %如果项数太多则退出循环(暗示发散) if abs(x0-x)<1e-4,break ,end %当精度足够高时退出循环 x0=x; %替换初值 end %结束循环 figure %创建图形窗口 plot(xx,'.-','LineWidth',2,'MarkerSize',12)%画迭代线'.-'表示每个点用.来表示,再用线连接 grid on %加网格 fs=16; %字体大小 title('超越方程的迭代折线','fontsize',fs)%标题 xlabel('\itn','fontsize',fs) %x 标签 ylabel('\itx','fontsize',fs) %y 标签 text(length(xx),xx(end),num2str(xx(end)),'fontsize',fs)%显示结果 [图示]用下标作为自变量画迭代的折线。如P0_20_1图所示,当最大误差为10-4时,需要迭代19次才能达到精度,超越方程的解为27.539。 [算法]方法二:用求零函数和求解函数。将方程改为函数 100()2ln()3f x x x =-- MATLAB 求零函数为fzero ,fzero 函数的格式之一是 x = fzero(f,x0) 其中,f 表示求解的函数文件,x0是估计值。fzero 函数的格式之二是 x = fzero(f,[x1,x2])

[设计]罚函数法MATLAB程序

[设计]罚函数法MATLAB程序 一、进退法、0.618法、Powell法、罚函数法的Matlab程序设计罚函数法(通用) function y=ff(x,k) y=-17.86*0.42*x(1)/(0.8+0.42*x(1))*(1-exp(- 2*(0.8+0.42*x(1))/3))*exp(-1.6)*x(2)-22. 99*x(1)/(0.8+x(1))*(1-exp(-2*(0.8+x(1))/3))*x(3)+k*(x(2)- (1.22*10^2*(9517.8*exp(-1 .6-2*0.42*x(1)/3)*x(2)+19035.6*exp(- 2*x(1)/3)*x(3)))/(1.22*10^2+9517.8*exp(-1.6-2 *0.42*x(1)/3)*x(2)+19035.6*exp(-2*x(1)/3)*x(3)))^2+k*(x(3)-exp(-0.8-2*x(1)/3)*x(3) -exp(-2.4-2*0.42*x(1)/3)*x(2))^2; % 主函数,参数包括未知数的个数n,惩罚因子q,惩罚因子增长系数k,初值x0,以及允许的误差r function G=FHS(x0,q,k,n,r,h,a) l=1; while (l) x=powell(x0,n,q,r(1),h,a); %调用powell函数 g(1)=ff1(x),g(2)=ff2(x) . . . g(p)=ffp(x); %调用不等式约束函数,将其值 %存入数组g h(1)=hh1(x),h(2)=hh2(x) . . . h(t)=hht(x); %调用等式约束函数,将其值%存入数组h for i=1:p

matlab用于计算方法的源程序

1、Newdon迭代法求解非线性方程 function [x k t]=NewdonToEquation(f,df,x0,eps) %牛顿迭代法解线性方程 %[x k t]=NewdonToEquation(f,df,x0,eps) %x:近似解 %k:迭代次数 %t:运算时间 %f:原函数,定义为内联函数 ?:函数的倒数,定义为内联函数 %x0:初始值 %eps:误差限 % %应用举例: %f=inline('x^3+4*x^2-10'); ?=inline('3*x^2+8*x'); %x=NewdonToEquation(f,df,1,0.5e-6) %[x k]=NewdonToEquation(f,df,1,0.5e-6) %[x k t]=NewdonToEquation(f,df,1,0.5e-6) %函数的最后一个参数也可以不写。默认情况下,eps=0.5e-6 %[x k t]=NewdonToEquation(f,df,1) if nargin==3 eps="0".5e-6; end tic; k=0; while 1 x="x0-f"(x0)./df(x0); k="k"+1; if abs(x-x0) < eps || k >30 break; end x0=x; end t=toc; if k >= 30 disp('迭代次数太多。'); x="0"; t="0"; end

2、Newdon迭代法求解非线性方程组 function y="NewdonF"(x) %牛顿迭代法解非线性方程组的测试函数 %定义是必须定义为列向量 y(1,1)=x(1).^2-10*x(1)+x(2).^2+8; y(2,1)=x(1).*x(2).^2+x(1)-10*x(2)+8; return; function y="NewdonDF"(x) %牛顿迭代法解非线性方程组的测试函数的导数 y(1,1)=2*x(1)-10; y(1,2)=2*x(2); y(2,1)=x(2).^+1; y(2,2)=2*x(1).*x(2)-10; return; 以上两个函数仅供下面程序的测试 function [x k t]=NewdonToEquations(f,df,x0,eps) %牛顿迭代法解非线性方程组 %[x k t]=NewdonToEquations(f,df,x0,eps) %x:近似解 %k:迭代次数 %t:运算时间 %f:方程组(事先定义) ?:方程组的导数(事先定义) %x0:初始值 %eps:误差限 % %说明:由于虚参f和df的类型都是函数,使用前需要事先在当前目录下采用函数M文件定义% 另外在使用此函数求解非线性方程组时,需要在函数名前加符号“@”,如下所示 % %应用举例: %x0=[0,0];eps=0.5e-6; %x=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps) %[x k]=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps) %[x k t]=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps) %函数的最后一个参数也可以不写。默认情况下,eps=0.5e-6 %[x k t]=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps)

龙格库塔方法matlab实现

龙格库塔方法matlab实现~ function ff=rk(yy,x0,y0,h,a,b)%yy为y的导函数,x0,y0,为初值,h为步长,a,b为区间 c=(b-a)/h+1;i1=1; %c为迭代步数;i1为迭代步数累加值 y=y0;z=zeros(c,6); %z生成c行,5列的零矩阵存放结果; %每行存放c次迭代结果,每列分别存放k1~k4及y的结果 for x=a:h:b if i1<=c k1=feval(yy,x,y); k2=feval(yy,x+h/2,y+(h*k1)/2); k3=feval(yy,x+h/2,y+(h*k2)/2); k4=feval(yy,x+h,y+h*k3); y=y+(h/6)*(k1+2*k2+2*k3+k4); z(i1,1)=x;z(i1,2)=k1;z(i1,3)=k2;z(i1,4)=k3;z(i1,5)=k4;z(i1,6)=y; i1=i1+1; end end fprintf(‘结果矩阵,第一列为x(n),第二列~第五列为k1~k4,第六列为y(n+1)的结果') z %在命令框输入下列语句 %yy=inline('x+y'); %>> rk(yy,0,1,0.2,0,1) %将得到结果 %结果矩阵,第一列为x(n),第二列~第五列为k1~k4第六列为y(n+1)的结果 %z = % 0 1.0000 1.2000 1.2200 1.4440 1.2428 % 0.2000 1.4428 1.6871 1.7115 1.9851 1.5836 % 0.4000 1.9836 2.2820 2.3118 2.6460 2.0442 % 0.6000 2.6442 3.0086 3.0451 3.4532 2.6510 % 0.8000 3.4510 3.8961 3.9407 4.4392 3.4365 % 1.0000 4.4365 4.9802 5.0345 5.6434 4.4401

在MATLAB中使用串口

在MATLAB中使用串口 3.2.1 MATLAB对RS232 的串口通信设计 MATLAB是一个跨平台软件,而此处使用的是自主设计的数据采集卡,因此不具备直接访问的能力。但MATLAB的面向对象技术,已用一个对象把计算机串口封装起来,只要用Serial函数创建串口对象即可[6]。关键语句为:s=ser ial(‘COM1’,‘BaudRate’,9600)。MATLAB封装的串口对象支持对串口的异步读写操作,通过对异步读写设置,PC在执行读写串口函数时能立即返回,不必等待串口把数据串输完毕。当指定数据传输结束时就触发事件,执行事件回调函数,对事件回调函数编程,进行数据处理,这样可以大大提高数据处理的效率。MEX是MATLAB的可执行程序,是MATLAB调用其它语言编写的程序或算法的接口,在Windows环境下是扩展名为DLL的动态链接库。对MEX 编译器进行配置的方法是:在MATLAB命令窗口中运行mex-setup,选择VC6.0++作为编译器。用C语言编写端口读、写的操作程序,程序包含有头文件mex.h和m exFunction函数,mexFunction函数中nelhs表示输出变量的个数,plhs包含指向输出变量指针的数组,nrhs表示输入变量的个数,prhs包含指向输入变量指针的数组。接口编形成的MEX文件与参考文献[7][8]类似,在此不再累述。 3.2.2 数据采集与分析 (1)数据读取的MATLAB实现 主要代码为: %读取通道数及总数据量 fid=fopen(‘cardiogram.add’,‘r’); Status=fseek(fid,56,‘bof’); nDataChNum=fread(fid,1,‘long’); status=fseek(fid,204, ‘bof’); nAllDataLength=fre ad(fid,1, ‘long’); %按通道数循环读出各通道起始地址 status=fseek(fid,76, ‘bof’);% for i="1:" nDataChNum pChannelAdr(i)=fread(fid,1, ‘long’) end %按通道数循环读出各通道数据 for i="1:nDataChNum" status=fseek(fid,pChannelAdr(i)+360, ‘bof’) nSegNum=fread(fid,1, ‘log’) status=fseek(fid,pChannelAdr(i)+160*nSegNum+1024, ‘bof’); data=fread(fid,nAllDataLength, ‘short’); end sta=fclose(fid);

0计算方法及MATLAB实现简明讲义课件PPS8-1欧拉龙格法

第8章 常微分方程初值问题数值解法 8.1 引言 8.2 欧拉方法 8.3 龙格-库塔方法 8.4 单步法的收敛性与稳定性 8.5 线性多步法

8.1 引 言 考虑一阶常微分方程的初值问题 00(,),[,],(). y f x y x a b y x y '=∈=(1.1) (1.2) 如果存在实数 ,使得 121212(,)(,).,R f x y f x y L y y y y -≤-?∈(1.3) 则称 关于 满足李普希茨(Lipschitz )条件, 称为 的李普希茨常数(简称Lips.常数). 0>L f y L f (参阅教材386页)

计算方法及MATLAB 实现 所谓数值解法,就是寻求解 在一系列离散节点 )(x y <<<<<+121n n x x x x 上的近似值 . ,,,,,121+n n y y y y 相邻两个节点的间距 称为步长. n n n x x h -=+1 如不特别说明,总是假定 为定数, ),2,1( ==i h h i 这时节点为 . ) ,2,1,0(0 =+=i nh x x n 初值问题(1.1),(1.2)的数值解法的基本特点是采取 “步进式”. 即求解过程顺着节点排列的次序一步一步地向前推进. 00(,),[,], (). y f x y x a b y x y '=∈=

描述这类算法,只要给出用已知信息 ,,,21--n n n y y y 计算 的递推公式. 1+n y 一类是计算 时只用到前一点的值 ,称为单步法. 1+n y n y 另一类是用到 前面 点的值 , 1+n y k 11,,,+--k n n n y y y 称为 步法. k 其次,要研究公式的局部截断误差和阶,数值解 与 精确解 的误差估计及收敛性,还有递推公式的计算 稳定性等问题. n y )(n x y 首先对方程 离散化,建立求数值解的递推 公式. ),(y x f y ='

(完整版)纵横向拉开档次法的MATLAB实现

简介:本文档为《纵横向拉开档次法的MATLAB实现》,可适用于工程科技领域,主题内容包含globalxystdszxystdxy定义全局变量loadshuju原始数据xystd=zscore(shuju)数据无量纲处理xystdrow,符等。 global xystdsz xystd x y %定义全局变量 load shuju %原始数据 xystd= zscore (shuju); %数据无量纲处理 [xystdrow,xystdcol]=size(xystd); %----------区域知识创造能力评价---------- for tt=1:xystdcol xystdsz{tt}(:,:)=xystd{tt}(:,1:10); %提取区域知识创造能力指标无量纲值 end [xystdszrow,xystdszcol]=size(xystdsz); [xyrow,xycol]=size(xystdsz{1}); w0=zeros(1,xycol); for i=1:xycol w0(1,i)=1/xycol; % 优化初始值 end Aeq=[]; beq=[]; lb=zeros(1,xycol);ub=ones(1,xycol); %zeros生成零矩阵;ones生成全1阵。 options =optimset('largescale','off'); %优化函数,largescale大规模算法 [w,faval]=fmincon(@YHQU,w0,[],[],Aeq,beq,lb,ub,@fun,options ); %优化求权重;fmincon用来求解非线性多元函数最小值。 wqz1=w./sum(w); %权重归一化 for tt=1:xystdszcol z{tt}(:,1)=xystd{tt}(:,1:10)*wqz1'; % 求评价值 pxacz(:,tt)=px(z{tt}(:,1)) ; % 对评价值排序 end clear w0 w lb ub faval ; clear global xystdsz; %--------区域知识流动能力评价------------ for tt=1:xystdszcol xystdsz{tt}(:,:)=xystd{tt}(:,11:16); %提取区域知识流动能力指标无量纲值 end global xystdsz; [xystdszrow,xystdszcol]=size(xystdsz); [xyrow,xycol]=size(xystdsz{1}); w0=zeros(1,xycol); for i=1:xycol w0(1,i)=1/xycol; % 优化w初始值 end Aeq=[]; beq=[]; lb=zeros(1,xycol);ub=ones(1,xycol); options =optimset('largescale','off'); [w,faval]=fmincon(@YHQU,w0,[],[],Aeq,beq,lb,ub,@fun,options );

matlab串口编程

在嵌入式当中,串口是一种是用的比较多的通信和调试方式,串口主要还是用于通信,虽然是比较老的一种通信方式,但是现在依然保留并有着其活力,基本所有单片机等嵌入式处理器都保留有串口模块。调试只是串口的一个被用来是用的附加功能,想对于昂贵的在线调试工具,它有着很多其他方面的优势,直观的显示程序运行的状态和相关变量。由于其长时间的使用,相关技术和程序也比较成熟,很多工具都提供对串口通信和调试的支持,MATLAB,gdb等,串口监视和调试助手等也随处可以得到,相对于其嵌入式通信方式,它简单实用,适合初学者和速率要求不高的场合。 之前用过蓝牙虚拟串口将串口无线化,单片机间串口通信,wifi模块和ARM7串口通信,单片机于PC机串口通信,这次的综合课程设计需要在PC上对串口数据进行频谱的分析,于是就想使用MATLAB数学计算软件,应该相对简单点,果然,在提供相关数学运算函数的前提下,对各种设备的支持也很强大,在这里说一下我我在这次试验中对MATLAB对串口操作的理解。前提还是阅读MATLAB自带的help文档,这是软件提供的最权威和全面的支持,但是很多人却忽略。检索对自己有用的信息也是一种能力。 在MATLAB中有三种方式来操作串口,但是最终原理都是一样的。 1,simulink工具箱仿真 2,Instrument control toolbox 3,使用MATLAB变成语言,编写自己的程序控制 在Instrument control toolbox中,就像个串口助手,可以以图像化的方式设置各种参数,进行各种操作。在工具箱中,可以将你进行的操作实时的转换成m 文件,如果你不知道怎么编写控制串口的m文件,可以进行相关操作,然后参考生成的m文件进行编程。 simulink工具箱相对而言是比较高级的功能仿真工具,一般是在隐藏硬件细节的前提下功能仿真,如果你不熟悉原理,使用起来会一头雾水,特别是出错时,所以建议在熟悉了底层实现的前提下使用。(可能说的太主观,至少我是这样)没什么比编写自己的程序更加能了解自己控制的设备了,其上的两种方式都是在这个方式的基础上实现的,最终控制原理都是一样的,都是通过MATLAB提供的一系列API函数对串口进行操作。1和2我都尝试过,但是最后还是觉得之间编程比较清晰,当然这只是一个过程,不同的情况使用不同的工具才是正确的。以上纯属个人观点和理解,仅供参考,有什么好的想法还请不吝赐教,大家一起学习。下面是我对MATLAB环境下对串口操作的一些理解和操作。 在MATLAB中,串口被抽象成一个结构体,所有的操作均同归相关函数对结构体操作完成,通过serial函数新建一个串口对象,该函数至少需要一个参数,即串口号,其他的可选参数为设置该串口相关参数,可以在新建对象的时候指定也可以在以后用set函数设置。相对而言,get函数可以得到串口对象的相关参数值或者状态。

用MATLAB实现结构可靠度计算.

用MATLAB实现结构可靠度计算 口徐华…朝泽刚‘u刘勇‘21 。 (【l】中国地质大学(武汉工程学院湖北?武汉430074; 12】河海大学土木工程学院江苏?南京210098 摘要:Matlab提供了各种矩阵的运算和操作,其中包含结构可靠度计算中常用的各种数值计算方法工具箱,本文从基本原理和相关算例分析两方面,阐述利用Matlab,编制了计算结构可靠度Matlab程.序,使得Matlab-语言在可靠度计算中得到应用。 关键词:结构可靠度Matlab软件最优化法 中图分类号:TP39文献标识码:A文章编号:1007-3973(200902-095-Ol 1结构可靠度的计算方法 当川概率描述结构的可靠性时,计算结构可靠度就是计算结构在规定时问内、规定条件F结构能够完成预定功能的概率。 从简单到复杂或精确稃度的不同,先后提出的可靠度计算方法有一次二阶矩方法、二次二阶矩方法、蒙特卡洛方法以及其他方法。一次■阶矩方法又分为。I-心点法和验算点法,其中验算点法足H前可靠度分析最常川的方法。 2最优化方法计算可靠度指标数学模型 由结构111n个任意分布的独立随机变量一,x:…以表示的结构极限状态方程为:Z=g(■.托…t=0,采用R-F将非正念变量当罱正态化,得到等效正态分布的均值o:和标准差虹及可靠度指标B,由可靠度指标B的几何意义知。o;辟

开始时验算点未知,把6看成极限状态曲面上点P(■,爿:---37,的函数,通过优化求解,找到B最小值。求解可靠皮指标aJ以归结为以下约束优化模型: rain睁喜t华,2 s.,.Z=g(工i,x2’,…,工:=0 如极限状态方栉巾某个变最(X。可用其他变量表示,则上述模型jfIJ‘转化为无约束优化模型: 。。B!:手f生丛r+阻:坚:坠:盐尘}二剐 t∞oY?’【叫,J 3用MATLAB实现结构可靠度计算 3.1Matlab简介 Matlab是++种功能强、效率高、便.丁.进行科学和工程计算的交互式软件包,汇集了人量数学、统计、科学和工程所需的函数,MATI.AB具有编程简甲直观、用户界mf友善、开放性强等特点。将MATLAB用于蒙特卡罗法的一个显著优点是它拥有功能强大的随机数发生器指令。 3.2算例 3.2.I例:已知非线形极限状态方程z=g(t r'H=567f r-0.5H2=0’f、r服从正态分布。IIf=0.6,o r=0.0786;la|_ 2.18,o r_0.0654;H服从对数正态分布。u H= 3218,O。 =0.984。f、r、H相互独立,求可靠度指标B及验算点(,,r’,H‘。 解:先将H当量正念化:h=ln H服从正态分布,且 ,‘-““了:等专虿’=,。49?口二-、『五ir面_。。3

相关主题
文本预览
相关文档 最新文档