当前位置:文档之家› 线路独立坐标系的建立方法

线路独立坐标系的建立方法

线路独立坐标系的建立方法
线路独立坐标系的建立方法

RTK测量中如何建立独立坐标系的

RTK测量中独立坐标系的建立 向垂规 (红河州水利水电勘察设计研究院) 摘要:介绍GPS-RTK测量中WGS-84大地坐标系与独立坐标系转换的方法及南方测绘工程之星数据处理中坐标转换的方法,同时结合工程实例予以验证。关键词:GPS-RTK测量;WGS-84大地坐标系;独立坐标系;坐标转换 1 引言 在水利工程测量中,多数情况下工程所处位置地形复杂,交通不便,通视条件较差,采用以经纬仪、全站仪测量为代表的常规测量常常效率低下。随着GPS-RTK测量系统的使用,由于它具有观测速度快,定位精度高,经济效益高等特点,现在我院多数水利工程测量都是采用RTK测量技术来完成。对于GPS-RTK系统来说,由于它采用的是WGS-84固心坐标系,而在实际工程应用中,由于顾及长度变形、高程异常等影响而采用独立坐标系,这就需要将RTK 测量采集的数据在两坐标系中进行转换。 2 国家坐标系及独立坐标系的建立 2.1 国家坐标系的建立 在我国,由于历史原因先后采用不同的参考椭球体和大地起算数据而形成多个国家坐标系,主要国家坐标系有1954北京坐标系、1980西安坐标系、2000国家坐标系和WGS-84坐标系。前两个是参心坐标系,后两个是固心坐标系。由于他们采用不同的椭球体参数,所以地面上同一个点在不同的坐标系中有不同的坐标值。 国家坐标系的主要作用是在全国建立一个统一的平面和高程基准,为发展国民经济、空间技术及国防建设提供技术支撑,也为防灾、减灾、环境监测及当代地球科学研究提供基础资料。 2.2 独立坐标系的建立

在工程应用中,由于起算数据收集困难、测区远离中央子午线及满足特殊要求等诸多原因,如在水利工程测量中,常要测定或放样水工建筑物的精确位置,要计算料场的土石方贮量和水库的库容。规范要求投影长度变形不大于一定的值(如《工程测量规范》为2.5cm/km,《水利水电工程测量规范(规范设计阶段)》为5.0cm/km)。如果采用国家坐标系统在许多情况下(如高海拔地区、离中央子午线较远地方等)不能满足这一要求,这就要求建立地方独立坐标系。 在常规测量中,这种独立坐标系只是一种高斯平面直角坐标系,而在采用GPS-RTK采集数据时,独立坐标系就是一种不同于国家坐标系的参心坐标系。 跟国家坐标系一样,建立独立坐标要确定的主要元素有:坐标系的起算数据、中央子午线、参考椭球体参数及投影面高程等。对于起算数据,可以采用国家坐标系的坐标和方位角或任意假设坐标和方位角。在RTK测量中,我们常采用基线的某一端点的单点定位解作为起点,然后以另一点定向,用测距仪测出基线边长,经改正后算出基线端点的坐标;中央子午线常采用测区中央的子午线;投影面常采用测区的平均高程面。参考椭球体一般是基于原来的参考椭球体做某种改动,使改变后的参考椭球面与投影面拟合最好,投影变形可以减到最小,也便于与国家坐标系统进行换算。 3 坐标系的转换 GPS-RTK接收机采集的坐标数据是基于WGS-84椭球下的大地坐标,而我们经常使用的独立坐标系是基于某种局部椭球体下的平面直角坐标,这两种坐标是不同坐标基准下的两种表现形式。利用WGS-84下的大地坐标来推求独立坐标系中的平面直角坐标,必然要求得两坐标系之间转换参数。求取转换参数的基本思路是利用两坐标系中必要个数的公共点,根据相应的椭球参数及中央子午线采用最小二乘法严密平差解算转换参数,具体操作是由转换模型把不同坐标基准下的坐标转换为同基准下的不同坐标形式,再进行同基准下不同坐标形式的转换,

RTK测量中独立坐标系的建立

R T K测量中独立坐标系的建立 RTK测量中独立坐标系的建立 摘要:介绍GPS-RTK测量中WGS-84大地坐标系与独立坐标系转换的方法及南方测绘工程之星数据处理中坐标转换的方法,同时结合工程实例予以验证。 关键词:GPS-RTK测量;WGS-84大地坐标系;独立坐标系;坐标转换 1 引言 在水利工程测量中,多数情况下工程所处位置地形复杂,交通不便,通视条件较差,采用以经纬仪、全站仪测量为代表的常规测量常常效率低下。随着GPS-RTK测量系统的使用,由于它具有观测速度快,定位精度高,经济效益高等特点,现在我院多数水利工程测量都是采用RTK测量技术来完成。对于GPS-RTK系统来说,由于它采用的是WGS-84固心坐标系,而在实际工程应用中,由于顾及长度变形、高程异常等影响而采用独立坐标系,这就需要将RTK测量采集的数据在两坐标系中进行转换。 2 国家坐标系及独立坐标系的建立 2.1 国家坐标系的建立 在我国,由于历史原因先后采用不同的参考椭球体和大地起算数据而形成多个国家坐标系,主要国家坐标系有1954北京坐标系、1980西安坐标系、2000国家坐标系和WGS-84坐标系。前两个是参心坐标系,后两个是固心坐标系。由于他们采用不同的椭球体参数,所以地面上同一个点在不同的坐标系中有不同的坐标值。 国家坐标系的主要作用是在全国建立一个统一的平面和高程基准,为发展国民经济、空间技术及国防建设提供技术支撑,也为防灾、减灾、环境监测及当代地球科学研究提供基础资料。 2.2 独立坐标系的建立

在工程应用中,由于起算数据收集困难、测区远离中央子午线及满足特殊要求等诸多原因,如在水利工程测量中,常要测定或放样水工建筑物的精确位置,要计算料场的土石方贮量和水库的库容。规范要求投影长度变形不大于一定的值(如《工程测量规范》为2.5cm/km,《水利水电工程测量规范(规范设计阶段)》为5.0cm/km)。如果采用国家坐标系统在许多情况下(如高海拔地区、离中央子午线较远地方等)不能满足这一要求,这就要求建立地方独立坐标系。 在常规测量中,这种独立坐标系只是一种高斯平面直角坐标系,而在采用GPS-RTK采集数据时,独立坐标系就是一种不同于国家坐标系的参心坐标系。 跟国家坐标系一样,建立独立坐标要确定的主要元素有:坐标系的起算数据、中央子午线、参考椭球体参数及投影面高程等。对于起算数据,可以采用国家坐标系的坐标和方位角或任意假设坐标和方位角。在RTK测量中,我们常采用基线的某一端点的单点定位解作为起点,然后以另一点定向,用测距仪测出基线边长,经改正后算出基线端点的坐标;中央子午线常采用测区中央的子午线;投影面常采用测区的平均高程面。参考椭球体一般是基于原来的参考椭球体做某种改动,使改变后的参考椭球面与投影面拟合最好,投影变形可以减到最小,也便于与国家坐标系统进行换算。 3 坐标系的转换 GPS-RTK接收机采集的坐标数据是基于WGS-84椭球下的大地坐标,而我们经常使用的独立坐标系是基于某种局部椭球体下的平面直角坐标,这两种坐标是不同坐标基准下的两种表现形式。利用WGS-84下的大地坐标来推求独立坐标系中的平面直角坐标,必然要求得两坐标系之间转换参数。求取转换参数的基本思路是利用两坐标系中必要个数的公共点,根据相应的椭球参数及中央子午线采用最小二乘法严密平差解算转换参数,具体操作是由转换模型把不同坐标基准下的坐标转换为同基准下的不同坐标形式,再进行同基准下不同坐标形式的转换,从而得到所要的独立坐标系中的平面直角坐标。转换的难点是WGS-84椭球与独立坐标系局部椭球的变换。 3.1 常用的坐标转换方法

工程独立坐标系的建立

工程独立坐标系的建立 摘要:在工程建设地区布设测量控制网时,其成果不仅要满足大比例尺地形图测图的需要,还要满足一般工程放样的需要。施工放样时要求控制网中两点的实测长度与由坐标反算的长度应尽可 能相符,而采用国家坐标系其坐标成果大多数情况下是无法满足这些要求的。本文主要阐述了工程独立坐标系的建立方法,通过在乾县和靖边供水工程可研阶段测量中的应用,得出了一些有益的结论和建议。 关键词:国家坐标系,独立坐标系,中央子午线,抵偿高程面abstract: in the engineering construction area layout measure control network, its results not only meets the large scale topographic map surveying the need, but also meet the needs of the general projects layout. when construction lofting requirements in the two control net by the length and the length of the coordinates should as far as possible and is consistent with national coordinate system and the coordinate results in most cases is unable to meet these requirements. this paper mainly expounds the methods to set up the independent coordinate system engineering, through in situations water supply project of qian county and feasibility study stage of the application of the measurement and draw some useful conclusions and suggestions.

国家坐标系与地方独立坐标系坐标转换方法与计算

国家坐标系与地方独立坐标系坐标转换方法与计算 作者姓名:岳雪荣 学号: 20142202001 系(院)、专业:建筑工程学院、测绘工程14-1 2016 年 6 月 6 日

国家坐标系与地方独立坐标系坐标转换方法与计算 (建筑工程学院14测绘工程专业) 摘要 随着我国经济的发展的突飞猛进,对测量精度要求的建设也越来越高,就是以便满足实际运行要求。但在一些城市或大型工程建设中可能刚好在两个投影带的交界处,布设控制网时如果按照标准的3度或者1.5度带投影,投影变形会非常大,给施工作业带来不便,此时需要建立地方独立坐标系。认识国家坐标系的转换和地方独立坐标系统有一定的现实意义,如何实现两者的换算,一直是关注的工程建设中的热点问题。因此,完成工程测量领域国家坐标定位成果与地方独立坐标成果的转换问题,以适应城市化和实际工程的需要。 关键词:国家坐标;独立坐标;坐标转换

目录 1绪论 1.1背景和意义 1.2主要内容 1.3解决思路和方法 2 建立独立坐标系的方法3 2.1常用坐标系统的方法介绍 2.2确定独立坐标系的三大要素9 2.3减少长度变形的方法10 2.4建立独立坐标系的意义12 3 国家坐标系与地方坐标系的坐标转换13 3.1常用坐标系的坐标转换模型13 3.2投影面与中央子午线及椭球参数的确定14 3.3国家坐标与地方坐标的转换思路15 4算例分析17 结论20 参考文献错误!未定义书签。

1绪论 1.1背景和意义 随着社会的经济快速发展,尤其是近十多年来空间测量技术突飞猛进,得到了长足的发展,其精度也大幅提高。从测量的发展史来看,从简单到复杂,从人工操作到测量自动化、一体化,从常规精度测量到高精度测量,促使大地坐标系有参心坐标系到大地坐标系的转化和应用。大地测量工作已有传统的二维平面坐标向三位立体空间坐标转化,逐步形成四维空间坐标系统。 在测绘中,地方独立坐标系和国家坐标系为平面坐标系的两种坐标系统。对于工程测量和城市建设过程,建设区域不可能都有合适的投影子午线,势必可能有所差异,这样一来作业区域的高程和坐标或者是工程关键区域的高程和坐标能够与国家大地基准的参考椭球有较大的出入,在这种情况下,根据不同的投影区国家坐标系统,可能就会出现投影变形导致严重错误。建立地方独立坐标系统来降低高程归化影响和是归化投影变形,误差控制在一个小范围的数据计算和实际大致相符,不需要任何修改,从而可以满足工程建设和实际应用。 就当前而言,测量工作重要的触及应用三种常用的大地坐标系统,即为地方独立坐标系,地心坐标系,参心坐标系 [1]。地心坐标系:以地球质心为根据建立的坐标系,包括CGCS2000国家大地坐标系,GPS平差后的WGS-84坐标系等。参心坐标系:参心坐标系是以参考椭球为基准的大地坐标系,包括54北京坐标系和80西安坐标系等。独立坐标系:以自己情况而定的独立坐标,采用新椭球,投影到高斯平面上,计算参数,在结合相关数据解算得到,如城市建设坐标系。它们统称为地固坐标系统。有机结合在一起对于整个坐标系统来说具有很大的应用价值,解决了实际生活中各种的工程测量问题,如土地申报工程,矿产调查工程,全国土地调查工程等等。根据现在的经济建设情况,我们应该结合实际,展开建立国家大地坐标与地方独立坐标的研究工作是非常必要的。这一点也是目前需要解决的问题。 为了更方面的需求和发展,也使得更好地创建国家坐标系与地方独立坐标系的关系。在这里引入了”GPS坐标”这个概念。在这里我们用以工程测量,成为大型工程建设控制网和城建控制网的主要手段。基以GPS坐标系建立的精度高的独立坐标系,将方便于GPS较高精确的、高效的获取城建坐标和高程需求,有利于GPS与GIS的有机结合,进一步提升城市的综合能力,加速城市的现代化建设,对工程建设具有巨大的辅助作用[2]。根据GPS坐标系建立的地方独立坐标系是未来的希望。

工程独立坐标系的建立与统一

龙源期刊网 https://www.doczj.com/doc/9c14849898.html, 工程独立坐标系的建立与统一 作者:卢自来 来源:《中国新技术新产品》2015年第21期 摘要:本文论述了工程测量为什么要建立工程独立坐标系,工程独立坐标系中高程投影 变形和高斯平面投影变形的综合影响,有时需要建立多个工程独立坐标系,在这里浅谈一下工程独立坐标系的统一问题。 关键词:工程测量;工程独立坐标系;投影变形;统一 中图分类号:P223 文献标识码:A 众所周知,国家坐标系的中央子午线为固定的几条经线(3°带的中央经线为3N,6°带的 中央经线为6N-3,N为国家坐标系的带号)。高程投影为0m。工程独立坐标系的中央子午线一般选用测区平均经度,高程投影面一般选用测区的平均高程面。而国家坐标系的中央子午线则往往偏离测区平均经度较远,不能满足要求。因此工程建设必须建立工程独立坐标系,对于一些较大的工程,由于经度跨度较大以及高差较大,一个独立坐标系也不能满足要求,有时需要建立多个工程独立坐标系,而业主为了施工方便,又要求把几个工程独立坐标系统一到一个工程独立坐标系下,这里又牵涉到工程独立坐标系的统一问题。 一、高斯平面投影变形的影响 根据高斯投影原理,高斯平面上长度投影变形的大小与距离中央子午线的横坐标值密切相关。计算公式为: 式中: -长度相对误差; y-边两端点的平均横坐标值; R-为地球曲率半径。 由坐标换带计算可算得不同投影带边缘的横坐标值,并由上式计算出长度投影变形值(边缘距中央子午线的距离以纬度32°为基础)。 由表1可以看出,为了限制投影变形值,工程测量不能简单的使用国家3度带和6度带的国家坐标系,因为工程测量一般要求投影变形不大于1/40000。为使投影变形不大于1/40000,按照上面公式反算,工程独立坐标系的带宽应为45101米,即57′。

地方独立坐标系介绍

1.2大地测量学的作用 ?大地测量学是一切测绘科学技术的基础,在国民经济建设和社会发展中发挥着决定性的基础保证作用。 ?大地测量学在防灾,减灾,救灾及环境监测、评价与保护中发挥着特殊作用。 ?大地测量是发展空间技术和国防建设的重要保障。 ?在地球科学中的地位。 2.3.3 地方独立坐标系 在城市测量和工程测量中,若直接在国家坐标系中建立控制网,有时会使地面长度的投影变形较大,难以满足实际或工程上的需要。为此,往往需要建立地方独立坐标系。 在常规测量中,这种地方独立坐标系一般只是一种高斯平面坐标系,也可以说是一种不同于国家坐标系的参心坐标系[7]。 建立地方独立坐标系,就是要确立坐标系的一些有关的元素,并根据这些元素和地面观测值求定各点在该坐标系中的坐标值。 (1)独立坐标系的中央子午线: 确定地方独立坐标系的中央子午线一般有三种情况: ①尽量取国家坐标系三度带的中央子午线作为它的中央子午线; ②当测区离三度带中央子午线较远时,应取过测区中心的经线或取过某个起算点的经线作为中央子午线; ③若已有的地方独立坐标系没有明确给定中央子午线,则应该根据实际情况进行分析,找出该地方独立坐标系的中央子午线。 (2)起算点坐标[8]: 一般有以下几种情况: ①以某些在国家坐标系中的坐标为起算点坐标,如果中央子午线不同,可以通过 换带计算求得; 参数名称数值 地球椭球扁率f = 1/ 298.257 赤道上的正常重力= 978.032 ×10?2ms? 2 e γ 极点的正常重力= 983.212×10?2ms ?2 p γ 正常重力公式中的系数0.005302, 0.0000058 1 β= β= ? 正常椭球面上的重力位2 20 U = 62636830m s ? 2 地球椭球与坐标系之基本理论 ②直接以某些点在国家坐标系中的坐标为任意带独立坐标系中的起算点坐标; ③将起算点坐标取为某个特定值。例如取为:xk= 0,yk=0。 (3)坐标方位角: ①以两个点在国家坐标系中的坐标方位角为起始方位角;当采用任意带时,一般 是先将这两个点的坐标通过换带计算求得它们的任意带的坐标值,然后反算得到起算方位角; ②测定两点的天文方位角作起算方位角;

举例浅谈斜坐标系的应用

举例浅谈斜坐标系的应用 少二(1)邱天异 平面上的斜坐标系不同于平面直角坐标系,组成它的两条数轴不一定互相垂直。下面将从两个例子来看斜坐标系的应用。 一:六边形镶嵌 在如图的正六边形组成的平面镶嵌中,假定六边形对边中点连线长度为2。 解: 如图,建立一个坐标系,其中的坐标轴夹30°角。 定义一个点P的坐标为: 过点P作x轴的平行线,与y轴交于点A。 记点A在y轴(y轴看成是数轴)上的对应数值是a; 用类似的方法,做y轴平行线,与x轴交于B,B在x轴上的对应数值是b。 那么,P的坐标记作(a,b)。 如图,过A作两坐标轴平行线,分别交另一坐标轴于P , Q。 易知AP=4,AQ=4 ∴A(-4,4) 易知B在y轴上,OB=2 ∴B(0,2) 往上走一格,横坐标减4,纵坐标加4; 往右上走一格,纵坐标加2。 所以,此人的位置是(-12,16) 如果使用平面直角坐标系解决这个问题,需要了解特殊三角形的三边之比,还需要进行带根号的计算。在这个例子中,我们看到,利用斜坐标系来贴合题目的特征,某些时候可以避免分数、实数计算,大大减小计算的复杂性和难度。

二:目视确定位置 人眼观察物体的原理,是从两个不同方向(左右眼)观察同一个物体,综合所得结果而找到最终实际位置。其实,从一个方向观察一个物体,相当于用平行光作出它的一个投影。我们逆向研究这个问题,抽象后如下: 在前一个问题中,我们考虑了往某一个方向前进1单位时,坐标的增量,例如,往六边形的上方前进一单位的增量是(-4,4),右上方则是(0,2)。我们也发现这个“增量”是可以叠加的,例如往上前进1单位,再往右上前进1单位,总的增量就是(-4,6)。 直接求在OA 、OB 组成的斜坐标系中的“增量”较为困难,尝试逆向求解。 考虑在平面直角坐标系中的“增量”,则读图易知: 往OB 方向前进个单位(从P 到P')的增量是(1,b) 往OA 方向前进个单位(从P 到P'')的增量是(1,a) 那么可以看作P 从原点O 开始,沿OA 走了BP 单位,沿OB 走了AP 单位,到达(c,d)。所以可以列方程求解AP 、BP 。 解:设AP=x ,BP=y ,记k 1=, ,k 2= 。 由题意得 解得 答句略去。 x

地方独立坐标系的建立

地方独立坐标系的建立 2006年第2期地方独立坐标系的建立43 地方独立坐标系的建立 张胜利 (水利部陕西水利电力勘测设计研究院测绘总队陕西西安710002) 摘要坐标系统是所有测量工作的基础,它影响到测量成果的正确性和可靠性,对 于不同的测量工作选择恰当的独立坐标系能保证工程项目顺利实施.本文介绍了建 立独立坐标系的几种方法,并对其优缺点进行分析. 关键词独立坐标系;高斯投影;抵偿高程面;高程归化面 1引言 在工程建设地区布设测量控制网时,其成果不仅要满足大比例尺地形图测图的需要,还要 满足一般工程放样的需要.施工放样时要求控制网中两点的实测长度与由坐标返算的长度应 尽可能相符,而采用国家坐标系其坐标成果大多数情况下是无法满足这些要求的,这是因为国 家坐标系每个投影带都是按一定间隔(6.或3.)划分,其高程归化面为参考椭球面,工程建设所

在地区不可能正好落在国家坐标系某一投影带中央附近,其地面位置也与参考椭球面有一定 距离,这两项将产生高程归化改正和高斯投影变形改正,经过这两项改正后的长度不可能与实 测长度相等. 《工程测量规范》(GB5oo26--93)规定:平面控制网的坐标系统,应满足测区内高程归化改 正和高斯投影变形改正之代数和(即投影长度变形值)不大于2.5cm/km,即相对误差小于1/4 万.当测区的国家坐标系不能满足这一规定时,就要建立地方独立坐标系以减小投影长度变 形产生的影响,将它们的影响控制在微小的范围内,使计算出的长度在实际利用时不需作任何 改算. 2高程归化改正与高斯投影变形改化的计算 地面观测边长的归算可分为高程归化和高斯投影长度改化,其计算公式如下: (1)地面观测边长归算到参考椭球面上的长度归算公式 S—D十,:一—DH=(1) 式中:S——归化到参考椭球圆上的长度; D——地面上的观测长度; ——

浅谈2000国家大地坐标系向地方独立坐标系的转换

浅谈2000国家大地坐标系向地方独立坐标系的转换 摘要:大约在十年前,我国的国家级和省级的基础地理信息数据已经初步通过2000国家大地坐标系,然而通过国家坐标系统,在一些离中央子午线较远或者海拔较高的地区无法达到相关要求,这就需要将地方独立坐标系建立起来。本文对2000国家大地坐标系向地方独立坐标系的转化进行分析和研究,以供参考。 关键词:2000国家大地坐标系;地方独立坐标系;转换 1 2000国家大地坐标系与地方独立坐标系的建立 1.1 2000国家大地坐标系的建立 2000国家大地坐标系是全球地心坐标系在我国进行实践的具体体现,其原点 主要是大地和海洋的质量中心,z轴是根据相关规定协议地级方向,x轴表示的是相关规定当中定义的协议赤道和子午面的交点,y轴是依照右手坐标系而建立起 来的,通过2000国家大地坐标系能够加强定位系统的精确性,广泛应用于各个 领域。 1.2地方独立坐标系的建立 在工程测量及城市测绘过程中如果通过国家坐标系来进行控制网的建设,往 往会出现地面长度投影变形量较大等问题,无法达到工程的实际操作需求,所以 一定要建立起与实际情况相适应的地方独立坐标系。地方独立坐标系的建立,主 要是为了让高程归化和投影形变的情况造成的误差缩小,通过地方独立坐标系的 建设可以保证达到所需要的精度,不会由于精度无法达到要求,而对工程建设产 生影响。 2 2000国家大地坐标系与地方独立坐标系转换的理论基础 某市在建设的过程中选取四参数转换模型,对坐标转换参数进行控制,把2000国家大地坐标系的成果向地方独立坐标系的成果进行转化。 2.1重合点选取 在坐标系选用的过程中,两个坐标系都有坐标成果控制点,在选择的过程中,主要原则是覆盖整个转换区域,要求精度较高,而且具有较高的等级,分布均匀。 2.2转换参数计算 首先通过转换模型和重合点的选择,对转换参数进行计算,将残差大于三倍 的误差重合点剔除,对坐标转换参数进行重新计算,直到符合精度要求为止,通 过最小二乘法来对参数进行计算。 2.3精度评定 坐标转换精度一般通过外符合精度来进行评定,根据计算参数转换参数的重 合点残差中误差来对坐标转换精度进行评估,如果残差小于三倍,那么其定位精 度符合要求,在计算的过程中,外部的检核点的误差公式为 3转换方法 坐标转换模型需要与地方控制点和城市数字地图的转化相结合,通常条件下 通过平面四参数模型进行转换,如果重合点比较多,可以通过多元回归模型来进 行控制,如果数字地图和相对独立的平面坐标系统控制点都是三维地心坐标的时候,可以通过Bursa七参数转换模型进行转换。在转换的过程中,需要控制误差 不超过0.05米,并且需要对重合点的选取原则进行明确,首先需要对地方控制点 的高精度控制点和计算点进行择优选择,在一般情况下,在大中城市至少需要保 证使用五个重合点,这些重合点需要均匀的分布,包含在城市的各个区域当中,

(整理)公路测量坐标系的建立

摘要】本文以公路测量为例,较详细地论述了在线路测量中应考虑的变形因素,以及解决变形的办法,详细地叙述了建立独立坐标系的作用及建立这种坐标系的六种方法,并介绍了因提高归化高程面而产生新椭球后的一些椭球常数的计算方法和步骤。此外,本文还对当路线跨越相邻投影带时,需要进行相邻带的坐标换算这一问题进行了阐述。 【关键字】独立坐标系高斯投影带抵偿高程面新椭球常数坐标转换归化高程面 线路控制测量中坐标系统的建立与统一方法 第一章概述 铁路、公路、架空送电线路以及输油管道等均属于线型工程,它们的中线统称线路。一条线路的勘测和设计工作,主要是根据国家的计划与自然地理条件,确定线路经济合理的位置。为达此目的,必须进行反复地实践和比较,才能凑效。 线路在勘测设计阶段进行的控制测量工作,称线路控制测量,在线路控制测量过程中,由于每条线路不可能距离较短,有的可能跨越一个带,二个带甚至更多,所以,在线路控制测量中,长度变形是一个不可避免的问题,但我们可以采取一些措施来使长度变形减弱,将长度变形根据施测的精度要求和测区所处的精度范围控

制在允许的范围之内。最有效的措施就是建立与测区相适应的坐标系统. 坐标系统是所有测量工作的基础.所有测量成果都是建立在其之上的,一个工程建设应尽可能地采用一个统一的坐标系统.这样既便于成果通用又不易出错.对于一条线路,如果长度变形超出允许的精度范围,我们将建立新的坐标系统加以控制.这就涉及到一个非常关键的问题,既,坐标系统的建立与统一.对于不同的情况,我们可以采用适应的方法尽可能建立统一的坐标系统,且使其长度变形在允许范围之内. 本文以公路控制测量为例,详细论述了线路控制测量中坐标系统的建立与统一方法. 第二章坐标系统的建立 当对一条线路进行控制测量时,首先应根据已有资料判断该测区是否属同一投影带和长度变形是否在允许范围之内.这样我们就可以判断是否需要建立新的坐标系统和怎样建立,下面对此进行详细讨论. §2.1 相对误差对变形的影响 与国家点联测的情况:

CAD设计制图中的坐标系UCS怎样使用

CAD设计制图中的坐标系UCS怎样使用 在CAD设计中我们经常会调整坐标,更换作图平面,在这里就要试用【UCS】工具条了。 无论是AutoCAD软件,还是各系类的浩辰软件,在使用坐标【UCS】时操作方法都是一样的,下面我就以浩辰CAD机械软件,简单说一下CAD设计是【UCS】工具条的使用方法。 1、所有坐标命令,即【UCS】命令 次命令包含了CAD中所有的坐标命令,我们科以看命令行提示 [?/3点(3)/面(F)/删除(D)/对象(E)/原点(O)/前次(P)/还原(R)/保存(S)/视图 (V)/X/Y/Z/Z轴(ZA)/世界(W)]<世界(W)>: 在这里输入相应命令字母,就可以相应的调整坐标了。这些命令对应后续的几个命令,我就不多说了。 2、【世界坐标】命令 此命令的直接点击即可完成,用于坐标系调整后回到起初的状态,也就是无论你经坐标系做何调整后只要点击【世界坐标】它就会回到最初原点和状态。 3、【上一个UCS】命令 顾名思义,点击此命令,回到使用的上一个坐标系。 4、【对象ucs】 点击命令后,选择要定义坐标的对象即可将坐标系定义到我们想定义的位置,如图效果。 5、【视图坐标】 此功能应用较少,功能主要实现的是无论在那个视图坐标调整到xy平面作图。

6、【原点坐标】、【z轴矢量】和【3点】坐标命令 【原点坐标】:此命令以点定义坐标,点击命令后,直接点击某点,坐标系就会跟随移动到此点上。 【z轴矢量】:此命令以线定义坐标,点击命令后,直接点击两点确定一直线,坐标系z轴就会跟随一定到此两点确定的直线上。 【3点】此命令以面定义坐标,点击命令后,先点击一点确定原点,然后分别点击两点确定x轴、y轴,坐标系就会移动到相应的位置平面。 7、坐标旋转 此三个命令在更换作图平面式非常常用,用于坐标系的旋转,可分别根据x轴、y轴、z轴进行相应的坐标系旋转,操作较为简单,不做过多介绍。

浅谈具有高程补偿面的独立坐标系在工程上的应用

浅谈具有高程补偿面的独立坐标系在工程上的应用关键字:长度投影变形高程补偿面独立坐标系GPS基线 0 引言 某工程为石油管线带状地形图测量。为此需做一个带状地形控制网。用于带状地形图的绘制。其目的为以后施工建设提供控制依据,并为线路定测和中线放样提供依据。因测区地形多为山区。地形条件复杂,作业季节为盛夏,山区树林茂密,通视条件极差。为此,平面控制采用GPS测量,高程控制采用水准测量。由于平面控制网不仅要满足测图的需要,还要满足改扩建工程施工测量的要求,在进行GPS工程控制网坐标系的选择时,二者需同时兼顾。测区位于国家坐标系三度带边缘,且和国家控制点联测较为困难。本次工程对GPS工程控制网坐标系的选择和对短边GPS高程测量的精度分析得到结论,对工程控制网的建立有一定的借鉴作用。 1 长度投影变形来源 长度投影变形是在两个过程中产生的,我们知道,通过GPS采集测量数据必须通过高程归化平差,归化到参考椭球面上。在这过程中长度产生了高程归化投影变形。然后是由参考椭球体面上的长度投影到高斯平面上时产生了高斯投影长度变形。这样通过平差解算出的基线长度往往和实地量测长度值不同。这就是长度变形的来源。这时,必须人为加入长度变形改正数,为了避免在日常测绘工作中进行大量而繁琐的长度改正计算,必须对长度投影变形给予必要控制。 2 长度投影变形分析 由于该工程平面控制网不但作为大比例尺侧路的控制基础,还要满足后续改扩建工程施工放样测量的需要。为保证施工放样工作的顺利进行,要求由控制点坐标直接反算的边长与实地量得边长尽量相等,也就是说,由高程归算和高斯投影两项改正而带来的长度变形或者改正数,不得大于施工放样的精度要求。按《工程测量规范》要求,每公里长度改正数不大于2.5cm。 设地面实测边长归算到参考椭球面上的长度变形值为,则: = (1) 式中:为归算边高出参考椭球面的平均高程,S为归算边的长度,R为归算边方向参考椭球的法截线的曲率半径。由(1)式可知:的绝对值与成正比关系。当越大,越大。而与其他参数无关。当S=1km,=160m,=-2.5cm,即测区平均海拔超过160m,长度变形值每公里2.5cm。说明当测区平均海拔超过160m 时,若不采取解决办法。就不满足《工程测量规范》的要求。当为负值时,表明地标实测长度归算到参考椭球面上总是缩短的。

关于UG-NX坐标系的介绍和运用

关于UG NX坐标系的介绍和运用 【坐标系简介】 建模离不开坐标系,在UG建模环境中共有3个坐标系:绝对坐标系、工作坐标系、基准坐标系。绝对坐标系是系统默认的坐标系,其原点和各坐标轴线的方向永远不变;工作坐标系也是由系统提供的,但用户可以任意地移动、旋转;基准坐标系由用户根据造型的需要可以随时创建、隐藏或删除,也可以移动、旋转。 1.工作坐标系的移动、旋转操作 如下图1所示,单击“实用工具”栏上“显示WCS”图标,可以显示或隐藏工作坐标系,当工作坐标系被移动、旋转后,又希望能恢复原始状态,就单击图标“设置为绝对WCS”即可实现。 图1 可以单击“实用工具”中的“动态”、“原点”、“旋转”、“更改”等图标,实现工作坐标系的移动、旋转、更改X轴或Y轴方向等目的。单击“旋转WCS”,又出现旋转对话框,提示可以绕什么轴旋转;单击“WCS原点”,又出现点对话框,提示可以确定移动的定位点。 实用中,对工作坐标系进行移动、旋转时,不一定要单击这些图标,一般可以直接将鼠标放在工作坐标系上,当出现图3所示的效果时,单击鼠标就出现了图2效果了,与单击“动态”图标效果是一样的。 图2

图3 如下图4所示,通过鼠标直接进行工作坐标系的移动、旋转操作。图中坐标系的绿色箭头表示可以移动坐标系的方向箭头(称为“移动柄”),绿色小球表示可以旋转坐标系的“旋转柄”,桔黄色的立方体为可移动的坐标原点。 鼠标放在立方体上,按住左键并拖动,就可实现向任意位置拖放工作坐标系了。 当鼠标放在“移动柄”上时,如下图中的(2)所示,光标侧出现双箭头,表示可以沿此轴移动坐标系,此时按住鼠标左键并拖动鼠标就可以实现沿指定坐标轴方向动态移动坐标系了,要想准确移动,可在出现的对话框中输入移动距离值。 当鼠标放在“旋转柄”上时,如下图中的(3)所示,光标侧出现一直线及一旋转箭头,表示可以绕垂直于该坐标轴线旋转坐标系,若在对话框中输入角度值,可以实现准确旋转。 图4 图1所示的图标按钮命令也只可以通过菜单操作方式激活,如下图5所示,效果是一样的。

空间坐标系与空间坐标系在立体几何中的应用有答案(1)

空间直角坐标系 如图1,为了确定空间点的位置,我们建立空间直角坐 标系:以 正方体为载体,以O 为原点,分别以射线OA,OC,OD′的方 向为正方向,以线段OA,OC,OD′的长为单位长,建立三条数轴:x轴、y 轴、z轴, 这时我们说建立了一个空间直角坐标系,其中点O 叫做坐标原点,x 轴、y 轴、z轴叫做坐标轴,通过每两个坐标轴的平面叫做坐标平面,分别称为xOy平面、zOx平面、yOz平面,通常建立的坐标系为右手直角坐标系,即右手拇指指向x 轴的正方向, 食指指向y 轴的正方向,中指指向z轴的正方向. 二.空间直角坐标系中的坐标 空间一点 M 的坐标可用有序实数组(x,y,z)来表示,有序实数组(x,y, z)叫做点M 在此空间直角坐标系中的坐标,记作M (x,y,z),其中 x 叫做点 M 的横坐标,y 叫做点 M 的纵坐 标,z 叫做点 M 的竖坐标 [例1] 在空间直角坐标系中,作出点M(6,-2,4).

[例 2] 长方体 ABCD -A 1B 1C 1D 1中,|AB|=a ,|BC|=b ,|CC 1| =c ,将此 长方体放到空间直角坐标系中的不同位置 (如图 3),分 别写出长方体各顶点的坐标. 变式 1:棱长为 2 的正方体,将此正方体放到空间直角坐标系中 的不同位置,分别写出几何体各顶点的坐标。 2.底面为边长为 4 的菱形,高为 5 的棱柱,将此几何体放到空间直角坐标系中的不同 位置分别写出几何体各顶点的坐标。 3. 在棱长均为 2a 的正四棱锥 P -ABCD 中,建立恰当的空间直角坐标系, (1)写出正四棱锥 P -ABCD 各顶点坐标; (2)写出棱 PB 的中点 M 的坐标. 解: 连接 AC ,BD 交于点 O ,连接 PO ,∵ P -ABCD 为正四棱锥,且棱长均为 2a.∴四边形 ABCD 为正方形, 且 PO ⊥平面 ABCD.∴OA = 2= PA 2 -OA 2 = 2a 2 - 2a 2 = 2a. 以O 点为坐标原点, OA ,OB ,OP 所在的直线分别为 x 轴、 y 轴、z 轴,建立空 间直角坐标系. (1)正四棱锥 P -ABCD 中各顶点坐标分别为 A ( 2a,0,0),B (0, 2a,0),C (- 2 a,0,0), D (0,- 2a,0), P (0,0, 2a ). 0+0 2a + 0 0+ 2a (2)∵M 为棱 PB 的中点,∴由中点坐标公式,得 M ( 2 , 2 , 2 ), [ 例 3] 在空间直角坐标系中,点 P (-2,1,4). (1)求点P 关于x 轴的对称点的坐标; (2)求点 P 关于 xOy 平面的对 称点的坐标; (3)求点 P 关于点 M (2,- 1,- 4)的对称点的坐标. [解] (1)由于点 P 关于 x 轴对称后,它在 x 轴的分量不变,在 y 轴、z 轴的 分量变为原来的相反数,所以对称点为 P 1(-2,-1,- 4). 即 M(0

独立坐标系统的建立及与各坐标系间转换关系

独立坐标系统的建立及与各坐标系间转换关系 摘要:根据某勘察设计、主桥下部结构施工及主桥上部结构施工各阶段对控制网控制范围及精度要求的不同,分别建立了桥梁工程独立坐标系、施工独立坐标系及桥轴坐标系。本文系统阐述了桥梁坐标系统建立的目的、应用及各坐标系间的转换关系,可为类似工程提供参考。 关键词:坐标系统;坐标转换;桥轴坐标系 本工程是三跨吊悬索桥,是某省境内开工建设的数座过河大桥之一。工程设计时速100 km/h,为双向六车道高速标准。桥位由南向北横跨大河,主桥为双塔三跨悬索桥,塔顶标高230.6m。于X年X月X日正式开工建设,现以建成通车。本文主要以此工程为背景,对大跨径悬索桥坐标系统的建立进行了研究和探讨。 1.工程独立坐标系 《工程测量规范》中对平面控制测量坐标系统有以下明确规定:平面控制网的坐标系统应满足在测区内投影长度变形值不大1/40000,即每公里长度变形不大于2.5cm。 对于高斯投影,设椭球体上边长投影至高斯平面长度变化值为,在选用坐标系中,对应边长两端点的平均横坐标偏离中央子午线距离为,则其近似关系式[1]为: (1) 式中:为地球曲率半径。 在勘察设计阶段,为使工程的勘察设计成果与国家控制网结合,满足国家整体规划,往往选择1954北京坐标系或1980国家坐标系作为勘察设计阶段的坐标系。若选取1954北京坐标系,其中央子午线为XXX°,本工程所在经度为XXX°XXX′XXX″,值约为110km,取R为6371km,S为1000m,则高斯投影长度变形为0.15m,远远超出《工程测量规范》(GB50026-2007)规定的平面控制网边长的投影长度变形2.5cm/km的要求;显然,1954北京坐标系不能满足工程勘察设计阶段对控制网精度的要求。 为了满足勘察阶段测量任务的需要,由设计单位申请后,建立工程独立坐标系,其参数为: ①椭球参数与1954北京坐标系相同,为克拉索夫斯基椭球; ②中央子午线经度为XXX°56′30″;

33.坐标系的应用

坐标方法的简单应用 一、一周知识概述 1、用坐标表示的位置 利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下: (1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向; (2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度; (3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。 2、用一个角度和一个距离确定点的位置 选择观测点为坐标原点,建立直角坐标系,令x轴的正方向为向东的方向,y轴的正方向为向北的方向,再由已知的角度确定被观察点所在的方向,再由距离确定其点的位置。 3、点的平移 在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或x-a,y);将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或x,y-b)。 4、用坐标表示平移 (1)在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度。 (2)一个图形进行平移,这个图形上所有的点的坐标都要发生相应的变化;反过来,如果图形上的点的坐标发生变化,那么这个图形进行了平移。 (3)图形平移的特征:一个图形平移前后大小、形状完全相同,只是位置不同。 例1、某军事行动中,对军队部署的方位,采用代码的方式来表示.例如,北偏东30°方向45 km的位置与钟面相结合,以钟面圆心为基准,时针指向北偏东30°的时刻是1:00,那么这个地点就用代码010045表示.按这种表示方式,南偏东40°方向78 km的位置,可用代码表示为_________. 例2、将点A(-3,-2)向右平移5个单位长度,得到点A1,再把A1向上平移4个单位长度,得到点A2,则点A2的坐标为()A.(-2,-2)B.(2,2) C.(-3,2)D.(3,2) 例2、(天津市)在平面直角坐标系中,已知线段的两个端点分别是,将线段平移后得到线段,若 点的坐标为,则点的坐标为() A.(4,3)B.(3,4) C.(-1,-2)D.(-2,-1) 例3、(包头)线段是由线段平移得到的,点的对应点为,则点的对应点D的坐标是_________.20、(10分)已知:如图,在平面直角坐标系中S△ABC=24,OA=OB,BC=12,求△ABC的三个顶点的坐标. 22、(15分)在平面直角坐标系中, (1)确定下列各点:A(-3,4),B(-6,-2),C(6,-2); (2)若以A、B、C为顶点,作一个平行四边形,试写出第四个顶点的位置的坐标,你的答案惟一吗? (3)求出这个平行四边形的面积.

坐标的应用

坐标的应用(讲义) 知识点睛 1. 平面直角坐标系中坐标的解题思路: ①________________________________________________; ②________________________________________________. 2. 中点坐标公式 如图,在平面直角坐标系中,已知A (x 1,y 1),B (x 2,y 2),则线段AB 的中点M 的坐标为_______________________.(用x 1, y 1,x 2,y 2表示) 精讲精练 1. 将一副直角三角板(含45°角的直角三角板OAC 及含30°角的 直角三角板OAB )按如图所示方式放在平面直角坐标系中,若点A 的坐标为(9+,0),则图中两块三角板的交点P 的坐标是_________________. 第2题图 2. 如图,在平面直角坐标系中,正方形ABCD 的顶点A , B 的坐标分别为A (-1,0),B (0,4),顶点 C , D 均在第二象限,则C ,D 两点的坐标分别为__________,__________. 3. 如图,在平面直角坐标系中,点A 的坐标为(-,0),点B 的坐标为(0,-7).以B 为 直角顶点,BA 为腰作等腰Rt △ABC ,则点C 的坐标为______________. 第3题图 第4题图 4. 如图,把一张长方形纸片OABC 放入平面直角坐标系中,其中A (2,0),B (2,,连 接OB ,将纸片OABC 沿OB 折叠,使点A 落在点A ′的位置上,则点A ′的坐标为_________. 5. 如图,在平面直角坐标系中,四边形OABC 是正方形,点A 的坐标为(0,2),E 是线段

地方独立坐标系优化选择

地方独立坐标系优化选择 王三虎,倪崇义 (中煤邯郸设计工程有限公司 邯郸市滏河北大街114号 056031) 摘要:根据《工程测量规范》的要求,测区内投影长度变形不大于2.5cm/km,因此测区选择规范、统一、合理的坐标系统十分重要。本文通过分析测区地理位置和平均高程,从不同角度阐述了选择独立坐标系统的方法,使投影后的长度与实际长度的差值限制在一个微小的范围内。 关键词:高程归化;高斯投影改正;投影面;投影带;高程抵偿面 0 概 述 测量工作是在自然地面进行,而地球的表面是高低起伏的不规则的复杂曲面,不能用简单的数字模型来表达。我们选用一个非常接近大地水准面,并可用数学模型来表示的参考椭球体,用各地的大地水准面对照参考椭球体的偏离来反映地球的真实形状。参考椭球体是不可展曲面,曲面上的数学关系也较复杂,为了使测绘和计算能在平面上进行,我们在保证变形(例如长度变形值不大于2.5cm/km)不影响实际使用的前提下,将椭球上的点、线、图形投影到平面上。投影的方法一般有等角投影、等面积投影和任意投影,等角投影也称正形投影,这种投影的方法可使小范围内的图形保持相似而广泛应用。高斯-克吕格(Gauss-Kruger)投影简称“高斯投影”,又名“等角横切椭圆柱投影”,是地球椭球面和平面间正形投影的一种,在我国大地测量和地形测量中普遍采用高斯投影。 1 投影面与投影带的选择原则 为了控制长度变形使其不大于测图误差,又要使带数不致过多以减少换带计算工作,据此原则将参考椭球体面沿子午线划分成经差相等的瓜瓣形地带,以便分带投影。我国通常使用平面控制网是把长度元素归化至参考椭球体面和采用的按经差6°带或3°带高斯平面直角坐标系。6°带以0°子午线算起,每6°为一带,第一带的中央子午线为东经3°;3°带以东经1°30′开始,每隔3°为一带,第一带的中央子午线为东经3°按一定经差将地球椭球面划分成若干投影带,这是高斯投影中限制长度变形的最有效方法。 在任意高程面上进行的测量观测成果,必须先进行高程归化(长度元素归化至参考椭球体面),然后投影到高斯平面。高程归化使实测长度发生变化,而投影是长度和角度都发生变形,高斯投影的角度变形相对来说是比较微小的,而主要是长度变形。根据《工程测量规范》的要求,测区内投影长度变形值不大于2.5cm/km,因此在控制测量中,必须根据测区的地理位置和平均高程面,合理的选择投影面和投影带,把投影后的长度与实际长度的差值限制在一个微小的范围内,使图纸上量取的和坐标反算的边长与实地量测边长基本一致,在实际使用时不需要作任何改算,这样在进行矿区控制测量、大比例尺地形图和工程放样时,使起算数据能保持必要的实用精度和便于工作。 为了解决测区内投影变形,可以采用以下方法: ⑴ 抵偿投影面的高斯正形投影:通过选择合适的高程参考面,抵偿分带投影变形; ⑵ 任意带高斯正形投影:通过改变中央子午线作适当移动,抵偿由高程面的边长归算到参考椭球面上的投影变形;

相关主题
文本预览
相关文档 最新文档