当前位置:文档之家› 十大物理公式

十大物理公式

十大物理公式
十大物理公式

十大物理公式之

top10:

那就是我们的牛顿第二定律:

其中:F代表力的大小;m代表物体质量;v代表物体速度

话说牛顿的第二定律可以被当成整个物理学的开端。仍然记得当年初中学到牛顿第二定律之后心里面有一种豁然开朗的感觉,有一种全宇宙的秘密都尽在于此的感觉在这里我们为什么没有选用牛顿第二定律的通常形式F=ma呢?因为我们这里选用的形式才是牛顿当年提出这个定律时的原始形式,而且这个形式在爱因斯坦的狭义相对论中也是正确的。但是话又说回来了,牛顿的第二定律终究还仅仅是力学中的基本定律,不能走出力学这个狭隘框架半步。所以这个牛顿的式子排名第十。

十大物理公式之

top9:

薛定谔的波动方程:

其中:h是折合普朗克常数,m是粒子质量,V是势能函数,希腊字母phi是粒子的波函数,倒三角的平方是拉普拉斯算符

薛定谔的波动方程背后确实没有什么引人入胜的传奇可讲,只是因为有一次,薛定谔先生在演讲宣传“德布罗意波”(就是我们常说的波函数所描述的波)时被一个听众问到“德布罗意波的波动方程是什么”,从而激发起了薛定谔寻找答案的冲动。但是由这个波动方程的提出所引发的量子力学体系之建立确实是一段百听不厌的传奇。在物理学史上,量子力学又被称为男孩物理学,因为创立量子力学主体的是一帮平均年龄不到30岁的大男孩。他们在哥本哈根的“量子教父”:玻尔的带领下共同埋葬了经典物理的宏伟大厦,开辟了另一片崭新的物理天地。在现代的量子力学体系中,薛定谔方程就像经典力学中的牛顿第二定律一样被作为一项公设来接受。

十大物理公式之

top8

牛顿的万有引力定律:

其中:F是万有引力大小,G是万有引力常量,m1和m2分别是两个质点的质量,r是两质

点直接的距离

实际上要作一名成功的物理学家,想象力往往也是不可缺少的:他居然会把苹果掉落所受的力与月球围着地球的运动所受到的力认定是同一种力,并且在数学上严格的论证了这个想法!这在我们现代人看起来可能没什么,那是因为我们站在了像牛顿这样巨人的肩膀上,第一个产生这种想法的牛顿先生绝对有做上帝的气质。

说万有引力定律公式的精髓在于距离r的平方反比上,牛顿当年憋了好多年都没敢发表他在万有引力方面的研究成果原因之一就在于他不敢断定万有引力是否与距离的平方成反比。牛顿提出万有引力定律之后直接催生了天体力学这个物理分支,天体力学的蓬勃发展所带来的直接成果就是人们逐渐理解了太阳系的结构、潮汐的原因,实现了星历计算以及日月食的预报等等。而这些自然现象在牛顿时代之前对于人类来说完全就是神秘事物,人们甚至不知道为何月亮会有阴晴圆缺……难怪诗人曾经感叹道:Nature and nature's law lay hide in night.God said:Let Newtown be!And all was light.

十大物理公式之

top7

玻耳&兹曼公式:

其中:S代表熵的大小,k是玻耳兹曼常数,“希腊字母欧&米伽”是微观粒子可能的微观状态数

据说有一个杂志评比了科学史上对人类影响最大的十个公式,玻耳兹曼公式都是榜上有名的。在玻耳兹曼之前,熵本来仅仅是一种由克劳修斯提出、只在热力学上有用的概念。但是利用玻耳兹曼的这个公式,我们可以轻松的把熵这个概念推广到例如信息学和生物学上去。举个例子,一台计算机记录一个比特的信息所放出熵的最小数量,按照玻耳兹曼公式,就是S=k*ln2。

我们可怜的玻耳兹曼最后是死于自杀,按照他的遗嘱,人们将这个公式永久的镌刻在了他的墓碑上。

十大物理公式

top6

狄拉克方程:

符号介绍参见薛定谔方程

狄拉克方程是高等量子力学中比较有传奇色彩的一个公式,因为狄拉克的反电子就是这个方程所预言的,另外还有著名的狄拉克海洋等等神奇的概念。不过以现代量子场论的观点来看,当年狄拉克的这些看似神奇的假设实际上都是没有必要的,因为在量子场论中粒子就是场,场就是粒子,二者可以被同一个方程所描述。另外,狄拉克方程的另一个成功之处在于:它第一次实现了量子力学与狭义相对论的有机统一。那些质疑量子论与相对论统一性的言论大多是指广义相对论对引力场的描述与量子场论对引力场的描述之间的矛盾。实际上磁铁们可以在下面的文章中看出:量子场论将引力场视为粒子,即引力子;而广义相对论认为引力不

是一种实实在在的力而仅仅是一种时空弯曲效应。同时这两种理论又在各自的领域内取得了绝对的成功,所以产生了不可调和的矛盾。实际上,狭义相对论与量子论和谐的很,狄拉克方程俨然就是高速粒子的薛定谔方程。

十大物理公式

top5

麦克斯韦方程组的微分形式:

上式中E是电场强度,B是磁场强度,J是电流密度,p是电荷密度。

老麦的方程组上榜应该是意料之内的,前面已经有磁铁猜到了。这里给出的是我本人比较喜欢的方程组微分形式。不消说,麦式方程组仅仅在形式上就给人以相当的美感了。实际上如果您学过矢量分析的话,更能在数学层次上领略到方程组的和谐与对称。然而话说如果世界上存在磁单极子的话,麦克斯韦的方程组会达到最佳的对称与和谐。这难道预示着磁单极子的存在?如今这个方程组面世至少一个半世纪了,可以说,现代人类至少在对电磁波的理解深度上还停留在麦克斯韦的时代。我们并不比麦克斯韦更了解电磁波。

十大物理公式之

top4

QED(量子电动力学)基本方程:

哎呀,这个……这个……这个式子也忒变态了吧。估计你们眼都花了,其实我也比你们好不

到那里去,我也仅仅是知道这个公式中所包含的运算方法而已,至于更深的物理理解我也是一头雾水。要自由的运用这个公式我估计也要坐两年冷板凳了。虽然我们对公式的细节没法给出什么评论,不过我却可以告诉你们这个公式的底细。因为现在摆在你们面前的就是一个具有大统一方程潜质的公式!!怎么样,有眼不识泰山了吧?整天叫嚣什么大统一方程,真见到了你都不一定认出它来。为什么这么说呢?因为从理论上讲,这个公式在微观程度上统一了所有的电磁现象,而我们日常生活中所接触到的物理现象,除了有重力参与的少数物理过程外,几乎都与电磁力有关。所以说这个式子可以从理论上说明我们日常生活中所遇到的一切物理过程:从摩擦力到拉力弹力,从生命的新陈代谢到虚拟的网络世界统统在这个式子的管辖之内。

这个式子上榜的另外一个原因在于:以这个方程为基础建立起来的量子电动力学是人类有史以来最精确的科学理论,是物理学中的一块瑰宝,是人类智慧的骄傲。据此推导出来的电子磁距大小的理论数值与实验数值居然可以吻合到小数点后九位!(据说第十位之所以没吻合上,问题不是出在QED,而是出在对电子电荷实验数值的应用已经达到了上限!)这绝对是物理学史上从未有过的传奇……

十大物理公式之

top3

最小作用量原理:

其中:S是作用量,p是(广义)动量,q是(广义)坐标,德尔塔是变分(可以简单的理解为微积分中的微分)符号

在讨论科幻题材时常常爱讲宇宙的终极定律什么的,这实际上有点涉及到了物理学中所谓的第一性原理问题。第一性原理,通俗一点就是说上帝创造这个世界时的基本想法和基本规则。如果有人问你:在现在的物理学家看来,宇宙的第一性原理是什么?毫无疑问,最小作用量原理是最佳候选者。那么最小作用量原理到底对我们宇宙的运行规律说了些什么呢?比如一颗小球在恒定力的作用下运动的情况,在我们做实验之前我们有理由猜测小球会沿着任意一条曲线去运动。那么物理学中的问题是:实际中的小球会按照哪一条运动曲线去运动呢?最小作用量原理告诉我们:如果我们对小球每一种可能的运动曲线定义一个名为“作用量”的数值,那么,小球实际中的运动曲线的一个基本性质就是:它的那个名为“作用量”的数值在所有可能的曲线中最小!很震撼是吧,确实,但是这个思想更震撼的地方在于:这个原理不仅适用于以上所说的力学情况,它对于所有的物理分支都适用!包括量子力学、电动力学、热力学等等物理分支。我开始接触这个思想时也被深深的震撼了,原来我们的世界就是一个由极值所构架的世界!但是且慢,这个在物理过程中名为“作用量”的数值是怎么计算的?哈哈,露马脚了,很遗憾,这个所谓的作用量在整个物理学的各分支中没有固定形式,往往是根据不同物理分支的要求,人为的根据最小作用量原理凑出来的……否则物理学早就没啥可研究的了。尽管如此,这个思想仍然是物理学中一个不可多得的瑰宝。

十大物理公式之

top2

质能转换公式:

老爱的质能方程向来也都是物理公式中的No.1哈,不过像欧拉公式一样,我还是把它排到第二上去。关于这个式子如何漂亮如何有用我就不想多说什么了,只是讲一个现象:这个式子在中国的民科那里往往是“常用公式之一”,原因不解释。

十大物理公式之

top1

(music该起了哈)那就是伟大的----

爱因斯坦场方程:

1916年11月25日,爱因斯坦十年磨一剑的广义相对论终于盖棺完成了,这就是我们物理公式榜上的No.1:爱因斯坦场方程。首先我稍微来解释一下这个方程哈:方程左边描述的是时空的弯曲情况(以度规来描述),方程右边的T描述的则是时空中的能量---动量分布情况,二者之比为一个与万有引力常数G有关的常量。这个场方程精确的体现了爱因斯坦对于时空与物质关系的基本设想:运动的物质告诉时空怎样弯曲,而弯曲的时空反过来又告诉物质怎样运动。另外,我们伟大的物理公式No.1中至今有一个常数不定(已经在公式下面标出来了),这就是传说中爱因斯坦的宇宙常数,因为这个常数的数值很小,只有在考虑宇宙尺度的时空结构时才会有用。爱因斯坦当年出于先验的考虑,想当然的认为这个常数不是零,可是后来有个叫弗里德曼的家伙在假设宇宙常数为零的情况下一手推出了与天文学家埃德温·哈勃观测结果相一致的膨胀宇宙模型(这个模型今天被称为人们尊为标准模型),我们的老爱同志捶胸顿足,把他的这个“先验错误”认定为自己一生中所犯的最大的错误。然而似乎上帝特别喜欢跟人类的智慧大师们开玩笑,如今,随着天文观测水平的提高,人们发现:宇宙中存在着一种被称为“暗能量”的力量,它使得我们的宇宙一直在加速膨胀,这反映在场方程中就是宇宙常数不为零!如果爱因斯坦地下有灵,不知道会不会有一种闪了腰的感觉。

爱因斯坦曾经对自己的相对论如此评价:如果我不去搞狭义相对论,别人早晚也会搞出来,因为当时的狭义相对论已经只是一层窗户纸了,总会有人去捅破它(比如庞加莱)。可是如果我不去搞广义相对论,人类至少在半个世纪内不会发现它。此话绝非虚言。实际上,在爱因斯坦提出场方程后的四五十年内,物理学界关于广义相对论的论文少得可怜。为什么呢?因为爱因斯坦场方程在数学上是一组数量众多、结构又异常复杂的非线性偏微分方程,几乎不太可能找到精确解。即便如此,一位名叫史瓦西的牛逼数学家居然在一战的前线上搞出了一个精确解,而且时间就在场方程发表的第二年!这就是广义相对论研究中大名鼎鼎的史瓦西解,这个解中给出的奇点就是史瓦西黑洞。从上世纪五十年代开始,关于广义相对论的研究才开始在理论物理学中广泛兴起,并在这个分支中诞生了像霍金和罗杰·彭罗斯这样的大神.

大学普通物理复习题(10套)带答案

普通物理试题1-10 试题1 一、填空题 11. 7.在与匀强磁场B 垂直的平面,有一长为L 的铜杆OP ,以角速度 绕端点O 作逆时针 匀角速转动,如图13—11,则OP 间的电势差为 P O U U ( 22 1 L B )。 3. 3.光程差 与相位差 的关系是( 2 ) 25. 1.单色光在水中传播时,与在真空中传播比较:频率(不变 );波长( 变小 );传播速度( 变小 )。(选填:变大、变小、不变。) 68.17-5. 波长为 的平行单色光斜入射向一平行放置的双缝,如图所示,已知入射角为θ缝宽为a ,双缝距离为b ,产生夫琅和费衍射,第二级衍射条纹出现的角位置是( sin 2sin 1 b 。 33. 9. 单色平行光垂直照射在薄膜上.经上下两表面反射的两束光发生干涉、如图所示, 若薄膜的厚度为e .且321n n n ,1 为入射光在1n 中的波长,则两束反射光的光程差为 ( 2 21 12 n e n )。 二、选择题 6. 2. 如图示,在一无限长的长直载流导线旁,有一形单匝线圈,导线与线圈一侧平行并在同一平面,问:下列几种情况中,它们的互感产生变化的有( B ,C ,D )(该题可有多个选择)

(A) 直导线中电流不变,线圈平行直导线移动; (B) 直导线中电流不变,线圈垂直于直导线移动; (C) 直导线中电流不变,线圈绕AB 轴转动; (D) 直导线中电流变化,线圈不动 12.16-1.折射率为n 1的媒质中,有两个相干光源.发出的光分别经r 1和r 2到达P 点.在r 2路径上有一块厚度为d ,折射率为n 2的透明媒质,如图所示,则这两条光线到达P 点所经过的光程是( C )。 (A )12r r (B ) d n n r r 2112 (C ) d n n n r r 12112 (D ) d n n r r 12112 83. 7.用白光垂直照射一平面衍射光栅、发现除中心亮纹(0 k )之外,其它各级均展开成一光谱.在同一级衍射光谱中.偏离中心亮纹较远的是( A )。 (A )红光; (B )黄光; (C )绿光; (D )紫光; 三、问答题 1.1.在电磁感应定律dt d i 中,负号的意义是什么? 四、计算题 56. 17-3. 如图所示,由A 点发出的nm 600 的单色光,自空气射入折射率23.1 n 的透明物质,再射入空气,若透明物质的厚度cm d 0.1 ,入射角 30 ,且cm BC SA 5 ,求:

大学物理近代物理学基础公式大全

一. 狭 义相对论 1. 爱因斯坦的两个基本原理 2. 时空坐标变换 3. 45(1(2)0 m m γ= v = (3)0 E E γ= v =(4) 2222 C C C C v Pv Pv Pv P E E E E ==== 二. 量子光学基础 1. 热辐射 ① 绝对黑体:在任何温度下对任何波长的辐射都能完全吸收的物体。 吸收比:(T)1B αλ、= 反射比:(T)0B γλ、= ② 基尔霍夫定律(记牢) ③ 斯特藩-玻尔兹曼定律 -vt x C v = β

B B e e :单色辐射出射度 B E :辐出度,单位时间单位面积辐射的能量 ④ 唯恩位移定律 m T b λ?= ⑤ 普朗克假设 h εν= 2. 光电效应 (1) 光电效应的实验定律: a 、n I ∝光 b 、 0 00a a a a e U ek eU e U ek eU e U ek eU e U ek eU νννν----==== (23、 4 三. 1 ② 三条基本假设 定态,,n m n m h E E h E E νν=-=- ③ 两条基本公式 2210.529o n r n r n A == 12213.6n E E eV n n -== 2. 德布罗意波 20,0.51E mc h E MeV ν=== 22 mc mc h h νν== 电子波波长:

h mv λ= 微观粒子的波长: h h mv mv λλ= === 3. 测不准关系 x x P ???≥h 为什么有?会应用解题。 4.波函数 ① 波函数的统计意义: 例1① ② 例2.① ② 例3.π 例4 例5,,设 S 系中粒子例6 例7. 例8. 例9. 例10. 从钠中移去一个电子所需的能量是2.3eV ,①用680nm λ=的橙光照射,能否产生光电效应?②用400nm λ=的紫光照射,情况如何?若能产生光电效应,光电子的动能为多大?③对于紫光遏止电压为多大?④Na 的截止波长为多大? 例11. 戴维森革末实验中,已知电子束的动能310k E MeV =,求①电子波的波长;②若电子束通过0.5a mm =的小孔,电子的束状特性是否会被衍射破坏?为什么? 例12. 试计算处于第三激发态的氢原子的电离能及运动电子的德布罗意波长。 例13. 处于基态的氢原子,吸收12.5eV 的能量后,①所能达到的最高能态;②在该能态上氢原子的电离能?电子的轨道半径?③与该能态对应的极限波长以及从该能态向低能态跃迁时,可能辐射的光波波长?

高中物理主要公式

高中物理主要公式 必修1 1、速度公式:t x v ??= 2、加速度:定义式:t v a ??= 决定式:m F a 合= 3、匀变速直线的规律: ⑴、速度公式:at v v +=0 ⑵、位移公式:202 1at t v x += ⑶、速度与位移公式:ax v v 2202=- ⑷ 、两个重要推论: 相邻相等时间间隔T 内的位移之差2 aT x =? 2 02t v v v v =+= 4、自由落体运动规律: gt v =22 1gt h =gh v 22= 5、竖直上抛运动规律: gt v v -=0202 1gt t v h -=gh v v 2202-=- 6、胡克定律:kx F = 7、滑动摩擦力:N F f μ= 8、牛顿第二定律:ma F 合= 解题步骤: 1. 选取研究对象; 2. 受力分析(关键);

3. 建立直角坐标系:一般沿着加速度方向和垂直于加速度方向建立直角坐标系。 4. 列方程求解:方程变为:0 ==y x F ma F ;或者:ma F F y x == 0 9、平抛运动规律: ⑴、位移公式: 水平方向:t v x 0= 竖直方向:22 1gt y = 合位移大小:22y x s += 合位移方向:x y = αtan (其中α为:合位移与水平方向的夹角) ⑵、速度公式: 水平速度:保持0v 不变 竖直速度:gt v y = 合速度大小:220y v v v += 合速度方向:0tan v v y = θ(其中θ为:合速度与水平方向的夹角) 10、圆周运动公式: ⑴、线速度:)(弧长与时间的比值t s v ??= ⑵、角速度:)(t 角度一定用弧度。圆心角与时间的比值,??=θω ⑶、线速度与角速度的关系:r v ω= ⑷、线速度与周期的关系:T r v 2π= ⑸、角速度与周期的关系:T πω2= ⑹、车速与角速度的关系:n 2πω=[公式中转速n 的单位必需是:转/秒(r/s)] ⑺、向心加速度:v r T r r v a 22 22ωπω=??? ??===

高中物理基础知识和基本公式总结

高中物理基础知识和基本公式总结 力学部分 一、高中阶段常见的几种力 1.重力 : G = mg (g 随高度、纬度而变化) 方向:竖直向下 2.弹力: 产生条件:两个物体接触并发生形变 常见的几种弹力: (1)压力、支持力:方向与支持面垂直 (2)细线的拉力:方向沿着绳 (3)弹簧力:F = kx (k-弹簧的劲度系数、x —弹簧的形变量) ——胡克定律 (4)杆的弹力:大小和方向需结合物体的运动状态由力的平衡条件或牛顿第二定律确定。 3.摩擦力: 滑: f =μ N 方向:与物体相对运动方向相反 静:大小: 0< f ≤ f m 方向:与物体相对运动趋势方向相反 大小、方向一般需由力的平衡条件或牛顿第二定律计算确定。 最大静摩擦力f m :一方面指明了静摩擦力变化的范围,另一方面也指明了使静止的物体运动起来所需的最小作用力。 说明: a 、摩擦力可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成一定夹角。 b 、摩擦力可以作正功,也可以作负功,还可以不作功。 c 、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。 4.万有引力: F = G m 1 m 2 r 2 ——万有引力定律(适用于两个质点或均匀球体) 5.库仑力: F = k q 1q 2 r 2 (库仑定律——真空中两个点电荷之间的相互作用力) 6.电场力: F = q E 方向:+q 的受力方向与电场方向相同 -q 的受力方向与电场方向相反 7.安培力 : I ∥B 时 F = 0 I ⊥B 时 F = BIL 方向:F 与B 、I 垂直,由左手定则判断 8.洛仑兹力: v = 0或v ∥B 时 f = 0 v ⊥B 时 f = Bqv 方向;f 与B 、v 垂直,+q 所受f 的方向由左手定则判断,-q 所受f 的方向与+q 相反。 注意:洛仑兹力对带电粒子不做功。 二、基本的运动模型 1. 匀速直线运动: v 不变 s = vt a=0 2. 匀变速直线运动:v 均匀变化 a 不变 (1)基本公式: v = v 0 + at

_高中物理公式大全

_高中物理公式大全 一、直线运动 (1)匀变速直线运动 1.平均速度V平=x/t(定义式) 2.有用推论Vt2-V02=2as 3.中间时刻速度Vt/2=V平=(Vt+V0)/2 4.末速度Vt=V0+at 5.中间位置速度Vs/2=[(V02+Vt2)/2]1/2 6.位移s=V平t=V0t+at2/2=Vt/2t 7.加速度a=(Vt-V0)/t (以V0为正方向,a与V0同向(加速)a>0;a与V0反向(减速)则a<0) 8.实验用推论Δs=aT2(Δs为连续相邻相等时间(T)内位移之差) 9.主要物理量及单位:初速度(V0):m/s;加速度 (a):m/s2;末速度(Vt):m/s;时间(t):秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。 (1)平均速度是矢量; (2)物体速度大,加速度不一定大;

(3)a=(Vt-Vo)/t只是测量式,不是决定式; (4)其它相关内容:质点、位移和路程、参考系、时间与 时刻、s--t图、v--t图/速度与速率、瞬时速度。 二、质点的运动 (2)----曲线运动、万有引力 1) 平抛运动 1水平方向速度:Vx=V0 2.竖直方向速度:Vy=gt 3.水平方向位移:x=V0t 4.竖直方向位移:y=gt2/2 5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2) 6.合速度Vt=(Vx2+Vy2)1/2=[V02+(gt)2]1/2 合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0 7.合位移:s=(x2+y2)1/2 位移方向与水平夹角α:tgα=y/x=gt/2V0 8.水平方向加速度:ax=0;竖直方向加速度:ay=g 注: (1)平抛运动是匀变速曲线运动,加速度为g,通常可看作 是水平方向的匀速直线运与竖直方向的自由落体运动的合成; (2)运动时间由下落高度h(y)决定与水平抛出速度无关; (3)θ与β的关系为tgβ=2tgα;

中国科学院大学 考研《普通物理(甲)》考试大纲

中国科学院大学考研《普通物理(甲)》 考试大纲 一、考试科目基本要求及适用范围概述 本《普通物理(甲)》考试大纲适用于中国科学院大学理科类的硕士研究生入学考试。普通物理是大部分专业设定的一门重要基础理论课,要求考生对其中的基本概念有深入的理解,系统掌握物理学的基本定理和分析方法,具有综合运用所学知识分析问题和解决问题的能力。 二、考试形式 考试采用闭卷笔试形式,考试时间为180分钟,试卷满分150分。 试卷结构:单项选择题、简答题、计算题,其分值约为1:1:3 三、考试内容: 大学理科的《大学物理》或《普通物理》课程的基本内容,包含力学、电学、光学、原子物理、热学等。 四、考试要求: (一) 力学 1. 质点运动学: 熟练掌握和灵活运用:矢径;参考系;运动方程;瞬时速度;瞬时加速度;切向加速度;法向加速度;圆周运动;运动的相对性。 2.质点动力学: 熟练掌握和灵活运用:惯性参照系;牛顿运动定律;功;功率;质点的动能;弹性势能;重力势能;保守力;功能原理;机械能守恒与转化定律;动量、冲量、动量定理;动量守恒定律。 3.刚体的转动: 熟练掌握和灵活运用:角速度矢量;质心;转动惯量;转动动能;转动定律;力矩;力矩的功;定轴转动中的转动动能定律;角动量和冲量矩;角动量定理;角动量守恒定律。 4.简谐振动和波: 熟练掌握和灵活运用:运动学特征(位移、速度、加速度,简谐振动过程中的振幅、角频率、频率、位相、初位相、相位差、同相和反相);动力学分析;振动方程;旋转矢量表示法;谐振动的能量;谐振动的合成;波的产生与传播;面简谐波波动方程;波的能量、能流密度;波的叠加与干涉;驻波;多普勒效应。 5.狭义相对论基础: 理解并掌握:伽利略变换;经典力学的时空观;狭义相对论的相对性原理;光速不变原理;洛仑兹变换;同时性的相对性;狭义相对论的时空观;狭义相对论的动力学基础;相对论的质能守恒定律。 (二) 电磁学 1. 静电场: 熟练掌握和灵活运用:库仑定律,静电场的电场强度及电势,场强与电势的叠加原理。理解并掌握:高斯定理,环路定理,静电场中导体及电介质问题,电容、静电场能量。 2. 稳恒电流的磁场:

普通物理

《普通物理》考试大纲和参考书 参考教材:《普通物理学·第六版》程守洙、江之永编,高教出版社 参考用书:《大学物理·第三版》张三慧编清华大学出版社 考试范围: 一、力学 1.掌握位矢、位移、速度、加速度、角速度和角加速度等描述质点运动和运动变化的物理量。能借助于直角坐标系计算质点在平面内运动时的速度、加速度。能计算质点作圆周运动时的角速度、角加速度、切向加速度和法向加速度。理解质点在不同参照系中相对运动规律。 2.掌握牛顿三定律及其适用条件。能用微积分方法求解一维变力作用下简单的质点动力学问题。3.掌握功的概念,能计算直线运动情况下变力的功。理解保守力作功的特点及势能的概念,会计算重力、弹性力和万有引力势能。 4.掌握质点的动能定理和动量定理,通过质点在平面内的运动情况理解角动量(动量矩)和角动量守恒定律,并能用它们分析、解决质点在平面内运动时的简单力学问题。掌握机械能守恒定律、动量守恒定律,掌握运用守恒定律分析问题的思想和方法。 5.了解转动惯量概念。理解刚体转动中的功和能的概念。理解刚体绕定轴转动的转动定律和刚体在绕定轴转动情况下的角动量守恒定律。了解进动的概念。 6.理解伽利略相对性原理,理解伽利略坐标、速度变换。 二、气体动理论及热力学 1.理解统计的概念。了解气体分子热运动的图象。理解理想气体的压强公式和温度公式。通过推导气体压强公式,了解从提出模型、进行统计平均、建立宏观量与微观量的联系到阐明宏观量的微观本质的思想和方法。能从宏观和统计意义上理解压强、温度、内能等概念。了解系统的宏观性质是微观运动的统计表现。 2.了解气体分子平均碰撞频率及平均自由程。 3.了解麦克斯韦速率分布律及速率分布函数和速率分布曲线的物理 意义。了解气体分子热运动的算术平均速率、方均根速率。了解玻耳兹曼能量分布律。 4.通过理想气体的刚性分子模型,理解气体分子平均能量按自由度均分定理,并会应用该定理计算理想气体的定压热容、定容热容和内能。 5.掌握功和热量的概念。理解准静态过程。掌握热力学第一定律。能分析、计算理想气体等容、等压、等温过程和绝热过程中的功、热量、内能改变量及卡诺循环等简单循环的效率。了解卡诺定理。 6.了解可逆过程和不可逆过程。了解热力学第二定律及其统计意义。了解熵的玻耳兹曼表达式,了解克劳修斯表达式。 三、电磁学 1.掌握静电场的电场强度和电势的概念以及电场强度叠加原理和电势叠加原理。掌握电势与电场强度的积分关系。能计算一些简单问题中的电场强度和电势。 2.理解静电场的规律:高斯定理和环路定理。理解用高斯定理计算电场强度的条件和方法。3.掌握磁感应强度的概念。理解毕奥-萨伐尔定律。能计算一些简单问题中的磁感应强度。4.理解稳恒磁场的规律:磁场高斯定理和安培环路定理。理解用安培环路定理计算磁感应强度的条件和方法。 5.理解安培定律和洛伦兹力公式。了解电偶极矩和磁矩的概念。能计算电偶极子在均匀电场中,简单几何形状载流导体和载流平面线圈在均匀磁场中或在无限长直载流导线产生的非均匀磁场中所受的力和力矩。能分析点电荷在均匀电场和均匀磁场中的受力和运动。 6.了解导体的静电平衡条件。了解介质的极化、磁化现象及其微观解释。了解铁磁质的特性。

高中物理常用公式

高中物理常用公式Newly compiled on November 23, 2020

力学常用公式 一. 静力学 1. 重力:G=mg 2. 滑动摩擦力:N f μ= 3. 最大静摩擦力:N f f m μ=> 在某些计算中:N f f m μ=≈ 4. 静摩擦力:m f f ≤≤静0 5. 根据动力学方程F 合=F+f +……=ma 求 解。 6. 重要方法:同一直线上的矢量的计 算、力的平行四边形法则、力的矢量三角形法则、正交分解法 二. 运动学 1. 匀速直线运动:(结合s-t 图、v-t 图理 解) (1) 速度:t s v = (2) 位移:s=vt 2. 匀变速直线运动: (1) 基本公式:(结合v-t 图理解) ① 加速度:t v v a t 0 -= ② 位移:2021 at t v s += ③ 速度:at v v t +=0 ④ 常用推论:as v v t 22 2=- ⑤ 平均速度:2 0t v v t s v += = (2) 结论: ① 初速度为零时,物体的速度之比: ② 初速度为零时,物体的位移之比: ③ 初速度为零时,物体在连续相等时间 间隔里的位移之比: )1-2(:......:3:1:......::21 n s s s n =''' ④ 物体在连续相等时间间隔T 的位移之 差: 一般情况:2)(aT n m s s n m -=- ⑤ 中间时刻的瞬时速度:2 02 t t v v v v += = ⑥ 中点位置的瞬时速度:22 202 t s v v v += ⑦ 连续相等位移的时间之比: ⑧ 补充: (3) 其他: 三. 动力学 1. 牛顿第二定律:ma F =合 2. 牛顿第三定律:F =-F / 3. 重要方法:整体法、隔离法 四. 物体的平衡

普通物理学(第六版)公式大全

一、力和运动 质点运动的描述! 1.质点 2.参考系和坐标系 3.空间和时间 4.运动学方程 轨迹方程 5.位矢 6.位移 7.速度 (瞬时)速度: (瞬时)速率: 8.加速度 (瞬时)加速度: 圆周运动和一般曲线运动! 1.切向加速度和法向加速度 自然坐标系;法向加速度处处指向曲率中心。 2.圆周运动的角量描述 角速度: 角加速度: 3 .抛体运动的矢量描述 相对运动常见力和基本力 1.相对运动 (伽利略)速度变换式: 2.常见力

重力、弹力、摩擦力、万有引力3.基本力 万有引力、电磁力、强力、弱力 牛顿运动定律! 1.牛顿第一定律 (惯性定律) 2.牛顿第二定律 3.牛顿第三定律 (作用力和反作用定律) 4.牛顿运动定律应用举例 1)常力作用下的连接体问题 2)变力作用下的单体问题 伽利略相对性原理非惯性系惯性力1.伽利略相对性原理 (力学的相对性原理) 2.经典力学的时空观 * 3.非惯性系 * 4.惯性力 二、运动的守恒量和守恒定律 质点系的内力和外力质心质心运动定理! 1.质点系的内力与外力 2.质心 对于N个质点组成的质点系: 质心的位矢 对于质量连续分布的物体: 质心的位矢 3.质心运动定理 动量定理动量守恒定律! 1.动量定理 冲量:

动量定理: 动量定理是牛顿第二定律的积分形式。*2. 变质量物体的运动方程 3.动量守恒定律 *4.火箭飞行 功能量动能定理! 1.功的概念 功: 功率: 2.能量 3.动能定理 动能: 动能定理: 保守力成对力的功势能! 1.保守力 保守力:重力、万有引力、弹性力以及静电力等。 非保守力:摩擦力、回旋力等。2.成对力的功 3.势能 4.势能曲线 质点系的功能原理机械能守恒定律! 1.质点系的动能定理 2.质点系的动能原理 3.机械能守恒定律 4.能量守恒定律 *5.黑洞 碰撞 对心碰撞(正碰撞) 1.碰撞过程系统动量守恒

高中物理主要公式

高中物理主要公式整理 匀变速直线运动: 1.速度公式:Vt=Vo+at 2.位移公式:s =V o t+1/2at 2 3.推导公式:V 2t -V 2o=2as ,注意这个公式中不含时间t 4.平均速度求位移:s=(V o+Vt )/2=— V t ,注意该公式不含加速度a 5.推导公式:Δs=aT 2,相邻时间段内的位移差相等 6.2t V =(V o+Vt )/2(中间时刻的速度),2s V =2V V 2t 20+(中间位移的速度) 7.通过纸带用逐差法求加速度:a=2321654T 3S S S S S S ) ()()(++-++ 求瞬时速度用平均速度公式:Vn= T 2S S 1n n ++ 牛顿运动定律 1.合F =ma ,Fx=m x a ,Fy=m y a 超重与失重 若加速度a 向上,则超重;若加速度a 向下,则失重,即通过加速度的方向判断超重或失重 力的平衡 1.相似三角形法:即力的三角形与几何三角形相似,F1/a=F2/b=F3/c 2.拉密定理: SinC F SinB F SinA F 321==,其中的角度为力对应的角 平抛运动 x=V o t ,y=1/2gt 2,v y =gt ,v=2y 20V V +,α=arctan V gt

匀速圆周运动 1.V=ωR ,ω=φ/t=2π/T ,V =2πR/T 2.T=1/f ,ω=2πf=2πn 3.向F =mv 2/R=m ω2R=m (2π/T )2R 4.绳拉球,汽车过桥等得临界速度为V=gR ,即此时只有重力提供向心力 万有引力定律 1.引F =2R GMm ,G=6.67×10-11Nm2/kg2 2.开普勒第三定律k T R 23=,k 为常数,置于中心天体的质量有关 3.万能公式:g=2 R GM ,g 为地球表面处的重力加速度 4.双星问题:周期T,角速度ω相同;向心力相同,都为万有引力;且两颗行星始终都在同一直线上 5.宇宙速度:V1= 6.7km/s ,V2=11.2km/s ,V3=16.7km/s 机械能 1.恒力做功:W=FScos α 2.均匀变化的力做功:W=F S ,变力做功:能量守恒或动能定理,若功率恒定W=Pt 3.功率P=W/t=FV ,汽车启动分为恒定加速度启动或恒定功率启动 4.动能Ek=1/2mv 2 5.动能定理:W=k 1k 2E E - 6.重力势能Ep=mgh

大学普通物理公式大全

1.位置矢量:r ,其在直角坐标系中:k z j y i x r ++=;2 22z y x r ++= 角位置:θ 2.速度:dt r d V = 平均速度:t r V ??= 速率:dt ds V = (τ V V =)角速度: dt d θω= 角速度与速度的关系:V=rω 3.加速度:dt V d a =或22dt r d a = 平均加速度:t V a ??= 角加速度:dt d ωβ= 在自然坐标系中n a a a n +=ττ其中dt dV a =τ(=rβ),r V n a 2 = (=r 2 ω) 4.力:F =ma (或F = dt p d ) 力矩:F r M ?=(大小:M=rFcos θ方向:右手螺旋 法则) 5.动量:V m p =,角动量:V m r L ?=(大小:L=rmvcos θ方向:右手螺旋法则) 6.冲量:? = dt F I (=F Δt);功:? ?= r d F A (气体对外做功:A=∫PdV ) 7.动能:mV 2/2 8.势能:A 保= – ΔE p 不同相互作用力势 能形式不同且零点选择不同其形式 不同,在默认势能零点的情况下: 机械能:E=E K +E P 9.热量:CRT M Q μ =其中:摩尔热容 量C 与过程有关,等容热容量C v 与等压热容量C p 之间的关系为:C p = C v +R 10.压强:ω n tS I S F P 3 2 = ?= = 11.分子平均平动能:kT 2 3= ω ;理想气体内能:RT s r t M E )2(2 ++= μ 12.麦克斯韦速率分布函数:NdV dN V f = )((意义:在V 附近单位速度间隔内的分子数所 占比率) 13.平均速率:πμ RT N dN dV V Vf V V 80 )(= =? ?∞ 方均根速率: μ RT V 22 = ;最可几速率:μ RT p V 3= 14.电场强度:E =F /q 0 (对点电荷:r r q E ?42 πε= ) 15.电势:? ∞ ?= a a r d E U (对点电荷r q U 04πε = );电势能:W a =qU a (A= –ΔW) 16.电容:C=Q/U ;电容器储能:W=CU 2/2;电场能量密度ωe =ε0E 2/2 17.磁感应强度:大小,B=F max /qv(T);方向,小磁针指向(S →N )。 mg(重力) → mgh -kx (弹性力) → kx 2/2 F= r r Mm G ?2 - (万有引力) →r Mm G - =E p r r Qq ?42 πε (静电力) → r Qq 0 4πε

基本物理符号及计算公式

V:速度 S:路程 t:时间 重力G (N)G=mg(m:质量;g:9.8N/kg或者10N/kg ) 密度:ρ (kg/m3)ρ= m/v (m:质量;V:体积) 合力:F合(N)方向相同:F合=F1+F2 ;方向相反:F合=F1—F2 方向相反时,F1>F2 浮力:F浮(N) F浮=G物—G视(G视:物体在液体的重力) 浮力:F浮(N) F浮=G物(此公式只适用物体漂浮或悬浮) 浮力:F浮(N) F浮=G排=m排g=ρ液gV排(G排:排开液体的重力;m排:排开液体的质量;ρ液:液体的密度;V排:排开液体的体积(即浸入液体中的体积) ) 杠杆的平衡条件:F1L1= F2L2 (F1:动力;L1:动力臂;F2:阻力;L2:阻力臂) 定滑轮:F=G物S=h (F:绳子自由端受到的拉力;G物:物体的重力;S:绳子自由端移动的距离;h:物体升高的距离) 动滑轮:F= (G物+G轮)/2 S=2 h (G物:物体的重力;G轮:动滑轮的重力) 滑轮组:F= (G物+G轮)S=n h (n:通过动滑轮绳子的段数) 机械功:W (J)W=Fs (F:力;s:在力的方向上移动的距离) 有用功:W有=G物h 总功:W总W总=Fs 适用滑轮组竖直放置时 机械效率: η=W有/W总×100% 功率:P (w)P= w/t (W:功; t:时间) 压强p (Pa)P= F/s (F:压力; S:受力面积) 液体压强:p (Pa)P=ρgh (ρ:液体的密度;h:深度【从液面到所求点的竖直距离】) 热量:Q (J)Q=cm△t (c:物质的比热容;m:质量;△t:温度的变化值)

燃料燃烧放出的热量:Q(J)Q=mq (m:质量;q:热值) 电流I(A) 电压U(V) 电阻R(Ω) Q:电荷量(库仑) 电功:W (J)W=UIt=Pt (U:电压;I:电流;t:时间;P:电功率) 电功率:P=UI=I2R=U2/R (U:电压;I:电流;R:电阻) 电磁波波速与波长、频率的关系:C=λν (C:波速(电磁波的波速是不变的,等于3×108m/s);λ:波长;ν:频率 最基本的物理符号,深入了解了才会用

2017高中物理学考公式大全

高中物理学考公式大全 一、运动学基本公式 1.匀变速直线运动基本公式: 速度公式:(无位移)at v v t +=0 位移公式:(无末速度)202 1at t v x += 推论公式(无时间):ax v v t 220 2 =- (无加速度)t v v x t 2 0+= 2、计算平均速度 t x v ??=【计算所有运动的平均速度】 2 0t v v v += 【只能算匀变速运动的平均速度】 3、打点计时器 (1)两种打点计时器 (a )电磁打点计时器: 工作电压(6V 以下) 交流电 频率50HZ (b )电火花打点计时器:工作电压(220v ) 交流电 频率50HZ 【计数点要看清是相邻的打印点(间隔 )还是每隔个点取一个计数点(间隔0.1s)】 (2)纸带分析 (a (b)求某点速度公式:t x v v t 22==【会根据纸带计算某个计数点的瞬时速度】 二、力学基本规律 1、不同种类的力的特点 (1).重力:mg G =(2r GM g ∝ ,↓↑g r ,,在地球两极g 最大,在赤道g 最小) (2). 弹力: x k F ?= 【弹簧的劲度系数k 是由它的材料,粗细等元素决定的,与它受不受力以及在弹 性线度内受力的大小无关】 (3).滑动摩擦力 N F F ?=μ;【在平面地面上,FN=mg ,在斜面上等于重力沿着斜面的分力】 静摩擦力F 静 :0~F max ,【用力的平衡观点来分析】 2.合力:2121F F F F F +≤≤-合 力的合成与分解:满足平行四边形定则 三、牛顿运动定律 (1)惯性:只和质量有关 (2)F 合=ma 【用此公式时,要对物体做受力分析】 (3)作用力和反作用力:大小相等、方向相反、性质相同、同时产生同时消失,作用在不同的物体上(这是与平衡力最明显的区别)

普通物理(二)总复习

普通物理(二)总复习 一、选择题 1.一质点作简谐振动,质量为m ,振幅A ,若保持m 、A 不变,将ω增至2ω,则振子前后机械能的比值E 2/E 1为( )。 A .4 B .2 C .41 D . 2 1 2.一质点同时参与两个在同一直线上的谐振动,其振动方程分别为)6/2cos(41π+=t x cm , )6 72cos(32π+=t x cm ,则关于合振动有结论( )。 A .振幅等于1cm ,初相等于π; B .振幅等于7㎝,初相等于π34; C .振幅等于1㎝,初相等于π67; D .振幅等于1㎝,初相等于π/6 3.波长为λ的单色平行光,垂直照射到宽度为a 的单缝上,若衍射角ф=30°时,对应的衍射图样为第一级极小,则缝宽a 为( )。 A .2 λ; B .λ; C .2λ; D .3λ。 4.设质点作简谐振动的振幅为A ,在下列所给的数值中,找出简谐动振动过程中动能为最大值的一半的位置是x 等于( )。 A .2 A B .A 22 C .A 23 D .A 5.一质点在x 轴做谐振动,周期为T ,当质点从A/2处运动到A 2 3处时经历的最短时间为 A .T/2 B.T/6 C.T/8 D.T/24 6.波长均为λ的两列相干波互相叠加,则合成波的波长为( )。 A .等于2λ B .等于2 λ C .等于λ D .大于λ,小于2λ 7.a 粒子在加速器中被加速,当其质量为静止质量的3倍,其动能为静止能量的( )。 A .2倍 B .3倍 C .4倍 D .5倍 8.若在一折射率为n 1的光学元件表面镀一层折射率为n 2(n 2>n 1)的增透膜,为使波长为λ的入射光透射最多,其厚度应为( )。 A .14)12(n k e λ +=; B .24)12(n k e λ+=; C . 2 2n k e λ=; D .12n k e λ=。 9.在均匀媒质中,沿r ρ 方向传播的平面电磁波的方程为);(cos u r t E E -=ω0

初中物理基础知识基本公式汇总

初中物理基础知识要点汇总编辑整理:黎刚 第一部分:声、光、热 一、声 1、声音是由物体的振动产生的。振动停止,发声也停止。 2、声音是以声波的形式传播的。声音在15℃空气中的传播速度为340m/s。 3、音调是指声音的高低,由频率决定; 4、响度是指声音的强弱,由振幅决定; 5、音品又叫音色,由发声体的材料、结构、发声方式决定。 6、振动有规律,悠扬、悦耳,听来感觉舒服的声音叫乐音。音调、响度、音色是乐音的三要素。 7、超声波由于频率高,所以应用广泛。B超检查胎儿的发育情况、超声波清洗精密仪器等。 8、减弱噪声的途径:声源处减弱,传声途径中减弱,接受点处减弱。 二、光 1、光在同种均匀介质中沿直线传播。影子、日食、月食都是光沿直线传播的现象。 2、光在真空中的传播速度约为:3×108m/s,光在空气中的传播速度接近于光在真空中的传播速度, 光在其他物质中的传播速度小于真空中的传播速度。 3、光在反射时遵循光的反射定律:三线共面、两线分居、两角相等。 4、白光通过三棱镜后,被分解成:红、橙、黄、绿、蓝、靛、紫七种色光。 光的三原色是指:红、绿、蓝。 5、镜面反射和漫反射都遵循光的反射定律。 6、平面镜成像的特点是:成的虚像与物体关于平面镜所在直线成轴对称。虚像与物等大。 7、光从一种介质斜射入另一种介质时,传播方向发生偏折,这种现象叫光的折射。 8、光在发生反射和折射时光路都是可逆的。 9、光从空气中斜射入水中时,折射光线向法线靠拢。 10、光的折射定律:一面、二侧、三随大、四空大。 11、中间厚边缘薄的透镜叫凸透镜(又叫会聚透镜),凸透镜对光起会聚作用; 12、中间薄边缘厚的透镜叫凹透镜(又叫发散透镜),凹透镜对光起发散作用。 13、近视眼的形成是因为晶状体太厚,折光能力太强,像成在视网膜前方,故无法看清远处的物体. 远视眼的形成是因为晶状体太薄,折光能力太弱,像成在视网膜后方,故无法看清近处的物体.近视眼矫正需要佩带由凹透镜制成的近视眼镜,或通过医学手段将视网膜改薄。远视眼矫正需要佩

高中物理公式大全

高中物理公式大全; 一、质点的运动(1)——直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论 Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt =Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差} 9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。 注: (1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3)a=(Vt-Vo)/t只是量度式,不是决定式;

(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。 2)自由落体运动 1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh 注: (1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律; (2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。 3)竖直上抛运动 1.位移s=Vot-gt2/2 2.末速度Vt= Vo-gt (g=9.8m/s2≈10m/s2) 3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起) 5.往返时间t=2Vo/g (从抛出落回原位置的时间) 注: (1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;

普通物理学(第六版)公式大全

质点运动的描述! 1.质点 2.参考系和坐标系 3.空间和时间 4.运动学方程 轨迹方程 5.位矢 6.位移 7.速度 (瞬时)速度: (瞬时)速率: 8.加速度 (瞬时)加速度: 圆周运动和一般曲线运动! 1.切向加速度和法向加速度 自然坐标系;法向加速度处处指向曲率中心。 2.圆周运动的角量描述 角速度: 角加速度: 3 .抛体运动的矢量描述 相对运动常见力和基本力 1.相对运动 (伽利略)速度变换式: 2.常见力 重力、弹力、摩擦力、万有引力 3.基本力 万有引力、电磁力、强力、弱力 牛顿运动定律! 1.牛顿第一定律 (惯性定律) 2.牛顿第二定律 3.牛顿第三定律 (作用力和反作用定律) 4.牛顿运动定律应用举例 1)常力作用下的连接体问题 2)变力作用下的单体问题 伽利略相对性原理非惯性系惯性力 1.伽利略相对性原理 (力学的相对性原理) 2.经典力学的时空观 * 3.非惯性系 * 4.惯性力 二、运动的守恒量和守恒定律 质点系的内力和外力质心质心运动定理! 1.质点系的内力与外力 2.质心 对于N个质点组成的质点系: 质心的位矢 对于质量连续分布的物体: 质心的位矢 3.质心运动定理 动量定理动量守恒定律! 1.动量定理 冲量: 动量定理: 动量定理是牛顿第二定律的积分形式。

*2. 变质量物体的运动方程 3.动量守恒定律 *4.火箭飞行 功能量动能定理! 1.功的概念 功: 功率: 2.能量 3.动能定理 动能: 动能定理: 保守力成对力的功势能! 1.保守力 保守力:重力、万有引力、弹性力以及静电力等。 非保守力:摩擦力、回旋力等。 2.成对力的功 3.势能 4.势能曲线 质点系的功能原理机械能守恒定律! 1.质点系的动能定理 2.质点系的动能原理 3.机械能守恒定律 4.能量守恒定律 *5.黑洞 碰撞 对心碰撞(正碰撞) 1.碰撞过程系统动量守恒 2.牛顿的碰撞定律 恢复系数: 完全弹性碰撞(1);非弹性碰撞;完全非弹性碰撞(0)完全弹性碰撞过程,系统的机械能(动能)也守恒。质点的角动量和角动量守恒定律! 1.角动量(动量矩) 2.角动量守恒定律 力矩: 对称性和守恒定律 1.对称性和守恒定律 2.守恒量和守恒定律 三、刚体和流体的运动 刚体模型及其运动 1.刚体 2.平动和转动 3.自由度 质点、运动刚体、刚性细棒的自由度。 力矩转动惯量定轴转动定律! 1.力矩 力臂: 2.角速度矢量 3.定轴转动定律 4.转动惯量 当刚体为质量连续体时, ( r 为质元dm到转轴的距离) 平行轴定理: 定轴转动中的功能关系! 1.力矩的功 2.刚体的转动动能

(推荐)高中物理必记基础公式大全

高中物理必记基础公式大全 一、运动学基本公式 1.匀变速直线运动基本公式: 速度公式:at v v t +=0 位移公式:2021at t v x += 推论公式(无时间):ax v v t 2202 =- 2、计算平均速度t x v ??=【计算所有运动的平均速度】 20t v v v +=【只能算匀变速运动的平均速度】 3、打点计时器 (1)两种打点计时器 (a )电磁打点计时器: 工作电压(6V 以下) 交流电 频率50HZ (b )电火花打点计时器:工作电压(220v ) 交流电 频率50HZ 【计数点要看清是相邻的打印点(间隔0.02s )还是每隔5个点取一个计数点(间隔0.1s)】 (2)纸带分析 (a )求加速度公式: (b)求某点速度公式:t x v v t 22= =【会根据纸带计算某个计数点的瞬时速度】 二、力学基本规律 1、不同种类的力的特点 (1).重力:mg G =(2r GM g ∝,↓↑g r ,,在地球两极g 最大,在赤道g 最小) (2). 弹力: x k F ?= 【弹簧的劲度系数k 是由它的材料,粗细等元素决定的,与它受不受力以及在弹 性线度内受力的大小无关】 (3).滑动摩擦力 N F F ?=μ;【在平面地面上,FN=mg ,在斜面上等于重力沿着斜面的分力】 静摩擦力F 静 :0~F max ,【用力的平衡观点来分析】 2.合力:2121F F F F F +≤≤-合 【对应题型每年必考】 三、牛顿运动定律 (1)惯性:只和质量有关 (2)F 合=ma 【用此公式时,要对物体做受力分析】 (3)作用力和反作用力:大小相等、方向相反、性质相同、同时产生同时消失,作用在不同的物体上(这是与平衡力最明显的区别) 特殊规律:匀变速直线运动的中间时刻 速度公式:2 02t t t v v v v +== 22)(T n m x x T x a n m --=?= 自由落体运动公式: 速度公式:gt v = 位移公式:221gt h = 位移和速度的公式:gh v 22= 受力分析顺序:

普通物理学(第六版)公式大全

一、力和运动 1.1 质点运动的描述! 1.质点 2.参考系和坐标系 3.空间和时间 4.运动学方程 轨迹方程 5.位矢 6.位移 7.速度 (瞬时)速度: (瞬时)速率: 8.加速度 (瞬时)加速度: 1.2 圆周运动和一般曲线运动! 1.切向加速度和法向加速度 自然坐标系;法向加速度处处指向曲率中心。 2.圆周运动的角量描述 角速度: 角加速度: 3 .抛体运动的矢量描述 1.3 相对运动常见力和基本力 1.相对运动 (伽利略)速度变换式: 2.常见力 重力、弹力、摩擦力、万有引力 3.基本力 万有引力、电磁力、强力、弱力 1.4 牛顿运动定律! 1.牛顿第一定律 (惯性定律) 2.牛顿第二定律 3.牛顿第三定律 (作用力和反作用定律) 4.牛顿运动定律应用举例 1)常力作用下的连接体问题 2)变力作用下的单体问题 1.5 伽利略相对性原理非惯性系惯性力 1.伽利略相对性原理 (力学的相对性原理) 2.经典力学的时空观* 3.非惯性系* 4.惯性力 二、运动的守恒量和守恒定律 2.1 质点系的内力和外力质心质心运动定理! 1.质点系的内力与外力 2.质心 对于N个质点组成的质点系: 质心的位矢 对于质量连续分布的物体: 质心的位矢 3.质心运动定理

2.2 动量定理动量守恒定律! 1.动量定理 冲量: 动量定理: 动量定理是牛顿第二定律的积分形式。 *2. 变质量物体的运动方程 3.动量守恒定律 *4.火箭飞行 2.3 功能量动能定理! 1.功的概念 功: 功率: 2.能量 3.动能定理 动能: 动能定理: 2.4 保守力成对力的功势能! 1.保守力 保守力:重力、万有引力、弹性力以及静电力等。 非保守力:摩擦力、回旋力等。 2.成对力的功 3.势能 4.势能曲线 2.5 质点系的功能原理机械能守恒定律! 1.质点系的动能定理 2.质点系的动能原理 3.机械能守恒定律 4.能量守恒定律 *5.黑洞 2.6 碰撞 对心碰撞(正碰撞) 1.碰撞过程系统动量守恒 2.牛顿的碰撞定律 恢复系数: 完全弹性碰撞(1);非弹性碰撞;完全非弹性碰撞(0) 完全弹性碰撞过程,系统的机械能(动能)也守恒。 2.7 质点的角动量和角动量守恒定律! 1.角动量(动量矩) 2.角动量守恒定律 力矩: 2.8 对称性和守恒定律 1.对称性和守恒定律 2.守恒量和守恒定律 三、刚体和流体的运动 3.1 刚体模型及其运动 1.刚体 2.平动和转动 3.自由度 质点、运动刚体、刚性细棒的自由度。 3.2 力矩转动惯量定轴转动定律! 1.力矩

相关主题
文本预览
相关文档 最新文档