当前位置:文档之家› CHAPTER 1-3-核数据库-共振吸收

CHAPTER 1-3-核数据库-共振吸收

电子自旋共振-完整版Word版

电子自旋共振 摘要:电子自旋共振是近代物理学的一个重要发现,该现象目前已经被广泛的应用。本文主要介绍基于FD-ESR-C 型微波电子自旋共振实验仪的实验原理、实验装置、实验方法、实验步骤等。 关键词:近代物理实验;微波;电子自旋共振;g 因子; 【1】引言 电子顺磁共振(电子自旋共振)是1944年由前苏联的扎伏伊斯基首先观察到的。它是指电子自旋磁矩在磁场中受到响应频率的电磁波作用时,在它们的磁能级之间发生的共振跃迁现象。这种现象在具有未成对自旋磁矩的顺磁物质(即含有未耦电子的化合物)中能够观察到,因此,电子顺磁共振是探测物质中未耦电子以及它们与周围原子相互作用,从而获得有关物质微观结构信息的重要方法。这种方法具有有很高的灵敏度和分辨率,能深入物质内部进行细致分析而不破坏样品结构以及对化学反应无干扰等优点。本实验要求观察电子自旋共振现象,测量DPPH 中电子的g 因子。 【2】实验原理 本实验采用含有自由基的有机物“DPPH ”,其分子式为 3226256)()NO H NC N H C ,称为“二苯基苦 酸基联氨”,其结构式如图所示:在第二个氮 原子上存在一个未成对电子——自由基,ESR 就是观测该电子的自旋共振现象。对于这种“自 由电子”没有轨道磁矩,只有自旋磁矩,因此实验中观察到的共振现象为ESR ,也就是电子自旋共振。这里需要指出这种“自由电子”也并不是完全自由的,它的 e g 值为(2.0023±0.0002),DPPH 的ESR 信号很强,其e g 值常用作测量其值

接近

2.00的样品的一个标准信号,通过对各种顺磁物质的共振吸收谱线e g 因子的测量,可以精确测量电子能级的差异,从而获得原子结构的信息。 自由电子的自旋磁矩和外加恒定磁场 B 0相互作用将使基态能级发生分裂 , 2 个能级之间的能量差ΔE 与外加磁场 B 0 的大小成正比: 0B B μ g = E Δ (1) 式中g 的值是Lande 因子或劈裂因子。完全自由电子的 g 值是 2.00232 , 为一个无量纲的常量。he/4πe =μB 是Bohr 磁子。若在垂直于静磁场的方向加一个频率为ν的微波交变磁场 , 当微波频率ν与直流静磁场 B 0 满足关系式: g μ = E Δ =h νB0B (2) 时 , 将有少量处于低能级上的电子从微波磁场吸收能量,跃迁到高能级上去。这种现象称之为电子自旋共振或电子顺磁共振,式 ( 2 ) 称为共振条件 . 由式 ( 2 ) 得到: B /μh =g 0B (3) 可见 g 因子的测量精度决定于微波频率和共振磁场的准确测量。 原子中的电子在沿轨道运动的同时具有自旋,其自旋角动量为: (4) 其中S 是电子自旋量子数,S=1/2。 电子的自旋角动量P S 与自旋磁矩S μ间的关系为 (5) 其中:m e 为电子质量;g 的具体表达式为: (6)

核探测与核电子学国家重点实验室五年工作报告

2017年4月27日 中国科学院

国家重点实验室(2011-至今) ●2011年10月(批准筹建)●2013年11月(正式成立) 总体定位和研究方向:实验室的发展 中科院重点实验室(2008-2011) ●2008年12月(正式成立) ●2009年12月,评为A 类重点实验室 所系联合实验室(2005-2008) ●2005年4月25日(正式成立) ●中国科学院高能物理研究所● 中国科学技术大学近代物理系 2015年通过科技部组织的数理领域专家组评估

总体定位和研究方向: 定位与目标 建设成为“核探测与核电子学”领域的: ?一流的研究基地 ?一流的人才培养基地 ?一流的国内外合作研究和学术交流基地

?先进核探测技术 ?前端电子学 ?大容量数据获取与处理系统 总体定位和研究方向:研究方向 ?气体探测器?闪烁探测器?半导体探测器 ?ASIC 设计与应用 ?高速波形采样技术和应用研究?高精度FPGA TDC ?高速数据读出和实时处理?触发判选?探测器控制 新思想新方法新技术新工艺设计预研建造运行

大科学工程的建设和运行 1.北京谱仪(BESIII) 2.大亚湾中微子实验 3.中国散裂中子源(CSNS) 4.江门中微子实验(JUNO) 5.高能光源验证装置(HEPS-TF) 6.高海拔宇宙线观测站(LHAASO) 7.高能环形正负电子对撞机(CEPC)

国家重点实验室专项经费 每年800万元 1.自主研究课题:400万 2.开放课题:80万 3.开放运行费:320万,维持实验室正 常运转、完成日常工作、组织学术交 流等

电子自旋共振(射频) (340)

中国石油大学 近代物理实验 实验报告 成 绩: 班级:应用物理学09-2班 姓名:王国强 同组者:庄显丽 教师: 电子自旋共振(射频) 一、基础知识 原子中的电子在沿轨道运动的同时具有自旋,其自旋角动量为 () 1+=S S p S (7-2-1) 其中S 是电子自旋量子数,2/1=S 。 电子的自旋角动量S p 与自旋磁矩S μ 间的关系为 () ???? ?+=-=12S S g p m e g B S S e S μμμ (7-2-2) 其中:e m 为电子质量;e B m e 2 = μ,称为玻尔磁子;g 为电子的朗德因子,具体表示为 ) 1(2) 1()1()1(1++++-++ =J J S S L L J J g (7-2-3) J 和L 为原子的总角动量量子数和轨道角动量量子数,S L J ±=。对于单电子原子,原子的角动量和磁矩由单个电子决定;对于多电子原子,原子的角动量和磁矩由价电子决定。含有单电子或未偶电子的原子处于基态时,L=0,J=S=1/2,即原子的角动量和磁矩等价于单个电子的自旋角动量和自旋磁矩。 设g m e e 2= γ为电子的旋磁比,则 S S p γμ= (7-2-4) 电子自旋磁矩在外磁场B (z 轴方向)的作用下,会发生进动,进动角频率ω为 B γω= (7-2-5) 由于电子的自旋角动量S p 的空间取向是量子化的,在z 方向上只能取 m p z S = (S S S S m -+--=,1,,1, ) m 表示电子的磁量子数,由于S =1/2,所以m 可取±1/2。电子的磁矩与外磁场B 的相互作用能为 B B B E z S S γμμ2 1 ±==?= (7-2-6) 相邻塞曼能级间的能量差为

振动基础简答题

振动,广义地讲,指一个物理量在它的平均值附近不停地经过极大值和极小值而往复变化。 机械振动指机械或结构在它的静平衡位置附近的往复弹性运动。 任何具有弹性和惯性的力学系统均可能产生机械振动。 振动系统发生振动的原因是由于外界对系统运动状态的影响,即外界对系统的激励或作用,称之为振动系统的激励或输入。 振动的分类1:①线性振动:是指系统在振动过程中,振动系统的惯性力、阻尼力、弹性力分别与绝对加速度、相对加速度、相对位移成线性关系。线性振动系统的振动可以用线性微分方程描述。②非线性振动:非线性振动系统在振动的过程中,系统的惯性力、阻尼力、弹性力与绝对加速度、相对加速度、相对位移的关系没有线性系统那样简单,非线性系统的振动过程只能用非线性微分方程描述。 分类2:①确定性振动:一个振动系统,如果对任意时刻t,都可以预测描述它的物理量的确定的值x,即振动是确定的或可以预测的,这种振动称为确定性振动。②随机振动:无法预测它在未来某个时刻的确定值,如汽车行驶时由于路面不平引起的振动,地震时建筑物的振动。随机振动只能用概率统计(期望、方差、谐方差、相关函数等)方法描述。 系统的自由度数定义为描述系统运动所需要的独立坐标(广义坐标)的数目。 分类3:在实际中遇到的大多数振动系统,其质量和刚度都是连续分布的,通常需要无限多个自由度才能描述它们的振动,它们的运动微分方程是偏微分方程,这就是连续系统。在结构的质量和刚度分布很不均匀时,往往把连续结构简化为若干个集中质量、集中阻尼、集中刚度组成的离散系统,所谓离散系统,是指系统只有有限个自由度。描述离散系统的振动可用常微分方程。 分类4:按激励情况分:①自由振动:系统在初始激励下或原有的激励消失后的振动;②强迫振动:系统在持续的外界激励作用下产生的振动。 分类5:按响应情况分,确定性振动和随机振动。确定性振动分为:①简谐振动:振动的物理量为时间的正弦或余弦函数;②周期振动:振动的物理量为时间的周期函数;③瞬态振动:振动的物理量为时间的非周期函数,通常只在一段时间内存在。 机械或结构产生振动的内在原因:本身具有在振动时储存动能和势能,而且释放动能和势能并能使动能和势能相互转换的能力。 基本元件:惯性元件(储存和释放动能)、弹性元件(储存和释放势能)、阻尼元件(耗散振动能量) 基本元件的基本特征:弹性元件:忽略它的质量和阻尼,在振动过程中储存势能。弹性力与其两端的相对位移成比例,如弹簧:F s=?k?x;扭簧:T s=?k t(θ2?θ1);阻尼元件:阻尼力的大小与阻尼元件两端的相对速度曾比例,方向相反,这种阻尼又称为黏性阻尼。忽略黏性阻尼元件的质量和弹性,则作用力:F d=?c?υ;惯性元件:

硬膜外血肿与硬膜下血肿鉴别

硬膜外血肿与硬膜下血肿鉴别 急诊经常遇到颅脑损伤的病人,脑外伤经常伴有硬膜外血肿或硬膜下血肿,如何区分呢?看看下面的图片你就知道了! 硬膜下血肿是常见的颅内血肿之一,可分为急性,亚急性及慢性三种。 硬膜下血肿与颅脑外伤有密切的关系,特别是急性和亚急性硬膜下血肿,多在伤后数 小时或数日出现临床症状。慢性硬膜下血肿常在伤后两周以上出现症状。部分病人无明显外伤史,部分病例可因剧烈咳嗽,血管本身缺陷,凝血过程障碍引起。 急性、亚急性硬膜下血肿与外伤有密切关系,常不易误诊。慢性硬膜下血肿常不能及 时诊断,贻误病情。 硬膜下血肿临床表现以颅人压增高为主,如头痛、呕吐、视乳头水肿,意识障碍等。 年龄不同的硬膜下血肿病人,其临床表现可各有特点。青壮年由于血肿的压迫,使脑 静脉回流发生障碍,引起脑水肿,产生颅高压症状。而老年患者,因脑萎缩颅人间隙相对增大,颅高压症状相对较轻。动脉硬化患者,容易出现神经及精神症状。 慢性硬膜下血肿患者常将轻微的头部外伤史遗忘,临床上仅以颅人高压增高为主,局 限性脑功能障碍出现较晚,因此,诊断常造成一定困难,易误诊为脑肿瘤。 硬膜下血肿的治疗主要是消除血肿,摘除囊壁,以利于受压脑组织复位。因此手术愈 早脑组织受压愈轻,脑功能恢复则愈快,因而,早期诊断硬膜下血肿至关重要。

硬膜外血肿发生于硬膜外腔内,颅骨和硬脑膜之间。约占外伤性颅内血肿的30~40%左右,主要以急性发生为主,占86%左右,有时并发其他类型血肿。一般发生在着力点及其附近,经常伴有骨折。常见于青壮年,﹥60岁或﹤2岁的人群发生率较低。由于骨折损伤脑膜中动脉引致硬膜外血肿占3/4,其次是损伤静脉窦、板障静脉、导静脉而导致血肿。因此可根据骨折线通过脑膜血管和静脉窦的部位来判断血肿部位。故此,硬膜外血肿最好发部位为颞顶区,其次为额顶矢状窦旁,可单侧或双侧,多为单发,多发者少见。 一般常有明显外伤病史,伴有颅骨骨折损伤血管而出血,尤其是动脉性出血,因此病程多为急性或亚急性,慢性极少,故伤后昏迷较深,持续时间较长。有明显颅内压增高改变和生命体征表现,如头痛、恶心、呕吐,呼吸、脉搏缓慢,血压升高。同时,神经系统定位征一般较明显,如出现中枢性面瘫、失语、肢体瘫痪等,如不及时清除血肿,会出现脑部症状、瞳孔散大、对光反射消失等,严重危及病者生命。 一般常有明显外伤病史,伴有颅骨骨折损伤血管而出血,尤其是动脉性出血,因此病程多为急性或亚急性,慢性极少,故伤后昏迷较深,持续时间较长。有明显颅内压增高改变和生命体征表现,如头痛、恶心、呕吐,呼吸、脉搏缓慢,血压升高。同时,神经系统定位征一般较明显,如出现中枢性面瘫、失语、肢体瘫痪等,如不及时清除血肿,会出现脑部症状、瞳孔散大、对光反射消失等,严重危及病者生命。

有关阻尼振动的研究

阻尼振动的探究 摘要: 以弹簧振子的阻尼振动及RLC电路的阻尼振荡为例,探究了阻尼振动。同时,以这两个阻尼振动系统为例分析了阻尼振动衰减时的特点。 关键词: 阻尼振动阻尼系数衰减 R esearch on damped vibration Abstract:: Abstract This article researches into damped vibration by the example of spring oscillator’s damped vibration and the example of RLC’s damped vibration.At the same time,this article researches the points of damped vibration’s attenuation by the two examples. Keyword: damped vibration damping coefficient attenuation 简谐运动又叫做无阻尼自由振动。但实际上,任何的振动系统都是会受到阻力作用的,这种实际振动系统的振动叫做阻尼振动。在阻尼系统中,振动系统要不断地克服阻力做功,

所以它的能量将不断地减少。一定时间后回到平衡位置。弹簧振子在有阻力情况下的振动就是阻尼振动。 分析安置在一个水平光滑表面的弹簧振子。取弹簧处于自然长度时的平衡位置为坐标原点。忽略空气等阻力,则弹簧振子只受到弹簧的弹力作用。即 由牛顿第二定律,可得 此微分方程的通解为 给定初始值,弹簧在t=0时,x=,,则此微分方程的解为 弹簧振子在初始时刻,被拉离坐标原点距离,即弹簧被拉长(而后,弹簧由于弹簧拉力作用而返回原点,很容易就可以想到弹簧将作往复运动。如方程所描述弹簧作简谐振动。如果考虑弹簧振子运动时的阻力,情况将如何呢? 由实验,可知运动物体的速度不太大时,介质对物体的阻力与速度成正比。又阻力总与速度方向相反,所以阻力与速度有如下关系: 为正比例常数。则此时,上面所列弹簧振子的运动方程应为: 考虑此方程,令。可知即为弹簧振子在无阻力振动时的角频率,称为阻尼系数,如此可得: 此微分方程通解为: A,B由弹簧振子的初始值,即t=0时的x,值决定。由上通解无法直观看出弹簧振子的实际运动景象如何。下面以与的大小关系分为三种情况考虑。 时,可将通解化为如下形式: ) 其中 而由弹簧振子的初始值决定。其位移时间图像,大致如下

微波段电子自旋共振实验.doc

微波段电子自旋共振实验 【实验目的】 1. 了解和掌握各个微波波导器件的功能和调节方法。 2. 了解电子自旋共振的基本原理,比较电子自旋共振与核磁共振各自的特点。 3.观察在微波段电子自旋共振现象,测量DPPH样品自由基中电子的朗德因子。 4. 理解谐振腔中TE10波形成驻波的情况,调节样品腔长,测量不同的共振点,确定波导波长。 5.根据DPPH样品的谱线宽度,估算样品的横向弛豫时间。 【实验仪器】 FD-ESR-C型微波电子自旋共振实验仪,双踪示波器 【实验原理】 概述:电子自旋的概念是Pauli在1924年首先提出的。1925年,S.A.Goudsmit和G.Uhlenbeck 用它来解释某种元素的光谱精细结构获得成功。Stern和Ger1aok也以实验直接证明了电子自旋磁矩的存在。 电子自旋共振(Electron Spin Resonance)缩写为ESR,又称顺磁共振(缩写为EPR,Paramagnetic Resonance)。它是指处于恒定磁场中的电子自旋磁矩在射频电磁场作用下发生的一种磁能级间的共振跃迁现象。这种共振跃迁现象只能发生在原子的固有磁矩不为零的顺磁材料中,称为电子顺磁共振。1944年由前苏联的柴伏依斯基首先发现。它与核磁共振(NMR)现象十分相似,所以1945年Purcell、Paund、Bloch和Hanson等人提出的NMR实验技术后来也被用来观测ESR现象。 ESR己成功地被应用于顺磁物质的研究,目前它在化学、物理、生物和医学等各方面都获得了极其广泛的应用。例如发现过渡族元素的离子、研究半导体中的杂质和缺陷、离子晶体的结构、金属和半导体中电子交换的速度以及导电电子的性质等。所以,ESR是一种重要的近代物理实验技术。 ESR的研究对象是具有不成对电子的物质,如(1)具有奇数个电子的原子,象氢原子;(2)内电子壳层未被充满的离子,如过渡族元素的离子;(3)具有奇数个电子的分子,如NO;(4)某些虽不含奇数个电子,但总角动量不为零的分子,如O2;(5)在反应过程中或物质因受辐射作用产生的自由基;(6)金属半导体中的未成对电子等等,通过对电子自旋共振波谱的研究,即可得到有关分子、原子或离子中未偶电子的状态及其周围环境方面的信息,从而得到有关的物理结构和化学键方面的知识。 用电子自旋共振方法研究未成对的电子,可以获得其它方法不能得到或不能准确得到的数据。如电子所在的位置,游离基所占的百分数等等。 一、仪器简介 FD-ESR-C型微波电子自旋共振实验装置主要由四部分组成:磁铁系统、微波系统、实验主机系统。它主要用来测量DPPH样品的ESR吸收谱线,测量g因子,并分析微波系统的特性。如图1所示。

微波段电子自旋共振

微波段电子自旋共振 一、实验目的 1.本实验的目的是在了解电子自旋共振原理的基础上,学习用微波频段检测电子自旋 共振信号的方法。 2.通过有机自由基DPPH的g值和EPR谱线共振线宽并测出DPPH的共振频率,算出共 振磁场,与特斯拉计测量的磁场对比。 3.了解、掌握微波仪器和器件的应用。 4.学习利用锁相放大器进行小信号测量的方法。 二、实验仪器 本实验使用MSD-Ⅱ型电子顺磁共振谱仪观测电子自旋共振信号。 该仪器采用微波边限振荡器自检,低频小调场、慢扫描磁场、锁相放大、计算机自动控制、数据采集、实时显示、数据处理等技术。 该仪器由主机、电磁铁和计算机组成。 整体结构框图如图11.3-2所示。共分为5部分:1.微波部分,2.调制部分,3.扫描部分,4.放大部分,5.测控及接口部分。主机核心部分是微波边限振荡自检系统。它由一端为可调短路活塞,另一端为短路块的3cm矩形标准波导所构成的变频谐振腔及安放在其中的Gunn二极管组成,利用Gunn二极管的负阻特性,可以使它产生X波段范围内的微波振荡,适当选择Gunn二极管偏置电压(改变串接电阻)使其处于边限振荡状态(类似于NMR中的边限振荡),调节短路活塞,改变腔长以改变微波振荡频率 其频率由安装在腔体上的波长表测量,待测样品粘贴在短路中心的样品杆(黄铜圆柱转杆)

上,它可以做0~360°的旋转,使待测样品晶轴对磁场有不同取向,从而研究晶体的各向异性。在靠近短路块内壁波导窄壁中央开有φ2mm的小孔,以便做参比法测量时,插入参比样品管。为保证待测样品和参比样品处于相同的微波场中,还可将参比样品与待测样品一起粘贴在样品杆上,Gunn管除做微波源外,还兼做检波器(即当EPR发生时,腔的Q值下降,微波振荡电压下降),称为自检,为了提高信噪比和稳定性,Gunn管装有良好的散热装置。 Gunn管偏置电压(10~12V)可由干电池或稳压电源供给,本实验采用双路稳压电源,另一路做激磁电源,为电磁铁提供稳定的直流电流。 样品放置在靠近短路块内壁微波磁场B1最强最均匀处,且与恒磁场B垂直,满足磁共振对B和B1极化方向的要求。 用微波边振自检EPR谱仪观测某物质的EPR谱线,关键在于调节Gunn二极管的边限振荡状态,即必须使Gunn二极管工作在门限偏置电压Vth附近(Gunn二极管偏压略高于Vth)。 还有控制、数据采集及处理系统,计算机及专用软件包。 该谱仪可工作在程控扫描和自动扫描两种方式,谱仪通过串行口与微机进行通讯,可实现对扫描电流的控制和对数据进行累加和处理。软件采用VB编程,在Windows环境下运行。整个界面具有菜单式、汉字工作提示、实验数据实时屏幕绘图、实验参数实时显示

核辐射探测器与核电子学期末复习题

《核辐射探测器与核电子学》期末考试复习题 一、填空题(20分,每小题2分) 1.α粒子与物质相互作用的形式主要有以下两种:激发、电离 2.γ射线与物质相互作用的主要形式有以下三种:康普顿散射、光电效应、形成电子对 3.β射线与物质相互作用的主要形式有以下四种:激发、电离、形成离子对、形成电子-空穴对、轫致辐射 4.由NaI(Tl)组成的闪烁计数器,分辨时间约为:几μs;G-M计数管的分辨时间大约为:一百μs。 5.电离室、正比计数管、G-M计数管输出的脉冲信号幅度与入射射线的能量成正比。 6.半导体探测器比气体探测器的能量分辨率高,是因为:其体积更小、其密度更大、其电离能更低、其在低温下工作使其性能稳定、气体探测器有放大作用而使其输出的脉冲幅度离散性增大 7.由ZnS(Ag)组成的闪烁计数器,一般用来探测α射线的强度 8.由NaI(Tl)组成的闪烁计数器,一般用来探测γ、X 射线的能量、强度、能量和强度 9.电离室一般用来探测α、β、γ、X、重带电粒子射线的能量、强度、能量和强度。 10.正比计数管一般用来探测β、γ、X 射线的能量 11.G-M计数管一般用来探测α、β、γ、X 射线的强度 12.金硅面垒型半导体探测器一般用来探测α射线的能量、强度、能量和强度 13.Si(Li)半导体探测器一般用来探测α、β、γ、X射线的能量、强度、能量和强度 14.HPGe半导体探测器一般用来探测α、β、γ、X、带电粒子、重带电粒子射线的能量 15.对高能γ射线的探测效率则主要取决于探测器的有效体积 16.对低能γ射线的探测效率则主要取决于“窗”的吸收 17.G-M计数管的输出信号幅度与工作电压无关。 18.前置放大器的类型主要分为以下三种:电压型、电流型、电荷灵敏型 19.前置放大器的两个主要作用是:提高信-噪比、阻抗匹配。 20.谱仪放大器的两个主要作用是:信号放大、脉冲成形 21.滤波成效电路主要作用是:抑制噪声、改造脉冲波形以满足后续测量电路的要求 22.微分电路主要作用是:使输入信号的宽度变窄和隔离低频信号 23.积分电路主要作用是:使输入信号的上升沿变缓和过滤高频噪声 24.单道脉冲幅度分析器作用是:选择幅度在上下甄别阈之间的信号 25.多道脉冲幅度分析器的道数(M)指的是:多道道脉冲幅度分析器的分辨率 26.谱仪放大器的线性指标包括:积分非线性INL、微分非线性DNL 二、名词解释及计算题(10分,每小题5分) 1.能量分辨率: 表征γ射线谱仪对能量相近的γ射线分辨本领的参数,可用全能峰的半高宽度FWHM或相对半高宽度表示 2.探测效率:定义为探测器输出信号数量(脉冲数)与入射到探测器(表面)的粒子数之比 3.仪器谱:由仪器(探测器)探测(响应)入射射线而输出的脉冲幅度分布图,是一连续谱 4.能谱:脉冲幅度经能量刻度后就可以得到计数率 5.全能峰:入射粒子以各种作用方式(一次或多次)将全部能量消耗在探测器内而形成的仪器谱峰 6.逃逸峰:若光电效应在靠近晶体表面处发生,则X射线可能逸出晶体,相应的脉冲幅度所对应的能量将比入射光子能量小,这种

电子自旋共振 实验报告

电子自旋共振 【实验原理】 1. 电子的轨道磁矩和自旋磁矩 电子的轨道磁矩为 2l l e e P m μ=- l P 为电子轨道运动的角动量,e 为电子电荷,e m 为电子质量。轨道角动量和轨道磁矩分别为 l l P μ== 电子的自旋磁矩 s s e e P m μ=- s P 为电子自旋运动的角动量,e 为电子电荷,e m 为电子质量。自旋角动量和自旋磁矩分别为 s s P μ== 由公式可以看出电子自旋运动的磁矩与动量之间的比值是轨道轨道磁矩与角动量之间比值的2倍。 对于单电子的原子,总磁矩 j μ与总角动量 j P 之间有 j j e e g P m μ=-

其中()()() () 111121j j l l s s g j j +-+++=++。对单纯轨道运动g 为1,对于单纯自旋运 动g 为2。 引入旋磁比γ,即有 j j e P e g m μγγ==- 在外磁场中 j P 和 j μ都是量子化的,因此 j P 在外磁场方向上投影为 ()(),1,,1,2π = =----z mh P m j j j j 相应的磁矩 j μ在外磁场方向上的投影为 ()(),1,,1,2γμπ = =----z mh m j j j j 由以上公式可得 4z B e mgeh mg m μμπ=- =- 4B e eh m μπ= 为玻尔磁子 2. 电子自旋共振(电子顺磁共振) 由于原子总磁矩 j μ的空间取向是量子化的,因此原子处在外磁场B 中时,磁矩 与外磁场的相互作用也是量子化的,为 2j B mhB E B mg B γμμπ=-=- =- 相邻磁能级之间的能量差为 2hB E γπ?= 当向能量差为 20hB E γπ?= 的原子发射能量为20 hB h γνπ= 光子时,原子将这个光子 跃迁到高磁能级,这是发生在原子中的共振吸收跃迁现象,磁能级分裂是由电子

硬膜外血肿

硬膜外血肿 定义硬膜外血肿是指外伤后出血积聚于颅骨内板和硬膜之间。常见于青壮年,>60岁或<2岁的人群发生率很低,这与老年人硬膜和颅骨粘连紧密、婴幼儿脑膜血管细、颅骨脑膜血管沟尚未形成有关。血肿以颞部最为常见,多为单发,多发性少见,临床上合并硬膜下血肿或脑内血肿亦有发生。出血多为急性,有的甚至可在伤后3~24小时内发生脑疝。 病因硬膜外血肿多因头部遭受外力直接打击,产生着力点处的颅骨变形或骨折,伤及血管所致。出血积聚于硬膜与颅骨内板分离处,并随着血肿的增大而使硬膜进一步分离。出血主要来源于: ①脑膜血管,是造成急性硬膜外血肿的主要原因,尤以脑膜中动、静脉最为常见。脑膜中动、静脉位于颞部的同名骨沟中。颞部骨质较薄,受外力打击后引起骨折,刺破血管引起出血。如损伤位于动脉主干或较大分支,则出血凶猛,血肿迅速增大,短时间内可形成巨大血肿,导致脑疝。如出血由静脉引起,则病情发展稍缓。 ②静脉窦、上矢状窦、横窦和乙状窦均位于同名骨沟中,如发生骑跨静脉窦的颅骨骨折,即可使其受损。此种出血凶猛,与静脉窦没有平滑肌层,破裂后与无收缩能力有关,而血肿范围的扩大则因出血使硬膜剥离,剥离的硬膜引致再出血。 ③颅骨板障静脉,颅骨骨折常有板障静脉出血,但出血量有限,不易单独形成巨大血肿,是成为颅后窝硬膜外血肿的主要来源。 临床表现(1)意识障碍:由于伴发的脑损伤较轻,伤后原发性昏迷时间较短,出现中间清醒期或中间好转期较多,伤后持续昏迷者少。(2)颅内压增高症状:在继发性昏迷前常有躁动不安,亚急性或慢性血肿病人的眼底检查视乳头水肿。(3)局部症状血肿位于运动区和其临近部位较多,故中枢性面瘫、轻偏瘫、运动性失语等常见,位于矢状窦旁血肿可出现下肢偏瘫,颅后窝硬膜外血肿可出现眼球震颤和共济失调。 诊断及辅助检查幕上急性硬膜外血肿的早期诊断,应判定在颞叶钩回疝征象之前,而不是昏迷加深、瞳孔散大之后。故临床观察殊为重要,当病人头痛呕吐加剧、躁动不安、血压升高、脉压差加大及/或出现新的体征时,即应高度怀疑颅内血肿,及时给予必要的影像学检查,包括X线颅骨平片、A型超声波、脑血管造影或CT扫描等。 (1)着力部位除头皮挫伤外,常见头皮局部肿胀,出血经骨折线到骨膜下,或经破裂的骨膜至帽状筋膜下血肿。(2)血肿大多位于一侧大脑半球表面,故超声波探查时,中线波移位明显(3)颅骨骨折发生率较高,95%显示颅骨骨折。(4)脑血管造影在血肿部位呈示典型的双凸镜形无血管区。5ct扫描,在脑表面呈双凸镜形密度增高形。 治疗措施急性硬膜外血肿的治疗,原则上一经诊断即应施行手术,排除血肿以缓解颅内高压,术后根据病情给予适当的非手术治疗。一般若无其他严重并发症且脑原发损伤较轻者,预后均良好。死亡率介于10%~25%之间,不同地区或单位悬殊较大。实际上这类病人死亡的主要原因并非血肿本身,而是因脑疝形成后所引起的脑干继发性损害所致,因此,必须作到早期诊断、及时处理,才能有效地降低死亡率。 1)手术治疗:通常多采用骨窗开颅或骨瓣开颅术,便于彻底清除血肿、充分止血和必要时行硬膜下探查,是硬膜外血肿沿用已久的术式。近年来,由于CT扫描检查的广泛应用,血肿的部位、大小和脑损伤情况了如指掌,并能动态地观察血肿的变化,因此有作者采用颅骨钻孔引流硬膜外血肿也获得成功。①骨窗开颅硬膜外血肿清除术:适用于病情危急,已有脑疝来不及行影像学诊断及定位,直接送入手术室抢救的病人,先行钻孔探查,然后扩大成骨窗清除血肿。钻孔的顺序应是先在瞳孔散大侧颞部骨折线的附近,约有60%~70%的硬膜外血肿可被发现。探得血肿后按需要延长切口,扩大骨扎,排出血肿,并妥善止血。若清除血肿后硬脑膜张力仍高,或膨起或呈蓝色时均应切开探查,以免遗漏硬脑膜下或脑内血肿。

电子自旋共振实验报告

电子自旋共振实验报告

电子自旋共振实验报告 一、实验目的 1.了解自旋共振的基本原理和实验方法 2.观察和研究电子自旋共振现象,测量二苯基—苦基肼基中电子的朗德因子g 因子 二、实验内容 1.观测电子自旋共振的共振波形,测量共振情况下的磁场0B ,并根据磁场计算g 因子 2.改变微波的频率,测量不同频率下的磁场0B ,并计算不同频率下的g 因子 三、实验原理 1.电子的轨道磁矩 电子的轨道磁矩为 2l l e e P m μ=- l P 为电子轨道运动的角动量,e 为电子电荷,e m 为电子质量。轨道角 动量和轨道磁矩分别为 l l P μ== 2.电子的自旋磁矩 s s e e P m μ=-

s P 为电子自旋运动的角动量,e 为电子电荷,e m 为电子质量。自旋角 动量和自旋磁矩分别为 s s P μ== 由公式可以看出电子自旋运动的磁矩与动量之间的比值是轨道轨道磁矩与角动量之间比值的2倍 3.电子的总磁矩 对于单电子的原子,总磁矩j μ 与总角动量j P 之间有 j j e e g P m μ=- 其中()()() () 111121j j l l s s g j j +-+++=+ +。对单纯轨道运动g 为1,对于 单纯自旋运动g 为2。 引入旋磁比γ,即有 j j e P e g m μγγ==- 在外磁场中j P 和j μ 都是量子化的,因此j P 在外磁场方向上投影为 ()()2,1,,1,z mh P m j j j j π= =---- 相应的磁矩j μ 在外磁场方向上的投影为 ()() 2,1,,1,z mh m j j j j γμπ = =----

核电子学与探测技术

《核电子学与探测技术》系中国核工业集团公司主管的,由中国核学会、中国电子学会所属核电子学与核探测技术分会主办的会刊,中国核工业集团公司北京核仪器厂承办,原子能出版社出版。《核电子学与探测技术》期刊多年来,来稿数量逐年增多,因此,从1981年创刊以来已5次扩大版面,从16开的64页扩大到现今的A4开本128页,从黑白封面改为彩色封面,内页纸张也从52g普通纸该为70g胶版纸。《核电子学与探测技术》先后被《中国学术期刊(光盘版)》、万方数据(ChinaInfo)系统《科技期刊群》期刊网、中国期刊网、科技部西南信息中心维普信息资源网、国防科工委期刊网收录、《CEPS中文电子期刊服务》、《书生数字期刊》收录,被美国工程信息公司(Ei)、化学文摘(CA)、国际原子能机构(IAEA)的检索刊物INIS和国内多家权威文摘刊物等所收录。被《中国学术期刊(英文版)》即《Chinese Science Abstracts》、《中国学术期刊(中文版)》等文摘刊物收录。据《中国期刊网》和中国科技信息研究所的《万方数据—数字化期刊群》等调查,本刊的Web影响因子在原子能科技类刊物中名列前茅,读者从网上对本刊的点击率和下载率是名列前茅的。 2004年3月《中国知识资源总库》编辑委员会致函本刊,函件中说:通过对《中国期刊全文数据库》中近8000种期刊10年的引文统计分析,筛选出文献引用频次排名在前500名的高水平期刊,进行全面、系统、完整的数字化整合,以期建成我国有代表性的、完备的、系统的国家级期刊精品数据库。函件中告知本刊已被编入国家级期刊精品数据库《中国知识资源总库·科技精品期刊库》。多年来一直被评为全国中文核心期刊,在原子能科技类遴选的15种核心期刊中排名第五位(见北京大学出版社出版的《中文核心期刊要目总览》2004年版(即第四版)第77页。一直被中国科技论文统计与分析(中国科学技术信息研究所受国家科学技术部发展计划司委托项目)、中国学术期刊综合评价数据库和中国科学引文数据库等作为来源期刊。 2003年开始采用著名核科学家、“两弹一星”元勋、两院院士原全国政协副主席朱光亚为本刊题写的刊名。 《核电子学与探测技术》征稿简则 1) 来稿务求论点明确, 文字简练, 数据可靠。 2) 文章题目简明(20个汉字以内); 中英文摘要须包括题目、作者姓名、作者单位、城市名、省名和邮政编码,并应写成叙述性文摘(含有研究目的、方法、结果和结论);关键词为3~5个,并提供该文的中图分类号。 3) 文稿应采用阿拉伯数字进行分级编号, 最多可用4级。引言不编号,也不写“引言” 字样。 4) 作者简介包括(第1作者姓名(出生年--)、性别(民族,汉族省略)、籍贯、职称、学位、从事研究方向) 5) 基金项目名称及项目编号、需以脚注形式写明。

减振器阻尼对汽车大冲击性能的影响分析

减振器阻尼对汽车大冲击性能的影响分析 作者:长安汽车股份有限公司董益亮彭旭阳 摘要:本文简要介绍了汽车大冲击性能分析评价指标和分析评价方法。利用ADAMS软件建立了某轿车四通道平顺性分析模型,分析了减震器阻尼在不同车速下对大冲击性能的影响,提出了优化方案。实车验证结果表明,该方法是一种有效的汽车大冲击性能分析评价方法。 关键字:冲击,乘坐舒适性,评价 1 前言 汽车在路面上行驶时,除了随机路面外,偶尔也会遇到冲击路面,如减速带、路面凸块和凹坑、铁路交叉口、路面接缝等,这类路面统称为冲击路面,其特点是冲击较大,冲击的产生间隔足够长的距离,这样在下次冲击来之前,车辆的振动已充分衰减。来自路面的剧烈冲击,通过轮胎、悬架、车身和座椅传给人体,同时会引起悬架和车身的跳动。 大冲击舒适性是用户评价汽车乘坐舒适性的重要内容,也是汽车厂家在汽车开发过程中需要控制的重要指标之一。在汽车开发的底盘调校阶段,一般通过减振器阻、弹簧和缓冲块来优化汽车的大冲击乘坐舒适性,其中减振器阻尼力的优化最为重要和复杂。 2 汽车冲击性能分析评价方法 2.1 冲击乘坐舒适性评价指标 当汽车遇到路面冲击时,会导致以下汽车振动响应: 1) 主振动(Primary Ride):车体的刚体振动响应,如俯仰和侧倾,乘员有时会感受到悬架限位块的撞击。 2) 冲击(Impact):乘员通过座椅和地板感受到的来自路面的较大冲击,以及车体上下运动速度迅速改变。 本文用地板、座椅等所关心位置的最大(绝对值)的加速度,以及车身的最大振动俯仰角和振动衰减的快慢作为大冲击振动下的客观评价指标。

2.2 大冲击仿真分析方法 目前,大冲击CAE分析方法主要有两类,一是基于平顺性轮胎模型的整车道路仿真分析方法,二是基于四通道的整车台架仿真分析方法。 第一种方法必须使用平顺性轮胎模型,常用的平顺性轮胎模型主要有ftire、swift 轮胎模型等,并配合使用冲击路面模型,冲击路面模型主要有三角形凸块路面、矩形凸块路面、锯齿形凸块路面等[1],见图1。 图1 基于平顺性轮胎模型的整车道路仿真分析 第二种方法用四通道实验台模拟路面垂向冲击激励[4],可以使用普通的操稳轮胎模型,如Pacjka 轮胎模型,见图2。 图2 基于四通道的整车台架仿真分析 第一种方法能够同时仿真分析大冲击引起的纵向和垂向振动响应,与比较接近实际情况,仿真结果较精确,但国内对平顺性轮胎模型研究较少,而且没有建立平顺性轮胎模型的试验条件,限制了其推广应用。第二种方法只能仿真路面冲击引起的垂向振动响应,与实际情况有差距,但可避开使用平顺性轮胎模型,另外,操稳轮胎模型国内研究较多,也有建立操稳轮胎模型的试验条件。 由于减振器阻尼力主要影响汽车的垂向振动响应,本文使用基于四通道的仿真分析方法。

电子自旋共振

电子自旋共振 电子自旋共振(ESR )也称为电子顺磁共振(EPR )。由于这种磁共振现象只能发生在原子的固有磁矩不为零的顺磁材料中,所以称电子顺磁共振;因为分子和固体中的磁矩主要是电子自旋磁矩的贡献,所以又称为电子自旋共振。电子自旋的概念是著名物理学家泡利(Wolfgang Pauli 1900——1958)1924年研究反常塞曼效应时首先提出的,他通过计算发现,满壳层的原子实际应具有零角度的动量,因此他断定反常塞曼效应的谱线分裂只是由价电子引起的,而与原子核无关,显然价电子的量子论性质具有“二重性”,接着他提出了著名的泡利不相容原理。1945年泡利因发现泡利不相容原理而获诺贝尔奖。 由于电子自旋磁矩远大于核磁矩,所以电子自旋共振的灵敏度要比核磁共振高得多。在微波和射频范围内都能观测到电子自旋共振现象。 电子自旋共振的主要研究对象是化学上的自由基、过度金属离子和稀土元素离子及其化合物、固体中的杂质和缺陷等。通过对电子自旋共振谱图的分析可以得到材料微观结构的许多信息。在化学、医学和生物学方面也有较多应用。 实验目的 1. 在弱磁场(1mT 量级)下观测电子自旋共振现象。测量DPPH 样品的g 因子和共振线宽。 2. 了解电子自旋共振等磁共振实验装置的基本原理和测量方法,熟悉磁共振技术。 实验原理 1. 电子的自旋磁矩 电子的轨道运动磁矩为 l e l P m e v v 2?=μ (1) 其中e 为电子电量,m e 电子质量,为电子轨道的角动量 l P h )1(+=l l P l 其中为角量子数,为约化普朗克常量。因此,电子的轨道磁矩为 l h

B e l l l m e l l μμ)1(2) 1(+=+=h 其中μB 称为玻尔磁子 2241027.92m A m e e B ?×== ?h μ 电子的自旋磁矩为 s e s P m e v v 2?=μ (2) h )1(+=s s P s B e s s s m e s s μμ)1(2)1(+=+=h 其中s 为自旋量子数,自由电子的s = 1/2;P s 为自旋角动量。 二者的合成(LS 耦合)即为单电子原子的总磁矩 j e j P m e g v v 2?=μ (3) 其中g 称为朗德因子 ) 1(2)1()1()1(1212222++++?++=+?+=j j s s l l j j P P P P g j s l j (4) 其中j 为LS 耦合总角动量量子数。 将式(1)、(2)与(3)比较可知,对于单纯轨道运动g = 1。而对于单纯自旋运动 g = 2,精确测量得到g 的公认值,g = 2.0023。 引入旋磁比γ,式(3)可以写成 e j j e j m e g P P m e g 2,2?==?=γγμv v v (5) 在外磁场中,P j 和μj 空间取向都是量子化的。它们在外磁场B 方向的投影为 B z z mg m m P μγμ?===h h , (6) 其中m 为磁量子数,m = j ,j –1,…,–j。

电子自旋共振——近五年的研究与发展

电子自旋共振 ——近五年的研究和进展很早就听说过核磁共振,便怀着求知与好奇的心,选了刘老师的磁共振原理。当然要真正的了解磁共振原理,要从各种相关的方面与相关的领域入手,才能体会到磁共振原理的真正含义以及将来的发展与应用。所以,我先从探讨与磁共振原理相关的电子自旋共振,初步了解并浅谈电子自旋共振近五年的进展与研究。 首先我们先了解什么电子自旋共振以及现象。电子自旋共振(E SR),过去常称为电子顺磁共振(EPR),是属于自旋1/2粒子的电子在静磁场下的磁共振现象,类似静磁场下自旋1/2原子核有核磁共振之现象,又因利用到电子的顺磁性,故称电子顺磁共振。电子自旋共振成像(Electron Spin Resonance Imaging, ESRI)是基于ESR技术和CT扫描成像技术的一种影像化显示和测量样品中自由基或顺磁物种的分布及其变化过程的无损检测技术。常规ESR只能测定自由基的的种类和浓度,但是不能测定自由基的空间分布。ESRI技术在物理学、化学、半导体学、地质学、考古学、生物学和医学等许多科研领域有着巨大的应用前景,特别是在生物学和医学中的应用价值和潜力更十分引人注目。研究活细胞和活体组织产生自由基及天然抗氧化剂在细胞和心脏或脑中与NO和氧自由基作用的空间分布和反应动力学,给出体内自由基分布图和各种疾病的关系,这对从整体概念研究自由基在细胞和活体组织损伤作用机理有重要理论意义。

大致了解完后电子自旋共振以及其成像特点,我们可能会想到核磁共振,那么我们探讨电子自旋共振和核磁共振有何相关的联系以及他们的异同点。电子自旋共振虽然原理类似于核磁共振,但由于电子质量远轻于原子核,而有强度大许多的磁矩。以氢核(质子)为例,电子磁矩强度是质子的659.59倍。因此对于电子,磁共振所在的拉莫频率通常需要透过减弱主磁场强度来使之降低。但即使如此,拉莫频率通常所在波段仍比核磁共振拉莫频率所在的射频范围还要高——微波,因而有穿透力以及对带有水分子的样品有加热可能的潜在问题,在进行人体造影时则需要改变策略。举例而言,0.3 特斯拉的主磁场下,电子共振频率发上在8.41 吉赫,而对于常用的核磁共振核种——质子而言,在这样强度的磁场下,其共振频率为12.77 兆赫。 ESR成像原理。常规ESR测量时,样品整体处于均匀磁场中.当满足ESR条件,即hν=gβH时,产生ESR共振吸收,测得的ESR 信号.在ESR成像时,在主磁场上迭加梯度磁场,因此样品整体处在非均匀磁场中,于是样品中不同空间位臵产生共振时的主磁场不同,即信号发生位移.采集的ESR信号经过数据处理、图像重建后,即可得到样品中自由基或自旋密度的空间位臵分布图,也就是三维顺磁共振系统。 对于电子自旋共振的研究,我们利用ESR的技术特点,在多个领域进行了应用和发展,其中包括固态物理,辨识与定量自由基分子(即带有不成对电子的分子)。化学,用以侦测反应路径。生物医学领域,用在标记生物性自旋探子等,我们取几个重点来探

探测器中的核电子学

核辐射探测器中的核电子学学院名称核科学技术学院

学号 201321010322 学生姓名张枫 核辐射探测器中的核电子学 摘要:核辐射探测器是指能够指示、记录和测量核辐射的材料或装置。辐射和核 辐射探测器内的物质相互作用而产生某种信息(如电、光脉冲或材料结构的变化),经放大后被记录、分析,以确定粒子的数目、位置、能量、动量、飞行时 间、速度、质量等物理量。核辐射探测器是核物理、粒子物理研究及辐射应用中 不可缺少的工具和手段。核辐射探测器的工作过程大致分为二阶段:一是与辐射 反应,生成某种信息,该过程属于核测控内容;二是该信息的记录、收集、处理, 该过程属于核电子学内容。 关键字:核辐射、核电子学、核辐射探测器。

1.核辐射探测器的工作过程 其工作过程大致分为二个,一是与辐射反应,生成某种信息;二是该信息的记录、收集、处理。 2.与辐射相互作用产生某种信息的过程 核辐射探测器按探测介质类型及作用类型大致分为三种:气体探测器、半导体探测器、闪烁体探测器。它们与辐射相互作用的过程大不相同,但是其基本思想没变,都是辐射粒子射入探测器的灵敏体积;入射粒子通过电离、激发等效应而在探测器中沉积能量;探测器通过各种机制将沉积能量转换成某种形式的输出信息。 2.1气体探测器 气体探测器是内部充有气体、两极加有一定电压的小室。入射带电粒子通过气体时,使气体分子电离或激发,在通过的路径上生成大量的离子对—电子和正离子。带电粒子在气体中产生一电子离子对所需的平均能量称为电离能,电离能只与介质有关,与带电粒子的种类无关;带电粒子能量越高,其所生成的离子对越多,则生成的离子对数可以反应入射带电粒子的能量。 2.2闪烁体探测器 闪烁探测器是利用某些物质在核辐射的作用下会发光的特性探测核辐射的,这些物质称为荧光物质或闪烁体。其工作原理为:带电粒子进入闪烁体中,使原子电离激发,受激原子在退激过程中发光,光子穿过闪烁体、光导,一部分到达光电倍增管的光阴极,在光阴极上打出光电子,被光电倍增光的第一倍增极收集的光电子经过光电倍增管各倍增极的倍增,便产生一个电脉冲信号。 2.3半导体探测器 半导体探测器探测带电粒子的基本原理与气体电离室的十分相似,都是带电粒子在半导体探测器的灵敏体积内产生电子-空穴对,电子-空穴对在外电场的作用下漂移而输出信号。 我们把气体探测器中的电子-离子对、闪烁探测器中被 PMT第一打拿极收集的电子及半导体探测器中的电子-空穴对统称为探测器的信息载流子。 3信号载流子收集、记录、处理过程

相关主题
文本预览
相关文档 最新文档