当前位置:文档之家› (完整word版)过程检测技术及仪表课程设计(东北电力大学)

(完整word版)过程检测技术及仪表课程设计(东北电力大学)

(完整word版)过程检测技术及仪表课程设计(东北电力大学)
(完整word版)过程检测技术及仪表课程设计(东北电力大学)

目录

第1章绪论....................................................................................................... - 1 -

1.1 课题背景与意义......................................................................................... - 1 -

1.2 总实验装置以及监测原理......................................................................... - 1 -

1.3 检测和控制参数......................................................................................... - 4 - 第2章温度的测量................................................................................................. - 5 -

2.1 实验管流体进出口温度测量和控制......................................................... - 5 -

2.1.1 检测方法设计以及依据................................................................... - 5 -

2.1.2 仪表种类选用以及设计依据........................................................... - 5 -

2.1.3 测量注意事项................................................................................... - 7 -

2.1.4 误差分析........................................................................................... - 7 -

2.2 水浴温度的测量......................................................................................... - 7 -

2.2.1 检测方法设计以及依据................................................................... - 7 -

2.2.2 仪表种类选用以及设计依据........................................................... - 7 -

2.2.3 测量注意事项................................................................................... - 8 -

2.2.4 误差分析........................................................................................... - 9 -

2.3 管壁温度测量............................................................................................. - 9 -

2.3.1 检测方法设计以及依据................................................................... - 9 -

2.3.2 仪表种类选用以及设计依据........................................................... - 9 -

2.3.3 测量注意事项................................................................................. - 10 -

2.3.4 误差分析......................................................................................... - 10 - 第3章水位的测量............................................................................................... - 11 -

3.1 补水箱水位测量....................................................................................... - 11 -

3.1.1 检测方法设计以及依据................................................................. - 11 -

3.1.2 仪表种类选用以及设计依据......................................................... - 11 -

3.1.3 测量注意事项................................................................................. - 12 -

3.1.4 误差分析......................................................................................... - 12 - 第4章流量的测量............................................................................................... - 14 -

4.1 试验管内流体的流量测量....................................................................... - 14 -

4.1.1 检测方法设计以及依据................................................................. - 14 -

4.1.2 仪表种类选用以及设计依据......................................................... - 14 -

4.1.3 测量注意事项................................................................................. - 16 -

4.1.4 误差分析......................................................................................... - 17 - 第5章差压的测量............................................................................................... - 18 -

5.1 实验管出入口差压................................................................................... - 18 -

5.1.1 检测方法设计以及依据................................................................. - 18 -

5.1.2 仪表种类选用以及设计依据......................................................... - 18 -

5.1.3 测量注意事项................................................................................. - 20 -

5.1.4 误差分析......................................................................................... - 20 -

设计心得体会......................................................................................................... - 21 - 参考文献........................................................................................................... - 22 -

第1章 绪 论

1.1 课题背景与意义

换热设备污垢的形成过程是一个极其复杂的能量、质量和动量传递的物理化学过程,污垢的存在给广泛应用于各工业企业的换热设备造成极大的经济损失,因而污垢问题成为传热学界和工业界十分关注而又至今未能解决的难题之一。

按对沉积物的监测手段分有:热学法和非传热量的污垢监测法。热学法中又可分为热阻表示法和温差表示法两种。非传热量的污垢监测法又有直接称重法、厚度测量法、压降测量法、放射性技术、时间推移电影法、显微照相法、电解法和化学法。这些监测方法中,对换热设备而言,最直接而且与换热设备性能联系最密切的莫过于热学法。

本设计题目以多功能动态实验装置为对象,要求综合以前所学知识,参考相关文献资料,完成此实验装置所需检测参数的检测。设计检测方案,包括检测方法、仪表种类选用以及需要注意事项,并分析误差产生的原因等等。

1.2 总实验装置以及监测原理

如图1所示的实验装置是东北电力大学节能与测控研究中心杨善让教授为首的课题组基于测量新技术—软测量技术开发的多功能实验装置。基于本实验装置,先后完成国家、东北电力公司、省、市多项科研项目并获奖,鉴定结论为国际领先。目前承担国家自然科学基金、973项目部分实验工作。

图1-1 多功能动态模拟实验装置外形图 本实验装置的模拟换热器是由恒温水浴作为热源加热实验管段(约2m ),水浴温度由温控器、电加热管以及保温箱体构成。水浴中平行放置两实验管,独自

补水箱

模拟换热器 监控系统

集水槽

拥有补水箱和集水箱,构成两套独立的实验系统。可以做平行样实验和对比实验。为获取水处理药剂的效果、强化换热管的污垢特性、污垢状态下强化管的换热效果等等,管内流体一般为人工配制的易结垢的高硬度水或是含有固体微粒等致垢物质。

图1-2 实验装置流程图

1-恒温槽体;2-试验管段;3-试验管入口压力;4-管段入口温度测点;5-管壁温度测点;6-管段出口温度测点;7-试验管出口压力;8-流量测量;9-集水箱;10-循环水泵;11-补水箱;12-电加热管

设备的主体是由两根管组成的管式换热器。这两根管是可以拆装的, 它们都可以作为实验管,如对于单纯监测水质污垢热阻来说, 则两根实验管可同时进行两种水质或不同工况的污垢热阻检测。也可以将其中一根作为实验管, 另一根作标准比较管, 以便比较水处理措施的效果。管内工质为欲模拟的实际换热器的冷却水或据其主要成分配制的工艺流体。管外是由电加热器和温度调节器构成的可调温度的恒温水浴。实验管段安装有壁温、出入口介质温度、实验段流动压降等测点所有测量信号经由传输电缆通过数据采集器送入计算机, 实现了污垢热阻的在线自动监测。

面对沉积物的监测手段分别有:热学法和非传热量的污垢监测法。热学法中又可分为热阻表示法和温差表示法两种;非传热量的污垢监测法又有直接称重法、厚度测量法、压降测量法、放射性技术、时间推移电影法、显微照相法、电解法和化学法。这些监测方法中,对换热设备而言,最直接而且与换热设备性能能联系最密切的莫过于热学法中的污垢热阻法。

表示换热面上污垢沉积量的特征参数有:单位面积上的污垢沉积质量m,污垢层平均厚度δ和污垢热阻R。这三者之间的关系由下式表示:

f f f f f

f m R δλλρ1==

(1-1)

图1-3 清洁和有污垢时的温度分布及热阻

通常测量污垢热阻的原理如下:

设传热过程是在热流密度q 为常数情况下进行的,图3(a )为换热面两侧处于清洁状态下的温度分布,其总的传热热阻为:

c w c c R R R U 21/1++= (1-2) 图3(b )为两侧有污垢时的温度分布,其总传热热阻为

f f w f f f R R R R R U 2211/1++++=

(1-3) 如果假定换热面上污垢的积聚对壁面与流体的对流传热系数影响不大,则可认为

(1-4)

于是从式(3)减去式(2)得

c f f f U U R R 1121-=+ (1-5)

式(4)表明污垢热阻可以通过清洁状态和受污染状态下总传热系数的测量而间接测量出来。实验研究或实际生产则常常要求测量局部污垢热阻,这可通过测量所要求部位的壁温表示。为明晰起见,假定换热面只有一侧有污垢存在,则有:

q

T T R R R U b c s c w c c /)(/1,121-=++= (1-6) q T T R R R R U b f s f f w c f /)(/1,121-=+++= (1-7)

f c f c R R R R 2211,==

若在结垢过程中,q 、Tb 均得持不变,且同样假定f c R R 22=,则两式相减有

q T T R c s f s f /)(,1,1-= (1-8)

这样,换热面有垢一侧的污垢热阻可以通过测量清洁状态和污染状态下的壁温和热流而被间接测量出来。

1.3 检测和控制参数

1、温度:包括实验管流体进口(20~40℃)、出口温度(20~80 ℃)、实验管

壁温(20~80 ℃)以及水浴温度(20~80 ℃) ;

2、水位:补水箱上位安装,距地面2m ,其水位要求测量并控制,以适应不

同流速的需要,水位变动范围200mm~500mm ;

3、流量:实验管内流体流量需要测量,管径Φ25mm ,流量范围0.5~4m 3/h ;

4、差压:由于结垢导致管内流动阻力增大,需要测量流动压降,范围为

0~50mm 水柱。

第2章温度的测量

2.1 实验管流体进出口温度测量和控制

实验管流体进口(20~40℃)、出口温度(20~80 ℃)。

2.1.1 检测方法设计以及依据

温度的测量有接触式和非接触式,由上述实验装置可知,实验装置的进出口管直径较小,为Φ25mm,故不宜使用体积较大的温度计,否则会增加流动阻力影响流速,而非接触式一般用于测量高温,精度不高,而所测的温度属于低温范围的温度测量,所以要选用精度较高的测温元件,因此排除了非接触式的。因此所选的测温元件的特点要求结构简单、方便、体积小、灵敏度高。而常用接触式的有膨胀式温度计、热电阻和热电偶,由于膨胀式温度计精度虽高但此实验装置存在水浴加热的过程,使用时毛细现象很容易造成附加误差;加之热电阻测温范围为-200~800℃,热电偶为-200~2300℃,低温测量时热电阻温度计精度比热电偶温度计要高。所以综合考虑,选择热电阻温度计。

热电阻温度计的主要特点是测量精度高,性能稳定。它是利用金属导体或金属氧化物半导体做被测温质,利用导体或半导体的阻值随温度变化这一现象测量温度。因此,只要测量出感温热电阻的阻值变化,就可以测量出温度。

2.1.2 仪表种类选用以及设计依据

选择Pt100热电阻

(1)测量方法选择:利用热电阻测量进出口温度;

(2)测量依据:热电阻温度计的主要特点是测量精度高,性能稳定。它是利用金属导体或金属氧化物半导体做被测温质,利用导体或半导体的阻值随温度变化这一现象测量温度。因此,只要测量出感温热电阻的阻值变化,就可以测量出温度。

(3)仪表选择:常用热电阻有铜热和铂热电阻,但铜热电阻电阻率低,体积大,热响应慢,所以选用铂热,而铂热有Pt10和Pt100,后者用于650度以下温区,所以采用Pt100热电阻。另外,Pt100温度传感器还具有抗震动、稳定性

好、耐高压等优点。Pt100温度传感器是Pt100热电阻,随着温度的变化而变化。在零摄氏度时的电阻为100Ω;在100℃时,阻值为

138.5Ω。

图2-1 Pt100热电阻

(4)产品参数

厂家:陕西天康智能仪表公司

主要技术指标:

表2-1 Pt100热电阻主要技术指标 型号

分度号 最小置入深度 测温范围℃ 精度等级 允许偏差△ t ℃

WZP

WZP 2

WZPK

WZPK 2 PT100 ≥200mm -200~500 A 级 ±(0.15+0.002|t|)

B 级 ±(0.30+0.005|t|) 注:“ t ”为感温元件实测温度绝对值,双支铂电阻只供应 B 级 热电阻允许通过电流 通过铂电阻的测量电流最大不超过 5mA 。

热电阻采用三线制接法。采用三线制是为了消除连接导线电阻引起的测量误差。这是因为测量热电阻的电路一般是不平衡电桥。热电阻作为电桥的一个桥臂电阻,其连接导线(从热电阻到中控室)也成为桥臂电阻的一部分,这一部分电阻是未知的且随环境温度变化,造成测量误差。采用三线制,将导线一根接到电桥的电源端,其余两根分别接到热电阻所在的桥臂及与其相邻的桥臂上,这样消除了导线线路电阻带来的测量误差。

图2-2 热电阻三线制接法

2.1.3 测量注意事项

(1)热电阻温度计测量实验管进、出口温度时应注意接线方式,由于引线有长短和粗细之分,也有材质的不同,另外引线在不同环境下电阻值也会发生变化,为了避免连线电阻对测温的影响,在使用时热电阻需采用三线制的连接方式;

(2)热电阻和显示仪表的分度号必须一致。

2.1.4 误差分析

(1)分度误差。该误差取决于材料纯度和加工工艺。

(2)通电发热误差。由于电阻通电后会产生自升温现象,从而带来测量误差。该误差无法消除,但可用规定最大电流<6mA。

(3)线路电阻不同或变化引入的测量误差。可通过串联电位器调整,此外规定三线、四线接线方法也可以减小误差。

(4)附加热电动势。电阻丝与引线接点处构成热偶,若节点温度不同将产生附加电动势,对于测量回路可能产生影响。可通过节点靠近,同温等方法减小或消除。

2.2 水浴温度的测量

该实验装置的模拟换热器是由恒温水浴作为热源加热实验管段(约2m),水浴温度由温控器、电加热管以及保温箱体构成,模拟换热器中恒温水浴的温度为20~80 ℃。

2.2.1 检测方法设计以及依据

由实验装置要求分析,水槽内水浴温度是一个存在一定变化的物理量,而水浴温度又通过温控器来实时监控从而达到恒温。因此,测温仪表要求较高的灵敏性和精确度。其次,水浴温度的变化范围在20~80℃之间,属于低温测量。综合以上要求,选用电接点温度计。

2.2.2 仪表种类选用以及设计依据

选择电接点温度计

(1)测量方法选择:利用电接点温度计测恒温水浴温度。

(2)仪表选用依据:在感温包附近引一条导线,温度刻度处再引一导线,

当温度上升到某刻度时,水银柱就把外电路接通,反之温度降到该刻度以下,又把外电路断开,这样循环往复,使恒温水槽控制在一个微小变化的范围,既可以提供温度指示又能发出通断的控制信号。

图2-3 电接点温度计

(3)产品参数

厂家:安徽天康智能仪表公司

价格:55元

主要技术指标:产品执行标准:JB/T8803-1998 GB3836-83

型号:WSSX-481W

标度盘公称直径: 100mm

测温范围:-20℃-+300℃

精度等级:1.0、1.5

热响应时间:≤40s

防护等级:IP55

正常工作大气条件:温度-25-+55℃相对湿度≤85﹪。

设定点误差:设定点误差应不超过基本误差限的1.5倍。

切换差:切换差误差应不超过基本误差限的1.5倍。

2.2.3 测量注意事项

(1)与水银接触的导线必须不被水银腐蚀,而且不沾附水银。

(2)通过电接点水银温度计的信号必须是低电压小电流。

(3)测量时从感温包附近和从和螺母轴端引出的导线会被水腐蚀,并且破碎后水银会污染环境。

2.2.4 误差分析

(1)分度误差。该误差取决于材料纯度和加工工艺。

(2)当水银柱与细导线接触后,如果温度还继续上升,水银将在管壁与细导线的缝隙中升高,改变了玻璃管的横截面积,温度指示值就不准确了。

(3)测量仪表由于内部传动机构的间隙和摩擦阻力,使测量结果产生回差。

2.3 管壁温度测量

实验管道在恒温水槽中,通过与水槽中的水进行热交换传热,壁温范围20~80 ℃。

2.3.1 检测方法设计以及依据

由测量情形可知管壁温度用一般的热电偶和热电阻都不易测量,测温环境要求测温仪器可以附着在管壁表面,需要在测温点将水浴与管壁分开,面积又不能太大,否则影响换热。接触式测温中热电阻和热电偶比较适合,但热电阻不易安装,所以选择热电偶。

2.3.2 仪表种类选用以及设计依据

选择K型铠装热电偶

(1)测量方法选择:利用k型铠装热电偶测实验管壁温度。

图2-4 k型铠装热电偶

(2)仪表选用依据及特点:用热电偶测量壁温,根据中间导体定律使采用仪表测量热电偶的热电动势成为可能,也使采用热电偶开路测量金属壁温、液态金属等测量成为可能,k型热电偶是目前用量最大的廉价金属热电偶,并且线性度好,稳定性和复现性好,加之结构选择铠装(将金属丝绝缘材料和金属保护套管三者组合装配后拉伸加工成一种坚实的组合体),它具有能弯曲、便于安装、耐高温、热响应时间快、体积小等优点;可以安装在狭窄或结构复杂的测量场合;

它可以直接测量各种生产过程中从-20~100℃(热电阻)范围内的液体、蒸汽和气体介质以及固体表面的温度。

(3)产品参数

厂家:北京圣瑞科

主要技术指标:型号:WRNK-436

测温范围:-200~+500℃

精度等级:A级±0.3℃,B级±0.5℃

测量端形式:单支

接线方式:3线制或4线制

过程连接:卡套螺纹M12×1.5 M16×1.5 卡套法兰

测量范围:-20~150℃

保护管材料质:1Cr18Ni9Ti

接线盒材质:铸铝合金不锈钢

防护等级:IP65

2.3.3 测量注意事项

(1)热电偶的热电动势是热电偶工作端的两端温度函数的差,而不是热电偶冷端与工作端两端温度差的函数。

(2)在使用中,补偿导线应具有与所匹配的热电偶的热电动势称值相同的特性;而且补偿导线与热电偶正负极性不能接错,补偿导线与热电偶接点温度也必须相同。

2.3.4 误差分析

(1)热电偶测温属于接触测温法,传感器要与被测对象接触,并与周围环境有传热关系,因此传感器与被测对象不可避免存在传热误差,并且不能通过提高传感器的精确度使其减小,其次还有水浴影响和热电偶冷端产生的误差等。

(2)由于材料的纯度和加工工艺可能引起分度误差;

(3)电阻丝与引线接点处构成热电偶,若接点处温度不同将产生附加电动势。

第3章水位的测量

3.1 补水箱水位测量

补水箱安装距地面2米,需要检测其水位,水位变动范围是200mm~500mm,而且在不同流速时,用循环水泵来控制水位。

3.1.1 检测方法设计以及依据

水位属于液位测量,而常用的液位测量有静压法液位测量,但仅适用于敞口容器以及无杂质,低粘度的液体,浮子式液位计虽然它结构简单,工作可靠,测量范围较大,但由于试验流体为易结垢的高硬度水,浮子也会受到腐蚀,导致浮子所受浮力发生变化,影响测量结果。另外,浮子上承受的力除重锤的重力外,还有绳索本身的重力,以及绳与滑轮之间的摩擦力等,也会带来测量误差。电容式的液位测量适宜水分含量恒定不变的物位测量并且此实验中若含有污垢的导电液粘附在电极上会造成虚假水位,此处要求对循环水泵进行控制,所以选择电接点式水位测量法。

3.1.2 仪表种类选用以及设计依据

选择电接点水位计

(1)测量方法选择:利用电接点水位计测量补水箱的水位。

(2)仪表选用依据:电接点水位计是利用汽、水介质的导电率存在极大差异的性质来测量水位的,它由水位传感器和显示部分组成,

水位传感器就是一个带有若干个电接点的水位测量筒。电接点的绝缘子可以使电极与测量筒的筒壁绝缘,筒壁为公共电极。水位达到某一电极处,接通它与公共电极之间形成的电接点,交流电流过显示灯亮。因此,水位的高低就决定了电接点浸入水中数量的多少,由显示灯点亮的数量就可以知道水位的高低。对水位的控制可以通过A/D转换后经过单片机编程实现控制功能。

(3)产品参数

厂家:江苏博仪自动化仪表公司

价格:500元

主要技术指标:测量范围: 100 ~ 1000mm

测量点数:最大为 19 个点

工作压力 :0.6 ~ 22.5 Mpa

工作温度 :-80 ~ 400 ℃

制式:二线制与多线制。

精度: 2mm

工作电压: 5 、 12 、 24 VDC , 220VAC

指示方式:双色指示,有水位(液位)为绿色,无液位为红色LED

四位数值显示。

报警指示:液位超出上上限,上限定值,对应绿灯闪烁;液位

低于下限,下下限红灯闪烁。

报警值:有上上限,上限,下限,下下限,液位有效控制,用

户报警可任意组合。

输出触点容量: 220 , 2A

图3-1 电接点水位计

3.1.3 测量注意事项

(1)在温度剧变时要防止电泄露,且保证电接点与筒壁有很好的绝缘。

(2)使用过程中应定期进行清洗,清除筒体内的污垢杂质。

(3)为保证测量筒内有较好的水质,必须保证测量筒有一定的散热性,不

然会造成回流流量增大,在测量筒和与实验箱的连接管道中产生差压,形成测量

误差。

3.1.4 误差分析

(1)由于电级是以一定间距安装的,这就决定了测量存在的固定误差。

(2)由于水位测量筒的散热造成冷却误差,使回流流量增大,在测量筒和

与实验箱的连接管道中产生差压,形成测量误差。

第4章流量的测量

4.1 试验管内流体的流量测量

需测量试验管内流体的流量,且管径为Φ25mm,流量范围0.5~4m3/h。

4.1.1 检测方法设计以及依据

目前常用的流量测量方法有四类,一是差压式的,比如说节流式的孔板,喷嘴,但考虑到试验管段管径只有25mm,空间很小,几乎很难再在管中放置大的节流件,这样会造成压力损失,使流速减小,从而影响流量测量,所以节流件的暂时不考虑,常用的电磁流量计由于这次是人工配制的易结垢的高硬度水或是含有固体微粒等致垢物质,其导电率变化较大,不固定,所以不宜采用电磁式流量计。而浮子式一般只用于测量常温常压下透明介质,并且浮子上下移动不稳定带来测量误差,涡街虽然测量不受流体参数变化的影响,但对于高粘度,低流速,小口径的情况受限制。涡轮成本高,有可动部件,存在磨损问题。超声波流量计虽然不会产生阻力且不会改变流体流动状态,但一般用于难于观察的大口径的情况。所以综上所述,选择使用靶式流量计。

4.1.2 仪表种类选用以及设计依据

选择靶式流量计

(1)测量方法选择:利用靶式流量计测量实验管里的流量。

(2)仪表选用依据:首先因为管径小,流速较低,而它的特点是适用于低速测量,测量小流量时对外界的震动干扰不敏感;耐高温,可测量高温介质;测量精度高,重复性好,精度可达千分之二;在大部分情况下,可以测量高粘度的流体,对流体的粘度变化不敏感不会因为流体产生的气旋现象影响计量精度;不怕管道杂质影响,不怕堵塞;压力损失较小,只有传统孔板的六分之一,小于涡街,节能效果明显。

(3)仪表工作原理:靶式流量计由靶式流量变送器和显示仪表两部分组成,在流体经过的管道中,垂直于流动方向设置一圆形靶子作为节流件,靶子与管壁之间形成环形流通截面,故又把靶子称为环形孔板。流体经过时由于受阻必然要冲击圆盘形的靶,靶上所受的作用力与流速之间存在一定的关系。因此通过力矩

转换的方式测出靶上所受的作用力或动压,便可求出流速和流量。

图4-1靶式流量计工作原理图

F=ξρu 2A/2

A=πd 2/4 式中D---管道内径;α--流量系数;β---靶径比 qm=2παD (β1

-β)F ρ (4-1) β=D

d 式中F---靶受到流体的阻力;ξ—阻力系数;A---靶的迎流面积;d---靶直径;u---靶和管壁间环面积中的平均流速;ρ---介质密度

(4)仪表特点:整台仪表在设计中无可动部件、双层夹层结构,保温效果好;可选用多种防腐及耐高低温材质(如哈氏合金,钛等);整机可做成全密封无死角(焊接形式),无任何泄漏点,可耐42MPa 高压;仪表内设自检程序,故障现象一目了然;传感器不与被测介质接触,不存在零部件磨损,使用安全可靠;可就地采用干式标定方法,即采用砝码挂重法。单键操作可完成标定;具有多种安装方式供选择,如选择在线插入式,安装费用低;能准确测量高温500度工况下的气体、液体流量;计量准确,精度可达到1.0%;重复性好,一般为0.05~0.08%,测量快速;压力损失小,仅为标准孔板的1/2△P 左右;抗干扰,抗杂质能力特强。

(5)产品参数:

厂家:西安中天冶金工程有限公司

价格:118元

主要技术指标:口径:DN15~DN500mm

公称压力:0.6~42MPa

工况温度:+80℃~500℃

精度:±1.0~±2.5%FS

量程比: 1:5

壳体:304不锈钢(或按用户要求协商提供)

供电方式:内置3.6VDC锂电池(两年换一次,不带信号输出);

外供24VDC(带信号输出)

输出信号:4~20mA二线制;脉冲0~1000HZ;Hart通信;

RS232/RS485(或按用户要求协商提供)

防护等级:IP65;IP67

防爆标志:本安型ExiallCT4;隔爆型ExdllCT4

表头显示:累积流量;瞬时流量;工况温度;工况压力(温压补

偿式才有);棒状满量程百分比;故障自检

连接法兰:国标(GB/T)系列;化工(HG)系列;机械(JB/T)

系列;亦可按客户要求提供各国法兰标准

图4-2 靶式流量计

4.1.3 测量注意事项

(1)对同一介质来说,在不同温度和压力条件下,密度也会变化,因此在流量计量时,必须对介质的密度进行补偿。

(2)靶的几何尺寸、形状、结构、管道内径、直径比、被测介质性质有关,

当流体的雷诺数达到一定数值时,阻力系数不随雷诺数变化。

4.1.4 误差分析

(1)由上述公式可知,流量与流体的密度有关,但此实验装置是对污垢进行监测,流体密度会受污垢影响,导致测量误差。

(2)由于靶受到的力包含了流体粘滞性所产生的摩擦力,并且此次的流体流量较小,不能忽略,所以使测得的流速偏小。

第5章差压的测量

5.1 实验管出入口差压

由于结垢导致管内流动阻力增大,需要测量流动压降,范围为0~50mm水柱。

5.1.1 检测方法设计以及依据

常用的压力测量方法有液柱式压力计,但此方法中由于这次试验装置存在水浴加热过程,很容易引起管内毛细现象的变化,产生测量误差,所以此方法不宜。弹簧管压力计一般又不用于测差压;压阻式压力计由于其中的应变片也容易受测量环境的影响,使阻值发生变化,并且弹性元件与应变片的线膨胀系数很难完全一致,从而存在测量误差;而电容式差压传感器在使用时存在的寄生电容(引线电容及仪器中各元件与极板间的电容等)、铁损等因素。所以综上分析,我打算采用压电式压力传感器。

5.1.2 仪表种类选用以及设计依据

选择压电式压力计

(1)测量方法选择:利用压电式压力计测量实验管出入口差压。

(2)仪表选用依据:由于这次试验装置的管径Φ25mm,属于小管径的范围,压电式压力传感器体积小,不会对实验装置造成太大附加压力,并且该压力计体积小,结构简单,工作可靠,更换压电元件可以改变压力的测量范围,加之在配用电荷放大器时,可以将多个压电元件并联来提高传感器的灵敏度,测量范围变宽,而且精度也比较高,频率响应好,是动态压力检测中常用的传感器。

(3)仪表工作原理:对于某些电介质物体,在沿一定方向对其施加压力或拉力而使之变形时,其内部会产生极化现象,使物体的两个表面产生符号相反的电荷,当外力去掉后,它又恢复到不带电状态,物体产生的电荷量与外力大小成正比,这种现象成为压电效应,压电式压力传感器就是利用压电材料的压电效应将被测压力转为电信号。

基于DCS平台的火电厂凝结水精处理自动化控制毕业设计论文

理工类大学本科毕业设计论文 毕业设计(论文) 作者:学号: 学院:自动化工程学院班级:自动095 专业:□√自动化□测控技术与仪器 所在系:□√控制科学与工程□仪器科学与技术 题目:基于wincc的凝结水精处理控制系统设计 指导者:田海军高级实验师签字: 评阅者: 2013 年6 月吉林

东北电力大学自动化工程学院学士学位论文 摘要 随着电子技术和计算机技术的飞速发展,我国电力工业的技术水平不断提高,以计算机为核心的火力发电厂生产自动控制在实际应用中受到了广泛的重视,发挥着越来越重要的作用。火力发电厂辅机系统,如除灰系统、补给水处理系统、凝结水精处理系统、废水处理系统、输煤系统等也应用了自动化程序控制技术。随着机组容量的不断提高,火力发电厂对锅炉给水的要求也越来越严格,因此凝结水精处理的重要性也被越来越多的人所认识和重视。本文针对华能大坝发电有限责任公司凝结水精处理控制回路出现的问题,比较了传统继电器控制、以PLC为核心的集中控制方案以及分散控制系统 DCS (Distributed Control Systerm)方案的优缺点,提出了采用第三代Des产品PCS7系统对其控制回路进行改造,实现了基于DCS平台的火电厂凝结水精处理自动化控制,论文主要完成了以下工作: ①全面介绍了凝结水精处理系统在火电厂的作用,详细阐述了凝结水精处理系统的工艺流程,重点分析了凝结水精处理控制系统的工作原理以及凝结水精处理系统的Pm控制方式。 ②比较分析了火电厂中凝结水精处理控制系统的应用现状及其发展趋势,并根据凝结水精处理控制系统的改造要求,结合现场设备的情况,从经济性、安全可靠、实用性等方面,确定了宁夏华能大坝发电有限责任公司凝结水精处理控制系统总体方案。 ③参与完成了凝结水精处理控制系统的硬件设计。主要包括PCS7控制系统的网络结构、PCS7控制系统的硬件结构的设计以及PCS7控制系统其它硬件设备的选型。 ④参与完成了PCS7控制系统组态软件、操作员站软件、服务器软件和控制站软件的设计。 ⑤基于控制方案的选择、硬件选型和软件程序实现,本文所改造和设计的凝结水处理PCS7控制系统,经现场运行调试结果可以来看,改造后系统不但提高了锅炉给水的质量,而且维护方便,达到了的各项性能指标,从而验证了所设计方案的正确性。最后对全文进行了总结,并对凝结水精处理控制系统的发展进行了展望,指出凝结水精处理控制系统还需经过更长时间的检验,而且在抗干扰技术方面还需进一步实现。 关键词:火电厂,DCS,凝结水精处理,自动控制,PCS7

电力系统对称故障分析计算-东北电力大学精品课程展示.doc

7 电力系统对称故障分析计算 7. 1 习题 1) 电力系统短路的类型有那些?那些类型与中性点接地方式有关? 2)什么是横向故障?什么是纵向故障? 3)短路有什么危害? 4)无限大容量电源的含意是什么? 5)什么是最恶劣的短路条件? 6)什么是冲击电流?什么是冲击系数? 7)无限大容量电源供电系统发生对称三相短路周期分量是否衰减? 8)无限大容量电源供电系统发生对称三相短路是否每一相都出现冲击电流? 9)什么是无限大容量电源供电系统短路电流最大有效值?如何计算? 10)无限大容量电源供电系统短路电流含那些分量?交流分量、直流分量都衰减吗?衰减常数如何确定? 11)用瞬时值计算公式说明t=0时周期分量与非周期分量的关系。 12)下图为长方形超导线圈长lm,宽1m,处于均匀磁场B0中,其线圈平面与磁场B0垂直时闭合开关k,此时超导线圈的磁链是多少?线圈转90○时,磁链又是多少? k 图7- 1 习题7-12 13)为什么设定发电机电流、电压、磁链的正方向?每个回路的电流、电压和各绕组磁链的正方向、绕组轴线正方向如何规定? 14)写出a相回路的瞬态电压方程(考虑其它绕组对a相回路的互感)。

15)(7-1)式回路方程与磁链方程(7-2)式什么关系? 16)(7-1)式回路方程是否可解?为什么? 17)哪些电感系数不变化?为什么不变化? 18)什么是磁链?什么是一个绕组的自磁链?什么是绕组之间的互磁链? 什么是一个绕组的总磁链? 19)什么是综合相量?在派克变换中的作用是什么? 20)什么是派克变换矩阵?为什么进行克变换?电流、电压、磁链的派克变换矩阵是否相同? 21)派克变换矩阵中的θ角是什么角? 22)以知a ,b ,c 三相电压u t a =+1sin()ωα,u t b =+-11200 sin()ωα, u t c =++11200sin()ωα,求d ,q ,0轴电压。 23)读者自己对磁链方程(7-2)式到(7-9)和回路方程(7-1)式到(7-8)式的做一次派克变换推导。明确体验(7-2)式中的电感系数已变成常数。 24)如何由派克方程导出发电机稳态电压方程?什么是虚构电势&E Q ?它有什么作用?如何计算? 25)如何依据发电机稳态电压方程画稳态相量图? 26)已知发电机正常运行于额定参数P N =100MW ,cos φ=0.85, U N =10.5kV ,X d =1,X q =0.7,R =0下,求发电机空载电势E q 并画相量图。 27)短路后,定子绕组、转子励磁绕组都含有哪些电流分量?各按什么时间 常数衰减? 28)&'E ,'E q 各是什么电势?两者有什么关系?'E q ||0、'E q 0、'E q 、E q ||0电势 是什么关系? 29)不计阻尼时,定子直流分量电流, 励磁绕组基频交流电流分量按什么时间常数衰减?励磁绕组直流电流,定子二倍频交流电流分量按什么时间常数衰减? 30)''&E ,''E q ,''E d 各是什么电势?三者有什么关系?''E q 短路前后是否 变化?''E q ||0与''E q 是否相等?''E q ||0与E q ||0什么关系?''E q ||0值在空载下短路与负载下短路是否一样?

控制装置与仪表课程设计

控制装置与仪表课程设计 课程设计报告 ( 2012-- 2013年度第二学期) 名称:控制装置与仪表课程设计 题目:炉膛压力系统死区控制系统设计院系: 班级: 学号: 学生姓名: 指导教师: 设计周数:一周 成绩: 日期:2013年7 月5日

一、课程设计(综合实验)的目的与要求 1.1 目的与要求 (1)认知控制系统的设计和控制仪表的应用过程。 (2)了解过程控制方案的原理图表示方法(SAMA图)。 (3)掌握数字调节器KMM的组态方法,熟悉KMM的面板操作、数据设定器和KMM数据写入器的使用方法。 (4)初步了解控制系统参数整定、系统调试的过程。 1.2设计实验设备 KMM数字调节器、KMM程序写入器、PROM擦除器、控制系统模拟试验台1 1.3 主要内容 1. 按选题的控制要求,进行控制策略的原理设计、仪表选型并将控制方案以SAMA 图表示出来。 2 . 组态设计 2.1 KMM组态设计 以KMM单回路调节器为实现仪表并画出KMM仪表的组态图,由组态图填写 KMM的各组态数据表。 2.2 组态实现 在程序写入器输入数据,将输入程序写入EPROM芯片中。 3. 控制对象模拟及过程信号的采集 根据控制对象特性,以线性集成运算放大器为主构成反馈运算回路,模拟控制对 象的特性。将定值和过程变量送入工业信号转换装置中,以便进行观察和记录。 4. 系统调试 设计要求进行动态调试。动态调试是指系统与生产现场相连时的调试。由于生产 过程已经处于运行或试运行阶段,此时应以观察为主,当涉及到必需的系统修改 时,应做好充分的准备及安全措施,以免影响正常生产,更不允许造成系统或设 备故障。动态调试一般包括以下内容: 1)观察过程参数显示是否正常、执行机构操作是否正常; 2)检查控制系统逻辑是否正确,并在适当时候投入自动运行; 3)对控制回路进行在线整定; 4)当系统存在较大问题时,如需进行控制结构修改、增加测点等,要重新组态下装。 二、设计(实验)正文 1设计题目:炉膛压力系统死区控制系统设计(如附图1) 附图1: 引风机 炉膛压力系统死区单回路控制系统

过程控制工程课程设计

过程控制工程 课程设计任务书 设计名称:扬子烯烃厂丁二烯装置控制模拟设计设计时间:2006.2.20~2006.3.10 姓名:毛磊 班级:自动化0201 学号:05号 南京工业大学自动化学院 2006年3月

1.课程设计内容: 学习《过程控制工程》课程和下厂毕业实习2周后,在对扬子烯烃厂丁二烯装置的实际过程控制策略、实习环节的控制系统以及相应的组态软件有一定的认识和了解的基础上,针对扬子烯烃厂丁二烯装置,设计一个复杂控制系统(至少包含一个复杂回路和3-5个简单回路),并利用组态软件进行动态仿真设计,调节系统控制参数,使控制系统达到要求的控制效果。 1)独立完成设计任务,每个人根据下厂具体实习装置,确定自己的课程设 计题目,每1-3人/组; 2)选用一种组态软件(例如:采用力控组态软件)绘制系统工艺流程图; 3)绘制控制系统原有的控制回路; 4)利用下厂收集的实际数据和工艺要求,选择被控对象模型,利用组态软 件,对控制系统进行组态; 5)改进原有的控制回路,增加1-2个复杂回路,并进行组态; 6)调节控制参数,使性能指标达到要求; 7)写出设计工作小结。对在完成以上设计过程所进行的有关步骤:如设计 思想、指标论证、方案确定、参数计算、元器件选择、原理分析等作出 说明,并对所完成的设计做出评价,对自己整个设计工作中经验教训, 总结收获。 2. 进度安排(时间3周) 1)第1周选用一种组态软件绘制系统工艺流程图;绘制控制系统原有的 控制回路; 2)第2周利用下厂收集的实际数据和工艺要求,选择被控对象模型,利 用组态软件,对控制系统进行组态; 3)第3周(1-3) 改进原有的控制回路,增加1-2个复杂回路,并进行组态; 调节控制参数,使性能指标达到要求; 4)第3周(4) 书写课程设计说明书 5)第3周(5) 演示、答辩

检测技术及仪表课程设计报告

第一章绪论 1.1 课程设计目的 针对“应用技术主导型”普通工科高等教育的特点,从工程创新的理念出发,以工程思维模式为主,旨在培养突出“实践能力、创新意识和创业精神”特色的、适应当前经济社会发展需要的“工程应用型人才”。 通过在模拟的实战环境中系统锻炼,使学生的学习能力、思维能力、动手能力、工程创新能力和承受挫折能力都得到综合提高。以增强就业竞争力和工作适应力。 1.2课题介绍 本课设题目以多功能动态实验装置为对象,要求综合以前所学知识,完成此实验装置所需参数的检测。设计检测方案,包括检测方法,仪表种类选用以及需要注意事项,并分析误差产生的原因等等。 1.3 实验背景知识 换热设备污垢的形成过程是一个极其复杂的能量、质量和动量传递的物理化学过程,污垢的存在给广泛应用于各工业企业的换热设备造成极大的经济损失,因而污垢问题成为传热学界和工业界十分关注而又至今未能解决的难题之一。 1.4 实验原理 1.4.1 检测方法 按对沉积物的监测手段分有:热学法和非传热量的污垢监测法。 热学法中又可分为热阻表示法和温差表示法两种; 非传热量的污垢监测法又有直接称重法、厚度测量法、压降测量法、放射技术、时间推移电影法、显微照相法、电解法和化学法。 这些监测方法中,对换热设备而言,最直接而且与换热设备性能联系最密切的莫过于热学法。这里选择热学法中的污垢热阻法。

1.4.2 热阻法原理简介 表示换热面上污垢沉积量的特征参数有:单位面积上的污垢沉积质量mf,污垢层平均厚度δf和污垢热阻Rf。这三者之间的关系由式表示: (1-1) 图1-1 清洁和有污垢时的温度分布及热阻 通常测量污垢热阻的原理如下: 设传热过程是在热流密度q为常数情况下进行的,图1a为换热面两侧处于清洁状态下的温度分布,其总的传热热阻为: (1-2) 图1b为两侧有污垢时的温度分布,其总传热热阻为: (1-3)忽略换热面上污垢的积聚对壁面与流体的对流传热系数影响,则可认为 (1-4)于是两式相减得: (1-5)该式表明污垢热阻可以通过清洁状态和受污染状态下总传热系数的测量而间接测量出来。 实验研究或实际生产则常常要求测量局部污垢热阻,这可通过测量所要求部位的壁温表示。为明晰起见,假定换热面只有一侧有污垢存在,则有: (1-6) f f f f f f m Rδ λ λ ρ 1 = = c w c c R R R U 2 1 /1+ + = f f w f f f R R R R R U 2 2 1 1 /1+ + + + = f c f c R R R R 2 2 1 1 ,= = c f f f U U R R 1 1 2 1 - = + q T T R R R R U b f s f f w c f /) ( /1 ,1 2 1 - = + + + =

东北电力大学2017届毕业生就业质量年度报告

目录 一、学校概况 (1) 二、毕业生就业基本情况 (4) (一)2017届毕业生规模与结构 (4) (二)2017届毕业生就业概况 (7) (三)2017届毕业生就业流向 (10) 三、毕业生就业质量跟踪与反馈 (18) (一)毕业生对就业工作评价 (18) (二)用人单位对学校及毕业生评价 (19) 四、毕业生就业创业工作保障措施 (21) (一)齐抓共管,全员参与,高度重视就业创业工作 (21) (二)巩固优化就业市场,拓展校企订单联合培养领域和规模 (22) (三)精准服务,加快就业工作信息化进程 (23) (四)精心开展就业创业指导,提升学生就业竞争力 (25) 五、做好未就业毕业生就业统计和精准服务 (26) (一)高度重视未就业毕业生就业统计和精准帮扶工作 (26) (二)积极拓宽就业渠道,为学生提供精准就业服务 (26) (三)扎实做好就业困难毕业生帮扶工作 (27)

一、学校概况 东北电力大学坐落在风景秀美的吉林省吉林市。学校是吉林省重点大学,始建于1949年,是新中国建立的第一所电力工科学校,1958年定名为吉林电力学院,1978年更名为东北电力学院。原隶属电力部、国家电力公司,2000年起,实行“中央与地方共建,以地方管理为主”的管理模式,2005年学校更名为东北电力大学。2012年学校入选为国家“中西部高校基础能力建设工程”重点建设高校。 学校坚持以人才培养、科学研究、社会服务、文化传承与创新为己任,主动适应国家电力工业和吉林省的经济建设需求,形成了以电力特色为主,多学科交叉融合,较为完整的学科体系。学校共有15个教学院系,43个本科专业,涵盖了工、理、管、文、法、经、教育、艺术8个学科门类。学校是博士学位授权单位,有电气工程、动力工程及工程热物理2个博士学位授权一级学科,1个博士后流动站,有11个硕士学位授权一级学科,49个硕士学位授权二级学科,有吉林省优势特色重点学科6个,其中吉林省重中之重重点学科2个,有工程硕士(含7个授权领域)、体育硕士、翻译硕士3个硕士专业学位授权类别,具有硕士研究生推免权。学校现有全日制在校生近19000人。 学校有教职工1414人,拥有高级职称人员500余人,

东北电力大学电气控制与PLC习题答案

第1篇 一、单选 1. 低压电器是指( A )V以下电路中的电器。 A、AC1200、DC1500 B、AC800、DC1000 C、AC380、DC220 D、AC220、DC380 2. KM是( A )的文字符号 A、接触器 B、继电器 C、时间继电器 D、熔断器 3. 一般来说,一台交流接触器有( C )对主触点. A、1 B、2 C、3 D、4 4. 一般来说,一台交流接触器有( B )对辅助常开触点. A、1 B、 2 C、 3 D 4 5. 一般来说,一台交流接触器有( B )对辅助常闭触点. A、1 B、2 C、3 D、4 6. 熔断器的文字符号为( B ) A、FR B、FU C、QF D、QS 7. 熔断器在控制线路中起( B )作用. A、过载保护 B、短路保护 C、失压保护 D、欠压保护 8. 通电延时型时间继电器,它的动作情况是( A ) A、线圈通电时触点延时动作,断电时触点瞬时动作 B、线圈通电时触点瞬时动作,断电时触点延时动作 C、线圈通电时触点不动作,断电时触点瞬时动作 D、线圈通电时触点不动作,断电时触点延时动作 9. 时间继电器的文字符号是( B ) A、KV B、KT C、KA D、KS 10. FR是( C )的文字符号。 A、刀开关 B、熔断器 C、热继电器 D、断路器 11. 中间继电器的文字符号是( B ) A、K B、KA C、KT D、KV 12. 热继电器的文字符号是( B ). A、KA B、FR C、KV D、200r/min 13. 行程开关又称为( D ) A、光电开关 B、接近开关 C、万能转换开关 D、限位开关

检测技术及仪表课程设计报告

检测技术及仪表课程设计报告 1、1 课程设计目的针对“应用技术主导型”普通工科高等教育的特点,从工程创新的理念出发,以工程思维模式为主,旨在培养突出“实践能力、创新意识和创业精神”特色的、适应当前经济社会发展需要的“工程应用型人才”。通过在模拟的实战环境中系统锻炼,使学生的学习能力、思维能力、动手能力、工程创新能力和承受挫折能力都得到综合提高。以增强就业竞争力和工作适应力。 1、2课题介绍本课设题目以多功能动态实验装置为对象,要求综合以前所学知识,完成此实验装置所需参数的检测。设计检测方案,包括检测方法,仪表种类选用以及需要注意事项,并分析误差产生的原因等等。 1、3 实验背景知识换热设备污垢的形成过程是一个极其复杂的能量、质量和动量传递的物理化学过程,污垢的存在给广泛应用于各工业企业的换热设备造成极大的经济损失,因而污垢问题成为传热学界和工业界分关注而又至今未能解决的难题之一。 1、4 实验原理 1、4、1 检测方法按对沉积物的监测手段分有:热学法和非传热量的污垢监测法。热学法中又可分为热阻表示法和温差表示法两种;非传热量的污垢监测法又有直接称重法、厚度测量法、压降测量法、放射技术、时间推移电影法、显微照相法、电解法

和化学法。这些监测方法中,对换热设备而言,最直接而且与换热设备性能联系最密切的莫过于热学法。这里选择热学法中的污垢热阻法。 1、4、2 热阻法原理简介表示换热面上污垢沉积量的特征参数有:单位面积上的污垢沉积质量mf,污垢层平均厚度δf和污垢热阻Rf。这三者之间的关系由式表示: (1-1)图1-1 清洁和有污垢时的温度分布及热阻通常测量污垢热阻的原理如下:设传热过程是在热流密度q为常数情况下进行的,图1a为换热面两侧处于清洁状态下的温度分布,其总的传热热阻为: (1-2)图1b为两侧有污垢时的温度分布,其总传热热阻为: (1-3)忽略换热面上污垢的积聚对壁面与流体的对流传热系数影响,则可认为(1-4)于是两式相减得: (1-5)该式表明污垢热阻可以通过清洁状态和受污染状态下总传热系数的测量而间接测量出来。实验研究或实际生产则常常要求测量局部污垢热阻,这可通过测量所要求部位的壁温表示。为明晰起见,假定换热面只有一侧有污垢存在,则有:(1-6)(1-7)若在结垢过程中,q、Tb均得持不变,且同样假定(1-8)则两式相减有: (1-9)这样,换热面有垢一侧的污垢热阻可以通过测量清洁状态和污染状态下的壁温和热流而被间接测量出来。

《过程参数检测及仪表》课程设计报告

课程设计报告 ( 2015 -- 2016 年度第一学期 ) 名称:《过程参数检测及仪表》课程设计题目:标准节流装置的计算 院系: 班级: 学号: 学生姓名: 指导教师: 设计周数: 成绩: 日期:年月日

一、课程设计的目的与要求 本课程设计为自动化专业《过程参数检测及仪表》专业课的综合实践环节。通过本课程设计,使学生加深过程参数检测基本概念的理解,掌握仪表的基本设计方法和设计步骤。 二、设计正文 第一类命题 1. 已知:流体为水,工作压力(表压力)0.58MPa p =,工作温度30t =℃;管道 100mm D 20=,材料为20号钢旧无缝管;节流装置采用角接取压标准孔板,材料为 1Cr18Ni9Ti ,50.38mm d 20=;差压Pa 105p 4?=Δ,求给定差压值下的水流量m q 。 解题过程: (1)辅助计算。 工作压力(绝对压力):0.68MPa 0.10.58p p p b a =+=+= 查表可得:水密度31/m 995.5502kg =ρ,其动力粘度s Pa 10828.0053-6??=η, 管道线膨胀系数/1011.16-6D ?=λ℃,节流件线膨胀系数/1016.60-6d ?=λ℃, 将水视为不可压缩流体则其可膨胀性系数1=ε。 m 100.01116m 20)](t [1D D D 20t =-+=λ 50.38836mm 20)](t [1d d d 20t =-+=λ 0.50383D d t t == β 5 316681.148-1D p d 0.004 0.354A 4 t 12t =?=β ηρεΔ (2)题目未对管道直管段长度做出要求,故无需考虑此项检查;由于没有查出20号钢旧无缝管的管壁等效绝对粗糙度K ,无法检查管道粗糙度K/D 是否满足要求。 (3)迭代计算。 对角接取压标准孔板:0.75 D 62.5 8 2.1 )Re 10(0.00290.1840.03120.5959C βββ+-+= 令∞=D Re ,得初值0.60253C 0=。 在MATLAB 中编写迭代程序: A=316681.1485;

五一劳动奖章事迹12篇Word

五一劳动奖章事迹12 篇 **2007 年毕业于东北电力大学,就职于东电三公司锅炉工程处,先后担任锅炉工程处技术员,工程处项目专责工程师,工程处项目负责人等岗位。多年来,他凭着一身精湛的技术,完成一项又一项高质量的施工任务,用青春和汗水,无怨无悔地书写着自己的电建人生。 一、视公司的承诺为己任,坚定信念,凭借技术实力赢得信誉。 ** 始终活跃在生产第一线,对于工程技术难题喜欢“钻牛角尖” ,不搞懂,不弄透决不罢休。凭着这股子韧劲,他练就了一身锅炉安装的过硬技术,成为了一名受组织信任的锅炉安装专责工程师。每次在开展施工任务前,他都要与队员集思广益,制定最为高效、科学的施工方案。他说:“我们要更聪明地工作,而不是更辛苦地工作” 。他经常通过各种渠道学习国内外先进的施工方案,用智慧、辛勤和汗水打造一个个优质的工程,让业主满意,让公司放心。 在吉林松花江热电项目的锅炉吊装方案的制定上,他主张以充分发挥主吊车性能为基准点,将设备在地面进行最大化组合后进行吊装,这样既减少了高空作业的危险,又大大地提高了施工效率;在锅炉水压试验方案的制定上,通过合理的科学计算,采用电厂现有管材进行材料代用,不仅节省了材料采购的中间环节,缩短了施工周期,同时也为项目部节省了一大笔材料费用。 “打造精品工程” 是公司对业主的承诺,也是我们工作的目标,只要承诺如实履行才会为公司赢得信誉。而事实上他也做到了,从长春四热项目、松花江热电项目、长春五热项目,每次对业主许下的承诺都一一兑现。 二、视公司的信誉为己任,恪尽职守、事必躬亲、事无巨细。

大型发电锅炉在投产发电后长期运行在高温、高压这种恶劣的环境中,所以一个好的安装质量尤为重要。为了保证安装质量,提高施工工艺,确保机组以后能够顺利运行,他从不放过任何细节,经常主动向业主及监理提出制造和设计中的一些缺陷,并提出改进办法,虽然这样做会给自己增加许多额外的工作量,但是为了能打造一个优质的工程所有的辛苦都是值得的。在平时施工过程中,他总是要亲自与其他技术人员经常深入现场及时发现问题,解决问题,对于一些重要施工环节自己亲自编制方案及进行技术交底以保证施工质量。将公司“细节成就精品,信誉决定未来”的质量理念,真正落实到工程项目当中。 三、视公司的利益为己任,克服困难,确保进度,好一个“拼命三郎”。 2015 年9 月至今,由于公司海外工程市场开发的需要,他又舍小家顾大家,投身印度尼西亚参与目前世界上最大浆板生产线的工程建设当中。来到印尼金光项目的6个月时间里,他不负众望,克服重重困难,将所负责的锅炉安装工作稳步向前推进,各项进度指标、经济指标名列前茅。 常年工作在外,年迈的母亲生病了,他不能在病床前尽孝;年幼的女儿想他了,只能通过冰冷的电话线传递思念之情。女儿在电话里说:“爸爸,你什么时候回来呀?我都不记得你长什么样子了。”童言无忌,却真真切切反映了他对工作的忘我程度,公司的利益在他心中至高无上,为了这个信念他舍弃了太多太多,说他是工作上的“拼命三郎”真是恰当不过。 五、视个人荣誉为集体荣誉,坚定热爱工作的誓言

反应釜温度过程控制课程设计

过程控制系统课程课题:反应釜温度控制系统 系另I」:电气与控制工程学院 专业:自动化_____________ 姓名: ________ 彭俊峰_____________ 学号:__________________ 指导教师: _______ 李晓辉_____________ 河南城建学院 2016年6月15日

反应器是任何化学品生产过程中的关键设备,决定了化工产品的品质、品种和生产能力。釜式反应器是一种最为常见的反应器,广泛的应用于化工生产的各个领域。釜式反应器有一些非常重要的过程参数,如:进料流量(进料流量比)、液体反应物液位、反应压力、反应温度等等。对于这些参数的控制至关重要,其不但决定着产品的质量和生产的效率,也很大程度上决定了生产过程的安全性。 由于非线性和温度滞后因素很多,使得常规方法对釜式反应器的控制效果不是很理想。本文以带搅拌釜式反应器的温度作为工业生产被控对象,结合PID 控制方式,选用FX2N-PLC 调节模块,同时为了提高系统安全性,设计了报警和紧急停车系统,最终设计了一套反应釜氏的温度过程控制系统。

1系统工艺过程及被控对象特性选取 被控对象的工艺过程 本设计以工业常见的带搅拌釜式反应器(CSTR)为过程系统被控对象。 反应器为标准3盆头釜,反应釜直径1000mm,釜底到上端盖法兰高度1376mm, 反应器总容积,耐压。为安全起见,要求反应器在系统开、停车全过程中压力不超过。反应器压力报警上限组态值为。反应器的工艺流程如图1-1所示。 S8Q A a珑厲娜口 图1-1釜式反应器工艺流程图 该装置主要参数如表1-1所示。各个阀门的设备参数如表1-2所示,其中,D g为阀门公称直径、K v为国际标准流通能力。 表1-1主要测控参数表

检测技术与自动化仪表课程设计

河南理工大学 检测技术与自动化仪表课程设计说明书汽车倒车防撞警报系统设计 姓名: 专业班级: 学号: 指导老师: 时间:

汽车倒车防撞警报系统设计 电科级班指导老师: 摘要:本文在查阅、分析了现有的几种不同的测距原理分析确定了超声波测距,并对基于超声波测距的倒车雷达预警系统的研制进行了深入探讨和研究。该系统分为测距模块、系统控制模块和显示报警模块,并分别对其进行方案分析,最终确定汽车倒车防撞警报系统的系统构架和设计方案;在硬件电路中,详细阐述了运用单片机技术实现的倒车雷达预警系统的测距实现原理,分析了以AT89S52单片机为主控单元的系统硬件和软件设计,并对该系统进行误差分析,使我们对于系统的各种性能有了进一步认识。 试验结果显示,该系统对有限距离的距离测量具有较高的精度,实现倒车提示和距离报警功能,其主要技术指标达到了系统设计要求。 关键词:倒车雷达;超声波;测距

目录 1 绪论 (1) 2 系统硬件电路设计 (4) 3 软件编程 (10) 3.1控制电路 (12) 3.3接收收电路 (12) 3.4语音报警电路 (13) 3.5显示电路 (14) 4结论........................................................ (15) 参考文献 (16)

1概述 改革开放以来,人们的生活越来越好,在满足基本的生活需求之后,对生活的质量有更高的要求。在国家要想富先修路的号召下,公路的建设发展迅速,这也带动汽车的发展。交通事故的发生越来越高,这就要求汽车安装汽车倒车防撞报警系统。 汽车防撞的关键技术是车辆测距技术和实时监控技术。驾驶员凭借测距装置实时测量前后左右障碍物距离,通过警报系统或数码屏幕显示来了解汽车与障碍物之间的状态,从而避免因疏忽误判引起的碰撞事故。 本系统采用以以8051系列的AT89S52单片机系统为核心开发超声波测距系统。系统硬件原理图如图1-1: 系统硬件原理图1-1由超声波发射,回波信号接收,计时测量、数据处理和智能算法、显示和报警等构成。整个系统由微处理器控制,根据“回波测距”的原理设计的。由超声波的发射电路发射超声波,超声波在空气中传播至障碍物后发生反射,反射的回波经空气传播给超声波接收换能器接收并转换成电信号,再经滤波、放大、整形后,输入到微处理器的外部中断口INTO处产生中断,计数器停止计数,测出从超声波发射脉冲串时刻到接收回波信号时刻差,超声波在同温同介质中的传播速度由测温系统得知,将时刻差与声速相乘得出距离,并在显示系统上显示。它的各部分电路的说明如下。 (1) AT89S52 单片机系统是超声波测距仪的核心部分,主要任务有:控制一个40KHz的脉冲驱动振荡电路,启动振荡电路工作,振荡电路振荡出与超声波发射器的固有频率相同频率,使换能器能最大效率工作;实现串Ca通讯;TO计时,完成

电除尘论文资料

东北电力大学 东北电力大学本科自考 毕业设计(论文) 题目电除尘器运行及故障分析所在系(部) 班级 姓名李源 学号 指导教师 2012年8月8日

电除尘器运行及故障分析电除尘器运行及故障分析 单位:吉林燃料乙醇有限公司 编写:李源 时间:2012年8月8日

内容提要 我国是一次能源以煤炭为主的大国,煤炭消耗所占一次能源的比例长期保持在70%。一次能源的结构决定了我国电力生产以火力发电为主的结构。燃煤发电所存在的主要问题是大气污染物的排放和温室气体的排放。现在我国以对排放标准进行了修订,加大火力发电厂排放的控制力度,使之更科学、更严格、更易操作。由于电除尘器具有除尘效率高、阻力低、烟气处理量大、耐热温度高等优点而成为火力发电厂粉尘捕集回收和气体净化的主要设备。目前,电除尘器主要采用常规直流供电。为了满足日益严格的环保要求,实现烟尘达标排放,必须保持高效电除尘器的除尘效率。保持电除尘器高效稳定的除尘效率是一个系统工程,需要各方面配合,除了保证设计人员的科学性、准确性及在现场安装的质量、工艺性外,电除尘器的运行与维护也是重要的一环。电除尘器在运行几年后,必然会出现各种各样的故障,设备老化或因运行条件发生变化都会造成除尘效率的降低。另外运行故障较多,故障频率高,维护检修就困难,对安全生产影响较大,如不及时修复,故障就会不断扩大,甚至引起电场停运。因此一定要管好用好电除尘器,要不断分析原因,寻求对策,加以改进,使它在环境保护、除尘增效方面发挥更大的作用。姚孟发电有限责任公司的#1、2机组采用的是上海冶金矿山机械厂生产的FAA系列电除尘器,本文以这两台电除尘器为例,着重对影响除尘效率的因素及电除尘器运行、运行中所出现的故障及分析进行论述。希望能同从事电除尘器工作的同仁共同探讨如何保持电除尘器的安全稳定、高效运行,不断增加专业知识,以提高电除尘器的除尘效率。 关键词: 电除尘器除尘效率电除尘器运行故障分析故障判断 引言: 人类只有一个地球,共享一片蓝天,环境保护是人类的共同主题,是我国的基本国策。立在当代,功盖千秋。 电除尘器是一种高效节能的烟气净化设备,具有收尘效率高、处理烟气量大、使用寿命长、维护费用低等优点,在当前国内外对环保要求越来越高

东北电力大学电力系统潮流计算课程设计报告书

目录 一、设计任务 (1) 1.1 课程设计要求 (1) 1.2 课程设计题目 (1) 1.3 课程设计基本容 (2) 二、问题分析 (3) 2.1 节点设置及分类 (3) 2.2 参数求取 (3) 2.3 计算方法 (4) 三、问题求解 (7) 3.1 等值电路的计算 (7) 3.2画出系统等值电路图: (7) 3.3 潮流计算 (8) 四、误差分析 (29) 五、心得体会及总结 (38) 附录: (39) 参考文献 (39) 程序 (39)

电力系统潮流计算课程设计 一、设计任务 1.1 课程设计要求 1、在读懂程序的基础上画出潮流计算基本流程图 2、通过输入数据,进行潮流计算输出结果 3、对不同的负荷变化,分析潮流分布,写出分析说明。 4、对不同的负荷变化,进行潮流的调节控制,并说明调节控制的方法,并 列表表示调节控制的参数变化。 5、打印利用DDRTS进行潮流分析绘制的系统图,以及潮流分布图。 1.2 课程设计题目 系统图:两个发电厂分别通过变压器和输电线路与四个变电所相连。 变电所1 变电所2 母线电厂一电厂二

发电厂资料: 母线1和2为发电厂高压母线,发电厂一总装机容量为( 300MW ),母线3为机压母线,机压母线上装机容量为( 100MW ),最大负荷和最小负荷分别为50MW 和20MW ;发电厂 二总装机容量为( 200MW )。 变电所资料: (一)变电所1、2、3、4低压母线的电压等级分别为:35KV 10KV 35KV 10KV (二)变电所的负荷分别为:60MW 40MW 70MW 50MW (三)每个变电所的功率因数均为cos φ=0.85; (四)变电所1和变电所3分别配有两台容量为75MVA 的变压器,短路损耗414KW ,短路 电压(%)=16.7;变电所2和变电所4分别配有两台容量为63MVA 的变压器,短路损耗为245KW ,短路电压(%)=10.5; 输电线路资料: 发电厂和变电所之间的输电线路的电压等级及长度标于图中,单位长度的电阻为 Ω17.0,单位长度的电抗为Ω0.402,单位长度的电纳为S -610*2.78。 1.3 课程设计基本容 1. 对给定的网络查找潮流计算所需的各元件等值参数,画出等值电路图。 2. 输入各支路数据,各节点数据利用给定的程序进行在变电所在某一负荷情况下的潮 流计算,并对计算结果进行分析。 3. 跟随变电所负荷按一定比例发生变化,进行潮流计算分析。 1) 4个变电所的负荷同时以2%的比例增大; 2) 4个变电所的负荷同时以2%的比例下降 3) 1和4号变电所的负荷同时以2%的比例下降,而2和3号变电所的负荷同时以 2%的比例上升; 4. 在不同的负荷情况下,分析潮流计算的结果,如果各母线电压不满足要求,进行电 压的调整。(变电所低压母线电压10KV 要求调整围在9.5-10.5之间;电压35KV 要求调整围在35-36之间) 5. 轮流断开支路双回线中的一条,分析潮流的分布。(几条支路断几次) 6. 利用DDRTS 软件,进行绘制系统图进行上述各种情况潮流的分析,并进行结果的比 较。 7. 最终形成课程设计成品说明书。

检测及仪表课程设计(DOC)

目录 1设计目的 (2) 2题目介绍 (2) 3 背景意义 (2) 3.1实验装置简介 (2) 3.2研究污垢传热的理论知识 (3) 4参数检测与控制 (5) 4.1进出口温度水浴温度测量 (5) 4.1.1 仪表种类选用及依据 (5) 4.1.2 注意事项 (6) 4.1.3 可能误差 (6) 4.2 实验管壁温测量 (7) 4.2.1 仪表种类选用及依据 (7) 4.2.2 可能误差 (7) 4.3 水位的测量 (7) 4.3.1 仪表种类选用及依据 (7) 4.3.2 注意事项 (8) 4.3.3 可能误差 (8) 4.4 实验管内流体流量的测量 (8) 4.4.1仪表种类选用与依据 (8) 4.4.2 可能误差 (10) 4.5 差压测量 (10) 4.5.1仪表种类选用与依据 (10) 4.5.2 可能误差 (11) 5.参考文献 (12)

第1章绪论 1.1设计目的 针对“应用技术主导型”普通工科高等教育的特点,从工程创新的理念出发,以工程思维模式为主,旨在培养突出“实践能力、创新意识和创业精神”特色的、适应当前经济社会发展需要的“工程应用型人才”。通过在模拟的实战环境中系统锻炼,使学生的学习能力、思维能力、动手能力、工程创新能力和承受挫折能力都得到综合提高。以增强就业竞争力和工作适应力。 2题目介绍 本课设题目以一多功能动态实验装置为对象,要求综合以前所学知识,完成此实验装置所需检测参数的检测。设计检测方案,包括检测方法、仪表种类选用以及需要注意事项,并分析误差产生的原因等等。 该实验装置上,需要检测和控制的参数主要有: 1、温度:包括实验管流体进口(20~40℃)、出口温度(20~80 ℃), 2、实验管壁温(20~80 ℃)以及水浴温度(20~80 ℃) 3、水位:补水箱上位安装,距地面2m,其水位要求测量并控制,以适应不同流速的需要,水位变动范围200mm~500mm 4、流量:实验管内流体流量需要测量,管径Φ25mm,流量范围0.5~4m3/h 5、差压:由于结垢导致管内流动阻力增大,需要测量流动压降,范围为0~50mm 水柱 3 背景意义 3.1实验装置简介 如图3—1所示的实验装置是东北电力大学节能与测控研究中心杨善让教授为首的课题组基于测量新技术—软测量技术开发的多功能实验装置。 基于本实验装置,先后完成国家、东北电力公司、省、市多项科研项目并获奖,鉴定结论为国际领先。目前承担国家自然科学基金、973项目部分实验工作。

过程控制课程设计报告

北华航天工业学院 课程设计报告(论文) 设计课题:前馈反馈控制系统的 设计与整定 专业班级: 学生姓名: 指导教师: 设计时间:2013年12月06日

北华航天工业学院电子工程系 过程控制课程设计任务书 指导教师:教研室主任: 2013年12月06日 注:本表下发学生一份,指导教师一份,栏目不够时请另附页。 课程设计任务书装订于设计计算说明书(或论文)封面之后,目录页之前。

内容摘要 液位控制是工业中常见的过程控制,例如在饮料食品加工、化工生产、锅炉汽泡液位等多种行业的生产加工过程中都需要对液位进行适当的控制,它对生产的影响不容忽视。对于液位控制系统的方法,目前有常规的PID控制,但是PID 控制采用固定的参数,难以保证控制适应系统的参数变化和工作条件变化,得不到理想效果。而且,对于一些控制精度要求较高的场合,例如核电厂的蒸汽生成器中的液位控制,某些化工原料厂的化学溶液液位等问题,不允许在有扰动的情况下出现太大的超调量和过程的调节时间。 目前为了达到精度较高要求的先进控制策略的发展有:预测控制、自适应控制、智能控制、模糊控制等。具体采用的方法如将模糊控制和传统的PID控制两者结合,用模糊控制理论来整定PID控制器的比例,积分,微分系统;以负荷为前馈扰动量构成一个串级加前馈的三冲量闭环控制系统等。目前各种锅炉汽包水位控制绝大多数采用三冲量水位控制策略。 本文针对液位控制系统中较为基础的单容水箱作为控制对象,单容液位控制系统具有非线性,滞后,耦合等特征,能够很好的模拟工业过程特征。而对于控制系统的选择为前馈——反馈系统。一般的控制系统都属于反馈控制, 这种控制作用总是落后于扰动作用。对于时滞较大、扰动幅度大而频繁的过程控制往往不能满足生产要求。引入前馈控制可以获得显著的控制效果。前馈控制是按照扰动作用的大小进行控制, 所以控制是及时的。如果补偿作用完善可以使被控变量不产生偏差。 索引关键词:前馈—反馈控制PID 自动控制液位控制

检测技术与仪表课程设计论文(DOC)

第1章绪论 1.1 课题背景与意义 换热设备污垢的形成过程是一个极其复杂的能量、质量和动量传递的物理化学过程,污垢的存在给广泛应用于各工业企业的换热设备造成极大的经济损失,因而污垢问题成为传热学界和工业界十分关注而又至今未能解决的难题之一。 1.1.1目的 针对“应用技术主导型”普通工科高等教育的特点,从工程创新的理念出发,以工程思维模式为主,旨在培养突出“实践能力、创新意识和创业精神”特色的、适应当前经济社会发展需要的“工程应用型人才”。 通过在模拟的实战环境中系统锻炼,使学生的学习能力、思维能力、动手能力、工程创新能力和承受挫折能力都得到综合提高。以增强就业竞争力和工作适应力。 以多功能动态实验装置为对象,成此换热设备污垢的实验装置所需检测参数的检测。 1.2污垢的研究 换热设备污垢的形成过程是一个极其复杂的能量、质量和动量传递的物理化学过程,污垢的存在给广泛应用于各工业企业的换热设备造成极大的经济损失,因而污垢问题成为传热学界和工业界十分关注而又至今未能解决的难题之一。 1.2.1污垢的形成和现状 近10年来,基于污垢形成机理认识的逐步深入,污垢的预测和模拟都取得了明显进展。然而换热设备污垢形成的影响因素众多,是在动量、能量、质量传递以及生物活动同时存在的多相、多组分流动过程中进行的,其理论基础除传热传质学外,还涉及到化学动力学、流体力学、胶体化学、热力学与统计物理、微生物学、非线性科学以及表面科学等相关学科,是一个典型的多学科交叉的高度复杂问题,因而对其机理的清晰理解和准确把握仍是一项极为艰巨的任务。在20世纪80年代中Epstein曾以矩阵形式对污垢形成过程的理论分析和实验研究作了形象的概括,指出了发展趋势;Pinhero则比较了当时已有的各预测模型,

东北电力大学课程设计管理办法(试行)

东北电力大学课程设计管理办法(试行) 为了加强课程设计的管理,不断提高课程设计的质量,特制定本管理办法。 一、课程设计的目的 课程设计旨在加强学生对本课程及相关课程理论及专业知识的理解和掌握,训练并提高其在理论计算、结构设计、工程绘图、资料文献查阅、运用相关标准与规范及计算机应用等方面的能力;同时,为其它专业课程的学习和毕业设计(论文)奠定良好的基础。 二、课程设计内容要求 课程设计的内容,要符合本课程教学大纲的基本要求,体现人才培养特色,突出学生实践能力、设计能力及创新能力的培养。 三、课程设计工作程序 1、各院(系)根据各专业培养方案安排课程设计教学任务并组织实施。 2、指导教师要明确课程设计任务及日程安排,指导并保证《课程设计任务书》的填写质量;学生按照《课程设计任务书》所规定的内容,在教师的指导下,在规定的时间、地点,按时完成课程设计各项任务。 3、成绩评定。按照课程设计成绩考核办法,进行考核并上报成绩。 4、课程设计结束后,指导教师应在一周内将《课程设计任务书》、《课程设计成绩考核表》、学生完成的课程设计说明书(报告)、图纸(作品)等资料整理,统一装入课程设计资料袋,送承担课程的院(系)存档,保存期限为三年。 四、课程设计的组织管理及质量监控 1、为确保课程设计质量,各院(系)应选派学术水平较高,有一定教学经验和指导能力、教风严谨的教师作为课程设计的指导教师。 2、课程设计的选题要把握好其深度、广度及工作量的大小,原则上相对稳定。同时,要考虑科技发展、生产实际等的进展适时予以更新。 页脚内容1

3、课程设计的指导教师必须由讲师及以上职称的教师担任,每个自然班配备的指导教师人数应不少于2人。指导教师要保证足够的在岗指导、答疑时间,及时解决学生在课程设计过程中遇到的问题。在课程设计教学过程中,要因材施教,鼓励创新,引导学生主动学习,注重创新能力培养。 4、各院(系)要安排好课程设计场所、时间段,以便于教学和督导。 五、课程设计考核办法 1、课程设计的成绩评定要严格、规范。根据学生设计方案、说明书、图纸、程序、计算、作品等的完成质量及答辩(口试)情况,对学生的课程设计成绩进行综合评定。 (1)课程设计为1周的,在成绩评定中对每个学生要有简单的提问或口试程序。 (2)课程设计为2周及以上的,在成绩评定中应成立由2名及以上具有讲师及以上职称的教师组成的答辩小组对学生进行答辩考核。 2、课程设计成绩按优秀、良好、中等、及格、不及格五级分制记分。优秀者一般不超过答辩人数的20%。 本办法自公布之日起施行,由教务处负责解释。 附件:1.课程设计规范 2.课程设计质量评价标准 东北电力大学 2010年3月19日 页脚内容2

相关主题
文本预览
相关文档 最新文档