当前位置:文档之家› Water-stable lithium anode with LAGP sheet prepared by tape casting method for lithium-air batteries

Water-stable lithium anode with LAGP sheet prepared by tape casting method for lithium-air batteries

Water-stable lithium anode with LAGP sheet prepared by tape casting method for lithium-air batteries
Water-stable lithium anode with LAGP sheet prepared by tape casting method for lithium-air batteries

Short communication

Water-stable lithium anode with Li 1.4Al 0.4Ge 1.6(PO 4)3e TiO 2sheet prepared by tape casting method for lithium-air batteries

Ming Zhang a ,b ,Keita Takahashi b ,Ichiro Uechi b ,Yasuo Takeda b ,Osamu Yamamoto b ,*,Dongmin Im c ,Dong-Jonne Lee c ,Bo Chi a ,Jian Pu a ,Jian Li a ,Nobuyuki Imanishi b

a

School of Materials Science and Engineering,State Key Laboratory of Material Processing and Die &Mould Technology,Huazhong University of Science and Technology,Wuhan,Hubei 430074,PR China b

Department of Chemistry,Faculty of Engineering,Mie University,Tsu,Mie 514-8507,Japan c

Samsung Advanced Institute of Technology,Samsung Electronics,Yongin,Gyeonggi 446-712,Republic of Korea

h i g h l i g h t s

  • a r t i c l e i n f o

    Article history:

    Received 23December 2012Received in revised form 28January 2013

    Accepted 30January 2013

    Available online 13February 2013Keywords:

    Lithium-air battery Lithium anode

    Lithium ion conductor NASICON-type 1

    a b s t r a c t

    A Li 1.4Al 0.4Ge 1.6(PO 4)3(LAGP)sheet was prepared using a tape casting method with a ?ne LAGP power prepared from a sol e gel precursor.The addition of nanosize TiO 2as a sintering additive was effective to enhance the ionic conductivity of the tape-cast sheet.The highest electrical conductivity of 8.37?10à4S cm à1was observed for the tape-cast LAGP sheet with 5wt.%TiO 2at 25 C.A hybrid sheet of the tape-cast LAGP and epoxy resin was water impermeable.The electrical conductivity of the water impermeable hybrid sheet with ca.4%epoxy resin was 4.19?10à4S cm à1at 25 C.The three-point bending strength of the LAGP e 5wt.%TiO 2e epoxy resin hybrid sheet was 111N mm à2,which is comparable with a Li 1tx ty Al x Ti 2àx P 3ày Si y O glass ceramic plate.The Li/PEO 18(CF 3SO 2)2N/LAGP e 5wt.%TiO 2e epoxy sheet was successfully operated as a lithium electrode in saturated LiCl aqueous solution.

    ó2013Elsevier B.V.All rights reserved.

    1.Introduction

    Lithium-air rechargeable batteries have theoretically higher energy density than lithium ion batteries,and are therefore attracting increased attention as possible power sources for electric vehicles [1e 4].Two types of lithium-air batteries have been developed;aqueous and non-aqueous systems.The non-aqueous system consists of a lithium electrode,a non-aqueous electrolyte,and an air electrode,and are based on two possible reactions [5]:2Li tO 2?Li 2O 2,

    (1)

    and

    4Li tO 2?2Li 2O.

    (2)

    Reaction (1)is reversible,but reaction (2)is irreversible.In the aqueous system,the lithium electrode is protected by a water-stable lithium ion-conducting solid electrolyte,and the cell reac-tion is [6]:

    4Li t6H 2O tO 2?4(LiOH $H 2O),

    (3)

    where water in the electrolyte is involved in the cell reaction.The calculated energy densities including oxygen are 3460Wh kg à1for reaction (1)using an open circuit voltage (OCV)of 2.96V,and 1910Wh kg à1for reaction (3)using an OCV of 3.0V.The non-aqueous system has higher energy density than the aqueous

    *Corresponding author.Tel.:t81592319420.E-mail addresses:osyamamo@alles.or.jp ,yamamoto@chem.mie-u.ac.jp

    (O.

    Yamamoto).

    Contents lists available at SciVerse ScienceDirect

    Journal of Power Sources

    journal h omepage:www.elsevier.co m/lo cate/jp owsou

    r

    0378-7753/$e see front matter ó2013Elsevier B.V.All rights reserved.https://www.doczj.com/doc/9114558975.html,/10.1016/j.jpowsour.2013.01.167

    Journal of Power Sources 235(2013)117e 121

    system,but it has some serious problems,including high polari-zation for the charge and discharge processes,electrolyte decom-position,and contamination by moisture in the air.These problems could be overcome for the aqueous system.The most important issue for the aqueous system is to develop a water-stable lithium electrode,because lithium reacts severely with water and should be covered with a water-stable lithium conducting solid electrolyte. Recently,Visco et al.[7]proposed a water-stable lithium metal electrode protected by an NASCION-type water-stable lithium ion-conducting glass ceramic of Li1txty Al x Ti2àx P4ày Si y O12.(LATP).The discharge product of the aqueous lithium-air system is LiOH,and the LiOH is saturated to approximately5%discharge depth,because of the solubility limit of LiOH in water at room temperature is ca. 5mol Làhttps://www.doczj.com/doc/9114558975.html,TP is unstable in concentrated LiOH aqueous solution, but Imanishi et al.found that LATP is stable in an aqueous solution saturated with LiOH and LiCl[8].Therefore,LATP could be used as the protective layer of a lithium metal electrode for lithium-air batteries with a LiCl saturated aqueous solution.The LATP glass ceramic,which is supplied by Ohara Co.,Japan,had a high lithium ion conductivity of3.5?10à4S cmà1at room temperature.The glass ceramic was prepared by quenching from the melt and crystallized at high temperature.This glass ceramic is expensive and the sizes are limited.We have previously reported that Li1.4Al0.4Ge1.6(PO4)3(LAGP)is stable in an aqueous solution satu-rated with LiOH and LiCl,and the electrical conductivity is higher than that of Li1.4Al0.4Ti1.6(PO4)3[9].LAGP is the other candidate for the protective layer of the water-stable lithium metal electrode.In this study,we have prepared LAGP thin sheet by the tape casting method,which is suitable for the production of large sized thin sheets.The electrical conductivity,mechanical properties,and water permeability of a hybrid sheet prepared with epoxy resin and the tape-cast sheets were examined.In addition,the stability and charge e discharge performance of the Li/PEO18Li(CF3SO2)2N e10% BaTiO3/LAGP e epoxy hybrid sheet/saturated LiCl aqueous solu-tion/Pt cell were https://www.doczj.com/doc/9114558975.html,GP is unstable in contact with lithium metal;therefore,the polyethylene oxide(PEO)-based polymer electrolyte was used as an interlayer between Li and LAGP.

    2.Experimental

    The NASICON-type LAGP powder was prepared using a precursor prepared by the sol e gel method with citric acid,as reported pre-viously[9].Stoichiometric amounts of Ge(OC2H5)4(Aldrich), chemical grade LiNO3,Al(NO3)3$9H2O,and NH4H2PO4were dis-solved in a0.2M aqueous solution of citric acid and stirred contin-uously with a magnetic stirrer to obtain a homogeneous solution.A certain volume of ethylene glycol[citric acid:ethylene glycol molar ratio?1:1,(citric acidtethylene glycol):(LittAl3ttGe4t)molar ratio?4:1]was added to the mixed solution to prevent the for-mation of hard agglomerates and promote polyesteri?cation and polycondensation.The mixed solution was kept at80 C during the sol e gel preparation process.After a homogeneous solution was formed,the gel was kept at170 C for1day to allow the evaporation of water and to promote esteri?cation and polymerization,and the gel was then heated at500 C for4h.The powder obtained was uniformly ground to a?ne powder with an agate mortar and pestle before sintering at800 C for5h to complete the chemical reaction.

    Stoichiometric amounts of LAGP powder made by sol e gel method,and TiO2(Aldrich),GeO2(Aldrich),or ZrO2(Tosoh)?ne powers were dispersed in ethanol and toluene mixed solution(3:7 volume ratio)using Menhaden?sh oil(2wt.%to LAGP)as a dispersant.The mixed slurry was then ball milled with ZrO2balls for24h using high energy mechanical milling(HEMM;Fritsch Planetary Micro Mill).A certain amount of poly(vinyl butyral) (Aldrich,Butvar B-98,7wt.%to LAGP)as a binder and butyl benzyl phthalate(7wt.%to LAGP)as a plasticizer were then added into the mixed slurry and ball milled using HEMM for another24h.The slurry was defoamed for3min using a planetary vacuum mixer (Thinky,Japan)before casting to remove air bubbles.Tape casting was performed on a silicon coated polyethylene substrate foil using double blades with gap heights of700and400m m.The casting speed was constant at60cm minà1.After tape casting,the green sheets were left to dry at room temperature for24h.The green sheet was cut into small pieces of1.2e1.5cm?1.2e1.5cm.Three green sheets were hot pressed together at90 C for10min and then sintered at900 C in air.

    The LAGP and epoxy resin hybrid sheets were prepared by dropping a mixed dilute solution of1,3-phenylenediamine (1mol Là1)and2,2-bis(4-glycidyloxyphenyl)propane(2mol Là1) in tetrahydrofuran on the surface of LAGP sheet.The LAGP sheets with the epoxy resin solution were kept in vacuum for several minutes to allow the solution to penetrate into the pores of the LAGP sheets.The hybrid sheets were then placed into an oven at 80 C for2h and then at150 C for24h to allow evaporation of the solvent and to promote polymerization.

    The crystal structure of the samples was analyzed using X-ray diffraction(Rigaku RINT-2500)with Cu K a radiation in the2q range from10to90 at a scanning step rate of0.02 sà1.Impedance measurements of the LAGP e epoxy resin hybrid sheet with gold electrodes sputtered on both surfaces were conducted using an impedance analyzer(Solartron1260)in the temperature range from20to80 C and in the frequency range of0.01Hz e1MHz.The impedance pro?les were analyzed using a nonlinear instant?t program in the Z-View software.The hybrid sheets were immersed in an aqueous solution with saturated LiOH and LiCl at 60 C for one week to test their stability.The LAGP sheets were then washed with distilled water and dried in a vacuum oven at 110 C for5h before measuring the electrical conductivity and XRD patterns.The epoxy resin content in the samples was estimated from the weight loss measured by thermogravimetric analysis(TGA;Rigaku Thermoplus TG8120).The three-point bending strength of the LAGP sheet was measured using Shimadzu EZ-S500N at room temperature.

    The water permeation test was performed using an H-type cell with saturated LiCl aqueous solution on one side and distilled water on the other.The LAGP sheet was packed using a plastic?lm.The package was then evacuated and heat-sealed apart from a hole with a6mm diameter on the LAGP sheet.The water permeation speed through the LAGP sheet was estimated from the change of the chloride ion content in the distilled water over time,measured using a chorine meter(Kasahara Chemical Instruments).

    The lithium ion-conducting polymer membrane of PEO18-Li(CF3SO2)2N(LiTFSI)e10%BaTiO3was prepared using a previously reported casting technique[10].A certain amount of PEO(Aldrich, average molecular weight6?105)powder and lithium salt of LiTFSI (Aldrich)with Li/O?1/18were dissolved in a certain volume of acetonitrile.10wt.%nanosize BaTiO3particles of(100nm particle size,Sakai Chemical Industry)were added to the solution as the ?ller.The solution was stirred at room temperature for24h in an Ar-?lled dry glove box.The homogeneous slurry was then cast into a clean Te?on dish.The acetonitrile solvent was allowed to evaporate slowly in an Ar-?lled dry glove box for24h,and then dried at110 C for24h under vacuum.The water-stable lithium anode was assembled by laminating lithium metal,PEO18LiTFSI e10wt.% BaTiO3and the LAGP e epoxy resin hybrid sheets in a plastic pack-age,leaving a circular window of6mm in diameter.Nickel foil was used as the anodic current collector.The stability and electro-chemical performance of the water-stable lithium electrode were examined using a beaker-type cell of Li/PEO18LiTFSI e10wt.% BaTiO3/LAGP e epoxy/LiCl saturated aqueous solution/Pt,air at60 C.

    M.Zhang et al./Journal of Power Sources235(2013)117e121 118

    3.Results and discussion

    The tape-cast ?lms sintered at 900 C for 12h showed single phase NASICON-type LAGP without impurity phases such as AlPO 4and GeO 2.However,the mechanical properties of the tape-cast ?lm were somewhat poor and the relative density was less than 88%.To improve the mechanical properties,?ne powders of TiO 2,ZrO 2,and GeO 2were added into the starting slurry as sintering additives.Fig.1shows XRD patterns of the tape-cast LAGP sheets with 5wt.%TiO 2,3wt.%ZrO 2and 3wt.%GeO 2,along with the lattice https://www.doczj.com/doc/9114558975.html,GP with 5wt.%TiO 2had no diffraction peaks of TiO 2and the other starting materials.The c -lattice parameter of LAGP (2.0625nm)was decreased (2.0444nm)and the a -lattice param-eter remained unchanged by addition of 5wt.%TiO 2.Some Ti 4tcations may substitute for Ge 4t.The LAGP sheet with 3wt.%GeO 2shows diffraction peaks of GeO 2,and that with 3wt.%ZrO 2had peaks indicating Li 2Zr(PO 4)3.The c -axis parameter of LAGP with 3wt.%GeO 2was 2.0471nm and the a -axis parameter remained unchanged by the addition of GeO 2.The LAGP with 3wt.%ZrO 2showed no signi ?cant change in either of the a -and c -lattice parameters.

    Fig.2shows typical impedance pro ?les for tape-cast LAGP e 5wt.%TiO 2,LAGP e 3wt.%ZrO 2,and LAGP e 3wt.%GeO 2at 25 C,of which the relative densities were 92,91,and 92%,respectively.These relative densities are slightly higher than that of a sintered pellet of LAGP (89.3%)[9].The impedance pro ?les are typical of solid ionic conductors with a blocking electrode [11],which con-sists of two semicircles,followed by a straight line.The semicircles are attributed to the bulk and grain boundary resistances;however,the semicircle for the bulk resistance was outside the frequency window examined for the samples.The intercept of the semicircle on the real axis at high frequency represents the bulk resistance (R b ),and the diameter of the semicircle is attributed to the grain boundary resistance (R gb ).The highest conductivity was observed for LAGP e 5wt.%TiO 2,of which the bulk and grain boundary con-ductivities at 25 C were estimated to be 9.54?10à4and 6.83?10à3S cm à1,respectively.The total conductivity was 8.37?10à4S cm à1,which is slightly lower than that of a sintered pellet of LAGP (1.22?10à3S cm à1)[9].The bulk conductivities of LAGP e 3wt.%GeO 2and LAGP e 3wt.%ZrO 2were lower than that of LAGP e 5wt.%TiO 2.A high grain boundary conductivity of 1.21?10à2S cm à1for LAGP e 3wt.%GeO 2and a low grain boundary

    conductivity of 3.42?10à3S cm à1for LAGP e 3wt.%ZrO 2were observed.Fig.3shows the electrical conductivity at 25 C of tape-cast sheets of LAGP with TiO 2,ZrO 2,and GeO 2as a function of the additive content.The highest conductivity was observed for LAGP with 5wt.%TiO 2.The relative densities of the LAGP e TiO 2sheets were 88%for LAGP,87%for LAGP e 1wt.%TiO 2,89%for LAGP e 3wt.%TiO 2,92%for LAGP e 5wt.%TiO 2,and 90%for LAGP e 7wt.%TiO 2.The highest conductivity of the LAGP e TiO 2system was observed for the sample with the highest relative density.The mechanical proper-ties were enhanced by the addition of TiO 2into LAGP.The three-point bending strength of LAGP at room temperature was 48N mm à2,which was increased to 74N mm à2by the addition of 5wt.%TiO 2.The highest conductivities were observed at 3wt.%ZrO 2for LAGP e ZrO 2and at 3wt.%GeO 2for LAGP e GeO 2.The acti-vation energies for electrical conduction were estimated from Arrhenius plots to be 30.1kJ mol à1for LAGP e 5wt.%TiO 2,30.2kJ mol à1for LAGP e 3wt.%ZrO 2,and 30.9kJ mol à1for LAGP e 3wt.%GeO 2,which are comparable to that of a sintered LAGP pellet at 31.1kJ mol à1[9].

    The important requirement for the protective layer of the water-stable lithium electrode is to minimize water permeation through the sheet.Water permeation tests were conducted using the high conductivity LAGP e 5wt.%TiO 2sheet sintered at 900 C for 12h.Fig.4shows the chloride ion transport rate through the ?lm at room temperature,where the thickness of the ?lm was approxi-mately 0.2mm with a cross-section 0.28cm 2.A linear increase of the chloride ion concentration over time was observed for the tape-cast LAGP e 5wt.%TiO 2sheet;therefore,water easily penetrates through this sheet.The water penetration through the sheet may be due to the presence of open pores in the sheet.A dense sintered body could generally be obtained by sintering at a higher sintering temperature for a long sintering period;however,the tape-cast LAGP sheets sintered at 950 C for 5h and at 900 C for 17h had lower conductivity than that of the tape-cast LAGP sheet sintered at 900 C for 12h,due to the evaporation of lithium oxide at high temperature for long sintering periods.To suppress water perme-ation through the LAGP sheet,the open pores were ?lled with epoxy resin,which is stable in water,as reported in our previous paper [12].The water permeation test results through the LAGP e 5wt.%TiO 2e epoxy resin hybrid sheet are shown in Fig.4.TGA suggested that the content of epoxy resin in the hybrid sheet was ca.4wt.%.No chloride ions were detected in the distilled water

    side

    Fig.1.XRD patterns and lattices parameters of tape-cast (a)LAGP,(b)LAGP e 5wt.%TiO 2,(c)LAGP e 3wt.%ZrO 2,and (d)LAGP e 3wt.%GeO 2

    .

    Fig.2.Impedance pro ?les of tape-cast LAGP sheets annealed at 900 C for 12h at 25 C;(-)LAGP e 5wt.%TiO 2,(C )LAGP e 3wt.%ZrO 2,and (:)LAGP e 3wt.%GeO 2.

    M.Zhang et al./Journal of Power Sources 235(2013)117e 121119

    of the H-type cell after storage for 7days.The impedance pro ?les of the LAGP e 5wt.%TiO 2e epoxy hybrid sheet are compared with that of the LAGP e 5wt.%TiO 2sheet in Fig.5.The bulk conductivity of the hybrid sheet is the same as that of the sheet without epoxy resin,but the grain boundary conductivity of the hybrid sheet is signi ?-cantly decreased from 6.83?10à3S cm à1for the sheet without epoxy resin to 6.93?10à4S cm à1.The low grain boundary con-ductivity (high resistance)may be due to the presence of an insu-lator phase of epoxy resin at the grain boundary.The total electrical conductivity of the hybrid sheet (4.19?10à4S cm à1)at 25 C is approximately half that of the LAGP e 5wt.%TiO 2sheet without epoxy resin,and higher than that of the dense LATP glass ceramic supplied by Ohara Co.,Japan (3.5?10à4S cm à1)[13]and compa-rable to that of an LATP e epoxy hybrid ?lm [12].The mechanical properties of the LAGP e 5wt.%TiO 2were improved by the addition of epoxy resin,The three-point bending strength at room temper-ature of 74N mm à2for LAGP e 5wt.%TiO 2was increased to 111N mm à2by the addition of epoxy resin,which is also compa-rable with that of the Ohara LATP glass ceramic plate and higher than that of the LATP e epoxy hybrid ?lm (52N mm à2).

    The water impermeable LAGP hybrid sheet should be stable in an aqueous solution saturated with LiOH,because the reaction product of aqueous lithium-air batteries is LiOH.We have previ-ously reported that a saturated aqueous solution of LiCl and LiOH has a low pH of ca.9,due to the low dissociation of LiOH in the

    presence of a high concentration of Li t[8].The impedance pro ?les of the LAGP e 5wt.%TiO 2e epoxy resin hybrid sheet immersed in saturated LiCl aqueous solution and saturated LiCl and LiOH aqueous solution at 50 C for one week are shown in Fig.5.Both the bulk and grain boundary resistances are comparable before and after immersion in these solutions.XRD analysis also indicated no structural change in the hybrid sheets by immersion in these so-lutions.Therefore,it could be concluded that the LAGP e 5wt.%TiO 2e epoxy resin hybrid sheet is stable in saturated LiCl and LiOH aqueous solution and is thus suitable as the protective layer of a water-stable lithium metal electrode.

    The stability and electrochemical performance of the water-stable lithium metal electrode with the LAGP e 5wt.%TiO 2e epoxy resin hybrid sheet as the protective layer were examined.Imped-ance pro ?les of the Li/PEO 18LiTFSI e 10wt.%BaTiO 3/LAGP e 5wt.%TiO 2e epoxy resin hybrid/saturated LiCl aqueous solution/Pt plate with Pt black,air cell measured at 60 C are shown as a function of the storage time in Fig.6.The polymer electrolyte was used to prevent direct contact between the lithium metal and the LAGP sheet,because LAGP is unstable in contact with lithium metal [9].The room temperature conductivity of the polymer electrolyte was too low to pass a high current;therefore,the stability test

    was

    Fig.3.Electrical conductivities of tape-cast (-)LAGP e TiO 2,(C )LAGP e ZrO 2,and (:)LAGP e GeO 2at 25 C as a function of the content of MO 2and the Arrhenius total electrical conductivity plots of tape-cast (-)LAGP e 5wt.%TiO 2,(C )LAGP e 3wt.%ZrO 2and (:)LAGP e 3wt.%GeO 2

    .

    Fig.4.The water permeation test results of tape-cast (a)LAGP e 5wt.%TiO 2and (b)LAGP e 5wt.%TiO 2e epoxy resin hybrid sheets at room

    temperature.

    Fig.5.Impedance pro ?les of tape-cast (a)LAGP e 5wt.%TiO 2,(b)LAGP e 5wt.%TiO 2e epoxy,and (c)LAGP e 5wt.%TiO 2e epoxy sheets immersed in saturated LiCl aqueous solution at 50 C for one week,and (d)LAGP e 5wt.%TiO 2e epoxy resin hybrid sheet immersed in saturated LiCl and LiOH aqueous solution at 50 C for one week.

    M.Zhang et al./Journal of Power Sources 235(2013)117e 121

    120

    conducted at 60 C.Two semicircles are evident in the impedance pro ?les.The semicircle at the high frequency range corresponds to the contribution of the grain boundary resistance of the LAGP hybrid ?lm and polymer electrolyte (R 1),because similar semi-circles were observed in the same frequency range for Au/LAGP e 5wt.%TiO 2e epoxy resin/Au and Au/PEO 18LiTFSI e 10wt.%BaTiO 3/Au.The semicircle in the low frequency range may be attributed to the interface layer between lithium and the polymer electrolyte (R 2)and the charge transfer resistance (R c )between lithium metal and the interface layer [14].No signi ?cant change of the impedance pro ?les was observed for a storage time of 15days.If water pene-trates through the ?lm,it will react with lithium through the PEO layer (PEO is soluble in water),and the cell resistance would be signi ?cantly increased.However,the lack of change in the cell resistance con ?rms that the hybrid sheet is water impermeable,as observed in the water penetration test.The impedance spectra were analyzed using the equivalent circuit shown as an inset in Fig.6,and the following results were obtained at 60 C:R b ?50,

    R 1?83,R 2?98,and R c ?17U cm 2,where R b is the bulk resistance of the hybrid sheet and the polymer electrolyte.The charge transfer resistance is not as high as the other resistances.To reduce the cell resistance,the resistance of LAGP (R b tR 1)and the interface layer between lithium and polymer electrolyte (R 2)should be improved.Recently,Liu et al.reported that the interface resistance between PEO 18LiTFSI and lithium was reduced to ca.25U cm 2by the co-doping of an ionic liquid and nanosize SiO 2into the polymer elec-trolyte [15].The change of the lithium electrode OCV with the storage time is shown as an inset in Fig.6.The stable OCV for the lithium electrode of 3.4V vs.Pt/air was observed for 15days,and is comparable to theoretical OCV.

    Fig.7shows the change in the potential of the lithium electrode by lithium deposition and stripping for the Li/PEO 18LiTFSI e 10wt.%BaTiO 3/LAGP e 5wt.%TiO 2e epoxy resin/saturated LiCl aqueous so-lution/Pt plate with Pt black,air cell at 60 C,where the lithium electrode potentials were measured using a Pt black reference electrode.The lithium deposition and stripping overpotential of the water-stable electrode was around 0.5V at 0.5mA cm à2.The overpotential caused by cell resistance is 0.125V;therefore,the electrode polarization by the lithium deposition and stripping processes should be reduced to pass a higher current density for application as a power source in electrical vehicles.4.Conclusions

    A high conductivity and water impermeable LAGP e 5wt.%TiO 2e epoxy hybrid sheet with a thickness of ca.200m m was prepared by the tape casting method.The electrical conductivity of the hybrid ?lm was 4.19?10à4S cm à1at 25 C,which is comparable to that of a tape-cast LATP e 3wt.%TiO 2e epoxy sheet and is higher than that of an Ohara LATP glass ceramic plate.The three-point bending strength of the LAGP e epoxy hybrid ?lm was 111N mm à2,which is comparable to that of the Ohara glass ceramic,and higher than that of LATP e epoxy hybrid sheet at 60e 100N mm à2.A water-stable lithium electrode with LAGP e 5wt.%TiO 2e epoxy resin hybrid protective ?lm with high conductivity and excellent mechanical properties was successfully operated in saturated LiCl aqueous solution.Thus,the hybrid sheet is attractive as a protective layer for the water-stable lithium metal electrode of aqueous lithium-air rechargeable batteries.References

    [1]M.Armand,J.M.Tarascon,Nature 451(2008)652.

    [2]G.Girishkumar,B.McCloskey,A.C.Luntz,S.Swanson,W.Wilcke,J.Phys.

    Chem.Lett.1(2010)2193.

    [3] A.Kraytsberg,Y.Ein-Eli,J.Power Sources 196(2011)886.

    [4]J.Christensen,P.Albertus,R.S.Sanchez-Carrera,T.Lohmann, B.Kozinsky,

    R.Liedtke,J.Ahmed,A.Kojic,J.Electrochem.Soc.159(2012)R1.[5]K.M.Abraham,Z.Jiang,J.Electrochem.Soc.143(1996)1.

    [6]T.Zhang,S.Liu,N.Imanishi,A.Hirano,Y.Takeda,O.Yamamoto,Electro-chemistry 78(2010)360.

    [7]S.J.Visco,E.Nimon,https://www.doczj.com/doc/9114558975.html,tz,L.C.D.Jonghe,M.Y.Chu,Abstract #53,Interna-tional Meeting on Lithium Batteries,Nara,Japan,2004.

    [8]Y.Shimonishi,T.Zhang,N.Imanishi,D.Im,D.J.Lee,A.Hirano,Y.Takeda,

    O.Yamamoto,N.Sammes,J.Power Sources 196(2011)5128.

    [9]M.Zhang,K.Takahashi,N.Imanishi,Y.Takeda,O.Yamamoto,J.Electrochem.

    Soc.159(2012)A1114.

    [10]S.Liu,N.Imanishi,T.Zhang,A.Hirano,Y.Takeda,O.Yamamoto,J.Yang,

    J.Power Sources 195(2010)6847.

    [11]P.G.Bruce,A.R.West,J.Electrochem.Soc.130(1983)662.

    [12]K.Takahashi,P.Johnson,N.Imanishi,N.Sammes,Y.Takeda,O.Yamamoto,

    J.Electrochem.Soc.159(2012)A1065.

    [13]K.Takahashi,J.Ohmuram,D.Im,D.J.Lee,T.Zhang,N.Imanishi,A.Hirano,

    M.B.Phillipps,Y.Takeda,O.Yamamoto,J.Electrochem.Soc.159(2012)A342.

    [14]T.Zhang,N.Imanishi,S.Hasegawa,A.Hirano,J.Xie,Y.Takeda,O.Yamamoto,

    N.Sammes,Electrochem.Solid-State Lett.12(2009)A132.

    [15]S.Liu,H.Wang,N.Imanishi,T.Zhang,A.Hirano,Y.Takeda,O.Yamamoto,

    J.Yang,J.Power Sources 196(2011)

    7681.

    Fig.6.Impedance pro ?les of the Li/PEO 18LiTFSI e 10wt.%BaTiO 3/LAGP e 5wt.%TiO 2e epoxy resin hybrid sheet/saturated LiCl aqueous solution/Pt plate with Pt black,air cell at 60 C as a function of storage time and the change of OCV with

    time.

    Fig.7.Change of the lithium electrode potential at 0.5mA cm 2and 60 C in the Li/PEO 18LiTFSI e 10wt.%BaTiO 3/LAGP e 5wt.%TiO 2e epoxy resin/saturated LiCl aqueous solution/Pt plate with Pt black,air cell.

    M.Zhang et al./Journal of Power Sources 235(2013)117e 121121

    叠片式聚合物锂离子电池设计规范

    一、叠片式聚合物锂离子电池设计规范 1. 设计容量 为保证电池设计的可靠性和使用寿命,根据客户需要的最小容量来确定设计容量。 设计容量(mAh)= 要求的最小容量×设计系数(1) 设计系数一般取1.03~1.10。 2. 极片尺寸设计 根据所要设计电池的尺寸,确定单个极片的长度、宽度。 极片长度Lp: Lp = 电池长度-A-B (2) 极片宽度Wp: Wp = 电池宽度-C (3) 包尾极片的长度Lp′: Lp′= 2Lp+ T'-1.0 (4) 包尾极片的宽度Wp′: Wp′= Wp-0.5 (5) 其中: A —系数,取值由电池的厚度T决定,当 (1)T≤3mm时,对于常规电芯A一般取值4.5mm,大电芯一般取值4.8mm; (2) 3mm<T≤4mm时,对于常规电芯A一般取值4.8mm,大电芯一般取值5.0mm; (3) 4mm<T≤5mm时,对于常规电芯A一般取值5.0mm,大电芯一般取值5.2~6.0mm; (4) 5mm<T≤6mm时,对于常规电芯A一般取值5.2mm, 大电芯一般取值5.4~6.0mm。

    B —间隙系数,一般取值范围为3.6~4.0mm; C —取值范围一般为2.5~2.6mm(适用于双折边); T'—电芯的理论叠片厚度,T'的确定见6.1节. 图1.双面极片、单面正极包尾极片示意图 3. 极片数、面密度的确定: 确定极片的数量N,并根据电池的设计容量来确定电极的面密度,电池的设计容量一般由正极容量决定,负极容量过剩。在进行理论计算时,一般正极活性物质的质量比容量取140mAh/g,负极活性物质的质量比容量取300mAh/g。 N =(T-0.2)/0.35±1(6) 注:计算时N取整,并根据面密度的值来调整N。 S 极片 = Lp×Wp(7) C 设 = C 正比 ×S 极片 ×N×ρ 正 ×η 正 (8) C 负 = C 设 ×υ(9) = C 负比×S 极片 ×N×ρ 负 ×η 负 (10) 其中: S 极片 —单个极片的面积; C 正比 —正极活性物质的质量比容量,一般取值140mAh/g; η正—正极活性物质的百分含量; ρ正—正极极片的双面面密度(g/m2); C 负 —负极的设计容量; υ—负极容量过剩系数,一般常规电池取值1.00~1.06;DVD电池以及容量大于2000mAh的取值1.05~1.12; C 负比 —负极活性物质的质量比容量,一般取值300mAh/g;

    磷酸铁锂电池测试方法

    低温磷酸铁锂电池测试方法及检测标准 1.电池测试方法 1.1蓄电池充电 在20℃士5℃条件下,蓄电池以1I 3 (A)电流放电,至蓄电池电压达到2.0 V,静置 1h,然后在20℃±5℃条件下以1I 3 (A)恒流充电,至蓄电池电压达3.65V时转恒 压充电,至充电电流降至0.1I 3 时停止充电。充电后静置lh。 1.2 20℃放电容量 a) 蓄电池按1.1方法充电。 b) 蓄电池在20℃士5℃下以1I 3 (A)电流放电,直到放电终止电压2.0V 。 c) 用1I 3 (A)的电流值和放电时间数据计算容量(以A.h计)。 d) 如果计算值低于规定值,则可以重复a)一c)步骤直至大于或等于规定值,允许5次。 1.3 -20℃放电容量 a) 蓄电池按1.1方法充电。 b) 蓄电池在-20℃士2℃下储存20h。 c) 蓄电池在-20℃士2℃下以1I 3 (A)电流放电,直到放电终止电压2.0V。 d) 用c)电流值和放电时间数据计算容量(以A.h计),并表达为20℃放电容量的百分数。 1.4 -40℃放电容量 a) 蓄电池按1.1方法充电。 b) 蓄电池在-40℃士2℃下储存20h。 c) 蓄电池在-40℃士2℃下以1I 3 (A)电流放电,直到放电终止电压2.0V。 d) 用c)电流值和放电时间数据计算容量(以A.h计),并表达为20℃放电容量的百分数。 备注:1I 3— 3h率放电电流,其数值等于C 3 /3。 C 3 — 3 h率额定容量(Ah)。 1.5 高温荷电保持与容量恢复能力: a) 蓄电池按1.1方法充电。 b) 蓄电池在60℃士2℃下储存7day。 c) 蓄电池在20℃士5℃下恢复5h后,以1I 3 (A)电流放电,直到放电终止电压2.OV d) 用 c)的电流值和放电时间数据计算容量(以A.h计),荷电保持能力可以表达为额定容量的百分数。 e) 蓄电池再按1.1方法充电。 f) 蓄电池在20℃士5℃下以11 3 (A )电流放电,直到放电终止电压2.0V 。

    磷酸铁锂动力电池维护手册(整合版1)

    沃特玛电池有限公司 磷酸铁锂动力电池使用手册 电子部 2013-3-15 [为了方面售后服务更好的对OPT管理系统进行维护,特此制定本手册,希望对售后服务有所帮助]

    前言 为应对日益突出的燃油供求矛盾和环境污染问题,世界主要汽车生产国纷纷加快部署,将发展新能源汽车作为国家战略,加快推进技术研发和产业化,同时大力发展和推广应用汽车节能技术。节能与新能源汽车已成为国际汽车产业的发展方向。新能源客车,目前正在飞速发展。 当新能源客车穿行于街市,走进人们的生活时,对它的了解和认知也就成我们的必修课。然而,在这新能源之风势在必行之际,谈到动力电池,我们中大多数的人对其都知之甚少,这其中包括很多从事纯电动客车工作的相关从业人员,也正因为如此,才给你们的工作和和生活到来了诸多的困难和疑惑。 为解决这些问题,让从事纯电动客车工作的相关从业人员对动力电池有一些初步的了解和认识,本手册将通过重点介绍磷酸铁锂动力电池和管理系统的运用与维护来让大家了解动力电池的相关知识。为了更好服务客户,让相关从业人员熟悉和掌握我公司的纯电动客车动力电池,也为更好的发挥磷酸铁锂动力电池优越的性能,做好相关的维护保养工作,特制定本手册。希望此举能为大家避免在使用或维护我公司产品时造成不必要的困扰和预防产生一些不可挽回的损失。 烦请在使用或维护沃特玛公司纯电动客车动力电池之前,详细阅读本手册!

    目录 前言2 第一章为何选择磷酸铁锂电池作为动力电池5 1.1电池的概念 (5) 1.2磷酸铁锂电池优势: (5) 1.3动力电池种类性能对比: (5) 1.4.关键设计说明 (6) 1.5.产品用途 (7) 第二章动力电池系统构成8 2.1.电池组的主要参数(以五洲龙为例)8 2.2电池组结构说明及其示意图 (9) 第三章技术特性13 3.1 单体放电特性 (13) 3.2不同放电倍率下的放电曲线 (13) 3.3 单体充电特性 (14) 3.4 五洲龙电池系统充放电特性曲线图 (15) 3.5 保存特性 (15) 3.6寿命特性 (16) 第四章. 电池系统的使用与安装17 4.1 电池系统使用环境 (17) 4.2 电池系统的使用 (18) 4.4电池系统的安装 (18) 第五章动力电池信息仪表认识23 5.1混合动力电池信息仪表认识 (23) 5.2纯电动电池信息仪表认识 (24) 第六章动力电池存储、维护与保养25 6.1 储存、维护和保养基本要求 (25) 6.2维护与保养: (25) 6.3日常保养: (27) 6.4周保养: (28) 6.5.月保养: (29) 第七章OPT管理系统运用与维护31 7.1电池管理系统BMS基本结构 (31) 7.2 BMS管理系统安装 (33) 7.3 BMS故障处理方法 (34) 第八章紧急处理方案43

    磷酸铁锂电池直流内阻测定精编

    磷酸铁锂电池直流内阻 测定精编 Document number:WTT-LKK-GBB-08921-EIGG-22986

    LiFePO4/C锂离子电池直流内阻测试研究 摘要:研究了圆柱形动力磷酸铁锂锂离子电池在不同电流、不同测试持续时间下的直流内阻。分析了电池SOC、充电电流和放电电流、持续时间以及电流和时间的交互作用对电池直流内阻的影响。研究表明,测试电流和持续时间对电池的直流内阻影响比较大,在30~80%SOC范围内相同测试条件下电池的直流内阻变化不大;放电测试条件下的直流内阻略高于充电测试条件下的直流内阻;在0~10s 内,电池的直流内阻测试值与测试时间呈线性变化关系;容量型电池与功率型电池的直流内阻变化规律相同。 关键词:直流内阻,磷酸铁锂,锂离子电池,动力电池,测试方法 Study on the DC internal resistance of LiFePO4/C Li- ion battery Abstract: DC internal resistance of battery is an essential parameter for designing vehicle auxiliary system and battery pack. The effects of current, time, SOC on DC internal resistance of LiFePO4/C Li-ion battery were tested and analyzed respectively. The research shows that the DC internal resistance is similar at 30~80% SOC on the same test methods, the DC internal resistance with

    多次完整皮肤刺激试验

    多次完整皮肤刺激试验 中国科学院广州化学研究所分析测试中心 卿工---189--3394--6343 手和皮肤消毒剂:除按第一类、第二类或第三类消毒剂的要求进行毒理学试验外,还必须进行完整皮肤刺激试验。如果偶尔使用或间隔数日使用的消毒剂,采用一次完整皮肤刺激试验;如果每日使用或连续数日使用的消毒剂,采用多次完整皮肤刺激试验。接触皮肤伤口的消毒剂,还必须增做一次破损皮肤刺激试验;接触创面的消毒剂,应增做眼刺激试验。使用过程中,必需接触皮肤的其它消毒剂,也应增做完整皮肤刺激试验。根据消毒剂的成分,估计可能有致敏作用者,还需增做皮肤变态反应试验。 一、检测项目 多次完整皮肤刺激试验。 二、检测依据 中华人民共和国卫生部. 《消毒技术规范》(2002年版),皮肤刺激试验,多次完整皮肤刺激试验。 三、检测结论 在本试验条件下,*****公司送检的样品(对新西兰兔多次完整皮肤刺激强度为是否具有刺激性。 (本页以下无正文) 四、检测方法 多次完整皮肤刺激试验 (1)试验前动物皮肤准备同2.3.3.3.1 (1)。 (2)次日将受试物[浓度同 2.3.3.3.1 (2)]0.5ml(g)涂在一侧皮肤上,另一侧涂溶剂作为对照,在涂抹后4h,用水或无刺激的适宜溶剂清洗,除去残留物。每天涂抹一次,连续涂抹14d。在每次涂抹后24h观察结果,按表2-11评分。为了便于受试物的涂抹和结果观察,必要时应剪毛。对照区的处理方法同试验区。 2.3.3.4 评价规定 2.3.3.4.1一次皮肤刺激试验 在各个观察时间点,按照表2-11对动物的皮肤红斑与水肿形成情况进行评分,并分别按时间点将3只动物的评分相加,除以动物数,获得不同时间点的皮肤刺激反应积分均值(刺激指数)。取其中最高皮肤刺激指数,按表2-12评定该受试物对动物皮肤刺激强度的级别。 2.3.3.4.2多次皮肤刺激试验

    纽扣电池型号对照表

    纽扣电池型号对照表 扣式电池button battery 总高度小于直径的圆柱形电池,形似纽扣或硬币 纽扣电池的型号通常是在纽扣电池的背面由字母和阿拉伯数字组成。下面例举两种材料的纽扣电池的型号对照表。 纽扣电池新旧型号对照表 LR---水银--1.5V,SR---氧化银--1.55V,CR---锂电--3V,ZA---锌空--1.4V 氧化银纽扣电池是最常用的手表电池,绝大部分的手表使用的是氧化银纽扣电池。新电池的电压一般在1.55V到1.58V之间,电池的保质期是3年。在一块运行良好的手表上使用其运行时间一般不低于两年。 纽扣锂电池,3V锂纽扣电池多使用于防盗器,门禁,电脑等处,有的手表也配备锂电池。锂电池的保质期为7年,在一般情况下用户一般不用担心电池过期。 瑞士的氧化银纽扣电池型号为3##,日本的型号通常是SR###SW,或SR###W(#代表一个阿拉伯数字)。纽扣锂电池的型号通常为CR####。不同材料的纽扣电池,其型号规格也就不同。

    大小尺寸mm 瑞士型号 = 日本型号 4.8 x 1.6 mm 337=SR416SW 5.8 x 1.2 mm 335=SR512SW 5.8 x 1.6 mm 317=SR516SW 5.8 x 2.1 mm 379=SR521SW 5.8 x 2.6 mm 319=SR527SW 6.8 x 1.4 mm 339=SR614SW 6.8 x 1.6 mm 321=SR616SW 6.8 x 2.1 mm 364=SR621SW 6.8 x 2.6 mm 377=SR626SW 7.9 x 1.2 mm 346=SR712SW 7.9 x 1.4 mm 341=SR714SW 7.9 x 1.6 mm 315=SR716SW 7.9 x 2.1 mm 362=SR721SW 7.9 x 2.6 mm 397=SR726SW 7.9 x 3.1 mm 329=SR731SW 7.9 x 3.6 mm 384=SR741SW 7.9 x 5.4 mm 309=SR754SW 9.5 x 1.6 mm 373=SR916SW 9.5 x 2.1 mm 371=SR920SW 9.5 x 2.6 mm 395=SR927SW 9.5 x 3.6 mm 394=SR936SW 11.6 x 1.6 mm 366=SR1116SW 11.6 x 2.1 mm 381=SR1120SW 11.6 x 3.1 mm 390=SR1130SW 11.6 x 3.6 mm 344=SR1136SW 11.6 x 4.2 mm 301=SR1143SW 11.6 x 5.4 mm 303=SR1144SW 锂-二氧化锰纽扣电池型号对照表——CR系列

    磷酸铁锂电池直流内阻测定

    LiFePO /C锂离子电池直流内阻测试研究 4 摘要:研究了圆柱形动力磷酸铁锂锂离子电池在不同电流、不同测试持续时间下的直流内阻。分析了电池SOC、充电电流和放电电流、持续时间以及电流和时间的交互作用对电池直流内阻的影响。研究表明,测试电流和持续时间对电池的直流内阻影响比较大,在30~80%SOC 范围内相同测试条件下电池的直流内阻变化不大;放电测试条件下的直流内阻略高于充电测试条件下的直流内阻;在0~10s内,电池的直流内阻测试值与测试时间呈线性变化关系;容量型电池与功率型电池的直流内阻变化规律相同。 关键词:直流内阻,磷酸铁锂,锂离子电池,动力电池,测试方法 /C Li-ion battery Study on the DC internal resistance of LiFePO 4 Abstract: DC internal resistance of battery is an essential parameter for designing vehicle auxiliary system and battery pack. The effects of current, time, SOC on DC internal resistance of LiFePO4/C Li-ion battery were tested and analyzed respectively. The research shows that the DC internal resistance is similar at 30~80% SOC on the same test methods, the DC internal resistance with discharging methods is larger than it with charging methods, and the DC internal resistance is linear with the test time in 10s at the same SOC and current. The DC internal resistance variation rules of the high energy battery are similar to the high power battery. , Li-ion battery, power battery, Keywords: DC internal resistance, LiFePO 4 test methods 内阻是评价电池性能的重要指标之一。内阻的测试包括交流内阻与直流内阻。对于单体电池,一般以交流内阻来进行评价,即通常称为欧姆内阻。但对于大型电池组应用,如电动车用电源系统来说,由于测试设备等方面的限制,不能或不方便来直接进行交流内阻的测试,一般通过直流内阻来评价电池组的特性。在实际应用中,也多用直流内阻来评价电池的健康度,进行寿命预测,以及进行系统SOC、输出/输入能力等的估计。在生产中,可以用来检测故障电池如微短路等现象。 直流内阻的测试原理是通过对电池或电池组施加较大的电流(充电或放电),持续较短时间,在电池内部还没有达到完全极化的情况下,根据施加电流前后电池的电压变化和施加的电流,计算电池的直流内阻。测试直流内阻必须选择好四个参数:电流(或采用的倍率)、脉冲时间、荷电状态(SOC)、测试环境温度。这些参数的变化对直流内阻有较大的影响。 直流内阻不仅包括了电池组的欧姆内阻部分(交流内阻部分),还部分包括了电池组的一些极化电阻。而电池的极化受电流、时间等影响比较大。目前常用的直流内阻测试方法有以下三个:(1)美国《FreedomCAR电池测试手册》中的HPPC测试方法:测试持续时间为10s,施加的放电电流为5C或更高,充电电流为放电电流的0.75。具体电流的选择根据电池的特性来制定。(2)日本JEVSD713 2003的测试方法,原来主要针对Ni/MH电池,后也应用于锂离子电池,首先建立0~100%SOC下电池的电流一电压特性曲线,分别以1C、2C、5C、10C的电流对设定SOC下的电池进行交替充电或放电,充电或放电时间分别为10s,计算电池的直流内阻。(3)我国“863”计划电动汽车重大专项《HEV用高功率锂离子动力蓄电池性能测试规范》中提出的测试方法,测试持续时间为5s,充电测试电流为3C,放电测试电流为9C。 JEVS法、HPPC法两种测试方法各有特点,JEVS法采用0~10C“系列”电流可以避免采用单一电流产生的结果偏差,其假定电池的内阻主要成分是近似恒定的欧姆阻抗,因此

    通信用磷酸铁锂电池及系统的原理与应用

    通信用磷酸铁锂电池及系统的原理与应用 传统的阀控式密封铅酸电池以其成本低廉、技术成熟、维护方便得到广泛应用,然而,随着无线通信技术的不断发展和移动基站应用场景的复杂化,传统的蓄电池逐步显现出体积大、对环境温度要求苛刻等劣势。磷酸铁锂电池系统由于具有体积小、重量轻,高温性能突出,循环性能优异,可高倍率充、放电,绿色环保等众多优点,更适用于环境温度高、机房面积及承重小等恶劣的基站环境。同时,在末端供电磷酸铁锂电池也可作为铅酸蓄电池的有效补充。 一、目前通信后备电源面临的问题 1、传统铅酸蓄电池对环境温度要求比较高 目前市内宏基站的站址选择越来越难,室外一体化基站开始大规模建设。传统的铅酸蓄电池对环境温度要求比较高的特点造成传统的铅酸蓄电池很难适应室外高温等恶劣天气。另外,除了铅酸蓄电池外,室内宏基站的其他设备对环境温度的适应范围都比较宽。机房空调就是为了给铅酸蓄电池提供适当的环境温度。为了节能减排,目前已开发出蓄电池保温箱等蓄电池专用的小型空调设备。如果能找到一种对环境温度要求不高的电池作为后备电源,不仅能解决室外一体化基站后备电源的问题,而且还能省掉机房专用空调,这样既节省了工程初期购买空调的投资,也节省了基站运行时的大量电费开销。 2、传统铅酸蓄电池对机房面积和承重要求高 室内宏基站设备中,电源设备占比最大,而电源设备中提及和占地面积最大的就是蓄电池。室内宏基站的机房大多采用民房,根据结构专业的统计计算,民房的承重设计一般为150~200kg/m,而铅酸蓄电池对机房的承重要求不低于 400kg/m,所以在现有的民房内摆放铅酸蓄电池都需要经过加固处理。这样一方面加大了工程量,另一方面也加大了选址难度。另外,目前通信设备逐步向小型化、分散化的方向发展,末端设备的功耗越来越小,要求后备电池的体积更小,重量更轻。 3、传统铅酸蓄电池的高倍率放电性能较差 目前电网质量越来越完善,很少出现市电大面积长时间停电的状况,而基站的停电往往是由于市政项目的频繁建设所造成的短时间频繁停电,这需要蓄电池短时间大电流高倍率放电,而传统铅酸蓄电池的高倍率放电性能较差。

    急性皮肤刺激性或腐蚀性试验.doc

    四、皮肤刺激性/腐蚀性试验 Dermal Irritation/Corrosion Test 1 范围 本规范规定了动物皮肤刺激性或腐蚀性试验的基本原则、要求和方法。 本规范适用于化妆品原料及其产品安全性毒理学检测。 2 规范性引用文件 OECD Guidelines for Testing of Chemicals (No.404, July 1992) USEPA OPPTS Harmonized Test Guidelines (Series 870. 2500, Aug. 1998 ) 3 试验目的 确定和评价化妆品原料及其产品对哺乳动物皮肤局部是否有刺激作用或腐蚀作用及其程度。 4 定义 4.1 皮肤刺激性(Dermal irritation):皮肤涂敷受试物后局部产生的可逆性炎性变化。 4.2 皮肤腐蚀性(Dermal corrosion):皮肤涂敷受试物后局部引起的不可逆性组织损伤。 5试验的基本原则 将受试物一次(或多次)涂敷于受试动物的皮肤上,在规定的时间间隔内,观察动物皮肤局部刺激作用的程度并进行评分。采用自身对照,以评价受试物对皮肤的刺激作用。急性皮肤刺激性试验观察期限应足以评价该作用的可逆性或不可逆性。 6 试验方法 6.1 受试物 液体受试物一般不需稀释,可直接使用原液。若受试物为固体,应将其研磨成细粉状,并用水或其它无刺激性溶剂充分湿润,以保证受试物与皮肤有良好的接触。使用其它溶剂,应考虑到该溶剂对受试物皮肤刺激性的影响。 受试物为强酸或强碱(pH值≤2或≥11.5),可以不再进行皮肤刺激试验。此外,若已知受试物有很强的经皮吸收毒性,经皮LD50小于200mg/kg体重或在急性经皮毒性试验中受试物剂量为5000mg/kg体重仍未出现皮肤刺激性作用,也无需进行急性皮肤刺激性试验。6.2 实验动物和饲养环境 多种哺乳动物均可被选为实验动物,首选白色家兔。应使用成年、健康、皮肤无损伤的动物,雌性和雄性均可,但雌性动物应是未孕和未曾产仔的。实验动物至少要用4只, 如要澄清某些可疑的反应则需增加实验动物数。实验动物应单笼饲养,试验前动物要在实验动物房环境中至少适应3d时间。 实验动物及实验动物房应符合国家相应规定。选用常规饲料,饮水不限制。 6.3急性皮肤刺激性试验步骤 6.3.1 试验前约24 h ,将实验动物背部脊柱两侧毛剪掉,不可损伤表皮,去毛范围左、右各约2cm×3cm。

    聚合物电芯和锂电芯区别

    聚合物电池和锂电池区别 18650锂离子电池:主要有镍氢电池、锂离子电池、磷酸铁锂 聚合物电池:以钴酸锂材料为正极,碳材料为负极,电解质采用固态或凝胶有机导电膜组成,并采用铝塑膜做外包装的最新一代的可充电锂离子电池 聚合物是液态锂电池的更新换代产品,不仅具有液态锂离子电池存在的爆炸的安全隐患,具有更高的能量密度;同时外形更灵活,方便,重量轻巧;产品性能均达到或超过液态锂离子的技术指标,更具有安全性,受到国内外电子厂商及设计公司的青睐。 1.安全性能好 聚合物锂电池在结构上采用铝塑软包装,有别于也爱电芯的金属外壳,一旦发生安全隐患,液态电芯容易爆炸,而聚合物电芯最多只会气胀。 2.厚度小,能做的更薄 普通液态锂电池采用先定制外壳,后塞正负极材料的方法,厚度做到3.6mm以下,存在技术瓶颈,聚合物电芯部存在这一问题,厚度可做到1mm以下,符合时下手机需求的方向。 3.重量轻 聚合物电池重量较同等容量规格的钢壳锂电池轻40%,较铝壳电池轻20%。 4.容量大 聚合物电池同等尺寸规格的钢壳电池容量高10-15%,较铝壳电池高5-10%,成为彩屏手机及彩信手机的首选,现在市面上新出的彩屏和彩屏手机也大多采用聚合物电芯 5.内阻小 聚合物电芯的内阻较一般液态电芯小,目前聚合物的电芯内阻甚至可做到35mΩ以下,极大的减低了电池的自耗电,延长手机的待机时间,完全可以达到与国际接轨水平这种支持大放电电流的聚合物锂电更是遥控模型的理想选择,成为最有希望替代镍氢电池的产品。 6.形状可定制 聚合物电池可根据客户的需求增加或减少电芯厚度,开发新的电芯型号,价格便宜,开模周期短,有的甚至可以根据手机形状量身定做,以充分利用电池外壳空间,提升电池容量。 7.放电特性佳 聚合物电池采用胶体电解质,相比液态电解质交替电解质具有平稳的放电性和更高的放电平台。 8.保护板设计简单

    2017-8-26 超威电池尺寸表

    序号型号额定电压(V)额定容量 (Ah) 外型尺?(mm)长宽? 13-DZM-10610151±250±194±2 26-DZM-7A127151±265±196±2 36-DZM-7127116±286±1102±2 46-DZM-101210151±299±194±2 56-DZM-121212151±299±197±2 66-DZM-141214151±299±1116±2 76-DZM-161216151±299±1123±2 86-DZM-171217181±277±1167±2 96-DZM-201220181±277±1170±2 106-DZM-20(2*3)1220190±2113±1127±2 116-DZM-241224166±2175±1125±2 126-DZM-251225320±281±1119±2 136-DZM-261226312±280±1125±2 146-DZM-271227196±2130±1154±2 156-DZM-27(B)1227175±2166±1126±2 166-DZM-281228320±281±1127±2 176-DZM-301230267±277±1170±2 186-DZM-321232197±2165±2165±2 196-EVF-381238222±2106±1171±2 206-EVF-451245226±2120±1175±2 216-EVF-481248197±2165±2165±2 228-DZM-101610151±2101±1109±2 238-DZM-141614201±2112±1100±2 248-DZM-161616201±2112±1110±2 258-DZM-181618250±2100±2126±2 268-DZM-201620250±2100±2129±2 278-DZM-251625250±2130±2129±2 286-EVF-241224190±2115±1127±2

    磷酸铁锂电池组装测试流程

    LiFePO4组装扣式电池的流程 (1)扣式电池的规格:CR2025,CR20级别的规格都可以用,仅仅是电池壳的厚度有所区别,CR2025电池壳的厚度为2.5mm,该类电池的适用温度是-20℃—70℃。 (2)CR2025各部件的规格: 正极电池壳隔膜正极极片锂片 直径/mm20181214 (3)扣电组装过程如下: 混料:质量比—活性材料(LiFePO4):乙炔黑:PVDF=80:10:10 将称量好的活性材料和乙炔黑在研钵中研磨10min左右,同时将以质量比PVDF:NMP=1:20(如若发现NMP的量不够,可以少量滴加点)的量将PVDF溶解在NMP中进行磁力搅拌至PVDF完全溶解,然后将溶液倒入先前研磨好的活性材料和乙炔黑的粉料中继续研磨20min左右,制备得到正极浆料。 涂料:首先将Al箔平整放置在撒有酒精的光滑的桌面上,用玻璃棒将研钵中的浆料倒入Al箔上,随后用80um的涂膜器进行涂覆。随后将涂覆完的Al箔放置在真空干燥箱中先80℃干燥2h,然后110℃干燥12h。自然冷却后取出。 注:涂覆用的Al箔规格一定要小于辊压机的尺寸便于辊压。 LiFePO4极片制备:用12mm模具的压片机将干燥后的Al箔压成12mm的极片,分别称量每个极片的重量,并对应相应的电池编号,待用。 极片中活性物质质量=【极片的质量-空白Al箔的质量(5.4mg)】*80% 手套箱组装电池的过程: 先在手套箱的托盘中放置一张纸—CR2025的正极电池壳平整放于上面—用塑料镊子夹起正极极片居中放入正极壳中—将18mm的隔膜居中放置在极片上面(滴加3滴左右的电解液)—将锂片居中放置在隔膜上面(一定要居中放置,锂片的放置很重要)—放置垫片和弹片,滴加7-8滴左右的电解液—盖上负极壳,将电池壳稍微压紧,然后放入塑料袋中取出—70MPa左右的压力进行封装—放置24h 左右进行电化学性能测试。

    卷绕式聚合物锂离子电池设计规范

    一、卷绕式聚合物锂离子电池设计规范 1. 设计容量 根据客户需要的最小容量来确定设计容量。 设计容量(mAh)= 要求的最小容量×设计系数(1) 设计系数一般取1.05~1.15。 2.极片方式 正极负极正极负极 1.竖卷式 2.横卷式 根据电池的宽度确定极片的设计方式,一般宽度<20mm的电池采用第一种竖卷的设计方式;宽度≥20mm的电池采用第二种横卷的设计方式。 3.卷针的确定 卷针的宽度Wj由以下公式确定: Wj = W-T-λ(2) 其中: W —电池的宽度; T —电池的厚度; λ—卷芯与包装袋在宽度方向的空隙差值,一般取2~3mm。 卷针厚度Tj由卷针的宽度决定,具体见表1 表1.卷针的宽度 4. 卷芯尺寸的确定 4.1 卷芯厚度 卷芯的厚度T'是指正负极片卷绕成的电芯卡紧后的厚度(不包括包装膜的厚度),一般是根据实际电池的厚度确定的,有以下关系: T' = T-Φ(3)

    其中: T —电池的厚度; Φ—系数,一般取0.7~0.9mm,具体数值根据电池的厚度决定。 4.2 卷芯宽度 卷芯的宽度w'是极片卷绕后的电芯的宽度,由以下公式确定: w' = w j+T j+T'+δ(4) 其中: w j—卷针的宽度; T j —卷针的厚度; T'—卷芯的厚度; δ—系数,一般取0.5~1。 5.极片的设计 5.1 极片宽度的确定: 极片的宽度Wa根据卷绕的方式不同分别由以下公式确定(正、负极极片的宽度相同): 横卷:Wa = L-ω(5) 其中: L —电池的长度; ω—系数,根据电池的厚度决定,一般≤3mm的电池取值6.5~7.5mm;>3mm 的电池取值7.0~7.5mm。 竖卷:Wa = L-φ(6) 其中: L —电池的长度; ω—系数,一般取值2.5~3.0mm。

    BMS储能系统用户手册(V1.0)-磷酸铁锂要点

    储能电站电池管理系统 (BMS) 用户手册V1.0 (磷酸铁锂电池) 深圳市光辉电器实业有限公司

    目录 1、概述?错误!未定义书签。 2、系统特点.............................................................................................................. 错误!未定义书签。 3、储能电站系统组成?错误!未定义书签。 4、电池管理系统主要组成 (4) 4.1 储能电池管理模块ESBMM ......................................................................... 错误!未定义书签。 4.1.1 ESBMM-12版本?错误!未定义书签。 4.1.2 ESBMM-24版本........................................................................... 错误!未定义书签。 4.2 电池组控制模块ESGU................................................................................ 错误!未定义书签。 4.3 储能系统管理单元ESMU ............................................................................... 错误!未定义书签。 5、安装及操作注意事项?错误!未定义书签。 19 附录A:产品操作使用界面?

    磷酸铁锂电池产品测试项目及检测要求V1

    附件8 磷酸铁锂电池产品抽样(送样)测试要求 中国移动通信集团河南有限公司(以下简称招标人)将按照本文要求对报名供应商的磷酸铁锂电池设备进行现场抽样(送样)并委托第三方检测机构进行产品检测,具体测试项目和要求见下: 一.铁锂电池技术要求 1.铁锂电池配组方式:48V直流供电系统16只一组 2.标准环境温度:25℃±5℃ 3.充电: a.恒压限流方式 b.充电电压恒压值(补充充电):3.55V~3.6V c.浮充充电: 3.40V~3.45V d.充电电流恒流值:0.1C、0.2C、0.25C、0.55C、1C、3C可选 e.充电终止方式:恒压限流充电24h、或充电电流小于 0.005C(A)~0.05C(A) 4.放电 a.恒流方式(恒功率方式) b. 放电电流值::0.1C、0.2C、0.25C、0.55C、1C、3C可选 c.终止电压值:2.60V~2.75V 二.磷酸铁锂电池测试项目及测试要求 表1 磷酸铁锂电池测试项目及测试要求表 序 号 测试项目行标要求指标类别 1 外观(不污渍、不变形、不裂纹、不漏液) B 2 结构蓄电池的正负极端子应有明显标志。 标志应清晰 C 3 重量(kg) 蓄电池(单只)的重量。 C 4 外形尺寸(mm)长×宽×高 C 5 0.1C(A) 电流放电容量电池完全充电后,以0.1C(A)电流放电 B

    至终止电压2.6V时,放出容量≥1.0C。(25℃) 6 0.25C(A) 电流放电容量电池完全充电后,以0.25C(A)电 流放电至终止电压2.6V时,放出容量 ≥0.95C。 (25℃) B 7 0.55C(A) 电流放电容量电池完全充电后,以0.55C(A)电 流放电至终止电压2.6V时,放出容量 ≥0.92C。 (25℃) B 8 1C(A)电流放电容量电池完全充电后,以1.00C(A)电 流放电至终止电压2.6V时,放出容量 ≥0.90C。 (25℃) B 9 3C(A) 电流放电容量电池完全充电后,以3.00C(A)电 流放电至终止电压2.6V时,放出容量 ≥0.85C。 (25℃) B 10 电池组各单体电池容量均衡性0.1C(A)放电时(25℃),最大容量与最小 容量差与容量平均值之比:≤3%。 B 11 电池静态开路电压均衡性完全充电后静电24h后 单体电池之间电压最大最小差应不大于 0.5V B 12 电池完全充电状态电压均衡性完全充电后再充电24h后 单体电池之间电压最大最小差应不大于 0. 5V B 13 电池静态内阻均衡性电池完全充电后,电池内阻最 高、最低值与平均值差再与平均值之 比不大于(±20%)。 C 14 电池静态电导均衡性电池完全充电后,电池电导最 高、最低值与平均值差再与平均值之 比不大于(±20%)。 C 15 电池间连接电压降 1.以0.55C(A)电流放电时,在电 池极柱根部测量两电池间的连接电 压降,应不大于5.5mV。 2. 以1C(A)电流放电时,在电池极柱根 部测量两电池间的连接电压降,应不大 于10mV。 B 16 安全高电压充电试验完全放电后电池以4.2V恒压,1C(A)限 流进行充电24h,蓄电池应无安全阀打 开、外观异常、爆炸现象,并以0.55C(A) 放电后放出正常容量 B 17 电压瞬变特性完全充电后,以3.0C(A)突然加载, 其电压跌落幅度。 C

    窒息性气体

    (一)窒息性气体分类 窒息性气体中毒是最常见的急性中毒。据全国职业病发病统计资料,窒息性气体中毒高居急性中毒之首,由其造成的死亡人数占急性职业中毒总死亡数的65%。根据这些窒息性气体毒作用的不同,可将其大致分为三类。 1.单纯窒息性气体 属于这一类的常见窒息性气体有:氮气、甲烷、乙烷、丙烷、乙烯、丙烯、二氧化碳、水蒸气及氩、氖等惰性气体。这类气体本身的毒性很低,或属惰性气体,但若在空气中大量存在可使吸人气中氧含量明显降低,导致机体缺氧。正常情况下,空气中氧含量约为20.96%,若氧含量小于16%,即可造成呼吸困难;氧含量小于10%,则可引起昏迷甚至死亡。 2.血液窒息性气体 常见的有:一氧化碳、一氧化氮、苯的硝基或氨基化合物蒸气等。血液窒息性气体的毒性在于它们能明显降低血红蛋白对氧气的化学结合能力,从而造成组织供氧障碍。 3.细胞窒息性气体 常见的是氰化氢和硫化氢。这类毒物主要作用于细胞内的呼吸酶,阻碍细胞对氧的利用,故此类毒物也称细胞窒息性毒物。 (二)窒息性气体的毒性作用 窒息性气体的主要毒性在于它们可在体内造成细胞及组织缺氧。而缺氧引发的最严重的恶果即是脑水肿,严重者导致伤员死亡。 (三)窒息性气体中毒症状 1.缺氧表现 缺氧是窒息性气体中毒的共同致病环节,故缺氧症状是各种窒息性气体中毒的共有表现。轻度缺氧时主要表现为注意力不集中、智力减退、定向力障碍、头痛、头晕、乏力;缺氧较重时可有耳鸣、呕吐、嗜睡、烦躁、惊厥或抽搐,甚至昏迷。但上述症状往往被不同窒息性气体的独特毒性所干扰或掩盖,故并非不同窒息性气体引起的相近程度的缺氧都有相同的临床表现。及时地治疗处理,使脑缺氧尽早改善,常可避免发生严重的脑水肿。 2.急性颅压升高表现 (1)头痛。是早期的主要症状,为全头痛,前额尤甚,程度甚剧,任何可增加颅内压的因素如咳嗽、喷嚏、排便,甚至突然转头均可

    磷酸铁锂电池产品测试项目及检测要求V1说课讲解

    磷酸铁锂电池产品测试项目及检测要求V1

    附件8 磷酸铁锂电池产品抽样(送样)测试要求中国移动通信集团河南有限公司(以下简称招标人)将按照本文要求对报名供应商的磷酸铁锂电池设备进行现场抽样(送样)并委托第三方检测机构进行产品检测,具体测试项目和要求见下: 一.铁锂电池技术要求 1.铁锂电池配组方式:48V直流供电系统16只一组 2.标准环境温度:25℃±5℃ 3.充电: a.恒压限流方式 b.充电电压恒压值(补充充电):3.55V~3.6V c.浮充充电: 3.40V~3.45V d.充电电流恒流值:0.1C、0.2C、0.25C、0.55C、1C、3C可选 e.充电终止方式:恒压限流充电24h、或充电电流小于 0.005C(A)~0.05C(A) 4.放电 a.恒流方式(恒功率方式) b. 放电电流值::0.1C、0.2C、0.25C、0.55C、1C、3C可选 c.终止电压值:2.60V~2.75V 二. 磷酸铁锂电池测试项目及测试要求 表1 磷酸铁锂电池测试项目及测试要求表

    说明: 1、判定准则:无B类不合格且C类不合格数不超过2个时为合格; 2、本次测试共计21个B类指标,7个C类指标; 3、破折号表示行标无要求。 产品库存统计表。 表2 产品库存统计表

    说明: 全部产品为正常库存产品,不应为针对本次抽样检测定制产品。 产品送样样品数量要求见下表。 表3 产品送样清单表 说明: 请报名供应商应答以下项目: 1.报名供应商是否同意由招标人委派的资格审查小组在工厂实地按招标人相关要求抽取样品参加检测。 2.抽样送检样品的检测费用由报名供应商支付。 3.抽样样品由报名供应商进行包装,由报名供应商选择物流公司,因为包装和运输产生的设备受潮、受热、损坏等一切责任由报名供应商自行承担。 4.包装箱内同时投入信封,信封内注明送样报名供应商、送样地址、送样产品的名称和数量,信息中不能包含厂家的联系人和联系电话。 5.包装箱内应同时邮递产品使用说明书、技术说明书、出厂检验报告。 6.样品包装完成后,资格审查小组对送样样品的外包装进行封签(外包装上设置多处封签),封签在检测机构打开前不应被破坏。

    聚合物锂离子电池技术

    聚合物锂离子电池技术 摘要:本文阐述了不得聚合物锂离子电池的结构特点,从正极材料、电解质、负极材料等几方面综述了聚合物锂离子电池的技引言 能源和环境是人类进入21世纪必须面对的两个严峻问题,开发新能源和清洁可再生能源是今后世界经济中最具决定性影响的技术领域之一。锂离子电池自问世以来发展极快,这是因为它正好满足了移动通讯和笔记本电脑迅猛发展对电源小型化、轻量化、长工作时间、长寿命、无记忆效应和对环境无公害等的要求。而聚合物固态电解质代替液体电解质来制造聚合物锂离子电池,则是锂离子电池的一个重大进步,其主要优点是具有高的可靠性和加工性,可以做成全塑结构,从而使制造超薄及自由度大的电池的愿望得以实现。 1 锂离子电池的结构特点 锂离子电池的正负极活性物质均为嵌入化合物,充电时Li+从正极脱出,经过电解质插入到负极;放电时则相反,电池的充放电过程实际上是Li+在两个电极之间来回嵌入和脱出的过程,故这种电池又称为“摇椅电池”(Rocking Chair Batteries,缩写为RCB)。其反应示意图及基本反应式如下所示:

    2. 聚合物锂离子电池技术 2.1 聚合物锂离子电池的性能特点 聚合物锂离子电池是指电解质使用固态聚合物电解质(SPE)的锂离子电池。电池由正极集流体、正极膜、聚合物电解质膜、负极膜、负极集流体紧压复合成型,外包封铝塑复合薄膜,并将其边缘热熔封合,得到聚合物锂离子电池。由于电解质膜是固态,不存在漏液问题,在电池设计上自由度较大,可根据需要进行串并联或采用双极结构。 聚合物锂离子电池具有以下特点:①塑形灵活性;②更高的质量比能量(3倍于MH-Ni电池);③电化学稳定窗口宽,可达5V;④完美的安全可靠性;⑤更长循环寿命,容量损失少;⑥体积利用率高;⑦广泛的应用领域。

    电池尺寸规则

    本文介绍常见电池型号规格及尺寸等基础知识。在电池体上看到的AAA、AA、C、D、N、F、SC等标识都是美国型号标识,在我国除了几种按号称呼之外,其它还是采用美国的命名方式。此外,针对二次锂电池的型号表示方法是采用五位数(圆柱型)或六位数(方型),如14500、103450... 步骤/方法 1.一、常见电池型号、尺寸对照表 平头,指的是电池正极是平的,没有突起,使用做电池组点焊使用的电池芯,一般同等型号尖头的(可以用作单体电池供电的),在高度上就多了0.5mm。 以此类推,我不逐一解释。还有,电池很多的时候并不是规规矩矩的"AAA,AA,A,SC,C,D,N,F"这些主型号,前面还时常有分数"1/3,2/3,1/2,2/3,4/5,5/4,7/5",这些分数表示的是池体相应的高度,例如"2/3AA"就是表示高是一般AA电池的2/3的充电电池;再如"4/5A"就是表示高是一般A电池的4/5的充电电池。

    2.二、锂离子电池芯型号、尺寸 (1) 圆柱型锂离子电池芯:通常用五位数字表示,前两位数字是指池体直径, 后三位数字是指池体高,例如14500就是指AA电池,即大约14mm直径,50mm高。常见的型号:14500,14650, 17490,18500, 18650,26500。 常见比克、三洋圆柱电芯规格型号: 比克18650 2200mAh 3.7V ,比克18650 2600mAh 3.7V ,比克18650 2000mAh 3.6V 三元长寿命 三洋18650 2100mAh 3.7V ,三洋18650 2500mAh 3.7V ,三洋18650 1500 mAh 3.7V18650 (2) 方型锂离子电池芯:通常用六位数字表示,分别表示电池的厚度、宽度和 高度,单位毫米,例如103450 即10(厚度) ×34(宽度) ×50(高度)mm。若厚度数值大于宽度数值,则厚度要*0.1,例如433861 即4.3(43*0.1)×38×61mm。 常见比克、三洋方型电芯规格型号: 比克523450A 1000mAh 3.7V ,比克063450A 1200mAh 3.7V ,比克633770A 2020mAh 3.7V 三洋UF103450P 1880mAh 3.7V ,三洋UF653450R 1100mAh 3.7V 103450

    相关主题
    文本预览
  • 相关文档 最新文档