当前位置:文档之家› 关于变频器的论文

关于变频器的论文

关于变频器的论文
关于变频器的论文

1. 前言

1.1 研究的目的及意义

当今许多因素正冲击着全球电力工业,在国外电力生产商之间有着十分激烈的竞争,而世界范围内电力生产的市场化加速了生产商采用新技术;尤其是近两三年来,夏季持续高温造成许多省市电力供应紧张,供电已经不能满足急速膨胀的电力需求,拉闸限电现象日趋严重。由于电力网负担过重,造成局部电力系统极其不稳定,这种现象已经严重影响了人民的日常生活和经济的正常运行。我们注意到的全国节能活动中,宣传重点是民用电和商业用电的节约,而工业用电的节约则被淡化了。其实工业所耗用的电量占总用电量的比重极大,因此我们更应该把更多的目光投入到工业用电的节约上来。

这样环境要求给所有的电力供应商增加了额外的责任,使高压大功率变频器的市场开发空间大大拓展。另外高压变频器的最终用户对变频器的自动控制、节能、环保意识越来越强烈,迫使其上游提供者尤其是系统集成商更加重视顾客变频调速技术方面的需要。一般讲,在占工业用电50%~60%的风机、泵和压缩机等通用机械上使用变频调速装置,可以节电30%左右。这一类通用机械的驱动电机一般是工频电机,具有各种可供选择功能的通用变频器,其输出频率在0~400Hz之间,正适合这类机械。

变频器技术具有“工业维生素”之誉,是工业企业和日常生活工作中普遍需要的新技术;是高科技领域的综合性技术;是替代进口,节约投资的最大领域之一;是节约能源的高新技术。目前,低压变频器已经非常普及和成熟,高压变频器也正在被人们关注和逐步应用。变频器除了有卓越的调速性能之外,还有显著的节约电能和保护环境等重大作用,是企业技术改造和产品更新换代的理想调速装置,变频器的出现让工业领域的节能闪现了新的亮点。

但由于变频器进入我国的时间还不久,对于变频器的认识还不够,误用了变频器,使设备损坏,没有达到预期的效果。所以我们要对变频器进一步的学习和研究,能够在今后的使用中达到理想的效果。

1.2 国内外研究概况和发展趋势

1.2.1 变频技术应用的国内外发展状况

变频器是应用变频技术与微电子技术,通过改变电机工作电源的频率和幅度的方式来控制交流电动机的电力传动元件。变频器在中、韩等亚洲地区受日本厂商影响而曾被称作VVVF(Variable V oltage Variable Frequency Inverter)。

变频技术诞生背景是交流电机无级调速的广泛需求。传统的直流调速技术因体积大故障率高而应用受限。20世纪60年代以后,电力电子器件普遍应用了晶闸管及其升级产品。但其调速性能远远无法满足需要。20世纪70年代开始,脉宽调制变压变频(PWM−;VVVF)调速的研究得到突破,20世纪80年代以后微处理器技术的完善使得各种优化算法得以容易的实现。20世纪80年代中后期,美、日、德、英等发达国家的VVVF变频器技术实用化,商品投入市场,得到了广泛应用。最早的变频器可能是日本人买了英国专利研制的。不过美国和德国凭借电子元件生产和电子技术的优势,高端产品迅速抢占市场。步入21世纪后,国产变频器逐步崛起,现已逐渐抢占高端市场。

发展低碳经济已成全球共识。节能能源、降低消耗,构建资源节约型、环境友好型社会已是当今社会发展的一个永恒的话题。这场绿色革命的浪潮中,节能环节是极具边际经济效益和推广价值的。相较于清洁能源在全球能源供应端较低的占比和较高的边际成本,节能仍是绿色革命中最具推广意义和边际经济效益的领域。如今,中国正在坚定不移地推动低碳经济,相关政策已密集出台。电动机做为最重要的电力设备,将电能转换为机械能,以电机做为驱动的电力源,其耗用的电能占用全国总发电量的60%以上。为此,国家规划2011年7月后禁售非高效中小型电机,但到目前高效电机市场渗透率仅3%左右。

电机能耗占比高,节能潜力大。通过对电机变频调速可平均节能30%以上,节能效果显著,电机节能空间巨大。伴随着节能政策的推广,变频器行业将迎来新一轮发展。摩根士丹利预测,中国潜在的节能市场规模达8000亿元。

变频器是电机变频调速的核心部件,根据测算高压变频器市场潜在规模约810亿元。目前已经配置变频器的高压电机不到10%,预计未来3年高压变频器复合增长率达45%以上。中低压变频器市场将保持15%左右的持续增长,预计到2012年达190亿元。中国变频器市场正在呈迅速扩大的趋势,根据一份中国国内的权威统计,在过去的几年,中国变频器市场保持着25%-35%的年增长率,增长速度排在电气行业之首位。机械工业信息

研究院产业与市场研究所发布数据称,我国变频器市场至少在10年以后才能趋于饱和,总体市场潜力为1200亿-1800亿元。威尔凯中国区CEO陈建义透露,目前中国市场上变频器安装容量(功率)的增长率实际上在20%左右,按照这样的增长速度计算,中国的变频器市场至少要到15年后才能发展成熟并逐渐饱和。

1.2.2 变频技术的发展趋势

变频器是运动控制系统中的功率变换器。当今的运动控制系统包含多种学科的技术领域,总的发展趋势是:驱动的交流化,功率变换器的高频化,控制的数字化、智能化和网络化。因此,变频器作为系统的重要功率变换部件,提供可控的高性能变压变频的交流电源而得到迅猛发展。

随着新型电力电子器件和高性能微处理器的应用以及控制技术的发展,变频器的性能价格比越来越高,体积越来越小,而厂家仍然在不断地提高可靠性,实现变频器的进一步小型轻量化、高性能化和多功能化以及无公害化而做着新的努力。

变频器性能的优劣,一要看其输出交流电压的谐波对电机的影响;二要看对电网的谐波污染和输入功率因数;三要看本身的能量损耗(即效率)如何。这里仅以量大面广的交直交变频器为例,阐述它的发展趋势:主电路功率开关元件的自关断化、模块化、集成化、智能化;开关频率不断提高,开关损耗进一步降低。

1.3 实验研究的主要内容和方法

1.3.1 问题的提出

在现代工业控制系统中,电机运行状况直接关系到电量消耗多少的问题。然而,变频技术毕竟是一项新的技术,进入我国的时间还不久,对于变频器的认识还不够,误用了变频器,使设备损坏,没有达到预期的效果。所以我们要对变频器进一步的学习和研究,能够在今后的使用中达到理想的效果。本系统能够实现对温水泵的自动控制,保障设备和系统运行的可靠性,为降低用电成本、优化人员配置、实现无人值守提供了有力保障。

1.3.2 本课题研究的主要内容

图1-1:系统结构框图

本文对变频器和恒温供水系统做了有效的设计和初步研究,利用丹佛司2800变频器的PID的电压控制方式,可以实现自动加热和自动调节水速的功能。通过PT100温度传感器采集温度,经过变换器转变成电压信号,送给温度表,再由温度表来控制是否加热。整个系统是一个热水循环系统,设计了一个冷水泵,如果水槽内的水低于设定值,自动对水槽加水。本系统简单可靠,可适用于工业上许多恒温供水的领域,有利于降低成本与提高系统的可靠性。通过论证本设计中的恒温供水系统满足设计要求,且该系统运行稳定可靠,处理事件速度快,功能易于扩展,节约了企业成本,增强了实用性,具有一定的使用价值和推广前景。

2. 变频器

2.1 内部结构

变频器通常分为4部分:整流单元、高容量电容、逆变器和控制器。整流单元将工作频率固定的交流电转换为直流电。高容量电容存储转换后的电能。逆变器由大功率开关晶体管阵列组成电子开关,将直流电转化成不同频率、宽度、幅度的方波。控制器按设定的程序工作,控制输出方波的幅度与脉宽,使叠加为近似正弦波的交流电,驱动交流电动机。

2.2 工作原理

变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路通过电容滤波。电流型是将电流源的直流变换为交流的变频器,其直流回路通过电感滤波。它由三部分构成,将工频电源变换为直流功率的“整流器”;吸收在变流器和逆变器产生的电压脉动的“平波回路”;以及将直流功率变换为交流功率的“逆变器”。

整流器是将工频电源变换为直流功率。最近大量使用的是二极管的变流器,它把工频电源变换为直流电源。也可用两组晶体管变流器构成可逆变流器,由于其功率方向可逆,可以进行再生运转。

平波回路主要是吸收在变流器和逆变器产生的电压脉动。在整流器整流后的直流电压中,含有电源6倍频率的脉动电压,此外逆变器产生的脉动电流也使直流电压变动。为了抑制电压波动,采用电感和电容吸收脉动电压(电流)。装置容量小时,如果电源和主电路构成器件有余量,可以省去电感采用简单的平波回路。

逆变器是将直流功率变换为交流功率。同整流器相反,逆变器是将直流功率变换为所要求频率的交流功率,以所确定的时间使6个开关器件导通、关断就可以得到3相交流输出。以电压型PWM逆变器为例示出开关时间和电压波形。

控制电路是给异步电动机供电(电压、频率可调)的主电路提供控制信号的回路,它有频率、电压的“运算电路”,主电路的“电压、电流检测电路”,电动机的“速度检测电路”,将运算电路的控制信号进行放大的“驱动电路”,以及逆变器和电动机的“保护电路”组成。

(1)运算电路:将外部的速度、转矩等指令同检测电路的电流、电压信号进行比较

运算,决定逆变器的输出电压、频率。

(2)电压、电流检测电路:与主回路电位隔离检测电压、电流等。

(3)驱动电路:驱动主电路器件的电路。它与控制电路隔离使主电路器件导通、关断。

(4)速度检测电路:以装在异步电动机轴机上的速度检测器(tg、plg等)的信号为速度信号,送入运算回路,根据指令和运算可使电动机按指令速度运转。

(5)保护电路:检测主电路的电压、电流等,当发生过载或过电压等异常时,为了防止逆变器和异步电动机损坏,使逆变器停止工作或抑制电压、电流值。

2.3 控制方式

低压通用变频输出电压为380~650V,输出功率为0.75~400kW,工作频率为0~400Hz,它的主电路都采用交—直—交电路。其控制方式经历了以下四代。

(1)U/f=C的正弦脉宽调制(SPWM)控制方式:其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。因此人们又研究出矢量控制变频调速。

(2)电压空间矢量(SVPWM)控制方式:它是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形,以内切多边形逼近圆的方式进行控制的。经实践使用后又有所改进,即引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流闭环,以提高动态的精度和稳定度。但控制电路环节较多,且没有引入转矩的调节,所以系统性能没有得到根本改善。矢量控制(VC)方式:矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic,通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1、Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电

动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。矢量控制方法的提出具有划时代的意义。然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。

(3)直接转矩控制(DTC)方式:1985年,德国鲁尔大学的DePenbrock教授首次提出了直接转矩控制变频技术。该技术在很大程度上解决了上述矢量控制的不足,并以新颖的控制思想、简洁明了的系统结构、优良的动静态性能得到了迅速发展。目前,该技术已成功地应用在电力机车牵引的大功率交流传动上。直接转矩控制直接在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩。它不需要将交流电动机等效为直流电动机,因而省去了矢量旋转变换中的许多复杂计算;它不需要模仿直流电动机的控制,也不需要为解耦而简化交流电动机的数学模型。

(4)矩阵式交—交控制方式:VVVF变频、矢量控制变频、直接转矩控制变频都是交—直—交变频中的一种。其共同缺点是输入功率因数低,谐波电流大,直流电路需要大的储能电容,再生能量又不能反馈回电网,即不能进行四象限运行。为此,矩阵式交—交变频应运而生。由于矩阵式交—交变频省去了中间直流环节,从而省去了体积大、价格贵的电解电容。它能实现功率因数为l,输入电流为正弦且能四象限运行,系统的功率密度大。该技术目前虽尚未成熟,但仍吸引着众多的学者深入研究。其实质不是间接的控制电流、磁链等量,而是把转矩直接作为被控制量来实现的。具体方法是:

控制定子磁链引入定子磁链观测器,实现无速度传感器方式;

自动识别(ID)依靠精确的电机数学模型,对电机参数自动识别;

算出实际值对应定子阻抗、互感、磁饱和因素、惯量等算出实际的转矩、定子磁链、转子速度进行实时控制;

实现Band—Band控制按磁链和转矩的Band—Band控制产生PWM信号,对逆变器开关状态进行控制。

矩阵式交—交变频具有快速的转矩响应(<2ms),很高的速度精度(±2%,无PG反馈),高转矩精度(<+3%);同时还具有较高的起动转矩及高转矩精度,尤其在低速时(包括0速度时),可输出150%~200%转矩。

3. 恒温供水设计

3.1 恒温供水设计方案

本设计利用丹佛斯2800变频器来实现温水自动循环的过程。利用PT100测得恒温水池的水温,通过电阻电压信号传给变送器。变送器把PT100的电压信号处理成电流信号,传给温度表。温度表把变送器传来的信号进行分析,是否达到已设定的温度值。若温度没有达到设定值时,电热丝开关自动闭合,开始给恒温水池加热。若已达到设定值时,温度表就会给变频器一个0~10V的电压信号。这时温水泵就会运转起来,给系统恒温供水。考虑到系统中温水的外漏外渗,所以外加了个冷水泵。当水池中的水位没达到标准设定水位时,浮球开关控制冷水泵给水池补水。

图3-1:系统结构框图

3.1.1 水温采集电路

图3-2:水温采集电路图

热电阻传感器将水温转换成电压信号,再将该电压信号送入变送器的输入网络,该网络包含调零和热电阻补偿等相关电路。经调零后的信号输入到运算放大器进行信号放大,放大的信号一路经V/I转换器计算处理后以4-20mA直流电流输出;另一路经A/D转换器处理后到温度表显示。

本系统中的关系:感温电阻(电压信号)→变送器(电流信号)→温度表(电压信号)。通过PT100温度传感器采集温度,经过变送器转变成电压信号,送给温度表,再由温度表的来判断是否加热并控制温水泵转速。整个系统是一个热水循环系统,设计了一个冷水泵,如果水槽内的水低于设定值,自动对水槽加水。

3.1.2 温度表和变频器控制电路

图3-3:温度表和变频器控制电路图

温度采集是采用温度敏感元件也就是温度传感器(如铂电阻,热电偶,半导体,热敏电阻等),将温度的变化转换成电流信号的变化,温度变化和电流信号的变化有一定的关系,如线性关系,一定的曲线关系等,这个电流信号可以使用模数转换的电路即AD转换电路将模拟信号转换为数字信号,数字信号再送给单片机处理,单片机经过内部的软件计算将这个数字信号和温度联系起来,成为可以显示出来的温度数值。然后通过显示单元,显示出来给人观察。这样就完成了基本测温功能。

泛达温度控制表/温度仪表/温度表台湾泛达P900系列调节仪(温度控制表,温度仪表,温度表)特具有精度高,价格低,易操作具有自行诊断功能,可显示故障状况,FUZZY PID 自整定功能为标准配备单段斜率控制加持温计时器输出缓冲启动,输出量无扰动输入,输出完全隔离接受各式热电偶,白金电阻或线性信号,软体切换可调整PV补偿加热/冷却输出,同面板切换一组警报,可追加至3组,17种模式具有PV,SV值再传送功能可接记录器设定值可同外部设定输入交换式电源,AC85-265V 50/60HZ防水、防尘、供选择输入:各种热电偶(TC)、热电阻(RTD)、标准电流电压信号测量精度:±0.5%FS 、±0.2%

FS 冷端补偿误差:±1℃(0-50℃范围内且可软件修正)分辨力:14bit采样周期:0.5sec 显示数值范围:-1999~+9999输出;电流DC0~10mA,0~20mA,4~20mA(RL<600Ω),电压DC0~5V、1~5V(RL>1000Ω)三组程序控制模式:一组8段,二组8段,一组16段,可自由选择。

变频器是矢量控制电动机。具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流) 和产生转矩的电流分量(转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。简单的说,矢量控制就是将磁链与转矩解耦,有利于分别设计两者的调节器,以实现对交流电机的高性能调速。矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。这样就可以将一台三相异步电机等效为直流电机来控制,因而获得与直流调速系统同样的静、动态性能。

3.1.3 冷水泵与加热丝主电路

图3-4:冷水泵与加热丝主电路图

如图3-4所示,电热丝和冷水泵的通断都是通过接触器来控制的。当温度未达到设定值时,温度表的常闭开关闭合,使KM1线圈通电,KM1导通状态,电热丝开始加热。当水位不足时,浮球开关闭合,KM2线圈通电,触头闭合,这样冷水泵就能工作。在冷水泵中穿入热继电器是用来保护电动机。

热继电器是双金属片式结构,双金属片是用两种不同线膨胀系数的金属片,通过机械辗压在一起制成的,一端固定,另一端为自由端。当双金属片的温度升高时,由于两种金属的线膨胀系数不同,所以它将弯曲。热元件串接在电动机定子绕组中,电动机绕组电流即为流过热元件的电流。当电动机正常运行时,热元件产生的热量虽能使双金属片弯曲,但不足以使继电器动作;当电动机过载时,热元件产生的热量增大,使双金属片弯曲位移量增大,经过一段时间后,双金属片弯曲推动导板,并通过补偿双金属片与推杆'将触点分开,触点为热继电器串于接触器线圈回路的动断触点,断开后使接触器失电,接触器的动合触点断开电动机等负载回路,保护了电动机等负载。

3.1.4 控制电路的设计

图3-5:控制电路的设计图

如图3-5中HL1和HL2为显示的灯泡,来判断电路是否通电。KA上面连接KM1的常闭开关。这样当加热时,温水泵就不会与电热丝同时运行。达到了设计时的要求。加热和供水能很好的根据水温来工作。

浮球式水位开关原理:

水都有浮力,而浮球系统是根据液体的浮力而配套制作的,当液位上涨时,浮球系统也相应上涨,同理当液面下降时也相应下降,当上涨或下降到设定的位置时,浮球系统就是会碰到在设定位置的开关,从而使开关发出电信号,而电控设备在接到电信号时会马上动作,切断或接通电源,形成自动控制系统。常用的方法是在浮球里装有磁铁,浮球运行到干簧管的位置时使干簧管里的开关动作。优点是:价格便宜,几元到几十元都有,但是容易受外界环境影响,易坏。

3.2 变频器在恒温供水中的作用

供水系统的基本构成是,变频器+水泵+检测部件+PID调节器(目前大多数变频器以将PID调节器集成到其内部),该图为简单的单泵控制系统。

图3-6:供水系统的基本构图

如图3-7的补偿电阻Rc用于补偿压力远传表电阻值与VLT变频器输出电源匹配问题。VLT变频器的50端子是10V DC电源,专门用于过程控制系统的检测装置的供电电源。53端子是模拟量信号(反馈输入和模拟量给定值)输入端。55端子为公共端。

图3-7:内部结构图

VLT2800集成有恒转矩输出特性和变转矩输出特性以及速度PID调节器和过程控制PID调节器,分别用于速度闭环运行控制和过程运行的闭环控制。在供水系统中使用变转矩运行特性和过程控制PID调节器。

4. 系统的的干扰源及对控制的影响

应用硬件抗干扰措施是经常采用的一种有效抗干扰的方法。实践表明通过合理的硬件电路设计,可以消弱或抑制绝大部分干扰。工程上广泛应用的的一些硬件抗干扰电路主要包括滤波技术、去耦电路、屏蔽技术、隔离技术、接地技术等。

(1)外部对变频器的干扰:非线性用电设备对变频器的干扰:由于各种整流设备、交直流互换设备、电子电压调整设备、照明设备等非线性负载的应用,这些负载成为电网中的大量谐波源,使电网电压、电流产生波形畸变。变频器的供电电源受到来自被污染的交流电网的干扰后,若不加以处理,电网噪声就会通过电网电源电路干扰变频器。供电电源对变频器的干扰主要有过压、欠压、瞬时掉电;浪涌、跌落;尖峰电压脉冲;射频干扰。其次,共模干扰通过变频器的控制信号线也会干扰变频器的正常工作。

补偿电容器的投入和切出对变频器的干扰:许多用户都在变电所内采用集中电容补偿的方法来提高功率因数,在补偿电容器投入和切出的暂态过程中,网络电压有可能出现很高的峰值。

(2)变频器对外部的干扰:变频器对电网来说也是非线性负载,它所产生的谐波会对同一电网的其他电子、电气设备产生谐波干扰。另外,逆变器采用spwm技术,当其工作于开关模式并作高速切换时,产生大量耦合性噪声,对共网的其他的电子、电气设备来说是一个电磁干扰源。

(3)电磁干扰的传播途径:变频器能产生功率较大的谐波,对系统其他设备干扰性较强。其干扰途径与一般电磁干扰途径一样,有电磁辐射、电路耦合、感应耦合等。变频器对电网来说是非线性负载,它所产生的谐波对接入同一电网的其它电子、电气设备产生谐波干扰。当变频器的金属外壳带有缝隙或孔洞,则辐射强度与干扰信号的波长有关,当孔洞的大小与电磁波的波长接近时,会形成干扰辐射源向四周辐射。而辐射场中的金属物体还可能形成二次辐射。同样,变频器外部的辐射也会干扰变频器的正常工作。

上述的电磁干扰除了通过与其相连的导线向外部发射,还可以通过阻抗耦合或接地回路耦合,将干扰信号带入其它电路。比较典型的传播途径是:接自工业低压网络的变频器所产生的干扰信号可沿着配电变压器进入中压网络,并沿着其它的配电变压器最终又进入民用低压配电网络,使接自民用配电母线的电气设备成为远程的受害者。当变频器输入或输出电路与其它设备的电路很近时,变频器的高次谐波信号可通过感应的方式耦合到其它

设备中去。其中电流干扰信号主要以电磁感应方式传播,电压干扰信号主要以静电感应方式传播。

电气设备中的“地”通常有两种含义:一种是“大地”,另一种是“工作基准地”。接地的目的是为了给各电路的工作提供基准电位同时还可以增强系统的安全以及抑制干扰。合理的接地,不仅可以保证设备的正常工作,还可以极好地提高系统的稳定性。对本采集系统来说,我们采用了安全接地、工作接地和屏蔽接地三种。

(1)在接地面上,电源地和数字信号地互相隔离,减少地线间的耦合。

(2)分别建立交流、直流和数字信号的接地通路。

(3)将几条接地通路接到电源公共接地点上,以保证电源电路地线宽,有低的阻抗通道。

(4)变频器要与大地相连,以屏蔽外部干扰作用。

5. 结论

本文通过恒温供水系统的研究,我们可以发现适用变频器具有精度高、抗干扰能力强、电路简单诸多优点,无论需要多要温度的水变频器总是能正常供水。该系统还适用于许多高温液体的输送,这样能大大的降低了成本和提高了安全性,并且能节约电能。

由于本人的公司主要生产胶布。在生产中对温度控制非常严格,所以该系统能达到恒温的效果,对生产有重要的作用。

本课题设计的具有如下特点:

(1)本系统可以自动运行监控,正常运行状态无需人员看管。

(2)本系统才用的变频器是丹佛斯2800VLT,能充分的利用变频器,大大的挺高了系统的性价比。

(3)本系统设置简单,读数方便,能很直观的看出水的温度。

本课题设计的采集系统的不足:

(1)在系统制图的时候,还没达到专业的要求,还有很多继续学习和改进的地方。

(2)在系统制作的时候,还有些地方没注意到。

(3)对于变频器的研究还是处于初步阶段,没有最大的发挥变频器的作用。

致谢

三年的大专生学习生活即将结束,借些答辩的机会,我向所有帮助过我的老师和同学致以诚挚的谢意。

主要感谢导师程瑞龙老师,本文是在导师精心指导下完成的,无论在课题的设计还是在论文的撰写中都凝聚了导师的心血。程老师对我们每个同学的课题完成过程都十分关注,并热心指导,再加上程老师精深的专业知识、高度的敬业精神是我们学习的榜样。

本人在苏州华苏塑料有限公司实习,本公司主要产品是各类胶布。在生产中对温度控制非常严格,所以该系统能达到恒温效果,对生产有重要作用。在此过程中学习了丹佛斯2800VLT的使用以及对水温的控制。在此过程中也得到了公司费师傅的精心指导。

再次感谢各位评审老师和各位同学来参加我的毕业论文答辩。

参考文献

[1]李方园.变频器原理与维修【M】第一版.西安:机械工业出版社,2005

[2]王兆义.变频器应用【M】第一版.西安:机械工业出版社,2007

[3]姚志松.吴军编.电动机节能方法与变频器应用实例【M】第一版.北京:中国电力出版社,2010

[4]段苏振.变频器的选型,配置与维护技术【M】第一版.北京:中国电力出版社,2010

[5]中国电子学会敏感技术分会等编.2008/2009传感器与执行器大全(年卷)-传感器变送器执行器【M】第一版.西安:机械工业出版社,2010

[6]张振国.工厂电气控制技术[M]第一版.大连:机械工业出版社,2006

[7]齐占庆.王振臣.电气控制技术[M]第一版.北京:机械工业出版社,2002

[8]建设部人事教育司组织.工程电气设备安装调试工[M]第一版.北京:中国建筑工业出版社,2005

[9]谭维瑜.电机与电气控制[M]第二版.北京:机械工业出版社,2006

[10]李振安.工厂电气控制技术[M]第一版.北京:机械工业出版社,2008

基于PLC控制的变频器调速系统_毕业设计论文

目录 目录 (1) 第一章系统的功能设计分析和总体思路 (2) 1.1 概述 (2) 1.2 系统功能设计分析 (3) 1.3 系统设计的总体思路 (3) 第二章PLC和变频器的型号选择 (4) 2.1 PLC的型号选择 (4) 2.2 变频器的选择和参数设置 (5) 2.2.1 变频器的选择 (5) 2.2.2 变频调速原理 (6) 2.2.3 变频器的工作原理 (6) 2.2.4 变频器的快速设置 (7) 第三章硬件设计以及PLC编程 (9) 3.1 开环控制设计及PLC编程 (9) 3.1.1 硬件设计 (9) 3.1.2 PLC软件编程 (10) 3.2 闭环控制设计 (14) 3.2.1 硬件和速度反馈设计 (14) 3.2.3 闭环的程序设计以及源程序 (16) 第四章实验调试和数据分析 (21) 4.1 PID 参数整定 (21) 4.2 运行结果 (22) 第五章总结和体会 (22) 第六章附录 (24) 6.1 变频器内部原理框图 (24) 第七章参考文献 (25)

第一章系统的功能设计分析和总体思路 1.1 概述 调速系统快速性、稳定性、动态性能好是工业自动化生产中基本要求。在科学研究和生产实践的诸多领域中调速系统占有着极为重要的地位特别是在国防、汽车、冶金、机械、石油等工业中,具有举足轻重的作用。调速控制系统的工艺过程复杂多变,具有不确定性,因此对系统要求更为先进的控制技术和控制理论。 可编程控制器(PLC)可编程控制器是一种工业控制计算机,是继续计算机、自动控制技术和通信技术为一体的新型自动装置。它具有抗干扰能力强,价格便宜,可靠性强,编程简朴,易学易用等特点,在工业领域中深受工程操作人员的喜欢,因此PLC已在工业控制的各个领域中被广泛地使用。 目前在控制领域中,虽然逐步采用了电子计算机这个先进技术工具,特别是石油化工企业普遍采用了分散控制系统(DCS)。但就其控制策略而言,占统治地位的仍旧是常规的PID控制。PID结构简朴、稳定性好、工作可靠、使用中不必弄清系统的数学模型。PID的使用已经有60多年了,有人称赞它是控制领域的常青树。 变频调速已被公认为是最理想、最有发展前景的调速方式之一,采用变频器构成变频调速传动系统的主要目的,一是为了满足提高劳动生产率、改善产品质量、提高设备自动化程度、提高生活质量及改善生活环境等要求;二是为了节约能源、降低生产成本。用户根据自己的实际工艺要求和运用场合选择不同类型的变频器。 组态软件是指一些数据采集与过程控制的专用软件,它们是在自动控制系统监控层一级的软件平台和开发环境,使用灵活的组态方式,为用户提供快速构建工业自动控制系统监控功能的、通用层次的软件工具。在组态概念出现之前,要实现某一任务,都是通过编写程序来实现的。编写程序不但工作量大、周期长,而且轻易犯错误,不能保证工期。组态软件的出现,解决了这个问题。对于过去需要几个月的工作,通过组态几天就可以完成。组态王是海内一家较有影响力的组态软件开发公司开发的,组态王具有流程画面,过程数据记录,趋势曲线,

变频器毕业论文

摘要 近年来,随着工业自动化产业的高速发展,变频器的应用日益广泛。为此,只有充分掌握变频器的技术特性,才能拥有将变频器用应到工程实践中的理论基础,确保采用变频器的电气传动系统具有高性能比、最简单的外围电路及最佳的性能指标。变频器故障分析与诊断是维护变频器所必需的实际操作技能,也是变频器安全稳定运行的前提。本文在查阅大量变频器相关资料的基础上,对变频器故障产生的因素进行详细分析。主要的分析结果如下:引发变频器故障的外部因素主要是由于使用方法不正确或安装环境不合理,故容易引发变频器的误动作或发生故障。引发变频器故障的内部因素是由于变频器内部电器元件的性能和控制电路的功能决定的。经过上述分析可以更轻松准确地排除故障以及日常的维护保养。 关键字:变频器故障变频器维护

目录 摘要 (3) 一、绪论 (5) 二、变频器的故障分析及处理 (6) (一)、外部因素 (6) (二)、本身因素 (8) (三)、常见故障分析及处理 (8) 三、变频器的日常维护保养 (9) 四、结论 (10) 五、参考文献 (10)

一、绪论 21世纪,交流电动机变频传动是工业生产、日常生活等所依赖的基本技术之一,其重要性随着社会和生产力的发展变得越来越突出。 变频器可与三相交流电机、减速机构(视需要)构成完整的传动系统。在现代工业传动应用中,这种“一站式”驱动解决方案具有明显的优势。这种理念正如德国伦茨公司所提出:“上至电网,下至输出轴的传动。”这种传动系统的中心就是变频器。变频传动在控制性能、调速性能、效率以及维护方面性能优良,因此变频技术已成为现代传动控制技术必不可少的重要手段。 有人曾经这样描述:“变频器+异步电动机=高性能传动系统。”使用时只要将变频器的输入接入电源,变频器的输出与电动机相连就可以了,比起变频器内部的复杂程度,使用实在是方便了。变频器在设计时尽可能地为用户提供了众多的功能,以满足不同应用场合下使用;早先变频传动的对象绝大部分是鼠笼型异步电动机,这种鼠笼结构转子的交流电动机,在所有电动机中,结构简单、坚固耐用、易于维护和价格便宜,正是因为这一系列的优点,给变频器带来了巨大的市场。 实际上,在1889年三相交流异步电动机诞生之日时,人们就知道只要改变交流电动机定子的电源频率,就能改变其转子的旋转速度,但真正“变频”的愿望几乎是在一个世纪之后,即计算机技术、电力电子技术和功率变换技术高度发展的今天才得以实现。当然,现代变频器所驱动的对象已经不仅仅是异步电动机,它还包括同步电动机、伺服电动机。 变频器大的广泛使用是世界生产力高度发展的必然,机身产过程和理化、实现高作业效率和高产品品质的需要。在现代工业中,交流传动以其优越于直流传动的特点,在很多场合中都被作为首选的传动方案,采用变频器控制的电机系统,有着节能效果显着、调节控制方便、维护简单、可网络化集中、远程控制、可与plc组成自动化控制系统等优点。变频器的这些特点使其在电力电子系统、工业自动控制等领域的应用广泛。市场上不同型号规格变频器的安装、接线、调试各有特点,但主要方法及注意事项基本一致、但使用变频器时,一旦发生故障,工矿企业的普通运行人员就很难处理。变频器故障的产生可能是产品质量问题、运行问题、应用方式问题,也可能是变频器参数设置问题。

变频器毕业论文-

许昌职业技术学院毕业论文 题目变频器的概述与应用及其常见问题的处理学生王亚楠 学号 0902101719 专业班级机电一体化七班 系院名称许昌职业技术学院机电工程系 指导教师苏江涛 二○一一年十二月十二日

变频器的概述与应用及其常见问题的处理 摘要:变频器在交流拖动系统应用中呈现优良的控制性,可以实现软起动和无级调速,进行加减速控制,使电动机获得高性能,而且具有显著的节能效果。所以应用变频调速可以提高生产机械的控制精度、生产效率和产品质量,从而利于实现生产过程的自动化。因此变频器近年来在工业生产各环节得到了广泛的应用。但变频器在实际应用和维护检修中也暴露出一些问题需要引起重视。 关键词:变频器的概念,节能,参数设定,故障排除,模块检测,维护保养 一、变频器的概念及组成 1、变频器的概念 (frequency changer / frequency converter)是一种用来改变交流电频率的电气设备。此外,它还具有改变交流电电压的辅助功能。过去,变频器一般被包含在电动发电机、旋转转换器等电气设备中。随着半导体电子设备的出现,人们已经可以生产完全独立的变频器。 2、变频器主要是由主电路、控制电路组成。 1、)主电路是给异步电动机提供调压调频电源的电力变换部分,变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容。电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。它由三部分构成,将工频电源变换为直流功率的“整流器”,吸收在变流器和逆变器产生的电压脉动的“平波回路”,以及将直流功率变换为交流功率的“逆变器”。 (1)整流器:最近大量使用的是二极管的变流器,它把工频电源变换为直流电源。也可用两组晶体管变流器构成可逆变流器,由于其功率方向可逆,可以进行再生运转。(2)平波回路:在整流器整流后的直流电压中,含有电源6倍频率的脉动电压,此外逆变器产生的脉动电流也使直流电压变动。为了抑制电压波动,采用电感和电容吸收脉动电压(电流)。装置容量小时,如果电源和主电路构成器件有余量,可以省去电感采用简单的平波回路。(3)逆变器:同整流器相反,逆变器是将直流功率变换为所要求频率的交流功率,以所确

变频恒压供水毕业论文

变频恒压供水毕业论文 目录 一、绪论……………………………………………….. 1.摘要……………………………………………………. 2.变频恒压供水系统组成简介.................... 二、设计思想及方案的确定..................... 三、变频恒压供水系统的组成................... 1.系统的组成................................... 2.主电路图及其分析.............................. 3.控制电路及其说明.............................. 4. 变频恒压供水系统硬件设计...................... 四、元器件的选择和主要参数计算……………………. 1.PLC选型………………………………………………… 2.变频器的选型…………………………………………… 3. PLC、变频器及电路要求……………………………… 五、系统电路工作原理及分析…………………………… 六、元器件明细表………………………………………… 七、系统总原理图及程序图……………………………… 八、心得体会……………………………………………… 九、参考文献………………………………………………

一、绪论 1 摘要: 随着经济的发展,人们对供水质量和供水系统可靠性的要求不断提高;利用先进的自动化技术、控制技术以及通讯技术,设计高性能、高节能、能适应不同领域的恒压供水系统成为必然的趋势本论文分析变频恒压供水的原理及系统的组成结构,提出控制方案,通过本论文采用变频器和PLC实现恒压供水和数据传输,然后用数字PID对系统中的恒压控制进行设计。最后对系统的软硬件设计进行了详细的介绍。并对系统采取的可靠性措施进行了说明。 小区变频恒压供水系统已在国许多实际的供水控制系统中得到应用,并取得稳定可靠的运行效果和良好的节能效果。经实践证明该系统具有可靠性,并且节省了人力,带来很好的效益。 2.变频恒压供水系统组成简介 系统以抽水系统和加压系统两部分构成,抽水系统由一台功率70KW, 145A,扬程150米的深井泵构成。加压系统由三台功率30KW,65A,扬程100米的立式离心泵构成。整个系统采用通用变频器和PLC 及压力传感器等构成,以PID为控制算法,有PLC控制变频与工频切换,使四台泵以先起后停的循环工作方式,实现闭环自动调整恒压供水。 二、设计思想及方案的确定 在变频调速恒压供水系统中用水量是随用户多少及用水量多少而变化,因此根据最大估算用水量加入定量的泵加入控制,定量泵的运

变频器论文

变 频 器 安 装 及 外 围 设 备 的 选 择 论 文 学院:机电学院 专业:电气自动化 班级:电气201402班 姓名:王同辉 时间:2016/5/19

近年来,随着电力电子技术、计算机技术、自动控制技术的迅速发展,交流传动与控制技术成为目前发展最为迅速的技术之一,电气传动技术面临着一场历史革命,即交流调速取代直流调速和计算机数字控制技术取代模拟控制技术已成为发展趋势。电机交流变频调速技术是当今节电、改善工艺流程以提高产品质量和改善环境、推动技术进步的一种主要手段。变频调速以其优异的调速和起制动性能,高效率、高功率因数和节电效果,广泛的适用范围及其它许多优点而被国内外公认为最有发展前途的调速方式。 众所周知,变频器是由整流电路、滤波电路、逆变电路组成。其中整流电路和逆变电路中均使用了半导体开关元件,在控制上则采用的是PWM控制方式,这就决定了变频器的输入、输出电压和电流除了基波之外,还含有许多的高次谐波成分。这些高次谐波成分将会引起电网电压波形的畸变,产生无线电干扰电波,它们对周边的设备、包括变频器的驱动对象--电动机带来不良的影响。所以,深入了解交流传动与控制技术的走向,对我们的学习工作具有十分积极的意义。1.变频器的发展起步 变频技术是应交流电机无级调速的需要而诞生的。电力电子器件的更新促使电力变换技术的不断发展。起初,变频技术只局限于变频不能变压。20世纪70年代开始,脉宽调制变压变频(PWM-VVVF)调速研究引起了人们的高度重视。20世纪80年代,作为变频技术核心的PWM模式优化问题吸引着人们的浓厚兴趣,并得出诸多优化模式,如:

调制波纵向分割法、同相位载波PWM技术、移相载波PWM技术、载波调制波同时移相PWM技术等。 VVVF变频器的控制相对简单,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较小,受定子电阻压降的影响比较显著,故造成输出最大转矩减小。 2.矩阵式交—交变频器产生的背景 矢量控制变频调速的做法是:将异步电动机在三相坐标系下的定子交流电流Ia、Ib、Ic通过三相——二相变换,等效成同步旋转坐标系下的直流电流Iml、Itl,然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。 直接转矩控制直接在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩。它不需要将交流电动机化成等效直流电动机,因而省去了矢量旋转变换中的许多复杂计算;它不需要模仿直流电动机的控制,也不需要为解耦而简化交流电动机的数学模型。 VVVF变频、矢量控制变频、直接转矩控制变频都是交—直—交变频中的一种。其共同缺点是输入功率因数低,谐波电流大。 一、变频器的发展、组成及原理 (一)变频器的概述

变频器SVPWM控制系统设计及仿真毕业设计论文

摘要 随着电力电子器件和微处理器芯片的发展,使得数字化变频调速技术成为当代电机控制技术的趋势。传统的SPWM控制算法未顾及输出电流波形,不易于数字化。所以需要更进一步的控制算法,来使电机产生恒定转矩,于是便产生电压空间矢量PWM(Space Vector Pulse Width Modulation,简称SVPWM)控制算法。变频器SVPWM控制系统就是利用该算法的来对异步电机实行控制的,它的输出谐波小,也使得直流侧的电压利用率提升了15%。 本课题变频器的控制芯片是TMS320F2812DSP,采用SVPWM调制技术,产生PWM波形,并对6个IGBT的通断进行控制,从而在电机空间产生圆形旋转磁场,使电机产生恒定转矩。本文最后一章还使用MATLAB /SIMULINK对变频器SVPWM进行仿真分析,仿真结果进一步验证了变频器SVPWM算法的可行性和正确性。 关键词:变频器;SVPWM;异步电机;MATLAB/SIMULINK仿真

Abstract With the development of power electronic devices and microproc essor chips, digital frequency conversion technology has become the trend of modern motor control technology. The traditional SPWM control algorithm does not take into account the output current waveform, not easy to digitize. Therefore, the need for further control algorithms, so that the motor generates a constant torque, so it will produce a voltage space vector PWM (Space Vector Pulse Width, SVPWM). Inverter SVPWM control system is the use of the algorithm to control the motor, its output harmonic is small, but also makes the DC side voltage utilization increased by 15%. The inverter control chip is TMS320F2812DSP, using SVPWM modulation technology, PWM waveform, and the 6 IGBT on-off control, resulting in a circular rotating magnetic field in motor space, makes the motor produce constant torque. In the last chapter of this paper, MATLAB /SIMULINK is used to simulate the frequency converter SVPWM, and the simulation results verify the feasibility and correctness of the SVPWM algorithm. Keywords: inverter;Space Vector Pulse Width Modulation;Asynchronous motor;simulation

变频器特点及其应用论文

有关变频器特点及其应用论文 摘要:综合本公司实际生产情况和本人多年工作经验知,生产中使用变频 器具有绝对重要性,希望业内人士广泛使用之。 关键词:变频器供水行业应用 引言 一般城市管网的水压无法完全满足所有用水居民的用水需求,绝大部分用 户须通过提升水压才能满足用水要求。以前大多采用传统的水塔,高位水箱等 等增压设备,它们都必须由水泵以高出实际用水高度的压力提升水量,其结果 大大增加了能量损耗。 一、新、旧泵的.测试 例如,我公司对6sh-655kw成套机电设备做如下测试: 75KW三垦变频器直拖旧泵测试数据表: 75KW三垦变频器直拖新泵测试数据表 由上述测试结果可得老式供水方式被全新变频供水方式取代具有多项优点: 1.1变频供水能灵活控制供水压力。 1.2采用变频供水节电效果明显。 1.3当异步电机在全压启动时从静止状态加速到额定转速所需时间小于0.5秒,这意味着在不足0.5秒的时间里,水的流量从零猛增到额定流量,在极短 时间内流量的巨大变化将引起对管道的压强过高或过低的冲击,压力过高会爆 管而过低导致管子的瘪塌。直接停机同样会引起压力冲击。从上表测试结果可 见使用变频器调速后,可通过对加减速时间的合理预置来延长启动和停止过程,合理控制供水压力减少管道冲击,最大限度保护管网,管件,同时也提高电机 水泵的使用寿命。从上述测试还可以看出泵老化时严重影响出水量供水压力, 维护维修不及时泵效率会大幅降低。 二、变频器的节能效果 变频器节能效果实际工作中更可观。例如,我公司有一水厂,水厂原供水 方案为280KW机电系统一工一变两套系统向市区管网以0.18Mpa压力供水,工 频供水系统为控制供水压力要采用勒阀门的方法。去年经技术改造改为两套供 水系统均用变频器供水,严禁勒阀门通过变频器调频来控制供水压力。改变供 水方法后该水厂当月电费较前月少近五万元,当年公司电费较上年减少近六十 万元,可见使用变频器供水节能效果很明显,长期使用变频器经济效益可观。

技师论文变频器的维修与保养

变频器的维修与保养 摘要:大功率电机启动用变频器的及时维修是防止装置发生故障、保证电机正常运行的有效手段。为了有效进行维护、检查,应及时总结维修经验,记录并保存装置固有的特性变化和构成部件的稳定性,这样能尽量防止发生故障,以及在发生故障时及时处理。在装置的安装之初应缩短检查周期,详细进行检查,防止发生初始故障,运转时间变长后需要检查部件是否出现特性劣化等。 一、前言 变频器作为一种高效节能的电机调速装置,因其较高的性能价格比,在工厂得到了越来越广泛的应用。维护、维修、测试变频调速器的工作变得日趋重要,变频器的维修工作是一项理论知识、实践经验与操作水平的结合的工作,其技术水平代表着变频器的维修质量。所以我们要了解这些电子元器件所具备的功能和特点,开拓思路,给维修工作以启迪,并将这些学到的知识应用于实际工作中,解决一些维修过程中无法解决的问题,以使自己的维修水平不断提高。 二、常见方法 (一)静态测试 1.测试整流电路 找到如下结果,可以判定电路已出现异常:⑴到变频器内部直流电源的P 端N端,将万用表调到电阻“×10”档,红表棒接到P,黑表棒分别依到R、S、T,正常时有几十欧的阻值,且基本平衡。相反将黑表棒接到P端,红表棒依次接到R、S、T,有一个接近于无穷大的阻值。将红表棒接到N端,重复以上步骤,都应得到相同结果。如果有以阻值三相不平衡,说明整流桥有故障;⑵红表棒接P端时,电阻无穷大,可以断定整流桥故障或启动电阻出现故障。 2.测试逆变电路 将红表棒接到P端,黑表棒分别接U、V、W上,应该有几十欧的阻值,且各相阻值基本相同,反相应该为无穷大。将黑表棒N端,重复以上步骤应得到相同结果,否则可确定逆变模块有故障。 (二)动态测试 在静态测试结果正常以后,才可进行动态测试,即上电试机。在上电前后必须注意以下几点: 1.上电之前,须确认输入电压是否有误,将380V电源接入220V级变频器之中会出现炸机(炸电容、压敏电阻、模块等);

基于PLC的变频调速系统毕业论文

基于PLC的变频调速系统 摘要 能源工业作为国民经济的基础,对于社会、经济的发展和人民生活水平的提高都极为重要。在高速增长的经济环境下,中国能源工业面临经济增长与环境保护的双重压力。目前,国内变频调速系统的研究非常活跃,但是在产业化方面还不是很理想,市场的大部分还是被国外公司所占据。因此,为了加快国内变频调速系统的发展,就需要对国际变频调速技术的发展趋势和国内的市场需求有一个全面的了解,深入研究变频调速系统的发展。设计出系统稳定,调整精度高,调整时间快的变频调速系统,对现今工业设计和工业生产的发展有很大帮助。 本次设计介绍了一种基于PLC的变频器调速系统。将现在应用最广泛的PLC 和变频器综合起来,主要功能实现了:变压变频调速,电机的正反转,加减速以及快速制动等。该系统必须具备以下三个主体部分:控制运算部分、执行和反馈部分。控制运算主要由PLC和变频器来完成;执行元件为变频器和电机;反馈部分主要为速度反馈。 通过设定交流调速系统的转速传输到PLC,PLC根据设定的转速通过模拟量输出模块,输出模拟信号控制变频器的输出频率,控制交流电机调速控制。变频器的转向由正/反转开关进行控制。交流调速系统的转速由测速发电机转换为相应的转速模拟信号,输入模拟量的输入模块,模拟量输入模块产生的数字信号送入PLC。由开环/闭环开关控制系统在开环或闭环状态下运行。当交流调速系统设定为开环运行时,检测到的转速信号PLC不进行处理,直接进行显示;当交流调速系统设定为闭环运行时,光电编码器将检测到的转速信号一方面由PLC与设定转速信号进行运算处理,处理过的信号送去控制变频器,另一方面将数据实时显示。 关键词:PLC 变频器 PID控制

高压大功率变频器应用研究论文

高压大功率变频器应用研究论文 引言 山东风光电子有限公司是在多年研制中低压变频器的基础上,综合了国内外高压大功率变频器的多种方案的优缺点,采用最优方案研制成功的,并于2002年12月通过了省级科技成果及产品鉴定,成为国内生产高压大功率变频器的为数较少的几个企业之一。 2国内现生产的高压大功率变频器的方案及优缺点 目前,国内生产的高压大功率变频器中,以2种方案占主流:一种是功率单元串联形成高压的多重化技术;另一种是采用高压模块的三电平结构。而其他的采用高-低-高方案的,由于输出升压变压器技术难度高,成本高,占地面积大,都已基本被淘汰。因此采用高-高方案是高压大功率变频器的主要发展方向。 而高-高方案又分为多重化技术(简称CSML)和三电平(简称NPC)方案,目前有的厂家生产的高压大功率变频器是采用的三电平方案,而大多数厂家则是采用低压模块、多单元串联的多重化技术。这2种方案比较,各有优缺点,主要表现在: (1)器件 采用CSML方式,器件数量较多,但都是低压器件,不但价格低,而且易购置,更换方便。低压器件的技术也较成熟。而NPC方案,采用器件少,但成本高,且购置困难,维修不方便。 (2)均压问题(包括静态均压和动态均压) 均压是影响高压变频器的重要因素。采用NPC方式,当输出电压较高时(如6kV),单用单个器件不能满足耐压要求,必须采用器件直接串联,这必然带来均压问题,失去三电平结构在均压方面的优势,系统的可靠性也将受到影响。而采用CSML方案则不存在均压问题。唯一存在的是当变频器处于快速制动时,电动机处于发电制动状态,导致单元内直流母线电压上升,各单元的直流母线电压上升程度可能存在差异,通过检测功率单元直流母线电压,当任何单元的直流母线电压超过某一阈值时,自动延长减速时间,以防止直流母线电压上升,即所谓的过压失速防止功能。这种技术在低压变频器中被广泛采用,非常成功。

变频器开题报告

榆林职业技术学院神木校区 毕业设计(论文)开题报告 变频器多段速PLC控制 年级: 10级 学号: 10050107 姓名: 刘小荣 专业: 机电一体化(1)班 指导老师: 吴晓娥 榆林职业技术学院神木校区印制 二零一三年六月

开题报告填写要求 1、开题报告是学生完成毕业设计(论文)的重要一步,也是学生做毕业设计(论文)的大纲,是按质完成毕业设计(论文)的基本保证。此报告在指导教师指导下,由学生在毕业设计(论文)工作前期完成,经指导教师签署意见、专业负责人审查、主管系主任签字后执行。 2、开题报告的内容必须按我院统一设计的电子文档标准格式打印,不得随便涂改,禁止剪贴。 3、参考文献应不少于10篇(不包括词典)。文献综述中应用参考文献处应标出文献序号,参考文献目录应按国标GB/T7714—2005的要求填写。 4、系、专业名称应写中文全称,不能用数字代码;学生的学号要写全号。 5、有关年月日,应按国标GB/T 7408—94《数据元和交换格式、信息交换、日期和时间表示法》的规定,一律用阿拉伯数字填写,如“2004年3月15日”或“2004—03—15”。 6、指导教师意见、专业和系的意见用黑墨水笔工整书写,不得随便涂改。

本科毕业设计(论文)开题报告

7.5kW。4、派生系列电动机很多,举例如下:(1)防爆变频调速电动机;(2)冶金辊道用变频调速电动机;(3)变频调速制动电动机;(4)变频调速伺服电动机。变频调速电动机低电压比较多,高电压比较少。近十年来国内生产的变频调速电动机量比较大,品种齐全。佳木斯电机股份有限公司生产的低压变频调速电动机机座号80-710、功率0.75kW一1800kW,同时生产防爆高压变频调速电动机。尤其是于1986年开始研制的变频调速电动机,其特点是既防爆又防x射线,用于西昌卫星发射中心。随着国内其它生产厂的变频调速电动机生产规模逐年增加,为国名经济的发展做出了贡献。 主要研究内容: (1)变频器的应用:变频器技术的发展趋势经历大约三十年的研发与应用实践,随着新型电力电子器件和高性能微处理器的应用以及控制技术的发展,变频器的性能价格比越来越高,体积越来越小,而厂家仍然在不断地提高可靠性实现变频器的进一步小型轻量化、高性能化和多功能化以及无公害化而做着新的努力。变频器性能的优劣,一要看其输出交流电压的谐波对电机的影响,二要看对电网的谐波污染和输入功率因数,三要看本身的能量损耗即效率如何。变频器主要用于交流电动机、异步电机或同步电机转速的调节是公认的交流电动机最理想、最有前途的调速方案。除了具有卓越的调速性能之外,变频器还有显著的节能作用,是企业技术改造和产品更新换代的理想调速装置。自上世纪80年代被引进中国以来,变频器作为节能应用与速度工艺控制中越来越重要的自动化设备,得到了快速发展和广泛的应用。交流电动机变频调速已成为当代电机调速的潮流,它以体积小、重量轻、转矩大、精度高、功能强、可靠性高、操作简便、便于通信等功能优于以往的任何调速方式,如变极调速、调压调速、滑差调速、串级调速、整流子电动机调速、液力偶合调速乃至直流调速。因而在钢铁、有色、石油、石化、化纤、纺织、机械、电力、电子、建材、煤炭、医药、造纸、注塑、卷烟、吊车、城市供水、中央空调及污水处理行业得到普遍应用。运动控制系统的发展变频器是运动控制系统中的功率变换器,运动控制系统是作为机电能量变换器的电气传动技术的发展。当今的运动控制系统是包含多种学科的技术领域,总的发展趋势是驱动的交流化、功率变换器的高频化、控制的数字化、智能化和网络化。因此,变频器作为系统的重要功率变换部件提供可控的高性能变压变频的交流电源而得到迅猛发展。 (2)三相异步电动机原理 当向三相定子绕组中通过入对称的三相交流电时,就产生了一个以同步转速n1沿定子和转子内圆空间作顺时针方向旋转的旋转磁场。由于旋转磁场以n1转速旋转,转子导体开始时是静止的,故转子导体将切割定子旋转磁场而产生感应电动势(感应

变频器相关论文变频器应用论文

变频器相关论文变频器应用论文 AC60-400KVA三相变频净化电源在南美钻井工程中的应用摘要:在南美厄瓜多尔钻井市场,目前几乎是国内钻井公司在提供石油钻井服务。AC60-400kVA三相变频净化电源可以实现国内钻机50Hz电制和当地60Hz电制的平稳转换,适应南美钻井市场的需求。其具有投入费用低,安装简单,运行稳定,不受井场空间限制,适应环境能力强等特点,特别适用于南美60Hz电制国家钻井工程服务的需求。 关键词:AC60-400kVA三相变频净化电源;钻井工程;应用 随着油田钻井市场的不断扩大,石油钻井服务逐步走向更多的国家。地区的差异,带来了对钻机设备不同的需求。南美钻井市场地处亚马逊平原上游热带雨林,环保要求很高,聘请当地泥浆处理公司及其固控设备是最安全经济的选择,同时也成为当地钻井施工一贯的模式。当地泥浆处理公司服务需要自带处理设备,一般负荷都在250 kW 左右。工程合同上都要求钻井承包商提供电力。南美地区是美国电制,工业用266 V/460 V电,60 Hz,当地公司的设备都使用这一电制。国内过来的钻井装备固定模式确是220 V/380 V 50 Hz的电制,无法满足当地固控设备的需求。原有的工程模式是购买(或者租用)一台600 kW当地电制的发电机组,专门为固控设备供电。这样虽然简单却使用维护成本不菲,并且钻机发电机组的电力充裕却无法使用造成严重浪费。AC60-400 kVA三相变频净化电源可以使钻机发电机组220 V/380 V 50 Hz的电力转换成266 V/460 V 60 Hz电源供设备使

用,满足当地设备负荷要求,运行稳定可靠,一次性成本投入,维护费用低,可有效解决当地泥浆处理设备使用的问题。 1AC60-400 kVA三相变频净化电源简介 变频电源的主要功用是将现有的交流电网电流变换成所需频率的稳定的纯净的正弦波电源。理想的交流电源的特点是频率稳定、电压稳定、内阻等于零、电压波形为纯正弦波(无失真),变频电源十分接近于理想交流电源。三相市交流电经过AC-DC-AC变换的双逆变电源,称为三相变频电源。AC60-400 kVA三相变频净化电源就是专门把220 V/380 V 50 Hz的电力转换成266 V/460 V 60 Hz的理想的交流电源设备。系统包括两组200 kVA变频柜和一台10P空调和相应的空气开关、连接电缆和电缆插座,都内置在一个长4 000 mm宽2 700 mm高3000 mm的房子里,完成266 V/460 V 60 Hz稳频稳压输出,稳频精度±0.05%,电压±15%连续可调,总容量400 kVA,额定电流556 A。操作简单,运行稳定,安装使用方便,体积小,重量轻,可随意摆放,适合现场施工要求。 1.1操作方法 AC60-400 kVA三相变频净化电源控制面板简洁,只有启动,复位/停机两个按钮,显示三相输出电流,输出电压可以15%微调,选择显示。电源指示,正常指示和故障指示都是指示灯,输出频率60 Hz 精度高,面板上不做调整。当连接好输入电源和输出设备以后,合上输入空气开关,电源指示灯亮,按下启动按钮即可。如果有故障指示

变频器论文

变频器论文 浅谈变频器的安装与抗干扰 摘要:介绍了变频器安装应注意的事项,并针对变频器使用中易出现的干扰问题,提出了相应的抑制措施。 关键词:变频器;安装;抗干扰 变频器具有调速范围宽、调速精度高、动态响应快、运行效率高、节能效果显著等优点,已成为当今改造传统工艺,推动技术进步的主要手段之一。做好它的安装和抗干扰,是其正常工作的前提和必备条件。变频器本身就是谐波干扰源,其额定输入和输出电流中,含有很多谐波成分,除了构成电源无功损耗的低次谐波外,还有很多高次谐波,高次谐波电流会造成电网电压的畸变,影响与之并联的其他用电设备,使电动机转矩降低,损耗增大,振动噪音增加,继电保护器误动作,电网功率因数补偿电容过流发热,甚至导致并联运行的晶闸管电力电子装置相互干扰,产生误触发。所以变频器是一个干扰源、噪声源,从安装到使用的整个过程,需要考虑抗干扰和做好预防,才能确保安全运行。本文从实际工作需要的角度,总结了变频器的安装注意事项和抗干扰措施。 一、变频器的安装 1.安装环境要求

由于变频器集成度高,整体结构紧凑,自身散热量较大,因此对安装环境的温度、湿度和粉尘含量要求较高。具体要求如下。 (1)海拔高度:变频器安装的地方一般要求海拔在1000米以下,海拔过高,大气压下降,易破坏电气绝缘。 (2)环境湿度:变频器要求环境相对湿度为40%~90%,无结露现象;如果安装处环境湿度过高,易使线路板腐蚀、电气绝缘破坏,造成高压打火、器件击穿,线路短路。 (3)环境温度:变频器要求环境温度在-100C~500C之间,这是由变频器内部的电子元件、功率器件决定的,超出该温度范围,器件容易损坏。 (4)工作温度:由于变频器内部是大功率的电子元件,极易受工作温度影响,为确保工作安全可靠,使用时应考虑留有余地,最好控制在0°C~40°C之间。为保证工作温度,在控制箱中变频器一般应安装在箱体上部,上下留大于120mm、左右留大于50mm的空间,利于空气流动;不允许把发热元件或易发热元件紧靠变频器底部安装,必要时需安装排风扇或空调器进行通风控温。 (5)环境气体:变频器要求安装环境干燥、清洁、无腐蚀、无易燃易爆气体。如果工作环境内有腐蚀性气体或湿度大、有尘埃,不仅会腐蚀元器件的引线、印刷电路板等,而且会加速塑料器件的老化,降低绝缘性能,在这类环境工作的变频器,应把控制箱制成封闭式结构,并进行对室外换气,如安装换气扇、空调等。

变频恒压供水毕业设计(论文)

山东淄博职业学院毕业设计论文纸 装订线 变频恒压供水毕业设计(论文) 摘要 随着社会市场经济的不断发展,人们对供水质量和供水系统可靠性的要求不断提高;再加上目前能源紧缺,利用先进的自动化技术、控制技术以及通讯技术,设计高性能、高节能、能适应不同领域的恒压供水系统成为必然的趋势。 首先,介绍了当前国内外恒压供水系统的发展情况,并提出不同的控制方案,通过研究和比较,详细说明了恒压供水系统的工作原理。本文采用变频器和PLC实现恒压供水和数据传输,然后用数字PID对系统中的恒压控制进行设计。 其次,详细陈述了基于PLC变频恒压供水系统工程的方案设计,包括系统的硬件和软件设计,并对系统采取了可靠性措施进行了说明。 最后,结合MCGS组态软件对所设计的电路和程序进行了仿真、调试。 结果表明,所设计的硬件电路及程序运行可靠,极大地提高了供水的质量,并且节省了人力,具有明显的经济效益和社会效益,能够满足用户恒压供水的要求。 关键词:变频器,恒压供水,PLC,MCGS,压力传感器

Abstract With the rapid development of socialistic marketing economy,there is a growing demand for better quality of water supply and higher reliability of supply system. In addition ,considering the current common energy crisis, achieving the scheme of automatingthe water supply system. So it is an inevitable tendency to design and create an energy-savingconstant-pressure water supply system of excellent performance with the help of advancedtechniques of automation,monitor-control system; and communication. Meanwhile, the System can also adapt to various water Supply regions. Firstly, this paper introduces the current situation of constant pressure water supply system, and puts forward the development situation of different control scheme, through research and comparison, detailed descriptions of constant pressure water supply system principle of work. This paper adopts inverter and PLC constant pressure water supply and data transmission, then use digital PID on system of constant pressure control design. Secondly, a detailed statement based on PLC frequency constant pressure water supply system engineering design, including the system hardware and software design of the system adopted reliability measures are presented. Finally, combined the MCGS software to design the circuit and procedures are simulated, debugging. Results show that the design of hardware circuit and program reliable operation, has greatly improved the quality of water supply, and save the human, has the obvious economic benefits and social benefits, and can satisfy the requirements of users constant pressure water supply. Key Words:VF speed; constant pressure water supply;PLC;MCGS;Pressure sensor

关于变频器的论文

1. 前言 1.1 研究的目的及意义 当今许多因素正冲击着全球电力工业,在国外电力生产商之间有着十分激烈的竞争,而世界范围内电力生产的市场化加速了生产商采用新技术;尤其是近两三年来,夏季持续高温造成许多省市电力供应紧张,供电已经不能满足急速膨胀的电力需求,拉闸限电现象日趋严重。由于电力网负担过重,造成局部电力系统极其不稳定,这种现象已经严重影响了人民的日常生活和经济的正常运行。我们注意到的全国节能活动中,宣传重点是民用电和商业用电的节约,而工业用电的节约则被淡化了。其实工业所耗用的电量占总用电量的比重极大,因此我们更应该把更多的目光投入到工业用电的节约上来。 这样环境要求给所有的电力供应商增加了额外的责任,使高压大功率变频器的市场开发空间大大拓展。另外高压变频器的最终用户对变频器的自动控制、节能、环保意识越来越强烈,迫使其上游提供者尤其是系统集成商更加重视顾客变频调速技术方面的需要。一般讲,在占工业用电50%~60%的风机、泵和压缩机等通用机械上使用变频调速装置,可以节电30%左右。这一类通用机械的驱动电机一般是工频电机,具有各种可供选择功能的通用变频器,其输出频率在0~400Hz之间,正适合这类机械。 变频器技术具有“工业维生素”之誉,是工业企业和日常生活工作中普遍需要的新技术;是高科技领域的综合性技术;是替代进口,节约投资的最大领域之一;是节约能源的高新技术。目前,低压变频器已经非常普及和成熟,高压变频器也正在被人们关注和逐步应用。变频器除了有卓越的调速性能之外,还有显著的节约电能和保护环境等重大作用,是企业技术改造和产品更新换代的理想调速装置,变频器的出现让工业领域的节能闪现了新的亮点。 但由于变频器进入我国的时间还不久,对于变频器的认识还不够,误用了变频器,使设备损坏,没有达到预期的效果。所以我们要对变频器进一步的学习和研究,能够在今后的使用中达到理想的效果。

变频器 毕业论文外文翻译

英文翻译 Frequency converter Presentation The ATV61 drive is a frequency inverter for 3-phase asynchronous motors rated between 0.75 kW and 630 kW. The drive has been designed for state-of-the-art applications in heating, ventilationand air conditioning (HVAC) in industrial and commercial buildings: Ventilation,Air conditioning,Pumping。The ATV61 can reduce operating costs in buildings by optimizing energyconsumption whilst improving user comfort. Its numerous integrated options enable it to be adapted to and incorporated into electrical installations, sophisticated control systems and building management systems. The need for electromagnetic compatibility and a reduction in harmonics were takeninto account at the outset of designing the drive. Depending on its design characteristics, each type (UL Type 1/IP 20 and/or UL Type 12/IP 54) either has built-in class A or class B EMC filters and DC chokes, or these items are available as optional accessories. With its macro-configurations and “Simply Start” menu, the ATV 61 drive can beused to start up yo ur applications without delay and to make adjustments in virtuallyno time using user-friendly dialogue tools. designed for application is: Energy saving ratio, 2-point or 5-point quadratic ratio. Automatic catching of a spinning load with speed detection.Adaptation of current limiting according to speed. Noise and resonance suppression by means of the switching frequency which, depending on the power rating, can be set to up to 16 kHz during operation, bymodulating the switching frequency and by the frequency jump. Preset speeds. Integrated PID regulator, with preset PID references and automatic/manual. (“Auto/Man.”)mode. Electricity and service hoursmeter.Detection of absence of fluid, detection of zero flow rate, limiting of flow rate. Sleep function, wake-up function. Customer settings with display of physical values: bar, I/s, °C, etc. Protection functions: 1 Motor and drive thermal protection, PTC thermal probe management

相关主题
文本预览
相关文档 最新文档