当前位置:文档之家› 基于线性判别分析的表面肌电信号动作模式识别

基于线性判别分析的表面肌电信号动作模式识别

基于线性判别分析的表面肌电信号动作模式识别
基于线性判别分析的表面肌电信号动作模式识别

计算机视觉与图像处理、模式识别、机器学习学科之间的关系

计算机视觉与图像处理、模式识别、机器学习学科之间的关系 在我的理解里,要实现计算机视觉必须有图像处理的帮助,而图像处理倚仗与模式识别的有效运用,而模式识别是人工智能领域的一个重要分支,人工智能与机器学习密不可分。纵观一切关系,发现计算机视觉的应用服务于机器学习。各个环节缺一不可,相辅相成。 计算机视觉(computer vision),用计算机来模拟人的视觉机理获取和处理信息的能力。就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,用电脑处理成为更适合人眼观察或传送给仪器检测的图像。计算机视觉研究相关的理论和技术,试图建立能够从图像或者多维数据中获取‘信息’的人工智能系统。计算机视觉的挑战是要为计算机和机器人开发具有与人类水平相当的视觉能力。机器视觉需要图象信号,纹理和颜色建模,几何处理和推理,以及物体建模。一个有能力的视觉系统应该把所有这些处理都紧密地集成在一起。 图像处理(image processing),用计算机对图像进行分析,以达到所需结果的技术。又称影像处理。基本内容图像处理一般指数字图像处理。数字图像是指用数字摄像机、扫描仪等设备经过采样和数字化得到的一个大的二维数组,该数组的元素称为像素,其值为一整数,称为灰度值。图像处理技术的主要内容包括图像压缩,增强和复原,匹配、描述和识别3个部分。常见的处理有图像数字化、图像编码、图像增强、图像复原、图像分割和图像分析等。图像处理一般指数字图像处理。 模式识别(Pattern Recognition)是指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。模式识别又常称作模式分类,从处理问题的性质和解决问题的方法等角度,模式识别分为有监督的分类(Supervised Classification)和无监督的分类(Unsupervised Classification)两种。模式还可分成抽象的和具体的两种形式。前者如意识、思想、议论等,属于概念识别研究的范畴,是人工智能的另一研究分支。我们所指的模式识别主要是对语音波形、地震波、心电图、脑电图、图片、照片、文字、符号、生物传感器等对象的具体模式进行辨识和分类。模式识别研究主要集中在两方面,一是研究生物体(包括人)是如何感知对象的,属于认识科学的范畴,二是在给定的任务下,如何用计算机实现模式识别的理论和方法。应用计算机对一组事件或过程进行辨识和分类,所识别的事件或过程可以是文字、声音、图像等具体对象,也可以是状态、程度等抽象对象。这些对象与数字形式的信息相区别,称为模式信息。模式识别与统计学、心理学、语言学、计算机科学、生物学、控制论等都有关系。它与人工智能、图像处理的研究有交叉关系。 机器学习(Machine Learning)是研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。机器学习在人工智能的研究中具有十分重要的地位。一个不具有学习能力的智能系统难以称得上是一个真正的智能系统,但是以往的智能系统都普遍缺少学习的能力。随着人工智能的深入发展,这些局限性表现得愈加突出。正是在这种情形下,机器学习逐渐成为人工智能研究的核心之一。它的应用已遍及人工智能的各个分支,如专家系统、自动推理、自然语言理解、模式识别、计算机视觉、智能机器人等领域。机器学习的研究是根据生理学、认知科学等对人类学习机理的了解,建立人类学习过程的计算模型或认识模型,发展各种学习理论和学习方法,研究通用的学习算法并进行理论上的分析,建立面向任务的具有特定应用的学习系统。这些研究目标相互影响相互促进。

表面肌电信号实验手册

实验基于sEMG时域特征特的动作识别 一、实验目的 1.了解肌电信号常用的时域分析方法; 2.利用MATLAB对肌电信号进行去噪、特征提取及动作识别; 二、实验设备 1.Wi-Fi表面肌电信号采集卡; 2.32位Windows XP台式机(Matlab 7.0软件); 3.802.11b/g无线网卡; 三、实验内容 (1)学习信号的基本去噪方法,并用MATLAB实现; (2)学习肌电信号常用的时域特征并利用Matlab来进行波形长度(WL)符号改变数(SSC)、过零点(ZC)、威尔逊赋值(WAMP)等特征的提取; (3)学习神经网络信号处理方法,掌握BP神经网络的用法,将其用于肌电信号的动作识别。 学习以上三个部分,最终完成一整套肌电信号去噪、特征提取(选取一种特征)、基于特征的动作识别的MATLAB程序。 四、实验原理 (1)小波去噪 小波去噪方法是一种建立在小波变换基础上的新兴算法,基本思想是根据噪声在不同频带上的小波分解系数具有不同强度分布的特点,将各频带上的噪声对应的小系数去除,保留原始信号的小波分解系数,然后对处理后系数进行小波重构,得到纯净信号。 小波去噪的基本原理图如下

(2) 特征提取 时域分析是将肌电信号看成均值为零,而方差随着信号强度的变化而变化的随机信号。时域特征的计算复杂度低,提取比较方便。 最常用的方法有:方差,过零点数(Zero Crossing, ZC ),Willison 幅值(Willison Amplitude, WAMP ),绝对值平均值 (Mean Absolute Value, MA V )和波形长度(Wave length ,WL )等。在实际应用中,为了让特征可以包含更多的信息,往往选择用不同的时域特征组合形成联合特征向量。我们主要介绍一下几种方法: 过零率(ZC ):为波形通过零线的次数,从一定程度上反映了信号的频率特性。为了降低零点引入的噪声,往往会引入一个阈值δ。计算方式如下: )(),sgn(11δ≥-+-++k k k k x x x x (1) Willison 幅值:是由Willison 提出一种对表面肌电信号的幅值变化数量进行计算的方法,经过后人的研究,对Willison 幅值的阈值有了明确的范围限定,目前认为V μ100~50 是最合适的阈值范围。其数学表示公式如公式(3-3)。 ∑=+-=N t i i x x f WAMP 11 (2) 其中:???>=otherwise x if x f 阈值01)( 波形长度(WL ):它是对某一分析窗中的波形长度的统计,波长可以体现该样本的持续时间、幅值、频率的特征。 ∑-=-+=11) ()1(1N i i x i x N WL (3) 符号改变斜率(SSC ):为信号的的频率性能提供了一些附加信息,对于3个连续的采样点,给定阈值ω,通过下面的公式计算波峰波谷的个数。 ()()()N i x x x x i i i i ,,1,11 =≥-?-+-ω (4) (3) 神经网络 BP 神经网络又称误差反向传播(Back Propagation ),它是一种多层的前向型神经网络。在BP 网络中,信号是前向传播的,而误差是反向传播的。所谓的反向传播是指误差的调整过程是从最后的输出层依次向之前各层逐渐进行的。标准的BP 网络采用梯度下降算法,与Widrow-Hoff 学习规则相似,网络权值沿着性能函数的梯度反向调整。

表面肌电分析

表面肌电简介及分析方法 一、表面肌电信号概念 表面肌电信号 (surface electrom yographic signal, sEMG 信号)是从皮肤表面 通过电极引导并放大,显示记录神经肌肉活动时的生物电信号,主要是浅层 肌肉和神经干综合的电活动。表面肌电信号主要有参与活动的运动单位数量、放电频率、同步化程度、募集的模式等有关。 二、表面肌电信号主要是通过时阈和频阈两个方面进行分析 1、sEMG 信号的时域分析方法 时域分析用于刻画肌电图时间序列的振幅特征,主要指标包括积分肌电(integrete EMG,iEMG)、均方根值(root mean square,RMS)、平均振幅(MA)。 积分肌电值(integrated EMG, iEMG)是一段时间内肌肉中参与活动的运动单 位放电总量,其值大小在一定程度上反映参加工作的运动单位的数量多少和 每个运动单位的放电大小。用来分析在单位时间内肌肉的收性。 平均振幅表示肌电信号的强弱,其大小与参与活动的运动单位数目和放电频率的同步化程度有关。 2、sEMG 信号的频域分析方法 频阈方面的分析主要是在频率维度上反映 sEMG 的变化,表面肌电信 号的频域分析广泛应用于肌肉疾病诊断和肌肉疲劳检测。利用表面肌电信号进行傅立叶转换(FFT),获得的频谱或功率谱反映信号在不同频率上的变化。常用指标有平均功率频率(Mean Power Frequency, MPF)和中位频率(Median Frequency, MF)。 MF 指放电频率的中间值,即肌肉收缩过程中放电频率的中间值,一般也 是随着运动时间的增大而呈递减的趋势。。由于骨骼肌中快慢肌纤维组成比例不同,导致不同部位骨骼肌之间的 MF 值不同。快肌纤维兴奋表现在高频放电,慢肌纤维则在低频。一般在中高强度的运动时,MPF 和 MF 值会有所下降,频谱左移,则说明局部肌肉出现疲劳。并且导致反映频谱曲线特征的 MPF 和 MF 产生相应的下降。 3、sEMG在肌肉功能评价中的应用 (Ⅰ)利用sEMG评价肌肉疲劳 MPF或MF随肌肉活动持续时间的延长或肌肉活动次数的增加呈线性 规律下降,且下降速度主要与负荷大小或肌肉疲劳程度相关, (Ⅱ)利用sEMG预测肌纤维类型 表面肌电信号特征(主要是MPF)与肌肉中Ⅰ型肌纤维的比例呈线性负相关,或与Ⅱ型肌纤维的比例呈线性正相关 (Ⅳ)利用sEMG研究肌肉活动的协调程度

表面肌电信号检测系统

信号处理 综合实训报告 题目表面肌电信号检测 学院通信与信息工程学院 专业及班级电子信息科学与技术1202 姓名李娟 学号 1207080205 指导教师赵谦 日期 2015年11月19日

一、研究的目的、意义 目的:表面肌电信号的检测主要是为了临床诊断及康复医学、运动医学等领域的研究分析。意义:表面肌电(surface electromyography, sEMG)信号是神经肌肉系统在进行随意性和非随意性活动时的生物电变化经表面电极引导、放大、显示和记录所获得的一维电压时间序列信号,其振幅约为0-5mV,频率0-500Hz,信号形态具有较强的随机性和不稳定性。与传统的针式肌电图相比,sEMG的空间分辨率相对较低,但是探测空间较大,重复性较好。基础研究表明,sEMG 信号源于大脑运动皮层控制之下的脊髓α运动神经元的生物电活动,信号的振幅和频率特征变化取决于不同肌肉活动水平和功能状态下的运动单位活动同步化、肌纤维募集等生理性因素,以及探测电极位置、信号串线(crosstalk)、皮肤温度、肌肉长度和肌肉收缩方式等测量性因素的共同作用。在控制良好的条件下,上述sEMG 信号活动的变化在很大程度上能够定量反映肌肉活动的局部疲劳程度、肌力水平、肌肉激活模式、运动单位兴奋传导速度、多肌群协调性等肌肉活动和中枢控制特征的变化规律,因而对于体育科学研究、康复医学临床和基础研究等具有重要的学术价值和应用意义。随着人们对肌电信号研究与了解的日益深入和肌电检测技术的进步,肌电信号处理手段的发展与肌电信号处理的广泛应用成为肌电信号研究的一个突出特点。肌电检测不仅是基础研究的需要,而且对于了解人体神经系统信息及康复工程都有着深远的意义。 二、实训内容 本组内容:肌电信号时域波形及频谱在上位机中的显示与处理 软件环境:LABVIEW 具体工作:LABVIEW和VISA的安装配置,程序的设计及后期的调试,以实现用LABVIEW进行串口通信,将所得数据转换并显示为波形的目的。 三、方案设计、工作流程 方案设计:

模式识别与图像处理习题及解答

1. 判断题(在题目后面的括号中填入T或F,分别代表正确或错误)。 (1) 灰度直方图是灰度级的函数,描述的是图像中具有该灰度级像素的个数,其纵坐标是灰度级,横坐标是该灰度出现的频率。( F ) (2) 中值滤波是一种线性滤波,它在实际应用中需要图像的统计特性。(F ) (3) 图像经频域变换后其特点是变换结果能量分布向高频成分方向集中,图像上的边缘、线条等信息在低频成分上得到反映。( F ) (4) 观察直方图可以看出不适合的数字化。(T ) 2. 单选题(每题只有一个选项是正确的) (1) 锐化(高通)滤波器的作用:A A 能减弱或削除傅立叶空间的低频分量,但不影响高频分量。 B 能减弱或削除傅立叶空间的高频分量,但不影响低频分量。 C 对傅立叶空间的低、高频分量均有减弱或削除作用。 D 对傅立叶空间的低、高频分量均有增强作用。 (2) 下列说法不正确的是 C A 点运算是对一副图像的灰度级进行变换。 B 线性点运算仅能拉伸或压缩直方图,以及使之左移或右移。 C 点运算可以改变图形内的空间关系。 D 点运算以预定的方式改变一幅图像的灰度直方图。 (3) 在所有颜色模型中,最常用于彩色图像的是:D A GMY B YIQ C HSV D HSI (4) 以下说法正确的是:B A 用数学形态学处理一些图像时,膨胀运算会收缩图像,腐蚀运算会扩大图像。 B 用数学形态学处理一些图像时,开运算和闭运算都可以平滑图像的轮廓。 C 在形态算法设计中,结构元的选择非常重要,它可以在几何上比原图像复杂,且 无界。 D 在形态算法设计中,用非凸子集作为结构元也是可以的。 (5) 数字图像的灰度直方图的横坐标表示:A A 灰度级 B 出现这种灰度的概率 C 像素数 D 像素值 (6) 以下说法正确的是 C A 先膨胀后腐蚀的运算称为开运算。 B 先腐蚀后膨胀的运算称为闭运算。 C 细化是将一个曲线型物体细化为一条单像素宽的线,从而图形化的显示出其拓扑 性质。 D 消除连续区域内的小噪声点,可以通过连续多次使用开闭运算。 (7) 下列描述正确的有 D A 只有傅立叶变换才能够完成图像的频率变换。 B 图像经频域变换后,变换结果是能量分布向高频方向集中,图像上的边缘、线条

表面肌电信号采集概论

表面肌电信号采集(硬件部分)报告一.研究背景 肌肉收缩时伴随的电信号,表面肌电信号是各个运动单元动作电位在表面电极处之和,是在体表无创检测肌肉活动的重要方法。本课程设计通过表面肌电信号幅值的检测,实现对手指运动或抓握力量的识别。 图一表面肌电信号 图2 手指运动的肌电信号 肌电信号特性 设计肌电信号采集系统,首先要了解并分析肌电信号的特性,明确肌电信号的特性能够更好的滤除噪声,更好的设计肌电采集系统。 肌电信号发源于作为中枢神经一部分的脊髓中的运动神经元。运动神经元的细胞体处在

其中,其轴突伸展到肌纤维处,经终板区(哺乳类神经肌肉接头为板状接头,故称终板或称运动终板motor endplate)与肌纤维耦合(是生化过程性质的耦合)。与每个神经元联系着的肌纤维不只一条。这些部分合在一起,构成所谓运动单位,如图(2.1)。 运动单位是肌肉的最小功能单位并能被随意地激活,它由受同一运动神经支配的一群肌肉纤维组成,肌电信号(EMG)是由不同运动单位的运动单位动作电位motor unit action potential,MUAP)组成。 肌电信息与肌肉收缩的关系可以概述如下:由中枢神经系统发出传向运动神经末梢分支的运动电位,传递着驱使肌肉收缩的信息。由于神经末梢分支的电流太小,常不足以直接兴奋大得多的肌纤维,但是通过神经肌肉接头处的特殊终板的类似放大作用,这样就爆发一个动作电位沿着肌纤维而传播,在动作电位的激发下随之产生一次肌肉收缩。这种兴奋和收缩之间的联结是通过肌纤维内部特殊的传导系统实现的,因此,可以明确以下概念:1)动作电位不是肌肉收缩的表现,而是发动肌肉收缩机制的重要部分。 2)由于肌肉信号只与给予肌肉的指令成比例,因此肌肉实际上不需要产生力,但工作了的肌肉仍然是发放肌电的适当源泉。各肌纤维在检测点上表现出的电位波形,其极性与 终板和检测点的相对位置有关(例如图2.2上纤维1和n引起的电位波形与纤维2,3引起的电位波形反向)。又和纤维与检测点间的距离有关,相距愈远,幅度愈小。

Glazer表面肌电评估解读

Glazer表面肌电评估解读

————————————————————————————————作者:————————————————————————————————日期:

1、评价流程设计: Pre-baseline:60秒放松测试60秒 Fastflick/rest:2秒×5次/10秒快速收缩5次/放松10秒 Tonic contraction:10秒/10秒收缩10秒/放松10秒 Duration :60秒持续收缩60秒 Post-baseline:60秒后基线60秒 2、评估指标解释; A、RMS(均方根值)/单位uv(微伏):反应患者盆底肌收缩或者放松是的表面肌电值,幅值的增加表明肌力的增强,也就是说RMS与肌力成正比。 3、肛肠科盆底肌表面肌电评估统计数值(参考值): 部位指标 时间段 Pre-b aseline 静息平 均值 Mean Fastflick 快速收缩 的最大值 Maximum Tonic 最大收缩 值 Maximum Duration 持续收缩 的平均值 Mean Post- baseline 静息值 阴道RMS 2 35-37.5 25 20 2 部位指标 时间段 Pre-b aseline 静息值 Fastflick 快速收缩 Tonic 最大收缩 Duration 持续收缩 Post- baseline 静息值 肛门RMS最大值 (max)4 以 下 正 常 70以 上 正 常 40以 上 正 常 25以 上 正 常 4 以 下 正 常 4-5 基 本 正 40-50 基 本 正 35-40 基 本 正 20-25 基 本 正 4-5 基 本 正

(完整word版)肌电信号的识别.(DOC)

燕山大学 课程设计说明书题目:肌电信号分析及动作识别 学院(系):电气工程学院 年级专业: 10级仪表三班 学号: 学生姓名: 指导教师: 教师职称:教授讲师

电气工程学院《课程设计》任务书

目录 第一章摘要 (2) 第二章系统总体设计方案 (3) 第三章肌电信号的时域参数处理及其分析 (4) 第四章肌电信号的频域处理方法及其分析 (7) 3.1 FFT分析 (7) 3.2 功率谱分析 (8) 3.3 倒谱分析 (9) 3.4 平均功率频率MPF和中值频率 (10) 第五章 Matlab程序及GUI (11) 第六章系统整体调试及结果说明 (24) 第七章学习心得 (24) 参考文献 (25)

第一章摘要 肌电信号是产生肌肉力的电信号根源,它是肌肉中很多运动单元动作电位在时间和空间上的叠加,反映了神经,肌肉的功能状态,在基础医学研究、临床诊断和康复工程中有广泛的应用。 其种类重要有两种:一,临床肌电图检查多采用针电极插入肌肉检测肌电图,其优点是干扰小,定位性好,易识别,但由于它是一种有创伤的检测方法,其应用收到了一定的限制。二,表面肌电则是从人体皮肤表面通过电极记录下来的神经肌肉活动时发放的生物电信号,属于无创伤性,操作简单,病人易接受,有着广泛的应用前景。 主要应用领域有:一,仿生学。提出肌肉生理模型来判别肌肉的动作以来, 电子假肢的研究进入了新的发展时期, 过去电子假肢的控制靠使用者人为开关和选择运动模式来完成, 现在则可通过检测人体残肢表面肌电信号, 提取出肢体的动作特征, 来自动控制假肢运动, 利用残肢表面肌电信号的肌电假肢研制在国内外都取得较大进展。二,康复工程。如利用表面肌电信号提取出的特征作为功能性电刺激的控制信号, 帮助瘫痪的肢体恢复运动功能。通过检测表面肌电信号, 并将其作为反馈信号提供给病人和医生, 便于进行合理的治疗和训练。三,运动医学。表面肌电信号在运动医学中也可发挥重要作用, 通过检测运动员运动时的表面肌电信号,及时反映出肌肉的疲劳和兴奋状态, 有助于建立科学的训练方法。 本次课程设计的主要任务就是对微弱的肌电信号进行时域和频域的处理及分析,运用数字处理及matlab的知识进行“屈”和“伸”动作识别。然后通过串口将数据发送到单片机下行微机进行显示。

阵列式表面肌电信号采集仪_赵章琰

第23卷 第12期 电子测量与仪器学报 Vol. 23 No. 12 · 88 · JOURNAL OF ELECTRONIC MEASUREMENT AND INSTRUMENT 2009年12月 本文于2009年6月收到。 * 基金项目:国家自然科学基金(编号:30870656)资助项目 阵列式表面肌电信号采集仪* 赵章琰 陈 香 雷培源 杨基海 (中国科学技术大学电子科学与技术系, 合肥 230027) 摘 要: 采用阵列式电极, 通过空间滤波方法可提高表面肌电信号的MUAP 分辨能力。本文实现的阵列式表面肌电信号采集仪由表面肌电电极阵列、信号调理电路和数据采集部分构成。表面肌电电极阵列实现了镀金圆盘式和弹簧探针式两种类型, 信号调理电路对电极上的肌电信号进行放大和滤波, 数据采集部分将调理后的信号转换成数据并进行显示和存储。电极阵列和前级信号调理电路集成在一起, 有效的降低了微弱信号通过导线传输所引入的干扰。通过实验, 验证了这种阵列式表面肌电采集仪在研究肌肉中动作电位传播和利用空间滤波提高MUAP 分辨力的可行性, 并证实了镀金圆盘式电极在降低噪声方面、弹簧探针式电极在缩短MUAP 时长方面的优势。 关键词: 表面肌电电极阵列;镀金圆盘;弹簧探针;空间滤波;MUAP 时长 中图分类号: R318.6 文献标识码: A 国家标准学科分类代码: 310.6140 Array acquisition instrument for surface electromyogram Zhao Zhangyan Chen Xiang Lei Peiyuan Yang Jihai (University of Science and Technology of China, Hefei 230027, China) Abstract: The discrimination of MUAP from surface Electromyogram (sEMG) can be improved by using elec-trodes array and space filtering method. According to this principle, an array acquisition instrument for sEMG was de-veloped in this paper, containing sEMG electrodes array, signal conditioning circuits and a data acquisition part. Gold plated disk shaped electrodes and spring probe electrodes built up two different kinds of sEMG electrode array; The conditioning circuit amplifies and filters the signal form electrode array; The data acquisition part converted the condi-tioned signal to digital for display and storage. The electrode array is integrated with the first-stage conditioning circuit, in order to prevent interferences of weak signal transmission through wires. It is proved that the array acquisition in-strument can be used in the research of action potential transmission in muscles, and it can improve the discrimination of MUAP by using space filtering method. It is also proved that the gold plated disk shaped electrodes work better in noise reduction and the spring probe electrodes work better in reducing the MUAP duration. Keywords: sEMG electrode array; gold plated disk shaped electrode; spring probe electrode; space filtering; MUAP duration 1 引 言 表面肌电(surface electromyogram, sEMG)是从皮肤表面检测相应位置内部肌肉肌电图的方法, 这种方法与传统的针电极EMG 相比, 具有无痛苦无损伤的优点。表面肌电信号事实上是肌肉上各点的运动单位动作电位(motor unit action potentials, MUAP) 通过皮下组织和皮肤, 在皮肤表面的叠加。所以跟针电极EMG 相比, 它不利于区分出各个MUAP, 在医疗诊断中的应用受到限制。 研究表明, 通过空间滤波的方法可以提高对表面肌电信号MUAP 的分辨能力。空间滤波的基本思想是采集皮肤表面多点的表面肌电信号, 通过线性变换尽可能的反演出肌肉内部的电位活动。这种方

表面肌电信号数字传感器

表面肌电信号数字传感器 介绍了表面肌电信号数字传感器的设计方法。根据表面肌电信号产生特点和采集技术的基本要求,研究电极的形状和正确的放置方法,采用仪用放大器INA128设计前置放大电路。设计有源滤波器,应用串行A/D转换芯片输出数字信号。实验表明,该方法可以提高信噪比,减小噪声,有效地提取出表面肌电信号。 1 引言 表面肌电(surface electromyography, sEMG)信号是神经肌肉系统在进行随意性和非随意性活动时的生物电变化经表面电极引导、放大、显示和记录所获得的一维电压时间序列信号,其振幅约为0-5000μV,频率0-1000Hz,信号形态具有较强的随机性和不稳定性。与传统的针式肌电图相比,sEMG的空间分辨率相对较低,但是探测空间较大,重复性较好,对于体育科学研究、康复医学临床和基础研究等具有重要的学术价值和应用意义[1]。 人体是一导电体,工频干扰及体外的电场、磁场感应都会在人体内形成测量噪声,干扰sEMG的检测,所以信号的滤波和电路的屏蔽成为表面肌电信号数字传感器设计的重点。分为几个部分:电极、放大电路、滤波电路、A/D转换。 2 电极的设计 本文电极极片的基体用铜制作,表面镀银,其形式采用常用的双极型,并在两个电极中间插入了一个参考电极,也称作无关电极,以利于降低噪声,提高对共模信号的抑制能力。为了消除来自电源线的噪声,采用差动放大的方法。 肌电信号由两个电极来检测,两个输入信号“相减”,去掉相同的“共模”成份,只放大不同的“差模”成份。任何噪声如果离检测点很远,在检测点上将表现为“共模”信号;而检测表面附近的信号表现为不同,将被放大。因此,相对较远处的电力线噪声将被消除,而相对比较近处的肌电信号将被放大。其准确性由共模抑制比(CMRR)来衡量[2]。 肌电信息在人体组织(容积导体)内的传递,会随着距离的增加而很快衰减。因此电极宜贴放在肌电发放最强的肌腹部,以减少邻近肌肉的肌电干扰(串音)。采用较小的电极可提高选择性,但会增加电极与皮肤间的接触阻抗。 3 放大电路的设计 人体肌肉组织是皮表肌电的信号源,它发放的肌电经过皮下软组织的体电阻传输至皮肤表面,体电阻约数百欧姆,但是,表面电极与皮肤之间的接触阻抗比较高,约几千欧姆。接触电阻还受接触松紧程度、皮肤清洁程度、湿度、四季时令变化等多种因素影响,变化很大[3]。由此可见,对于放大器来说,肌电信号源是一个高内阻的信号源。 在设计肌电信号放大电路时,着重考虑了以下问题:1.高增益:表面肌电信号幅度约在分布μV~mV数量级之间,是一种极其微弱的信号,要将其放大到一伏左右才能方便使用,所以将放大器的增益设置在80dB。2.高共模抑制比:表面肌电信号的采集易受50Hz工频电源及其它高频电噪声的干扰。但这些干扰信号在放大器的输入端表现为同幅同相的信号——共模信号,因此选用高共模抑制比的放大电路对干扰信号进行抑制。3.高输入阻抗:肌肉组织与电极之间的接触阻抗可能在相当大的范围内变化,天气干燥地区,接触电阻甚至高达几万欧姆,在这种条件下,即使放大器的共模比极优良,如果输入阻抗不够高,共模干扰信号也会造成输出误差。因此必须提高放大器的输入阻抗。 根据以上所述,设计的肌电信号采集电路要求具有高增益、高输入阻抗、高共摸抑制比(CMRR)、低零漂、低失调、低功耗、尤其是低的1/f噪声电压。本文选用德州仪器(Texas

上海交通大学图象处理与模式识别专业考研

上海交通大学图象处理与模式识别专业 考研 本学科创建于80年代初,是国内首批有权授予硕士学位、博士学位并设有博士后流动站的重点学科,也是国家“211工程”资助学科。1998年该学科改名为模式识别与智能系统。本学科点的创建人是我国著名图像处理和模式识别专家、美国匹兹堡大学访问学者李介谷教授。他的研究方向是模式识别和计算机视觉。 本学科依托图象处理与模式识别研究所,主要从事数字图象(图形)分析、文本信息处理、模式识别、机器视觉、自然语言理解、智能技术和系统等信息技术领域中前沿性的应用基础研究,具有基于数字信号处理器的硬件开发工具和网络环境下的工作站,个人机及专用的图象输入输出设备。包括序列图像分析,三维图像重构理论及应用,远程医疗和诊断;模式识别和计算机视觉是该学科的一个研究特色,已取得重大研究成果的项目有动态目标识别,字符和人脸识别,机器人视觉;计算机图形学和虚拟现实,多媒体技术和计算可视化;智能中文信息处理,中(英)文全文检索,基于内容的网上检索;人工智能和智能系统,主要从事人工神经网理论及应用,机器学习和推理、智能交通指挥系统等。目前正在进行的科研项目有国家高科技863项目,国家自然科学基金,国家教委博士点科研基金项目。省、部、市重大科技开发和国际合作项目。 模式识别和智能系统学科拥有设备先进的图像工程实验室。1978年恢复招收研究生来,已培养硕士、博士生216名,主要在国内外大学、科研机构和高新技术产业从事教学、科研及高新技术的开发研究工作。该学科有广泛的国际合作和交流,招收国内外访问学者和国外留学生。本学科所从事的研究项目曾多次荣获过国家科技进步一等奖、省部级的奖励,并有着广泛的国际合作和交流。 研究方向 a.数字图象处理 b.计算机模式识别 c.计算机图形学与CAD技术 d.人工智能与专家系统 e.计算机视觉 f.语音识别及机器翻译 g.人工神经网络 h.虚拟现实 i.算法理论与分析 j.网络信息处理 k.文本信息处理 l.网上三维图象重建 m.城市交通监控与管理系统 n.生物信息特征识别 o.网络信息智能处理 p.自然语言理解与人机界面 q.成像光谱技术与遥感 r.三维空间信息处理与分析 s.多媒体与网络信息智能处理 t.智能理论与系统。 本学科依托图象处理与模式识别研究所,主要从事数字图象(图形)分析、文本信息处理、模式识别、机器视觉、自然语言理解、智能技术和系统等信息技术领域中前沿性的应用基础研究,具有基于数字信号处理器的硬件开发工具和网络环境下的工作站,个人机及专用的图象输入输出设备。包括序列图像分析,三维图像重构理论及应用,远程医疗和诊断;模式识别和计算机视觉是该学科的一个研究特色,已取得重大研究成果的项目有动态目标识别,字符和人脸识别,机器人视觉;计算机图形学和虚拟现实,多媒体技术和计算可视化;

表面肌电分析系统1

表面肌电分析系统 项目计划书 >>>成人康复

目录

一、项目提供方简介 二、为什么要定量评定 三、为什么要定制方案 四、为什么是表面肌电分析系统(Flexcomp Infiniti System) 1.产品概述 2.定量评定 3.完美方案 4.功能拓展 5.生物反馈训练 五.部分客户名单 六.效益分析 1.收费标准:(以江苏地区收费为例) 2.治疗收费: 七.文献支持

一、项目提供方简介——南京伟思医疗科技有限责任公司 南京伟思医疗科技有限公司公司成立于2001年,是专业从事医疗器械、生物医学工程、家庭健康产品以及计算机软件开发、生产、销售为一体的高新技术企业。经过十余年的辛勤耕耘,目前已经发展

成为一家拥有自主研发能力、优良的产品线、先进的商业模式、优良的服务、强大的技术能力、优秀的年轻团队、完善的管理体系和积极进取的企业文化的中国知名的医疗器械及家用健康产品供应商。 公司积极与国内数百家公司机构、上千家医院及近万名个人用户进行了友好的合作,使我们的产品成为中国心理学、康复医学及家用健康领域具有影响力和竞争力的品牌之一。伟思公司设立职能部门、供应链、战略产品部、安思定事业部、市场部、客户部、渠道部。 伟思公司还将一如既往提升服务,全力支持我国康复事业的向前发展。 二、为什么要定量评定? “在康复领域中,康复评定是一项基本的专业技能,是制定出好的治疗计划的基础。只有通过全面的、系统的和相近记录的康复评定,才有可能确定病人的具体问题,制定相应的干预计划。”“可以这样说,没有评定,就没有康复。”

目前在临床上经常使用的评定方法有定性评定、半定量评定和定量评定。定性评定容易受评定者和被评定者主观因素的影响,从而使分析结果有很大程度的模糊性和不确定性。这种不确定性有时会因为评定医师的差异性,而使结果差异被主观放大。 最常见的半定量评定方法以量表法最为常见。半定量评定的方法可以数量化地反映被试者的功能障碍水平和特点,但是由于两个分数相同的患者其功能障碍可以不同,他们可在不同的活动中得分或丢分,精确度不高。因此,不同患者之间的功能活动的潜在差异可能被掩盖,而且量表法的有效性在很大程度上取决于评定量表的可靠性。 定量评定,最突出的优点是将障碍的程度量化,相比定性分析和半定量评定而言,更精确、更客观、更详实。通过定量分析可以让研究者对对象的认识进一步精确化,更科学的揭示规律,把握本质,理清关系,预测疾病的发展趋势,并且制定相应的具体治疗计划。 三者比较发现,定量评定没有定性分析和办定量评定的固有缺点——主观误差,这使这种分析方式容易被重复,而且能够实现数据采集的完整性,科学的数据分析和处理,更易被广泛接受与推广。 三、为什么要定制方案?

表面肌电图的分析与应用研究

4 表面肌电图的分析与应用研究 表面肌电(surface electromyography, sEMG)图在电生理概念上虽然与针电极肌电图相同,但表面肌电图的研究目的,所使用的设备以及数据分析技术与针电极肌电图是有很大区别的。相对与针电极肌电图而言,其捡拾电极为表面电极。它将电极置于皮肤表面,使用方便,可用于测试较大范围内的EMG信号。并很好地反映运动过程中肌肉生理生化等方面的改变。同时,它提供了安全、简便、无创的客观量化方法,不须刺入皮肤就可获得肌肉活动有意义的信息,在测试时也无疼痛产生。另外,它不仅可在静止状态测定肌肉活动,而且也可在运动过程中持续观察肌肉活动的变化;不仅是一种对运动功能有意义的诊断方法,而且也是一种较好的生物反馈治疗技术[50]。 4.1 肌电(electromyography, EMG)信号的产生原理及模式 4.1.1肌电信号的产生原理 肌肉收缩的原始冲动首先来自脊髓,然后通过轴突传导神经纤维,再由神经纤维通过运动终板发放冲动形成肌肉收缩,但每根肌纤维仅受一个运动终板支配,该运动终板一般位于肌纤维的中点。当神经冲动使肌浆中Ca2+浓度升高时,肌蛋白发生一系列变化,使细胞丝向暗带中央移动,与此相伴的是A TP的分解消耗和化学能向机械功的转换,肌肉完成收缩。在肌肉纤维收缩的同时也相应地产生了微弱的电位差,这就是肌电信号的由来。 人体骨骼肌纤维根据功能分为Ⅰ型慢缩纤维,又称红肌,亦即缓慢-氧化型肌纤维;Ⅱa型和Ⅱb型快缩纤维,又称白肌。“红肌”力量产生较慢,其特点是ATP产生是氧化代谢产生的(即其含有较高的氧化能力),可以维持较长的工作时间,作用主要为保持耐力。快肌纤维则主要是无氧酵解(糖原代谢)途径,故在相对较短的时间内,易产生疲劳和乳酸堆积[46]。所以,不同纤维类型因其收缩类型不同,能量代谢改变不同,生理作用不同,故其收缩时的肌电信号也有不同特征,故而肌电信号反过来也可相应反映耐力、生化改变,也就是疲劳度、代谢等方面的情况。 4.1.2表面肌电信号产生的模式 肌肉内组成单一运动单位的肌纤维,都被包围在兴奋和未兴奋的众多肌纤维及其它导电性良好的体液和组织中,各肌纤维动作电位的产生和传导都会在其外部介质中形成“容积导体导电”现象。产生动作电位的各肌纤维形成一个共同的

表面肌实验报告

武汉理工大学 现代数字信号处理在前沿学科中的应用实验报告基于sEMG时域特征的动作识别 学院:信息工程学院 学号: 1049731503279 姓名:吴志勇 班级:电子154

实验基于sEMG时域特征特的动作识别 一、实验目的 1.了解肌电信号常用的时域分析方法; 2.利用MATLAB对肌电信号进行去噪、特征提取及动作识别; 二、实验设备 1.Wi-Fi表面肌电信号采集卡; 2.32位Windows XP台式机(Matlab 7.0软件); 3.802.11b/g无线网卡; 三、实验内容 (1)学习信号的基本去噪方法,并用MATLAB实现; (2)学习肌电信号常用的时域特征并利用Matlab来进行波形长度(WL)符号改变数(SSC)、过零点(ZC)、威尔逊赋值(WAMP)等特征的提取; (3)学习神经网络信号处理方法,掌握BP神经网络的用法,将其用于肌电信号的动作识别。 学习以上三个部分,最终完成一整套肌电信号去噪、特征提取(选取一种特征)、基于特征的动作识别的MATLAB程序。 四、实验原理 (1)小波去噪 小波去噪方法是一种建立在小波变换基础上的新兴算法,基本思想是根据噪声在不同频带上的小波分解系数具有不同强度分布的特点,将各频带上的噪声对应的小系数去除,保留原始信号的小波分解系数,然后对处理后系数进行小波重构,得到纯净信号。 小波去噪的基本原理图如下 (2)特征提取

时域分析是将肌电信号看成均值为零,而方差随着信号强度的变化而变化的随机信号。时域特征的计算复杂度低,提取比较方便。 最常用的方法有:方差,过零点数(Zero Crossing, ZC ),Willison 幅值(Willison Amplitude, WAMP ),绝对值平均值 (Mean Absolute Value, MAV )和波形长度(Wave length ,WL )等。在实际应用中,为了让特征可以包含更多的信息,往往选择用不同的时域特征组合形成联合特征向量。我们主要介绍一下几种方法: 过零率(ZC ):为波形通过零线的次数,从一定程度上反映了信号的频率特性。为了降低零点引入的噪声,往往会引入一个阈值δ。计算方式如下: )(),sgn(11δ≥-+-++k k k k x x x x (1) Willison 幅值:是由Willison 提出一种对表面肌电信号的幅值变化数量进行计算的方法,经过后人的研究,对Willison 幅值的阈值有了明确的范围限定,目前认为V μ100~50 是最合适的阈值范围。其数学表示公式如公式(3-3)。 ∑=+-=N t i i x x f WAMP 1 1 (2) 其中: ?? ?>=otherwise x if x f 阈值 01 )( 波形长度(WL ):它是对某一分析窗中的波形长度的统计,波长可以体现该样本的持续时间、幅值、频率的特征。 ∑-=-+= 1 1 ) ()1(1N i i x i x N WL (3) 符号改变斜率(SSC ):为信号的的频率性能提供了一些附加信息,对于3个连续的采样点,给定阈值ω,通过下面的公式计算波峰波谷的个数。 ()()()N i x x x x i i i i ,,1,11Λ=≥-?-+-ω (4) (3) 神经网络 BP 神经网络又称误差反向传播(Back Propagation ),它是一种多层的前向型神经网络。在BP 网络中,信号是前向传播的,而误差是反向传播的。所谓的反向传播是指误差的调整过程是从最后的输出层依次向之前各层逐渐进行的。标准的BP 网络采用梯度下降算法,与Widrow-Hoff 学习规则相似,网络权值沿着性能函数的梯度反向调整。 前向型神经网络通常具有一个或多个由sigmoid 神经元构成的隐层,以及一个由线性神经元构成的输出层。多个具有非线性传递函数的神经元层使得网络可以学习输入和输出之间的非线性关系,而线性输出层使得网络可以产生[-1,+1]之外的输出值。

表面肌电信号数字传感器设计

表面肌电信号数字传感器的设计 1. 引言 表面肌电(surFace ElectroMyoGraphy, sEMG)信号是神经肌肉系统在进行随意性和非随意性活动时的生物电变化。经表面电极引导、放大、显示和记录所获得的一维电压时间序列信号,其振幅约为0-5000μV,频率0-1000Hz,信号形态具有较强的随机性和不稳定性。与传统的针式肌电图相比,sEMG的空间分辨率相对较低,但是探测空间较大,重复性较好,对于体育科学研究、康复医学临床和基础研究等具有重要的学术价值和应用意义[1]。 人体是一导电体,工频干扰及体外的电场、磁场感应都会在人体内形成测量噪声,干扰sEMG的检测,所以信号的滤波和电路的屏蔽成为表面肌电信号数字传感器设计的重点。装置主要分为以下几个部分:电极、放大电路、滤波电路、A/D转换。 2. 电极的设计 本文电极极片的基体用铜制作,表面镀银,其形式采用常用的双极型。并在两个电极中间插入了一个参考电极,也称作无关电极,以利于降低噪声,提高对共模信号的抑制能力。为了消除来自电源线的噪声,采用差动放大的方法。 肌电信号由两个电极来检测,两个输入信号“相减”,去掉相同的“共模”成份,只放大不同的“差模”成份。任何噪声如果离检测点很远,在检测点上将表现为“共模”信号;而检测表面附近的信号表现为差模信号,将被放大。因此,相对较远处的电力线噪声将被消除,而相对比较近处的肌电信号将被放大。其准确性由共模抑制比(CMRR)来衡量[2]。 肌电信息在人体组织(容积导体)内的传递,会随着距离的增加而很快衰减。因此电极宜贴放在肌电发放最强的肌腹部,以减少邻近肌肉的肌电干扰(串音)。采用较小的电极可提高选择性,但会增加电极与皮肤间的接触阻抗。 3. 放大电路的设计 人体肌肉组织是皮表肌电的信号源,它发放的肌电经过皮下软组织的体电阻传输至皮肤表面,体电阻约数百欧姆。但是,表面电极与皮肤之间的接触阻抗比较高,约几千欧姆。接触电阻还受接触松紧程度、皮肤清洁程度、湿度、四季时令变化等多种因素影响,变化很大[3]。由此可见,对于放大器来说,肌电信号源是一个高内阻的信号源。 在设计肌电信号放大电路时,着重考虑了以下问题: 1.高增益:表面肌电信号幅度约在分布μV~mV数量级之间,是一种极其微弱的信号,要将其放大到一伏左右才能方便使用,所以将放大器的增益设置在80dB。 2.高共模抑制比:表面肌电信号的采集易受50Hz工频电源及其它高频电噪声的干扰。但这些干扰信号在放大器的输入端表现为同幅同相的信号——共模信号,因此选用高共模抑制比的放大电路对干扰信号进行抑制。 3.高输入阻抗:肌肉组织与电极之间的接触阻抗可能在相当大的范围内变化,天气干燥地区,接触电阻甚至高达几万欧姆,在这种条件下,即使放大器的共模比极优良,如果输入阻抗不够高,共模干扰信号也会造成输出误差。因此必须提高放大器的输入阻抗。 根据以上所述,设计的肌电信号采集电路要求具有高增益、高输入阻抗、高共摸抑制比(CMRR)、低零漂、低失调、低功耗、尤其是低的1/f噪声电压。本文选用德州仪器(Texas Instruments)公司的Burr-Brown系列的同相并联差动三运放仪表放大器INA128PA为核心器件搭建了前置放大电路,获得了良好的电路效果。该芯片内部原理电路图如图1所示。

相关主题
文本预览
相关文档 最新文档