当前位置:文档之家› UPS电源系统的防雷措施

UPS电源系统的防雷措施

UPS电源系统的防雷措施
UPS电源系统的防雷措施

UPS电源系统的防雷措施

中心议题:雷电对于UPS电源的危害UPS电源的雷电防护避雷器的选择与安装

解决方案:完善外部防雷设施,做好机房接地采取多级雷电防护措施安装适当规格的避雷器UPS电源的主要工作过程是滤波整流逆变,另外还包括许多辅助的单元,如:充电器及蓄电池、微处理器、通信接口等。由于UPS电源是安装在设备与市电之间的,可以滤除电网中的电磁干扰,因此,给人造成一种假象,UPS电源可以阻挡包括雷电在内的所有的电磁脉冲的侵入,事实上并非如此。雷电对于UPS电源的危害关于雷电对于微电子设备的危害早已为工程技术人员所熟悉。对于微电子设备来讲,危害最大的是雷电电磁脉冲,它无孔不入,隐含杀机。根据我们对有关事故的统计表明,70%以上的雷击事故是从电源线侵入的,而UPS电源不能阻挡雷电流的侵入。(1)从2中的讨论可知,UPS电源的市电输入端口是滤波单元,一般包括MEI滤波器与RFI滤波器,而根据雷电流的频谱特点,其90%以上的能量集中于1MHz以下,直流成分占60%以上。当雷电来临,UPS位于电源线路的最前端,首当其中受到攻击。(2)现在不少UPS增加了避雷功能,其原理是在UPS的输入端增加一个MOV避雷模块,有些部分进口名牌UPS及几家国内著名UPS生产厂家在其UPS内部,根据国际IEC801-5的标准加装了避雷模块,抑制吸收电源供电线路输入端的雷电电压及电流的强浪涌,其冲击电流为20KA,冲击电压为6kV,波形为8/20。然而统计资料表明,直击雷电在一般低压架空线路产生的过压幅值高达100kV,电信线路高达40~60kV。感应雷电过压幅值在无屏蔽架空线上最高标准达20kV,无屏蔽地下电缆可达10kV,如果没有按照规范设计的完整的防雷体系,即是这样的UPS 也无法保护用电设备不受雷电侵害的。(3)UPS电源,特别是智能化的UPS电源,本身含有大量的集成电路。而且越来越多的UPS带有智能管理系统,信号线也成为雷电电磁脉冲侵入的通道。正因为此,关于UPS电源遭受雷电侵害的案例屡见不鲜,特别是在雷暴日比较多的雷击区。如一台安装在海南某单位的UPS电源,自安装后运行半年均很正常,但是在遇到一次雷击以后,UPS就频繁出现在开机运行一段时间后,莫名奇妙地出现从逆变器供电自动转换到交流旁路电源供电的故障。从雷电灾害损失事例类型来看,90%以上涉及电脑网络及通讯系统,而且基本上都有UPS电源。所以一定要对UPS电源及其监控系统的雷电防护引起足够的重视。UPS电源的雷电防护对UPS电源系统及通信端口的雷电防护,应根据国家规定的有关规范,并根据应用环境的具体情况,因地制宜制定出切实可行的解决方案,建立有效的、科学的、经济的防雷系统。针对UPS系统的特点,其雷电防护应重点把握以下几点:要完善外部防雷设施,做好机房接地,根据《电子计算机房设计规范》,交流、直流工作地、保护地、防雷接地宜共用一组接地装置,其接地电阻按其中最小值要求确定,如必须分设接地,则必须于两地之间加装等电位共地联结器。不管采用怎样的接地系统,等电位连接都是非常重要的。UPS保护的往往都是大型的数据系统,对雷电反击更为敏感,即使很小的电位反击,也往往造成不必要的损失。要采取多级雷电防护措施。《建筑物防雷设计规范》、IEC61312-1都有明确的防雷分区的概念,将需要雷电防护的区域分为:LPZOA(OA区),该区内的各物体都可能遭受直接雷击,同时在该区内雷电产生的电磁场能自由传播,没有衰减。LPZOB(OB区),该区内的各物体在接闪器的保护范围内,不会遭受直接雷击,但该区内的雷电电磁场因没有屏蔽装置,雷电产生的电磁场也能自由传播,没有衰减。LPZ1(1区),该区内的各个物体因在建筑内,不会遭受直接雷击,流经各导体的电流比LPZOB区更小,本区内的雷电电磁场根据屏蔽措施的不同而有不同衰减。LPZ2(2区),当需要进一步减小雷电和电磁场时,应引入后续防雷区,并按照需要保护系统所要求的环境选择后续防雷区的要求条件。安装适当规格的避雷器。雷电防护的中心内容是泄放和均衡,泄放将雷电流尽可能多的、尽可能远的是泄放于地,而拒之于通信系统之外。所谓多级防护就是按照电磁兼容的原理,分层次地对雷电流进行削弱,在动力线进户配电柜、楼层配电柜以及机房进户配电盒,安装适当规格的避雷器。

对于有信号或通信接口的UPS,为防止雷电波从信号或通信线引入,必须在信号或通信线接口处加装相应的信号避雷器。避雷器的选择与安装避雷器产品市场目前比较丰富,应尽量选择有信誉、质量可靠的避雷器,避雷器的接地线应不少于6mm2,以最直最短的引线连接,在接线方式上最好采用凯文接线方式,最大限度地减少引线上的感应电压。UPS电源专用防雷箱和UPS电源必须进行接地,接地电阻一般应不大于4欧姆,防雷器和UPS电源要进行等电位连接,UPS输出线路要有地线。接地系统最好采用高质量的接地模块,这些可以保证接地电阻的可靠性和抗腐蚀性,也避免了每间隔1-2年改造地网,为使用单位节省了费用。结束语随着UPS电源智能化程度的提高,UPS电源往往已经不仅仅是一台电网停电后可以继续为负载供电的整机产品,而是一个局部的高度可靠,性能齐全、高智能化的供电中心,对于保证信息网络的数据安全与畅通有着重要作用。分析UPS电源雷电防护的重要性与必要性,是本文的目的所在,希望引起大家对此问题的重视。对UPS电源系统的雷电防护,是一专业性很强的工作,最好在专业人员的指导下进行。要注意系统化的考虑问题。接闪、屏蔽、接地、等电位、分区防雷等各项因素综合考虑,作好接地系统是防雷系统的基础与关键,特别是在一些新建校区中是不容忽视的重要因素。

机房防雷接地施工工艺

编号: 机房防雷接地系统施工工艺 要求 ?浪涌保护器的规格、型号应符合设计要求,浪涌保护器安装位置、安装方式应符合 设计要求或产品安装说明书的要求 ?接地装置的规格、型号必须符合设计要求,并有相关机构出具的检测报告。 ?测试仪表应为接地电阻测试仪,量程在0.001~100Ω时,精度应为±2%(读数+2 个数)。 ?为保持稳定的系统信号及可靠的安全接地,机房内所有电源插座的极性必须保持一 致。 ?严禁在电源插座内将交流工作地与安全地连接在一起。 施工机具 电工组合工具、手锤、钢锯、电锤、冲击钻、电气焊机具、卷尺、小线、线坠、卷尺、粉线袋、大绳、绞磨(或倒链)、紧线器、铁镐、铁锹等。 作业条件 ?地面找平、防锈等施工已经完毕。 ?地板下均压环及静电带施工应配合桥架、配线及防静电地板等施工进行,项目经理 根据工程进度,合理安排接地系统与其他施工工序衔接,避免交叉打架现象。 ?各预留接地线预留到位。 技术准备 ?施工图纸和技术资料齐全。 ?施工方案编制完毕并经审批。 ?施工前应组织施工人员熟悉图纸、方案,并进行安全、技术交底。

操作工艺 工艺流程: 等电位均压带→汇流排施工→大楼接地体电阻测试→接地体制作→电源防雷器安装→信号防雷器安装→分项验收。 等电位均压带制作 主机房和辅助区的地板或地面应有静电泄放措施和接地构造,防静电地板、地面的表面电阻或体积电阻值应为2.5×104~1.0×109Ω,且应具有防火、环保、耐污耐磨性能。 等电位联结网格应采用截面积不小于25mm2的铜带或裸铜线,并应在防静电活动地板下构成边长为0.6~3m的矩形网格。铜排之间连接采用钻孔,螺丝拧紧,要求更高的采用氧焊焊接。 每台电子信息设备(机柜)应采用两根不同长度的 等电位联结导体就近与等电位联结网格连接。机房四个 角的静电地板支撑架应采用不小于6 mm2的铜芯线连接 到均压环上。 等电位连接带应与地绝缘悬浮安装。 接地引线与接地极相连之前,宜安装接地连接箱, 作为接地阻值的测试点。

分析通信电源设备的运行安全论文.

分析通信电源设备的运行安全论文 2018-12-22 关键词:通信系统电源设备运行安全维护 摘要:通信电源系统是对通信局站各种通信设备及建筑负荷等提供用电的设备和系统的总称。主要由备用发电系统、高压供电系统、变压器系统、不间断电源系统、后备电源系统、直流系统、接地防雷系统以及动力环境监控系统等多个子系统组成。通信离不开电源,通信电源是通信的保障,所以保证通信电源系统的安全运行,对保证通信系统的畅通乃至通信的安全有着积极的意义。 1 加强通信设备的过电压防护 以大规模集成电路为核心的通信设备随着信息科学技术的发展而得到广泛应用,比分立元器件设备体积小、运行速度快、功耗小、故障率低、便于维护管理是其显着的优点。但它绝缘强度低,工作电压低,承受过电压能力弱,是属于低电平、微电流系列的电子设备。当受到电网过电压或雷电干扰时,电子通讯设备往往会受到较大的破坏。据有关研究显示,过电压对电子通信设备造成的故障损坏比重占到总事故的三至四成。因此加强通信设备的过电压防护,降低设备故障率,已经成为通信维修工作的重中之重。 1.1 加强电源设备的雷电过电压防护 电源是通信设备安全运行的.基础,一个良好的电源系统,为通信设备的安全运行提供了坚实的基础。首先要消除由于雷电干扰引起的过电压对通信电源的不良影响。信息产业部发布了专门的通信电源防雷标准,对各种通信站的电源防雷提出了具体要求,主要是两条:一是电力电缆应有金属屏蔽层,且必须埋地进出通信站。其次是在电源上逐级全面加装电源防雷器,实现多等级防护。即在变压器的低压侧加装低压防雷器,高压端加装高压防雷器,在直流配电屏和交流配电屏分别加装直、交流防雷器。防雷设计是保证通信电源系统可靠运行的不可缺少的环节,雷电对信息设备产生危害的根本原因在于雷电电磁脉冲,这种雷电电磁脉冲包括雷电流和雷电电磁场。产生过电压的根源是雷电流,而雷电电磁场则是产生感应过电压的根源。对于通信设备来说,雷电过电压来源主要包括直击雷/感应雷过电压、雷电侵入波和反击过电压。在一般情况下,通信电源必须采取概率防护、系统防护和多级防护的防雷原则,通信电源系统应采用多级防雷体系。而采用防雷器件时还应该考虑到防雷器件对系统的影响,包括工工作电流、作电压、工作频率、谐波干扰、工作温度、绝缘等级、泄漏电流、插入损耗、结构形式、远程监控、操作与维护等,还有安规的影响等。 1.2 通信线路防止过电压

监控立杆防雷设计方案

监控立杆防雷设计方案 1、概述 每年各种通讯控制系统或计算机网络因雷击而损坏的事例屡见不鲜,其中安防监控系统因受到雷击而引起设备损坏、自动化监控失灵的事件也时常发生。道路监控子系统中,有一部分前端摄像机安装在室外,对于雷雨多发地区,容易遭受雷击损坏,因此极有必要对这些设备进行防雷保护。 道路监控系统中,分布在各处的室外型监控摄像机,其交流220V供电电源通过两芯电缆、视频信号通过带BNC接头的10Base2细缆、RS485通信控制信 号通过多芯电缆,传输至中心控制主机,进行集中监控。 为了防止雷电产生的感应过电压和过电流,在所有监控设备的电源线入口、信号线连接的设备两端均应安装相应的避雷器。监控系统中的前端摄像机一般分为室外安装型和室内安装型,室内型摄像机信号传输线缆和电源供给线缆均通过"地埋"方式布线,遭受雷击的机会较少。进行防雷器设备选型时,必须注意防雷保护器必须达到以下基本要求: 1)正常运行时,雷电保护器的接入应不影响信号的正常传输,雷电保护器的对地阻抗应尽可能大,串联在电路中的阻抗应尽可能小。 2)在雷电袭击通信总线时,雷电保护器应发挥良好的电压钳位作用,其钳位电压应低于RS485芯片的耐受电压水平。 3)在抑制不超过防雷器最大通流量的雷电袭击过程中,雷电保护器自身应完好。 4)雷电保护器对雷电袭击应具有足够快的响应速度。 二、监控系统防雷总体方案

1、直击雷的防护 直击雷的防护较简易的方法是采用避雷针,室外各球形摄像机由于分别分布在室外,距离较远,因此室外各摄像头须设计安装避雷针。具体设计方案为:在室外各球形摄像头的立杆上(立杆的顶部)分别安装一支避雷针,规格为 φ16×1000mm镀锌圆钢,安装方式为焊接。 2、防雷接地要求 防雷接地由引下线、接地线和接地体组成。引下线是引导雷击电流从避雷针入地的通道。接地体埋于地下与引下线相连接,雷击电流由此泄放到大地,接地体满足接地电阻的要求。多种接地体距离无法大于20M时,必须加装地网隔离器。接地线一般采用40×4mm镀锌扁铁或25mm2以上多股绝缘铜缆,一端焊接到接地体上,另一端引到室内的等电位连接排上。接地体与引下线或接地线一般采用搭接焊,焊接处必须牢固无虚焊,同时为确保接地电阻不大于 4Ω,必须将接地体与建筑物大楼的基础地网可靠连接。对于监控中心及靠近建筑物的摄像头我们设计采用抽建筑物主钢筋的方法作联合接地,对于远离建筑的摄像头则需要在摄像头旁做一套人工接地体,具体如下地网设计方案。 3、电源系统的防雷 由于雷电冲击波的主要能量集中在从工频附近几十赫兹到几百赫兹的低端,所以雷电冲击波能量就容易与工频回路发生耦合、谐振,于是雷电冲击波从电源线路进入电子设备的几率,要比从信号线中进入的几率高得多,据统计,约有80%的雷击损坏电子设备的事故是由电源线引入的,因此应特别加强系统中 设备电源的防雷措施。 1)在控制大楼总配电柜处,安装第一级加强型电源防雷器; 2)在中心控制室的监控系统配电箱处,安装第二级标准型电源防雷器;

施工现场临时用电接地与防雷的安全要求(正式)

编订:__________________ 单位:__________________ 时间:__________________ 施工现场临时用电接地与防雷的安全要求(正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8111-76 施工现场临时用电接地与防雷的安 全要求(正式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管 理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作, 使日常工作或活动达到预期的水平。下载后就可自由编辑。 1、在施工现场专用的中性点直接接地的电力线路中必须采用TN—S接零保护系统。电气设备的金属外壳必须护零线连接。保护零线应由工作接地线。配电室的电源侧零线或总漏电保护器电源侧的零线处引出。 2、当施工现场与外电线路共用同一个供电系统时,电气设备的接地、接零保护应与原系统保持一致。不得一部分设备做保护接零,另一部分设备作保护接地。 3、采用TN系统做保护接零时,工作零线(N线)必须通过总漏电保护器,保护零线(PE线)必须由电源进线零线重复接地处或总漏电保护器电源侧零线处,引出形成局部TN-S接零保护系统。 TN系统中的保护零线除必须在配电室或总配电箱处做重复接地外,还必须在配电系统的中间和末端

监控立杆防雷设计方案

监控立杆防雷设计方案 一、概述 每年各种通讯控制系统或计算机网络因雷击而损坏的事例屡见不鲜,其中安防监控系统因受到雷击而引起设备损坏、自动化监控失灵的事件也时常发生。道路监控子系统中,有一部分前端摄像机安装在室外,对于雷雨多发地区,容易遭受雷击损坏,因此极有必要对这些设备进行防雷保护。 道路监控系统中,分布在各处的室外型监控摄像机,其交流220V供电电源通过两芯电缆、视频信号通过带BNC接头的10Base2细缆、RS485通信控制信号通过多芯电缆,传输至中心控制主机,进行集中监控。 为了防止雷电产生的感应过电压和过电流,在所有监控设备的电源线入口、信号线连接的设备两端均应安装相应的避雷器。监控系统中的前端摄像机一般分为室外安装型和室内安装型,室内型摄像机信号传输线缆和电源供给线缆均通过"地埋"方式布线,遭受雷击的机会较少。进行防雷器设备选型时,必须注意防雷保护器必须达到以下基本要求: 1)正常运行时,雷电保护器的接入应不影响信号的正常传输,雷电保护器的对地阻抗应尽可能大,串联在电路中的阻抗应尽可能小。 2)在雷电袭击通信总线时,雷电保护器应发挥良好的电压钳位作用,其钳位电压应低于RS485芯片的耐受电压水平。 3)在抑制不超过防雷器最大通流量的雷电袭击过程中,雷电保护器自身应完好。 4)雷电保护器对雷电袭击应具有足够快的响应速度。 二、监控系统防雷总体方案

1、直击雷的防护 直击雷的防护较简易的方法是采用避雷针,室外各球形摄像机由于分别分布在室外,距离较远,因此室外各摄像头须设计安装避雷针。具体设计方案为:在室外各球形摄像头的立杆上(立杆的顶部)分别安装一支避雷针,规格为φ16×1000mm镀锌圆钢,安装方式为焊接。 2、防雷接地要求 防雷接地由引下线、接地线和接地体组成。引下线是引导雷击电流从避雷针入地的通道。接地体埋于地下与引下线相连接,雷击电流由此泄放到大地,接地体满足接地电阻的要求。多种接地体距离无法大于20M时,必须加装地网隔离器。接地线一般采用40×4mm镀锌扁铁或25mm2 以上多股绝缘铜缆,一端焊接到接地体上,另一端引到室内的等电位连接排上。接地体与引下线或接地线一般采用搭接焊,焊接处必须牢固无虚焊,同时为确保接地电阻不大于4Ω,必须将接地体与建筑物大楼的基础地网可靠连接。对于监控中心及靠近建筑物的摄像头我们设计采用抽建筑物主钢筋的方法作联合接地,对于远离建筑的摄像头则需要在摄像头旁做一套人工接地体,具体如下地网设计方案。 3、电源系统的防雷 由于雷电冲击波的主要能量集中在从工频附近几十赫兹到几百赫兹的低端,所以雷电冲击波能量就容易与工频回路发生耦合、谐振,于是雷电冲击波从电源线路进入电子设备的几率,要比从信号线中进入的几率高得多,据统计,约有80%的雷击损坏电子设备的事故是由电源线引入的,因此应特别加强系统中设备电源的防雷措施。 1)在控制大楼总配电柜处,安装第一级加强型电源防雷器; 2)在中心控制室的监控系统配电箱处,安装第二级标准型电源防雷器;

机房电源系统防雷设计(三级防雷)

机房电源系统防雷设计(三级防雷) a.电源第一级防雷 在机房所在楼层配电间总电源处并联安装一套雷科星LKX-B380/100型三相电源防雷箱,做 为电源的第一级防雷保护,共计1套。产品技术参数: 型号LKX-B380/100 标称通流容量In(kA, 8/20μs)60 最大通流容量Imax(kA, 8/20μs)100 保护水平(kV) 2.5 漏电流0.75U1mA (μA) ≤20 额定工作电压(V AC) 380 响应时间(ns) <25 持续工作电压(V AC) 385 工作温度(℃) -40~+85 b.电源第二级防雷 虽然已经在楼层总电源进线端安装了第一级的防雷器,但是当较大雷电流进入时,第一级防雷器可将绝大部分雷电流由地线泄放,而剩余的雷电残压还是相当高,因此第一级防雷器的安装,可以减少大面积的雷击破坏事故,但是并不能确保后接设备的万无一失还存在感应雷电流和雷电波的二次入侵的可能,需要在机房电源电源进线处安装电源第二级防雷器。 具体措施: 在机房总电源处并联安装一套雷科星LKX-B220/80型单相电源防雷箱,做为机房电源的第 二级防雷保护,共计1套。产品技术参数: 型号LKX-B220/80 标称通流容量In(kA, 8/20μs)40 最大通流容量Imax(kA, 8/20μs)80 保护水平(kV) 2.2 漏电流0.75U1mA (μA) ≤20 额定工作电压(V AC) 220 响应时间(ns) <25 持续工作电压(V AC) 385 工作温度(℃) -40~+85 c.电源第三级防雷 虽然已经安装了第二级的防雷器,但是当较大雷电流进入时,前二级防雷器可将绝大部分雷电流由地线泄放,而剩余的雷电残压还是相当高,还存在感应雷电流和雷电波的再次入侵的可能,需要在UPS电源进线处安装电源第三级防雷器。 具体措施:

通信工程电源系统防雷技术规定

通信工程电源系统防雷技术规定 1 总则 1.0.1 为确保通信局(站)站内通信设备和工作人员的安全,以及站内通信设备的正常工作,防止通信局(站)由于电源系统引入的雷害,特制定本规定。 1.0.2 本规定对新建通信局(站)电源系统的防雷做出了技术要求,改建、扩 建通信局(站)电源系统的雷电防护亦可参照执行。 1.0.3 本规定是通信工程电源系统防雷设计、设备选型、防护器件选择、施工监督和日常维护的技术依据。通信电源防护器件应采用部级主管部门鉴定合格的 产品。 1.0.4 通信电源系统的防雷应根据电源设备类型、运行及接地方式、安装地点 环境条件,因地制宜合理制定雷电防护措施,做到经济合理,安全可靠。 通信电源系统的防雷应统筹设计、统筹施工,加强随工验收和维护管理。 雷电活动特别强烈的地区,还应根据当地的实践经验,适当加强防雷措施。 1.0.5 从交流电力网高压线路开始,到通信设备直流电源入口端,通信电源系统自身除应采取分级协调的防护措施外,还应与通信系统的防雷、建筑物的防雷、通信局(站)的接地及通信系统电磁兼容要求协调配合。 1.0.6 本规定与国家标准、规范相矛盾时,应以国家标准、规范为准。如执行本规定个别条款有困难时,应充分论述理由,提出采取措施的报告,报主管部门 审批。 2 术语 2.0.1 避雷器的残压 放电电流通过避雷器时,其端子间所呈现的电压。

2.0.2 避雷器的持续运行电压 在运行中允许持久地施加在避雷器端子上的工频电压有效值。 2.0.3 雷电活动特别强烈地区 年平均雷暴日数超过90天的地区,或根据运行经验,雷害特别严重的地区。 2.0.4 模拟雷电冲击电压波 摸拟雷电冲击电压波如图2.0.4所示。图中: 1. 视在原点O 1 是指通过波前上A点(电压峰值的30%处)和B点(电压峰 值的90%处)作一直线与横轴相交之点。 2. 时间T指电压波上A,B两点间的时间间隔。 3. 波前时间T 1指由视在原点O 1 到D点(=1.67T处)的时间间隔。 4. 半峰值时间T 2指由视在原点O 1 到电压峰值,然后再下降到峰值一半处的时间间隔。 2.0.5 模拟雷电冲击电流波 模拟雷电冲击电流波如图2.0.5所示。图中: 1. 视在原点O 1 是指通过波前上C点(电流峰值的10%处)和B点(电流峰 值的90%处)作一直线与横轴相交之点。 2. 时间T指电流波上C,B两点间的时间间隔。 3.波前时间T 1指由视在原点O 1 到E点(=1.25T处)的时间间隔。 4. 半峰值时间指由视在原点O 1 到电流峰值,然后再下降到峰值一半的时间 间隔。 3 通信电源系统防雷与接地的组成

安防监控系统防雷设计方案

文档收集于互联网,已重新整理排版.word版本可编辑.欢迎下载支持. 1文档来源为:从网络收集整理.word版本可编辑. 安防监控系统防雷设计方案 1前言 安防监控系统防雷设计在实际应用中很少用到,但是这是很重要的一方面,尤其室外监控系统,雷电天气常出现的地方更应做防雷设计。 2概述 我们首先应准确了解安防监控系统的系统构成,进而,准确分析安防监控系统遭受雷击损害的主要原因以及可能的雷击过电压的入侵途径。在此基础上,选用合适的防雷保护装置,研究和探讨信号、电源线路的合理布放,明确屏蔽及接地方式,方可给出准确的、系统的防雷解决方案。有效提高安防监控系统的抗雷击过电压干扰能力,优化系统的整体防雷水平。 3安防监控系统构成、分类及雷电防护概述 3.1安防监控系统的构成 3.1.1安防监控系统,一般由以下三部分组成 前端部分:主要由黑白(彩色)摄像机、云台、防护罩、支架等组成。 传输部分:使用同轴电缆、电线、双绞线,采取架空、地埋或沿墙敷设等方式传输音频、视频、控制信号和馈送交、直流电源等。 终端部分:主要由控制设备、画面分割器、监视器、录像存储设备等组成。

3.1.2安防监控系统的防雷分类 依传输部分的传输方式分类,安防监控系统主要分为如下几类: 文档收集于互联网,已重新整理排版.word版本可编辑.欢迎下载支持1文档来源为:从网络收集整理.word版本可编辑. A.同轴电缆传输监控系统:雷电防护重点在于传输电缆的两端线路接口防护及传输电缆自身的保护; B.双绞线传输监控系统:雷电防护重点在于,前端及终端的电源防护及双绞线接口防护; C.光缆传输监控系统:雷电防护重点在于,前端及终端的电源防护及光缆自身屏蔽铠层及加强筋的防护; D.微波传输监控系统:防护重点在于,前后两站无线设备的自身直击雷防护。 3.2安防监控系统遭受雷击损害的主要原因 3.2.1直击雷 A.雷电直接击中露天的摄像机上,直接损毁设备; B.雷电直接击在线缆上,造成线缆熔断、损坏。 3.2.2雷电侵入波 安防监控系统的电源线、信号传输线或进入监控室的其它金属线缆遭到雷击或被雷电感应时,雷电波沿这些金属导线/导体侵入设备,导致高电位差使设备损坏。 3.2.3雷电感应 电磁感应:当附近区域有雷击闪络时,在雷击落实通道周围会产生强大的

监控系统立杆防雷设计方案

监控系统(立杆)防雷设计方案 编辑:万佳防雷负责人:杨帅一、概述 每年各种通讯控制系统或计算机网络因雷击而损坏的事例屡见不鲜,其中安防监控系统因受到雷击而引起设备损坏、自动化监控失灵的事件也时常发生。道路监控子系统中,有一部分前端摄像机安装在室外,对于雷雨多发地区,容易遭受雷击损坏,因此极有必要对这些设备进行防雷保护。 道路监控系统中,分布在各处的室外型监控摄像机,其交流220V供电电源通过两芯电缆、视频信号通过带BNC接头的10Base2细缆、RS485通信控制信号通过多芯电缆,传输至中心控制主机,进行集中监控。 为了防止雷电产生的感应过电压和过电流,在所有监控设备的电源线入口、信号线连接的设备两端均应安装相应的避雷器。监控系统中的前端摄像机一般分为室外安装型和室内安装型,室内型摄像机信号传输线缆和电源供给线缆均通过"地埋"方式布线,遭受雷击的机会较少。进行防雷器设备选型时,必须注意防雷保护器必须达到以下基本要求: 1)正常运行时,雷电保护器的接入应不影响信号的正常传输,雷电保护器的对地阻抗应尽可能大,串联在电路中的阻抗应尽可能小。 2)在雷电袭击通信总线时,雷电保护器应发挥良好的电压钳位作用,其钳位电压应低于RS485芯片的耐受电压水平。 3)在抑制不超过防雷器最大通流量的雷电袭击过程中,雷电保护器自身应完好。 4)雷电保护器对雷电袭击应具有足够快的响应速度。 二、监控系统防雷总体方案 1、直击雷的防护 直击雷的防护较简易的方法是采用避雷针,室外各球形摄像机由于分别分布在室外,距离较远,因此室外各摄像头须设计安装避雷针。具体设计方案为:在室外各球形摄像头的立杆上(立杆的顶部)分别安装一支避雷针,规格为φ16×1000mm镀锌圆钢,安装方式为焊接。 2、防雷接地要求 防雷接地由引下线、接地线和接地体组成。引下线是引导雷击电流从避雷针入地的通道。接地体埋于地下与引下线相连接,雷击电流由此泄放到大地,接地体满足接地电阻的要求。多种接地体距离无法大于20M时,必须加装地网隔

防雷接地安全基础知识专项培训

防雷接地安全基础知识专项培 训 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

防雷接地安全基础知识专项培训 一、雷电的危害分类: 一是雷直接击在建筑物上发生热效应作用和电动力作用;二是雷电的二次作用,即雷电流产生的静电感应和电磁感应。 二、雷电的具体危害表现如下: 1.雷电流高压效应会产生高达数万伏甚至数十万伏的冲击电压,如此巨大的电压瞬间冲击电气设备,足以击穿绝缘使设备发生短路,导致燃烧、爆炸等直接灾害。 2.雷电流高热效应会放出几十至上千安的强大电流,并产生大量热能,在雷击点的热量会很高,可导致金属熔化,引发火灾和爆炸。 3.雷电流机械效应主要表现为被雷击物体发生爆炸、扭曲、崩溃、撕裂等现象导致财产损失和人员伤亡。 4.雷电流静电感应可使被击物导体感生出与雷电性质相反的大量电荷,当雷电消失来不及流散时,即会产生很高电压发生放电现象从而导致火灾。 5.雷电流电磁感应会在雷击点周围产生强大的交变电磁场,其感生出的电流可引起变电器局部过热而导致火灾。 6.雷电波的侵入和防雷装置上的高电压对建筑物的反击作用也会引起配电装置或电气线路断路而燃烧导致火灾。 三、防雷系统主要有两种,直击防雷保护和雷电电磁脉冲防护。 四、安装防雷设施的具体措施 1.直击雷防护远离避雷针数十米甚至上百米处与来自雷云的下行先导接闪,从而扩大了避雷针的保护范围。针高4m、7m时保护半径分别为60m、76m(滚球半径45m计)。 2.电源系统的防雷 当建筑物遭受雷击或在建筑物近旁发生雷击时,强大的脉冲电流会在周围空间产生交变磁场(以雷电中心的范围内都可产生危险的过电压),处于磁场中的导体因此而感应出高电压,沿线路产生的过电压窜入设备,造成设备损坏。 (1)配电室。低压进线柜设置电涌保护器。其作用是防止直击雷和较强的雷电电磁脉冲雷击。经过这级保护,使雷击电流绝大部分泄地。 (2)办公楼。总配电箱设置电涌保护器1组,为办公楼电源一级防护。各楼层配电箱处设置电源防雷箱一台,并联接至电源进线侧,防雷接地线接至该开关箱接地端子,作二级防护。各办公室设置防雷插排,作三级防护。 (3)生产车间。在车间各个分电柜内分别设置电涌保护器1组,作一级防护。在生产设

安防视频监控系统的防雷设计方案【最新版】

安防视频监控系统的防雷设计方案1 视频监控系统防雷 1. 视频监控系统的组成 (1)前端部分:主要是由摄像机、镜头、云台、防护罩、支架、解码器等组成; (2)传输部分:使用电缆、电线采取架空、地埋或沿墙敷设等方式传输视频、音频或控制信号等; (3)终端部分:主要由画面分割器、监视器、控制设备、录像存储设备等组成。 2. 视频监控系统遭受雷击损害的主要原因 (1)直击雷:雷电直接击在露天的摄像机上造成设备损坏或雷电直接击在架空线缆上造成线缆损毁。这种雷击方式造成的损坏最严重,但出现几率比较小。

(2)感应雷:又称二次雷,它分为电磁感应和静电感应。当附近区域有雷击闪落时,在雷击落实通道周围会产生强大的顺变电磁场。处在电磁场的监控设备和传输线路会感应出较大的电动势,这种现象叫做电磁感应;当有带电的雷云出现时,在雷云下面的建筑物和传输线路上会感应出与雷云相反的电荷,这种现象叫做静电感应。感应雷造成的设备损坏没有直击雷造成的破坏大,但出现的几率比较高,约占现代雷击事故的80%以上。 (3)雷电侵入波:监控系统的电源线、信号传输线或进入监控室的其他金属线缆遭到雷击或被雷电感应时雷电波沿这些金属导线/导体侵入设备,导致高电位差使设备损坏。 二 监控立杆防雷接地设计 1. 众所周知,雷电具有极大的破坏性,其电压高达数百万伏,瞬间电流可高达数十万安培。雷击所造成的破坏性后果体现于下列三种层次: (1)设备损坏,人员伤亡;

(2)设备或元器件寿命降低; (3)传输或存储的信号、数据(模拟或数字)收到干扰或丢失,甚至使电子设备产生误动作而瘫痪整个系统。 对于监控点来说遭到直击雷破坏的可能性很小。随着现代电子技术的不断发展,大量精密电子设备的使用和联网,破坏大量电子设备的罪魁祸首主要是感应雷击、过电压、操作过电压一级雷电波入侵过电压,每年各种通讯控制系统或网络因雷击而受破坏的事屡见不鲜,其中安防监控系统因受到雷击引起设别损坏,自动化监控失灵的事件也常有发生。前端摄像机设计均为室外安装方式,对于雷雨多发地区必须设计安装防雷系统。 2. 室外摄像机大多数选择金属或水泥杆安装,在这里简要介绍金属立杆的选择要求: (1)监控杆为圆锥钢杆,其中双臂监控杆立杆高10米,臂长1.5米,壁厚4mm;单臂杆高12m,臂长1.5m,壁厚4mm。监控杆上口直径80mm,下口直径200mm。监控立杆的支臂为碳钢管,直径60mm,壁厚3mm;

低压电源系统浪涌保护器设计依据

低压电源系统浪涌保护器设计依据(节选) 《建筑物防雷设计规范》(GB50057-2010) 第4.3.6条 4、在电气接地装置与防雷接地装置共用或相连的情况下,应在低压电源线路引入的总配电箱、配电柜处装设Ⅰ级试验的电涌保护器。电涌保护器的电压保护水平值应小于或等于 2.5 kV。每一保护模式的冲击电流值,当无法确定时应取等于或大于 12.5 kA。 5、当 Yyn0型或 Dyn11型接线的配电变压器设在本建筑物内或附设于外墙处时,应在变压器高压侧装设避雷器;在低压侧的配电屏上,当有线路引出本建筑物至其他有独自敷设接地装置的配电装置时,应在母线上装设Ⅰ级试验的电涌保护器,电涌保护器每一保护模式的冲击电流值,当无法确定时冲击电流应取等于或大于 12.5 kA;当无线路引出本建筑物时,应在母线上装设Ⅱ级试验的电涌保护器,电涌保护器每一保护模式的标称放电电流值应等于或大于 5 kA。电涌保护器的电压保护水平值应小于或等于 2.5 kV。 6、低压电源线路引入的总配电箱、配电柜处装设I级实验的电涌保护器,以及配电变压器设在本建筑物内或附设于外墙处,并在低压侧配电屏的母线上装设I级实验的电涌保护器时,电涌保护器每一保护模式的冲击电流值,当电源线路无屏蔽层时可按本规范式(4.2.4-6)计算,当有屏蔽层时可按本规范式(4.2.4-7)计算,式中的雷电流应取等于150kA。 《建筑物电子信息系统防雷技术规范》(GB050343-2012) 第5.4.3条电源线路浪涌保护器的选择规定: 3、进入建筑物的交流供电线路,在线路的总配电箱等LPZOA 或LPZOB 与LPZ1 区交界处,应设置Ⅰ类试验的浪涌保护器或Ⅱ类试验的浪涌保护器作为第一级保护;在配电线路分配电箱、电子设备机房配电箱等后续防护区交界处,可设置Ⅱ类或Ⅲ类试验的浪涌保护器作为后级保护;特殊重要的电子信息设备电源端口可安装Ⅱ类或Ⅲ类试验的浪涌保护器作为精细保护。使用直流电源的信息设备,视其工作电压要求,宜安装适配的直流电源线路浪涌保护器。 4、浪涌保护器设置级数应综合考虑保护距离、浪涌保护器连接导线长度、被保护设备耐冲击电压额定值Uw 等因素。各级浪涌保护器应能承受在安装点上预计的放电电流,其有效保护水平Up/f应小于相应类别设备的Uw 。 5、LPZO 和LPZ1 界面处每条电源线路的浪涌保护器的冲击电流Iimp,采用当采用非屏蔽线缆时按公式(5.4.3- 1)估算确定;当采用屏蔽线缆时按公式

通信电源系统防雷知识

通信电源系统防雷知识 一、危害 今年,济南地区雷雨天气尤为频繁,频繁的雷击造成了人员伤亡,财产损失,同时也给我公司的通信设备造成了严重损害。雷击的产生轻则损坏设备电源板、用户板,重则烧毁重要通信设备,严重影响了我公司通信系统的正常运转,并将会造成巨大的损失,直接损失即为造成高昂的设备损坏,同时也会造成话费损失、客户追偿、客户流失等间接损失更是难以估测。 电路板及元器件损坏 设备损坏

二、雷电简介一)雷电产生

雷电是一种自然现象,其物理成因仍处于探索阶段,比较流行的是起电学说。 根据这种学说,雷电源于异性电荷群体间的起电机制。这里所说的异性电荷既可以是带大量正负极电荷的雷云,也可以是附有大量感应电荷的大地或物体表面。同时,异性电荷之间存在着电场,当电荷量增大或电荷间距缩小时,电场强度增大,若场强增大到超过空气的击穿场强,就会发生大气放电现象,伴随着强烈的光和声音,这便是人们常说的电闪雷鸣。 二)种类 我国的雷种主要有直击雷、球雷、感应雷和雷电侵入波等四种。 危害通信电源的雷击,大部分是雷电侵入波或感应雷,若通信电源遭直击雷或球雷,安装在附近的其他电信设备一般也将被损坏。 雷电侵入波是雷电发生时,雷电流经架空电线或空中金属管道等金属体产生冲击电压,冲击电压又随金属体的走向而迅速扩散,以致造成危害。 感应雷是指感应过压。雷击于电线或电气设备附近时,由于静电或电磁感应将在电线或电气设备上形成过压。没听到雷声并不表示没有雷击。 三)现状 由于城市规模扩大,城市热岛效应加剧,高层建筑造成大气静电场畸变,使雷击概率增大。同时,城市基础通信设施大幅增加,也大大提高了雷击概率。通信设备遭到雷击的严重威胁。

弱电机房防雷技术设计说明

弱电机房防雷技术设计说明 1、弱电机房系统综合防雷方案: 一、工程概述 弱电系统由各类弱电设备以及传输线路组成,系统采用了大量的集成元件,在雷击发生时,传输线路感应到雷电磁场产生过电压,可高达几千伏,对集成元件有较大的危害。监控系统中的传输线路许多处于LPZ0A非防雷区域。系统走线在布线阶段没有考虑与防雷引下线保持足够的距离,这些都为系统的安全运行留下了隐患。 一般认为,雷电的防护措施有隔离、等电位、钳位、均压、滤波、屏蔽、过压过流保护、接地等方法将雷电过电压、过电流及雷击电磁脉冲消除在设备外围,从而有效地保护各类设备。目前主要采用气体放电管、放电间隙、高频二极管、压敏电阻、瞬态二极管、晶闸管、高低通滤波器等元件根据不同频率、功率、传输速率、阻抗、驻波、插损、带宽、电压、电流等要求,组合成电源线、天馈线、信号线系列电涌保护器(SPD)安装在微电子设备的外连线路中,地线按共用接地原则接入系统的地线,才不至于造成电位反击。只有设计合理、安装合格,电涌保护器才能有效的防御雷电。

系统综合防雷在设计时主要采用以下标准,供设计时参考。 (1)IEC61024《建筑物防雷》 (2)IEC61312《雷电电磁脉冲的防护》 (3)ITU K25《光缆的防雷》 (4)GB50343《建筑物电子信息系统防雷技术规范》 (5)GB50057-94《建筑物防雷设计规范》 (6)GB50174-93《电子计算机机房设计规范》 (7)GB50200-94《有线电视系统工程技术规范》 (8)GB50198-94《民用闭路监视电视系统工程技术规范》 (9)GB/T50311-2000《建筑与建筑群综合布线系统工程设计规范》 二、雷击防护措施 (一)直击雷防护 直击雷防护包括弱电机房建筑物直击雷防护和系统前端设备直击雷防护,本方案在假定弱电机房控制室已完善直击雷防护措施的前提下进行,否则必须完善雷防护措施。 (二)机房弱电系统感应雷防护

施工现场接地与防雷安全要求实用版

YF-ED-J7442 可按资料类型定义编号 施工现场接地与防雷安全 要求实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

施工现场接地与防雷安全要求实 用版 提示:该操作规程文档适合使用于工作中为保证本部门的工作或生产能够有效、安全、稳定地运转而制定的,相关人员在办理业务或操作设备时必须遵循的程序或步骤。下载后可以对文件进行定制修改,请根据实际需要调整使用。 (1) 所有电气设备的金属外壳以及和电气 设备连接的金属构架等,除有特殊规定外,均 应有可靠的接地(零)保护。 (2) 在施工现场专用的中性点直接接地的 供电系统中,必须采用接零保护,且须设专用 保护零线,不得与工作零线共用。 (3) 专用保护零线应由工作接地线或由配 电室的零线或第一级漏电保护器电源侧的零线 引出。 (4) 在中性点不直接接地供电系统中,则

必须采用接地保护。 (5) 所有电气设备的保护零线应以并联方式与零干线连接。零线上严禁装设开关或熔断器。 (6) 严禁利用大地做零线或相线。 (7) 重复接地线与保护线相连,与电气设备相连接的保护零线应用截面不小于2.5mm攩2搅的绝缘多股铜线。保护零线除须在配电室或总配电箱处做重复接地外,还必须在配电线路中间处和末端处作重复接地。 (8) 施工现场的塔式起重机,井字架和金属脚手架,当其高度超过20m时,要设置防雷和重复接地装置,其接地电阻不大于10欧姆。

安防监控系统防雷设计_secret

安防监控系统防雷设计 一、概述 随着社会的发展进步,人民生活水平的不断提高,社会经济越趋活跃,对“安全”的需求越来越高,安防监控系统的防雷解决方案,我们首先应准确了解安防监控系统的系统构成,进而,准确分析安防监控系统遭受雷击损害的主要原因以及可能的雷击过电压的入侵途径。在此基础上,选用合适的防雷保护装置,研究和探讨信号、电源线路的合理布放,明确屏蔽及接地方式,方可给出准确的、系统的防雷解决方案。有效提高安防监控系统的抗雷击过电压干扰能力,优化系统的整体防雷水平。 二、安防监控系统构成、分类及雷电防护概述 1.安防监控系统的构成 安防监控系统,一般由以下三部分组成: 前端部分:主要由黑白(彩色)摄像机、云台、防护罩、支架等组成。 传输部分:使用同轴电缆、电线、多芯线,采取架空、地埋或沿墙敷设等方式传输音频、视频、控制信号和馈送交、直流电源等。 终端部分:主要由控制设备、画面分割器、监视器、录像存储设备等组成。 安防监控系统的防雷分类 依传输部分的传输方式分类,安防监控系统主要分为如下几类: A.同轴电缆传输监控系统:雷电防护重点在于传输电缆的两端线路接口防护及传输电缆自身的保护; B.双绞线传输监控系统:雷电防护重点在于,前端及终端的电源防护及双 绞线接口防护;

C.光缆传输监控系统:雷电防护重点在于,前端及终端的电源防护及光缆自身屏蔽铠层及加强筋的防护; D.微波传输监控系统:防护重点在于,前后两站无线设备的自身直击雷防护。 2.安防监控系统遭受雷击损害的主要原因 2.1直击雷 A.雷电直接击中露天的摄像机上,直接损毁设备; B.雷电直接击在线缆上,造成线缆熔断、损坏。 2.2雷电侵入波 安防监控系统的电源线、信号传输线或进入监控室的其它金属线缆遭到雷击或被雷电感应时,雷电波沿这些金属导线/导体侵入设备,导致高电位差使设备损坏。 2.3雷电感应 电磁感应:当附近区域有雷击闪络时,在雷击落实通道周围会产生强大的瞬变电磁场。处在电磁场中的监控设备和传输线路会感应出较大的电动势,以致损坏、损毁设备。 静电感应:当有带电的雷云出现时,在雷云下面的建筑物和传输线路上会感应出与雷云相反的束缚电荷。这种感应电荷在低压架空线路上可达100kV静电电位,信号线路上可40-60kV静电电位,一旦雷云放电后,束缚电荷迅速扩散,即引起感应雷击。 电磁感应和静电感应引发的雷击现象均称为感应雷,又称二次雷。它对设备的损害没有直击雷来的猛烈,但它要比直击雷发生的机率大得多,有统计显示,感应雷击约占现代雷击事故的80%以上。

防雷系统设计方案

防雷系统设计方案

防雷系统设计方案 防雷系统发展 电的普遍使用促进了防雷产品的发展,当高压输电网为 千家万户提供动力和照明时,雷电也大量危害高压输变 电设备。高压线架设高、距离长、穿越地形复杂,容易 被雷击中。避雷针的保护范围不足以保护上千公里的输 电线,因此避雷线作为保护高压线的新型接闪器就应运 而生。在高压线获得保护后,与高压线连接的发、配电 设备依然被过电压损坏,人们发现这是由于“感应雷”在 作怪。(感应雷是因为直击雷放电而感应到附近的金属 导体中的,感应雷可经过两种不同的感应方式侵入导 体,一是静电感应:当雷云中的电荷积聚时,附近的导 体也会感应上相反的电荷,当雷击放电时,雷云中的电 荷迅速释放,而导体中原来被雷云电场束缚住的静电也 会沿导体流动寻找释放通道,就会在电路中形成电脉 冲。二是电磁感应:在雷云放电时,迅速变化的雷电流 在其周围产生强大的瞬变电磁场,在其附近的导体中产 生很高的感生电动势。研究表明:静电感应方式引起的 浪涌数倍于电磁感应引起的浪涌。雷电在高压线上感应 起电涌,并沿导线传播到与之相连的发、配电设备,当 这些设备的耐压较低时就会被感应雷损坏,为抑制导线

中的电涌,人们创造了线路避雷器。 早期的线路避雷器是开放的空气间隙。空气的击穿电压很高,约500kV/m,而当其被高电压击穿后就只有几十伏的低压了。利用空气的这一特性人们设计出了早期的线路避雷器,将一根导线的一端连在输电线上,另一根导线的一端接地,两根导线的另一端相隔一定距离构成空气间隙的两个电极,间隙距离确定了避雷器的击穿电压,击穿电压应略高于输电线的工作电压,这样当电路正常工作时,空气间隙相当于开路,不会影响线路的正常工作。当过电压侵入时,空气间隙被击穿,过电压被箝位到很低的水平,过电流也经过空气间隙泄放入地,实现了避雷器对线路的保护。开放间隙有太多的缺点,如击穿电压受环境影响大;空气放电会氧化电极;空气电弧形成后,需经过多个交流周期才能熄弧,这就可能造成避雷器故障或线路故障。以后研制出的气体放电管、管式避雷器、磁吹避雷器在很大程度上克服了这些毛病,但她们依然是建立在气体放电的原理上。气体放电型避雷器的固有缺点:冲击击穿电压高;放电时延较长(微秒级);残压波形陡峭(dV/dt较大)。这些缺点决定了气体放电型避雷器对敏感电气设备的保护能力不强。半导体技术的发展为我们提供了防雷新材料,比如稳压管,其伏安特性是符合线路防雷要求的,只是其经

高频开关通信电源系统的组成及维护与故障处理解析

2008年 9月 25日第 25卷第 5 期 Telecom Power Technol ogy Sep. 25, 2008, Vol . 25No . 5 收稿日期 :2008206220 作者简介 :崔志东 (19782 , 男 , 大专 , 现就职于新乡中大电子有限公司 , 助工 , 主要从事通信电源 , 电力电源方面的设计开发工作 , E 2mail:zdczd @163. com 文章编号 :100923664(2008 0520061204技术交流 高频开关通信电源系统的组成及维护与故障处理 崔志东 1, 赵艳 2

(1. 新乡中大电子有限公司 , 河南新乡 453000; 2. 新乡市太行电源设备有限公司 , 河南新乡 453000 摘要 :结合高频开关通信电源系统的设计与运行维护经验 , 简要介绍了高频开关通信电源系统的主要组成部分———交流配电单元、整流器单元、直流配电单元、监控单元 , 蓄电池组单元等 , 关键词 :通信电源 ; 交流配电 ; 整流器 ; 直流配电 ; 蓄电池组中图分类号 :T N 86 T M 711 文献标识码 :A The on H and Fault Treat m ent I Zhi 2dong 1 , ZHAO Yan 2 1. Zhongda Electr onic Co . L td . , Xinxiang City, Xinxiang 453000, China; 2. Taihang Power Equi pment Co . L td . , Xinxiang City, Xinxiang 453000, China Abstract:Combining with the design and maintenance experience of high 2frequency s witching mode power supp ly system, this paper briefly intr oduces its main component including AC power distributi on unit, rectifier unit, DC power distributi on unit, contr ol modules, battery units and s o on, p resents the issues that should be paid attenti on t o in r outine maintenance and fault treat m ent . Key words:communicati on power supp ly; alternating current distributi on; rectifier; DC distributi on; battery gr oup 高频开关通信电源系统是一种智能型无人值守式

安防监控系统防雷设计方案

安防监控系统防雷设计方案 一、概述 众所周知,雷电具有极大的破坏性,其电压高达数百万伏,瞬间电流可高达数十万安培。雷击所造成的破坏性后果体现于下列三种层次: ①设备损坏,人员伤亡; ②设备或元器件寿命降低; ③传输或储存的信号、数据(模拟或数字)受到干扰或丢失,甚至使电子设备产生误动作而暂时瘫痪或整个系统停顿。 目前,世界上各种建筑、设施大多数仍在使用传统的避雷针防雷。用避雷针防止直接雷击实践证明是经济和有效的。但是,随着现代电子技术的不断发展,大量精密电子设备的使用和联网,避雷针对这些电子设备的保护却显得无能为力。避雷针不能阻止感应雷击过电压、操作过电压以及雷电波入侵过电压,而这类过电压却是破坏大量电子设备的罪魁祸首。每年各种通讯控制系统或网络因雷击而受破坏的事例屡见不鲜,其中安防监控系统因受到雷击引起设备损坏,自动化监控失灵的事件也常有发生。安防监控子系统中部分前端摄像机设计为室外安装方式,对于雷雨多发地区必须设计安装防雷电系统。 二、方案设计说明 系统防雷方案包括外部防雷和内部防雷两个方面:外部防雷包括避雷针、避雷带、引下线、接地极等等,其主要的功能是为了确保建筑物本体免受直击雷的侵袭,将可能击中建筑物的雷电通过避雷针、避雷带、引下线等,泄放入大地。

内部防雷系统是为保护建筑物内部的设备以及人员的安全而设置的。通过在需要保护设备的前端安装合适的避雷器,使设备、线路及大地形成一个有条件的等电位体。将可能进入的雷电流阻拦在外,将因雷击而使内部设施所感应到的雷电流得以安全泄放入地,确保后接设备的安全。 避雷带、引下线(建筑物钢筋)和接地等构成的外部防雷系统,主要是为了保护建筑物本体免受雷击引起的火灾事故及人身安全事故,而内部防雷系统则是防止感应雷和其他形式的过电压侵入设备造成损坏,这是外部防雷系统无法保证的。 雷电对电气设备的影响,主要由以下四个方面造成: ①直击雷; ②传导雷; ③感应雷; ④开关过电压。 直击雷:雷电直接击中建筑物,雷电的不到50%的能量将会从引下线等外部避雷设施泄放到大地,其中接近40%的能量将通过建筑物的供电系统分流,其中5%左右的能量通过建筑物的通信网络线缆分流,其余的雷击能量通建筑物的其他金属管道、缆线分流。这里的能量分配比例会随着建筑物内的布线状况和管线结构而变化。直击雷波形为10/350us。 传导雷(雷电波侵入):在更大的范围内(几公里甚至几十公里),雷电击中电力或信息通讯线路,然后沿着传输线路侵入设备。其中地电位反击也是传导雷中的一种:雷电击中附近建筑物或附近其他物体、地面,导致地电压升高,并在周围形成巨大的跨步电压。雷电可能通过接地系统或

相关主题
文本预览
相关文档 最新文档