当前位置:文档之家› layout参数提取以及后仿真

layout参数提取以及后仿真

layout参数提取以及后仿真
layout参数提取以及后仿真

使用Calibre xRC实现RFCMOS电路的寄生参量提取

及后仿真

郭慧民

[摘要]

Calibre xRC是Mentor Graphics公司用于寄生参量提取的工具,其强大的功能和良好的易用性使其得到业界的广泛认可。本文以采用RFCMOS工艺实现的LNA为例,介绍使用Calibre xRC对RFCMOS电路寄生参量提取,以Calibreview 形式输出以及在Virtuoso的ADE中直接后仿真的流程。本文还将讨论Calibre xRC特有的XCELL方式对包含RF器件的电路仿真结果的影响。

采用Calibre xRC提取寄生参量

采用RFCMOS工艺设计低噪声放大器(LNA),其电路图如图1所示,版图如图2所示。

图1 LNA的电路图

图2 LNA的版图

Calibre支持将其快捷方式嵌入在Virtuoso平台中。用户只需在自己.cdsinit文件中加入以下一行语句:

load( strcat( getShellEnvVar("MGC_HOME") "/lib/calibre.skl" ))

就可以在virtuoso的菜单中出现“calibre”一项,包含如下菜单:

点击Run PEX,启动Calibre xRC的GUI,如图3所示。Outputs菜单中的Extraction Type里,第一项通常选择Transistor Level或Gate Level,分别代表晶体管级提取和门级提取。第二项可以选择R+C+CC,R+C,R,C+CC,其中R 代表寄生电阻,C代表本征寄生电容,CC代表耦合电容。第三项可以选择No Inductance,L或L+M,分别代表不提取电感,只提取自感和提取自感与互感。这些设置由电路图的规模和提取的精度而定。

在Format一栏中,可以选择SPECTRE,ELDO,HSPICE等网表形式,也可以

选择Calibre xRC提供的CALIBREVIEW形式。本文中选择CALIBREVIEW形式。Use Names From可以根据需要选择SCHEMATIC或LAYOUT。

图3 PEX的GUI界面

设置完毕后,点击Run PEX,开始寄生参量提取。通常,Calibre xRC先执行LVS,之后提取寄生参量,最后将电路图中的原有的器件和提取出的寄生电容,电阻和电感反馈到一新生成的带寄生信息的电路图中。PEX完成后,弹出如下对话框:

图4 Calibre View设置界面

其中,Output Library表示输出新生成的电路图的library,通常选为提取

寄生参量前的schematic和symbol所在的library即可。Calibre View Type 代表新生成的schematic的View形式,可以取任意名字,只要不与已有的view name重复即可。比如,取做calibre_r,calibre_rc或calibre_rcc,以分别代表不同的提取形式,本文中直接取成calibre。Cellmap File是描述寄生参量提取前后器件对应关系的文件,默认的是./calview.cellmap,即Virtuoso启动目录下的calview.cellmap文件。如果是第一次提取,需要按下面步骤配置这个文件。其他选项默认即可。

点击OK,即开始配置calview.cellmap文件,首先弹出如图5左所示对话框:

图5 设置calview.cellmap文件的对话框

这个对话框用来配置在新生成的带有寄生参量的电路图中的器件所对应的library,cell和view。本文中名为nmos_rfw5与foundry的PDK中提供的rfnmos2v5w的symbol相对应。点击Auto Map Pins,将自动出现Pin Map。如果不能自动匹配,通常是由于layout提取出的器件的pin的个数和symbol中pin的个数不一致,可以通过修改rule文件使其pin的数目一致。这样新生成的带寄生参量的电路图中将以这个symbol代表这个器件。其他的器件依此类推。最后要确定提出的寄生电容和寄生电阻的符号,通常采用analogLib中的cap 和res即可,如图5右所示。

全部器件设置完成后,在所选的Output Library中将出现cellname为lna,view为calibre的cell。打开后通常无法直接看到器件,这是由于其中包含的symbol太多,每个symbol太小难以全部显示。可以执行CTRL+A,找到symbol 的大致位置,再放大查看。这个calbre的view中包含了与symbol对应的pin,原来电路图中器件的符号,和生成的寄生电容和电阻,它们构成了带有寄生信息的电路图。因此,可以直接使用这个电路图进行后仿真。

直接在ADE中进行后仿真

直接采用前仿真时的测试电路,在composer中通过Tools->Analog Environment启动ADE。在setup菜单中选择Environment,弹出如图6所示对话框。

图6 ADE中的Environment对话框

在Switch View List中的最前端填入calibre。工具生成网表时,将按照顺序首先寻找名为calibre的view,然后是spectre,依此类推。如果需要仿真不同参数提取条件下的结果,只要将相应的view名称(比如calibre_r,calibre_rc,calibre_rcc等)放置在最前端Switch View List即可。其它各项默认,点击OK。选择仿真类型,进行仿真,这一步骤与前仿真完全相同。图7给出了本例中的LNA前仿真和提取RCC之后的后仿真的瞬态结果对比。由此可见,采用calibreview的输出形式能够非常方便的在Virtuoso的ADE中进行后仿真和比较前后仿真结果。

图7 LNA前仿真和后仿真瞬态波形对比

使用XCELL避免寄生参量的重复提取

图1中,黑线框所示为RF器件。与一般的MOS器件不同,这类器件的模型是代工厂经过实际测量得到的参数,在spice model中通过子电路表示。因此,它的模型中已经包含了器件的寄生信息。而且,由于这类器件的面积通常较大,其中的寄生电容和寄生电阻值是相当可观的。比如,在本设计中,所示的每个RFMOSFET的宽和长分别为500um和0.24um,每个器件包含50个finger。如果工具对RF器件的内部也进行提取,将会对导致器件的寄生电容和电阻重复提取。为了确保提取正确,Calibre xRC提供一种称为“黑盒”提取的方法,可以将指定的器件(通常是RF器件)看作理想器件,对其内部的节点之间的寄生电容和寄生电阻不再提取。具体步骤如下:

首先,先定义xcell文件,例如;

cellL cellL

cellR cellR

cellM cellM

左边是版图单元的名称,右边是电路图单元的名称。其中所指定的器件版图和电路图必须是单独的单元。通过这种方式定义版图和原理图单元的对应关系,以及提取寄生时所需要屏蔽的版图单元。其次,在XRC rule中添加PEX IDEAL

XCELL YES语句。最后,采用gate level的方式进行寄生参量提取,确保工具将RF器件识别为一子电路。如果采用GUI的方式,在图3所示的界面中,选择gate level提取,而不是transistor level级提取。同时在input选项中的xcell 部分选择已写好的xcell文件,如图8所示。

图8 设置xcell的界面

完成以上设置后,运行PEX进行寄生参量提取,步骤与未采用XCELL时相同。XCELL对LNA仿真结果的影响

图9,图10和图11分别给出了是否采用XCELL对LNA瞬态性能,S21参数和噪声系数的影响。

图9 是否采用XCELL对LNA的瞬态性能的影响

图10 是否采用XCELL对LNA的S21的影响

图11 是否采用XCELL对LNA的NF的影响

可见,是否采用XCELL对LNA的性能有比较大的影响。主要有两个原因:首先,不加XCELL将RF器件内部的栅电容提了出来,增大了负载电容,降低的S21,进而降低了电压增益。其次,不加XCELL将RF器件内部的栅电阻提了出来,增大的噪声系数。因此,对于像LNA这种对寄生电阻和电容非常敏感的模块,在提取时必须采用XCELL,避免将RF器件内部的寄生电容和电阻提出,才能得到准确的结果。

总结

Calibre xRC是Mentor Graphics公司著名的验证工具Calibre的寄生参数提取模块,它具有丰富的输出格式,支持数字、模拟、射频及混合电路的寄生参数提取。Calibre xRC被主流foundry所支持,具有良好的精确性,特别是对于模拟和射频电路,输出能够反标回主流的仿真工具中,满足不同的设计流程。使用Calibre xRC进行寄生参量提取时,选择calibreview的输出形式,可以非常方便的在Virtuoso的ADE中直接进行后仿真,以及进行前后仿真结果的比较。对于习惯Virtuoso图形化界面进行仿真的用户,采用Calibre view的输出可以让版图,后仿真非常平滑的连接在一起,让设计流程更顺畅。Calibre xRC还提供XCELL的特殊提取形式能够避免采用Design Kit方式设计的器件(比如PCELL、RF)内部寄生参量重复提取,确保仿真结果准确无误,降低设计流片失败的风险,提高芯片的良率。

通信仿真课程设计-matlab-simulink

成都理工大学工程技术学院 《通信仿真课程设计》报告 班级:信息工程1班 姓名:寇路军 学号: 201620101133 指导教师:周玲 成绩: 2019 年 3月 23 日

目录 通信仿真课程设计报告 (2) 一.绪论 (2) 二.课程设计的目的 (2) 三.模拟调制系统的设计 (3) 3.1 二进制相移键控调制基本原理 (3) 3.2 2PSK信号的调制 (3) 3.2.1模拟调制的方法 (3) 3.3 2PSK信号的解调 (4) 3.4 2PSK的“倒∏现象”或“反向工作” (5) 3.5功率谱密度 (5) 四.数字调制技术设计 (7) 4.1 2PSK的仿真 (7) 4.1.1仿真原理图 (7) 4.1.2 仿真数据 (7) 4.1.3 输出结果 (9) 总结 (10) 参考文献 (11)

通信仿真课程设计报告 一.绪论 随着社会的快速发展,通信系统在社会上表现出越来越重要的作用。目前,我们生活中使用的手机,电话,Internet,ATM机等通信设备都离不开通信系统。随着通信系统与我们生活越来越密切,使用越来越广泛,对社会对通信系统的性能也越高。另外,随着人们对通信设备更新换代速度越来越快。不得不缩短通信系统的开发周期以及提高系统性能。针对这两方面的要求,必需要通过强大的计算机辅助分析设计技术和工具才能实现。自从现代以来,计算机科技走上了快速发展道路,实现了可视化的仿真软件。 通信系统仿真,在目前的通信系统工程设计当中。已成为了不可替代的一部分。它表现出很强的灵活性和适应性。为我们更好地研究通信系统性能带来了很大的帮助。本论文主要针对模拟调制系统中的二进制相移键控调制技术进行设计和基于Simulink进行仿真。通过系统仿真验证理论中的结论。本论文设计的目的之一是进一步加强理论知识,熟悉Matlab软件。 Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。Simulink具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink 已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。同时有大量的第三方软件和硬件可应用于或被要求应用于Simulink。 二.课程设计的目的 1.掌握模拟系统2PSK调制和解调原理及设计方法。 2.熟悉基于Simulink的通信系统仿真。

Simulink仿真参数设定

simulink中的solver各选项表示的意思ZZ 2007-05-11 21:12 | (分类:默认分类) 构建好一个系统的模型之后,接下来的事情就是运行模型,得出仿真结果。运行一个仿真的完整过程分成三个步骤:设置仿真参数,启动仿真和仿真结果分析。 一、设置仿真参数和选择解法器 设置仿真参数和选择解法器,选择Simulation菜单下的Parameters命令,就会弹出一个仿真参数对话框,它主要用三个页面来管理仿真的参数。 Solver页,它允许用户设置仿真的开始和结束时间,选择解法器,说明解法器参数及选择一些输出选项。 Workspace I/O页,作用是管理模型从MATLAB工作空间的输入和对它的输出。 Diagnostics页,允许用户选择Simulink在仿真中显示的警告信息的等级。 1、Solver页 此页可以进行的设置有:选择仿真开始和结束的时间;选择解法器,并设定它的参数;选择输出项。 仿真时间:注意这里的时间概念与真实的时间并不一样,只是计算机仿真中对时间的一种表示,比如10秒的仿真时间,如果采样步长定为0.1,则需要执行100步,若把步长减小,则采样点数增加,那么实际的执行时间就会增加。一般仿真开始时间设为0,而结束时间视不同的因素而选择。总的说来,执行一次仿真要耗费的时间依赖于很多因素,包括模型的复杂程度、解法器及其步长的选择、计算机时钟的速度等等。 仿真步长模式:用户在Type后面的第一个下拉选项框中指定仿真的步长选取方式,可供选择的有Variable-step(变步长)和Fixed-step(固定步长)方式。变步长模式可以在仿真的过程中改变步长,提供误差控制和过零检测。固定步长模式在仿真过程中提供固定的步长,不提供误差控制和过零检测。用户还可以在第二个下拉选项框中选择对应模式下仿真所采用的算法。 变步长模式解法器有:ode45,ode23,ode113,ode15s,ode23s,ode23t,ode23tb和discrete。ode45:缺省值,四/五阶龙格-库塔法,适用于大多数连续或离散系统,但不适用于刚性(stiff)系统。它是单步解法器,也就是,在计算y(tn)时,它仅需要最近处理时刻的结果y(tn-1)。一般来说,面对一个仿真问题最好是首先试试ode45。 ode23:二/三阶龙格-库塔法,它在误差限要求不高和求解的问题不太难的情况下,可能会比ode45更有效。也是一个单步解法器。 ode113:是一种阶数可变的解法器,它在误差容许要求严格的情况下通常比ode45有效。ode113是一种多步解法器,也就是在计算当前时刻输出时,它需要以前多个时刻的解。 ode15s:是一种基于数字微分公式的解法器(NDFs)。也是一种多步解法器。适用于刚性系统,当用户估计要解决的问题是比较困难的,或者不能使用ode45,或者即使使用效果也不好,就可以用ode15s。 ode23s:它是一种单步解法器,专门应用于刚性系统,在弱误差允许下的效果好于ode15s。它能解决某些ode15s所不能有效解决的stiff问题。 ode23t:是梯形规则的一种自由插值实现。这种解法器适用于求解适度stiff的问题而用户又需要一个无数字振荡的解法器的情况。 ode23tb:是TR-BDF2的一种实现, TR-BDF2 是具有两个阶段的隐式龙格-库塔公式。discrtet:当Simulink检查到模型没有连续状态时使用它。 固定步长模式解法器有:ode5,ode4,ode3,ode2,ode1和discrete。 ode5:缺省值,是ode45的固定步长版本,适用于大多数连续或离散系统,不适用于刚性系统。

Simulink系统仿真课程设计

《信息系统仿真课程设计》 课程设计报告 题目:信息系统课程设计仿真 院(系):信息科学与技术工程学院 专业班级:通信工程1003 学生姓名: 学号: 指导教师:吴莉朱忠敏 2012 年 1 月 14 日至2012 年 1 月 25 日 华中科技大学武昌分校制

信息系统仿真课程设计任务书

目录 摘要 (5) 一、Simulink仿真设计 (6) 1.1 低通抽样定理 (6) 1.2 抽样量化编码 (9) 二、MATLAB仿真设计 (12) 2.1、自编程序实现动态卷积 (12) 2.1.1 编程分析 (12) 2.1.2自编matlab程序: (13) 2.1.3 仿真图形 (13) 2.1.4仿真结果分析 (15) 2.2用双线性变换法设计IIR数字滤波器 (15) 2.2.1双线性变换法的基本知识 (15) 2.2.2采用双线性变换法设计一个巴特沃斯数字低通滤波器 (16) 2.2.3自编matlab程序 (16) 2.2.4 仿真波形 (17) 2.2.5仿真结果分析 (17) 三、总结 (19) 四、参考文献 (19) 五、课程设计成绩 (20)

摘要 Matlab 是一种广泛应用于工程设计及数值分析领域的高级仿真平台。它功能强大、简单易学、编程效率高,目前已发展成为由MATLAB语言、MATLAB工作环境、MATLAB图形处理系统、MATLAB数学函数库和MATLAB应用程序接口五大部分组成的集数值计算、图形处理、程序开发为一体的功能强大的系统。本次课程设计主要包括MATLAB和SIMULINKL 两个部分。首先利用SIMULINKL 实现了连续信号的采样及重构,通过改变抽样频率来实现过采样、等采样、欠采样三种情况来验证低通抽样定理,绘出原始信号、采样信号、重构信号的时域波形图。然后利用SIMULINKL 实现抽样量化编码,首先用一连续信号通过一个抽样量化编码器按照A律13折线进量化行,观察其产生的量化误差,其次利用折线近似的PCM编码器对一连续信号进行编码。最后利用MATLAB进行仿真设计,通过编程,在编程环境中对程序进行调试,实现动态卷积以及双线性变换法设计IIR数字滤波器。 本次课程设计加深理解和巩固通信原理、数字信号处理课上所学的有关基本概念、基本理论和基本方法,并锻炼分析问题和解决问题的能力。

实验一proteus仿真软件使用方法

实验一 Proteus仿真软件使用方法 一.实验目的: (1)了解Proteus仿真软件的使用方法。 (2)了解51单片机编程器Keil与Proteus仿真软件的联用方法。 二.实验要求: 通过讲授和操作练习,学会正确使用Proteus仿真软件及Keil编程及其联合调试。 三.实验内容: (1)Proteus 仿真软件介绍 Proteus 软件是由英国LabCenter Electronics 公司开发的EDA工具软件,由ISIS 和ARES两个软件构成,其中ISIS是一款便捷的电子系统仿真平台软件,ARES是一款高级的布线编辑软件。它集成了高级原理布线图、混合模式SPICE电路仿真、PCB设计以及自动布线来实现一个完整的电子设计。 通过Proteus ISIS软件的VSM(虚拟仿真技术), 用户可以对模拟电路、数字电路、模数混合电路,以及基于微控制器的系统连同所有外围接口电子元器件一起仿真。 图1是Proteus ISIS的编辑窗口: 图1 ISIS的编辑界面 图中最顶端一栏是“标题栏”,其下的“File View Edit ……”是“菜单栏”,再下面的一栏是“命令工具栏”,最左边的一栏是“模式选择工具栏”;左上角的小方框是“预览窗口”,其下的长方框是“对象选择窗口”,其右侧的大方框是“原理图编辑窗口”。 选择左侧“模式选择工具栏”中的图标,并选择“对象选择窗口”中的P按钮,就会出现如图2的元器件选择界面:

图2 元器件库选择界面 在元器件列表框中点击你需要的器件类型(例如:电阻-Resistors,单片机芯片-MicroprocessorICs, LED-Optoelectronics)或在左上角的关键字(Keywords)框中输入你需要的器件名称的关键字(如:信号源 - Clock, 运放 - CA3140等),就会在图2中间的大空白框列出你所需的一系列相关的元件。此时,你可用鼠标选中你要的元件,则图2右上角的预览框会显示你所要元件的示意图,若就是你要的元器件,则点击OK按钮,该元器件的名称就会列入位于图1左侧的“对象选择窗口”中(参见图1左侧下方框)。 所需元器件选择好后,在“对象选择窗口”选择某器件,就可以将它放到图1中的“原理图编辑窗口”中(若器件的方向不合适,你可以利用图1左下角的旋转按钮来改变它)。将所要的元器件都选好后,将它们安放到合适的位置,就可以用连接线把电路连接好,结果存盘(请按规定的目录存盘,并记住其路径/目录/文件名[学号-实验序号])。 (2)51单片机编程器– Keil V3的使用 Keil编程器可用于MCS-51单片机软件编程与调试,它的工作界面如图3所示: Keil编程器是Keil Software Inc/Keil Electronic GmbH 开发的基于80C51内核的微处理器软件开发平台,可以完成从工程(Project)的建立和管理、程序的编译和连接、目标代码的形成、软件仿真等一套完整的软件开发流程。它与Proteus挂接,可以进行单片机应用系统的硬件仿真。 汇编语言编程方法: ①打开“File”菜单→选择新建“New...”→在弹出的文本框(Text1)中编写所需的汇编语言程序→程序写好后,保存(从File→Save As..→选择某目录,文件名.ASM, 存盘); ②打开“Project”菜单→选择新建工程“New Project...”→在弹出的窗口填写:工程名→保存(文件名的后缀是 .uv2 。此时图3的工程窗口中将建立Target1

simulink仿真全参数设置

1.变步长(Variable—Step)求解器 可以选择的变步长求解器有:ode45,ode23,ode113,odel5s,ode23s和discret.缺省情况下,具有状态的系统用的是ode45;没有状态的系统用的是discrete. 1)ode45基于显式Runge—Kutta(4,5)公式,Dormand—Prince对.它是—个单步求解器(solver)。也就是说它在计算y(tn)时,仅仅利用前一步的计算结果y(tn-1).对于大多数问题.在第一次仿真时、可用ode45试一下. 2)ode23是基于显式Runge—Kutta(2,3).Bogackt和Shampine对.对于宽误差容限和存在轻微刚性的系统、它比ode45更有效一些.ode23也是单步求解器.3)odell3是变阶Adams-Bashforth—Moulton PECE求解器.在误差容限比较严时,它比ode45更有效.odell3是一个多步求解器,即为了计算当前的结果y(tn),不仅要知道前一步结果y(tn-1),还要知道前几步的结果y(tn-2),y(tn-3),…; 4)odel5s是基于数值微分公式(NDFs)的变阶求解器.它与后向微分公式BDFs(也叫Gear方法)有联系.但比它更有效.ode15s是一个多步求解器,如果认为一个问题是刚性的,或者在用ode45s时仿真失败或不够有效时,可以试试odel5s。odel5s是基于一到五阶的NDF公式的求解器.尽管公式的阶数越高结果越精确,但稳定性会差一些.如果模型是刚性的,并且要求有比较好的稳定性,应将最大的阶数减小到2.选择odel5s求解器时,对话框中会显示这一参数.可以用ode23求解器代替。del5s,ode23是定步长、低阶求解器. 5)ode23s是基于一个2阶改进的Rosenbrock公式.因为它是一个单步求解器,所以对于宽误差容限,它比odel5s更有效.对于一些用odel5s不是很有效的刚性问题,可以用它解决. 6)ode23t是使用“自由”内插式梯形规则来实现的.如果问题是适度刚性,而且需要没有数字阻尼的结果,可采用该求解器. 7)ode23tb是使用TR—BDF2来实现的,即基于隐式Runge—Kutta公式,其第一级是梯形规则步长和第二级是二阶反向微分公式.两级计算使用相同的迭代矩阵.与ode23s相似,对于宽误差容限,它比odtl5s更有效. 8)discrete(变步长)是simulink在检测到模型中没有连续状态时所选择的一种求解器.

单片机系统设计与仿真软件

(此文档为word格式,下载后您可任意编辑修改!) PROTEUS —单片机系统设计与仿真软件 一、Proteus 6.7 Professional 界面简介 安装完Proteus后,运行ISIS 6.7 Professional,会出现以下窗口界面: 为了方便介绍,分别对窗口内各部分进行中文说明(见上图)。下面简单 介绍各部分的功能: 1.原理图编辑窗口(The Editing Window ):顾名思义,它是用来绘制原理图的。蓝色方框内为可编辑区,元件要放到它里面。注意,这个窗口是没有滚动条的,你可用预览窗口来改变原理图的可视范围。 2.预览窗口(The Overview Window ):它可显示两个内容,一个是:当你 在元件列表中选择一个元件时,它会显示该元件的预览图;另一个是,当你的鼠标焦点落在原理图编辑窗口时(即放置元件到原理图编辑窗口后或在原理图编辑窗口

中点击鼠标后),它会显示整张原理图的缩略图,并会显示一个绿色的方框,绿色 的方框里面的内容就是当前原理图窗口中显示的内容,因此,你可用鼠标在它上面点击来改变绿色的方框的位置,从而改变原理图的可视范围。 3.模型选择工具栏( Mode Selector Toolbar ):主要模型( Main Modes ): 1*选择元件(components)(默认选择的) 2* 放置连接点 3* 放置标签(用总线时会用到) 4* 放置文本 5* 用于绘制总线 6* 用于放置子电路 7* 用于即时编辑元件参数 (先单击该图标再单击要修改的元件) 配件( Gadgets): 1*终端接口( terminals):有VCC、地、输出、输入等接口 2* 器件引脚:用于绘制各种引脚 3* 仿真图表( gra ph ) :用于各种分析,如Noise Analysis 4* 录音机 5* 信号发生器( generators) 6* 电压探针:使用仿真图表时要用到 7* 电流探针:使用仿真图表时要用到 8* 虚拟仪表:有示波器等 2D 图形( 2D Graphics): 1* 画各种直线 2* 画各种方框 3* 画各种圆 4* 画各种圆弧 5* 画各种多边形 6* 画各种文本 7* 画符号 8* 画原点等 4.元件列表( The Object Selector ):用于挑选元件( components)、终端接口 ( terminals)、信号发生器 (generators)、仿真图表(graph)等。举例,当你选择"元件 (components)”,单击"P”按钮会打开挑选元件对话框,选择了一个元件后(单击了“ OK ”后),该元件会在元件列表中显示,以后要用到该元件时,只需在元件列表中选择即可。 5.方向工具栏( Orientation Toolbar ):旋转:旋转角度只能是90 的整数倍。 翻转:完成水平翻转和垂直翻转。使用方法:先右键单击元件,再点击(左击)相应的旋

通信仿真课程设计-matlab-simulink

理工大学工程技术学院 《通信仿真课程设计》报告 班级:信息工程1班 姓名:寇路军 学号: 3 指导教师:周玲 成绩: 2019 年 3月 23 日

目录 通信仿真课程设计报告 (2) 一.绪论 (2) 二.课程设计的目的 (2) 三.模拟调制系统的设计 (3) 3.1 二进制相移键控调制基本原理 (3) 3.2 2PSK信号的调制 (3) 3.2.1模拟调制的方法 (3) 3.3 2PSK信号的解调 (4) 3.4 2PSK的“倒∏现象”或“反向工作” (5) 3.5功率谱密度 (5) 四.数字调制技术设计 (7) 4.1 2PSK的仿真 (7) 4.1.1仿真原理图 (7) 4.1.2 仿真数据 (7) 4.1.3 输出结果 (9) 总结 (10) 参考文献 (11)

通信仿真课程设计报告 一.绪论 随着社会的快速发展,通信系统在社会上表现出越来越重要的作用。目前,我们生活中使用的手机,,Internet,ATM机等通信设备都离不开通信系统。随着通信系统与我们生活越来越密切,使用越来越广泛,对社会对通信系统的性能也越高。另外,随着人们对通信设备更新换代速度越来越快。不得不缩短通信系统的开发周期以及提高系统性能。针对这两方面的要求,必需要通过强大的计算机辅助分析设计技术和工具才能实现。自从现代以来,计算机科技走上了快速发展道路,实现了可视化的仿真软件。 通信系统仿真,在目前的通信系统工程设计当中。已成为了不可替代的一部分。它表现出很强的灵活性和适应性。为我们更好地研究通信系统性能带来了很大的帮助。本论文主要针对模拟调制系统中的二进制相移键控调制技术进行设计和基于Simulink进行仿真。通过系统仿真验证理论中的结论。本论文设计的目的之一是进一步加强理论知识,熟悉Matlab软件。 Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。Simulink具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink 已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。同时有大量的第三方软件和硬件可应用于或被要求应用于Simulink。 二.课程设计的目的 1.掌握模拟系统2PSK调制和解调原理及设计方法。 2.熟悉基于Simulink的通信系统仿真。

PLC仿真软件

1.本软件无需安装,解压缩后双击S7_200.exe即可使用; 2.仿真前先用STEP 7 - MicroWIN编写程序,编写完成后在菜单栏“文件”里点击“导出”,弹出一个“导出程序块”的对话框,选择存储路径,填写文件名,保存类型的扩展名为awl,之后点保存; 3.打开仿真软件,输入密码“6596”,双击PLC面板选择CPU型号,点击菜单栏的“程序”,点“装载程序”,在弹出的对话框中选择要装载的程序部分和STEP 7 - MicroWIN的版本号,一般情况下选“全部”就行了,之后“确定”,找到awl文件的路径“打开”导出的程序,在弹出的对话框点击“确定”,再点那个绿色的三角运行按钮让PLC进入运行状态,点击下面那一排输入的小开关给PLC 输入信号就可以进行仿真了。 使用教程: 本教程中介绍的是juan luis villanueva设计的英文版S7-200 PLC 仿真软件(V2.0),原版为西班牙语。关于本软件的详细介绍,可以参考 https://www.doczj.com/doc/9c16028999.html,/canalPLC。 该仿真软件可以仿真大量的S7-200指令(支持常用的位触点指令、定时器指令、计数器指令、比较指令、逻辑运算指令和大部分的数学运算指令等,但部分指令如顺序控制指令、循环指令、高速计数器指令和通讯指令等尚无法支持,仿真软件支持的仿真指令可参考 https://www.doczj.com/doc/9c16028999.html,/canalPLC/interest.htm)。仿真程序提供了数字信号输入开关、两个模拟电位器和LED输出显示,仿真程序同时还支持对TD-200文本显示器的仿真,在实验条件尚不具备的情况下,完全可以作为学习S7-200的一个辅助工具。 仿真软件界面介绍:

matlab通信仿真课程设计样本

《matlab通信仿真设计》课程设计指导书 11月

课程设计题目1: 调幅广播系统的仿真设计 模拟幅度调制是无线电最早期的远距离传输技术。在幅度调制中, 以声音信号控制高频率正弦信号的幅度, 并将幅度变化的高频率正弦信号放大后经过天线发射出去, 成为电磁波辐射。 波动的电信号要能够有效地从天线发送出去, 或者有效地从天线将信号接收回来, 需要天线的等效长度至少达到波长的1/4。声音转换为电信号后其波长约在15~1500km之间, 实际中不可能制造出这样长度和范围的天线进行有效信号收发。因此需要将声音这样的低频信号从低频率段搬移到较高频率段上去, 以便经过较短的天线发射出去。 人耳可闻的声音信号经过话筒转化为波动的电信号, 其频率范围为20~20KHz。大量实验发现, 人耳对语音的频率敏感区域约为300~3400Hz, 为了节约频率带宽资源, 国际标准中将电话通信的传输频带规定为300~3400Hz。调幅广播除了传输声音以外, 还要播送音乐节目, 这就需要更宽的频带。一般而言, 调幅广播的传输频率范围约为100~6000Hz。 任务一: 调幅广播系统的仿真。 采用接收滤波器Analog Filter Design模块, 在同一示波器上观察调幅信号在未加入噪声和加入噪声后经过滤波器后的波形。采用另外两个相同的接收滤波器模块, 分别对纯信号和纯噪声滤波, 利用统计模块计算输出信号功率和噪声功率, 继而计算输出信噪比, 用Disply显示结果。 实例1: 对中波调幅广播传输系统进行仿真, 模型参数指标如下。

1.基带信号: 音频, 最大幅度为1。基带测试信号频率在100~6000Hz 内可调。 2.载波: 给定幅度的正弦波, 为简单起见, 初相位设为0, 频率为550~1605Hz 内可调。 3.接收机选频放大滤波器带宽为12KHz, 中心频率为1000kHz 。 4.在信道中加入噪声。当调制度为0.3时, 设计接收机选频滤波器输出信噪比为20dB, 要求计算信道中应该加入噪声的方差, 并能够测量接收机选频滤波器实际输出信噪比。 仿真参数设计: 系统工作最高频率为调幅载波频率1605KHz, 设计仿真采样率为最高工作频率的10倍, 因此取仿真步长为 8max 1 6.2310(1-1)10step t s f -==? 相应的仿真带宽为仿真采样率的一半, 即 18025.7(1-2)2step W KHz t == 设基带测试正弦信号为m(t)=Acos2πFt, 载波为c(t)=cos2πf c t, 则调制度为m a 的调制输出信号s(t)为 ()(1cos 2)cos 2(1-3)a c s t m Ft f t ππ=+ 容易求出, s(t)的平均功率为 21(1-4)24a m P =+ 设信道无衰减, 其中加入的白噪声功率谱密度为N 0/2, 那么仿真带宽(-W, W)内噪声样值的方差为 2002(1-5)2N W N W σ=?=

机器人系统常用仿真软件介绍

1 主要介绍以下七种仿真平台(侧重移动机器人仿真而非机械臂等工业机器人仿真): 1.1 USARSim-Unified System for Automation and Robot Simulation USARSim是一个基于虚拟竞技场引擎设计高保真多机器人环境仿真平台。主要针对地面机器人,可以被用于研究和教学,除此之外,USARSim是RoboCup救援虚拟机器人竞赛和虚拟制造自动化竞赛的基础平台。使用开放动力学引擎ODE(Open Dynamics Engine),支持三维的渲染和物理模拟,较高可配置性和可扩展性,与Player兼容,采用分层控制系统,开放接口结构模拟功能和工具框架模块。机器人控制可以通过虚拟脚本编程或网络连接使用UDP协议实现。被广泛应用于机器人仿真、训练军队新兵、消防及搜寻和营救任务的研究。机器人和环境可以通过第三方软件进行生成。软件遵循免费GPL条款,多平台支持可以安装并运行在Linux、Windows和MacOS操作系统上。 1.2 Simbad Simbad是基于Java3D的用于科研和教育目的多机器人仿真平台。主要专注于研究人员和编程人员热衷的多机器人系统中人工智能、机器学习和更多通用的人工智能算法一些简单的基本问题。它拥有可编程机器人控制器,可定制环境和自定义配置传感器模块等功能,采用3D虚拟传感技术,支持单或多机器人仿真,提供神经网络和进化算法等工具箱。软件开发容易,开源,基于GNU协议,不支持物理计算,可以运行在任何支持包含Java3D库的Java客户端系统上。 1.3 Webots Webots是一个具备建模、编程和仿真移动机器人开发平台,主要用于地面机器人仿真。用户可以在一个共享的环境中设计多种复杂的异构机器人,可以自定义环境大小,环境中所有物体的属性包括形状、颜色、文字、质量、功能等也都可由用户来进行自由配置,它使用ODE检测物体碰撞和模拟刚性结构的动力学特性,可以精确的模拟物体速度、惯性和摩擦力等物理属性。每个机器人可以装配大量可供选择的仿真传感器和驱动器,机器人的控制器可以通过内部集成化开发环境或者第三方开发环境进行编程,控制器程序可以用C,C++等编写,机器人每个行为都可以在真实世界中测试。支持大量机器人模型如khepera、pioneer2、aibo等,也可以导入自己定义的机器人。全球有超过750个高校和研究中心使用该仿真软件,但需要付费,支持各主流操作系统包括Linux, Windows和MacOS。 1.4 MRDS-Microsoft Robotics Developer Studio MRDS是微软开发的一款基于Windows环境、网络化、基于服务框架结构的机器人控制仿真平台,使用PhysX物理引擎,是目前保真度最高的仿真引擎之一,主要针对学术、爱好者和商业开发,支持大量的机器人软硬件。MRDS是基于实时并发协调同步CCR(Concurrency and Coordination Runtime)和分布式软件服务DSS(Decentralized Software Services),进行异步并行任务管理并允许多种服务协调管理获得复杂的行为,提供可视化编程语言(VPL)和可视化仿真环境(VSE)。支持主流的商业机器人,主要编程语言为C#,非商业应用免费,但只支持在Windows操作系统下进行开发。 1.5 PSG-Player/Stage/Gazebo

复杂过程控制系统设计与Simulink仿真

银河航空航天大学 课程设计 (论文) 题目复杂过程控制系统设计与Simulink仿 真 班级 学号 学生姓名 指导教师

目录 0. 前言 (1) 1. 总体方案设计 (2) 2. 三种系统结构和原理 (3) 2.1 串级控制系统 (3) 2.2 前馈控制系统 (3) 2.3 解耦控制系统 (4) 3. 建立Simulink模型 (5) 3.1 串级 (5) 3.2 前馈 (5) 3.3 解耦 (7) 4. 课设小结及进一步思想 (15) 参考文献 (15) 附录设备清单 (16)

复杂过程控制系统设计与Simulink仿真 姬晓龙银河航空航天大学自动化分校 摘要:本文主要针对串级、前馈、解耦三种复杂过程控制系统进行设计,以此来深化对复杂过程控制系统的理解,体会复杂过程控制系统在工业生产中对提高产品产量、质量和生产效率的重要作用。建立Simulink模型,学习在工业过程中进行系统分析和参数整定的方法,为毕业设计对模型进行仿真分析及过程参数整定做准备。 关键字:串级;前馈;解耦;建模;Simulink。 0.前言 单回路控制系统解决了工业过程自动化中的大量的参数定制控制问题,在大多数情况下这种简单系统能满足生产工艺的要求。但随着现代工业生产过程的发展,对产品的产量、质量,对提高生产效率、降耗节能以及环境保护提出了更高的要求,这便使工业生产过程对操作条件要求更加严格、对工艺参数要求更加苛刻,从而对控制系统的精度和功能要求更高。为此,需要在单回路的基础上,采取其它措施,组成比单回路系统“复杂”一些的控制系统,如串级控制(双闭环控制)、前馈控制大滞后系统控制(补偿控制)、比值控制(特殊的多变量控制)、分程与选择控制(非线性切换控制)、多变量解耦控制(多输入多输出解耦控制)等等。从结构上看,这些控制系统由两个以上的回路构成,相比单回路系统要多一个以上的测量变送器或调节器,以便完成复杂的或特殊的控制任务。这类控制系统就称为“复杂过程控制系统”,以区别于单回路系统这样简单的过程控制系统。 计算机仿真是在计算机上建立仿真模型,模拟实际系统随时间变化的过程。通过对过程仿真的分析,得到被仿真系统的动态特性。过程控制系统计算机仿真,为流程工业控制系统的分析、设计、控制、优化和决策提供了依据。同时作为对先进控制策略的一种检验,仿真研究也是必不可少的步骤。控制系统的计算机仿真是一门涉及到控制理论、计算机数学与计算机技术的综合性学科。控制系统仿真是以控制系统的模型为基础,主要用数学模型代替实际控制系统,以计算机为工具,对控制系统进行实验和研究的一种方法。在进行计算机仿真时,十分耗费时间与精力的是编制与修改仿真程序。随着系统规模的越来越大,先进过程控制的出现,就需要行的功能强大的仿真平台Math Works公司为MATLAB提供了控制系统模型图形输入与仿真工具Simulink,这为过程控制系统设计与参数整定的计算与仿真提供了一个强有力的工具,使过程控制系统的设计与整定发生了革命性的变化。

单闭环直流调速系统simulink仿真课程设计

目录 一、摘要.......................................................... - 3 - 二、课程设计任务 .................................................................................................... - 3 - 三、课程设计内容 .................................................................................................... - 3 - 1、PID控制原理及PID参数整定概述.................................................................... - 3 - 2、基于稳定边界法(临界比例法)的PID控制器参数整定算法 ............................ - 5 - 3、利用Simulink建立仿真模型............................................................................ - 8 - 4、参数整定过程 .................................................................................................- 12 - 5、调试分析过程及仿真结果描述.........................................................................- 16 - 四、总结 ...................................................................................................................- 17 - 五、参考文献 ...........................................................................................................- 17 -

基于MATLAB的数字基带传输系统的仿真-课程设计报告书

通信工程专业《通信仿真综合实践》研究报告 基于MATLAB的数字基带传输系统的仿真设计 学生:*** 学生学号:20***** 指导教师:** 所在学院:信息技术学院 专业班级:通信工程 中国 2016 年 5月

信息技术学院 课程设计任务书 信息技术院通信工程专业 20** 级,学号 201***** **** 一、课程设计课题: 基于MATLAB的数字基带传输系统的仿真设计 二、课程设计工作日自 2016 年 5 月 12 日至 2016 年 5 月 24 日 三、课程设计进行地点:图书馆 四、程设计任务要求: 1.课题来源: 指导教师指定题目 2.目的意义:. 1)综合应用《掌握和精通MATLAB》、《通信原理》等多门课程知识,使学生建立通信系统的整体概念 2)培养学生系统设计与系统开发的思想 3)培养学生独立动手完成课程设计项目的能力 3.基本要求: 1) 数字基带信号直接送往信道: 2)传输信道中的噪声可以看作加性高斯白噪声 3)可用滤波法提取定是信号 4)对传输系统要有清楚的理论分析 5)把整个系统中的各个子系统自行构造,并对其性能进行测试 6)最终给出信号的仿真结果(信号输出图形) 课程设计评审表

基于MATLAB 的数字基带传输系统的仿真 概述 :本课程设计主要研究了数字信号的基带传输的基本概念及数字信号基带传输的传输过程和如何用MATLAB 软件仿真设计数字基带传输系统。首先介绍了本课题的理论依据及相关的基础知识,包括数字基带信号的概念,数字基带传输系统的组成及各子系统的作用,及数字基带信号的传输过程。最后按照仿真过程基本步骤用MATLAB 的仿真工具实现了数字基带传输系统的仿真过程,对系统进行了分析。 第一部分 原理介绍 一、数字基带传输系统 1)数字基带传输系统的介绍 未经调制的数字信号所占的频谱是从零频或很低频率开始,称为数字基带信号。在某些具有低通特性的有线信道中,特别是在传输距离不太远的情况下,基带信号可以不经载波调制而直接传输。这种不经载波调制直接传输数字基带信号的系统,称为数字基带传输系统。 数字基带系统的基本结构可以由图1 的模型表示.其中包括发送滤波器、传输信道、接收滤波器、抽样判决等效为传输函数为H (w) 基带形成网络,对于无码间干扰的基带传输系统来说, H (w) 应满足奈奎斯特第一准则, 在实验中一般取H (w) 为升余弦滚降特性.在最佳系统下, 取C(w) = 1,GT (w) 和GR(w) 均为升余弦平方根特性.传输信道中的噪声可看作加性高斯白噪声, 用产生高斯随机信号的噪声源表示. 位定时提取电路,在定时精度要求不高的场合, 可以用滤波法提取定时信号,滤波法提取位定时的原理可用图2表示。 图1 基带传输系统模型 设发送滤波器的传输特性 , 则 ω ωπ d e H t g jwt R ? ∞ ∞ -= )(21 )()(ωT G

MATLAB第六章simulink仿真答案

实验四 SIMULINK 仿真实验 一、 实验目的 1. 学习SIMULINK 的实验环境使用。 2. 掌握SIMULINK 进行结构图仿真的方法。 二、 实验内容 1.控制系统结构图仿真 给定被控对象) 1(10 )(+= s s s G ,控制器111.0145.0)(++=s s s D ,按以下两种情 况设计SIMULINK 仿真结构图(给定信号是单位阶跃信号)。 (1) 无控制器时被控对象单位负反馈。 (2) 控制器与被控对象串连接成单位负反馈。 给定的仿真参数: (1) 信号源参数设置: 阶跃信号(Step )的Step time 设为0秒。 (2)仿真参数设置: 仿真时间 0~10秒,求解器选定步长(Fixed-step)的ode5,仿真步长(Fixed step size )设为0.02秒。 实验要求: (1) 在SIMULINK 中对设计的结构图进行仿真,观察输入信号,输出信号和控制信号。 (1) 记录保存两种情况下的响应波形(适当调整时间轴和纵轴坐标,使图形显示适中,同时在图中求出系统的超调和调节时间(按2%的误差带)。

123 45678910 00.20.40.60.8 1 1.2 1.4 时间 (seconds) d a t a 时序图: 0123 45678910 0.20.40.60.81 1.21.41.6 1.8时间 (seconds) d a t a 时序图:

2.动态系统微分方程仿真 在SIMULINK 中求解下列二阶微分方程代表的动态系统在阶跃信号作用下的状态响应。 给定的仿真参数: (1) 信号源参数设置:阶跃信号(Step )的Step time 设为0秒。 (2) 仿真参数设置:仿真时间 0~8秒,求解器选变步长 (Variable-step)的ode45,最大仿真步长(Max step size )设为0.01秒。 实验要求: (1) 据微分方程构造结构图。 (2) 结构图仿真。 a) 零状态仿真:x 1=0,x 2=0, b) 非零状态仿真:x 1=1,x 2=-1, c) 记录保存两种情况下的响应波形(适当调整时间轴和纵轴坐 标,使图形显示适中)。 1 22122110) (1,||210x y t u u x x x x x x ==++--==

课题七、仿真软件的使用

南阳市高级技工学校实习课授课教案 课题名称:课题七仿真软件的使用 目的要求: 1、熟悉并学会运用宇龙仿真技术 2、熟悉并掌握FANUC 0i系统仿真软件面板操作过程; 课前准备: 1、检查仿真教室电脑设备,安装宇龙仿真软件 2、打扫多媒体教室卫生 组织教学: 1.检查着装 2.清点人数 3.安全教育

仿真软件的使用 入门指导 一、复旧导新 数控仿真加工是以计算机为平台在数控仿真加工软件的支持下进行的。当前国内较为流行的仿真软件有北京斐克VNUC、南京宇航Yhcnc、南京斯沃、上海宇龙等数控加工仿真软件。这些软件一般都具有数控加工过程的三维显示和模拟真实机床的仿真操作。下面我们以宇龙数控仿真软件为例,分析数控仿真加工操作方法。 二、讲授新课 (一)启动仿真软件 1.启动“加密锁管理程序”: 点击【开始】【程序】【数控加工仿真系统】【加密锁管理程序】 2.选择软件使用状态: 右键点击加密锁图标,共有三种使用状态 练习(默认)、授课、考试 3.启加仿真软件: 点击【数控加工仿真系统】,系统弹出【用户登录】界面。 4.登录进入:(两种方式) A.点击“快速登录”按钮,直接进入。用于练习和授课模式 B.管理员登录:用户名manage密码system。用于系统设置和考 试模式。 (二)仿真系统界面

1.标题栏: 显示当前项目名称 2.菜单栏: 包括仿真系统软件所有操作功能 3.工具栏: 部分菜单功能的快捷按钮 4.主窗口屏幕: 显示机床及图形轨迹,能动态旋转、缩放、移动、可用“控制面板切换”按钮全屏显示。 5.工具按钮功能说明栏: 6.提示信息: 对错误操作或运行等报警提示,同时自动中止运行。

Matlab与通信仿真课程设计报告

《MATLAB与通信仿真》课程设计指导老师: 张水英、汪泓 班级:07通信(1)班 学号:E07680104 姓名:林哲妮

目录 目的和要求 (1) 实验环境 (1) 具体内容及要求 (1) 实验内容 题目一 (4) 题目内容 流程图 程序代码 仿真框图 各个参数设置 结果运行 结果分析 题目二 (8) 题目内容 流程图 程序代码 仿真框图 各个参数设置 结果运行 结果分析 题目三 (17) 题目内容 流程图 程序代码 仿真框图 各个参数设置 结果运行 结果分析 题目四 (33) 题目内容 流程图 程序代码 仿真框图 各个参数设置 结果运行 结果分析 心得与体会 (52)

目的和要求 通过课程设计,巩固本学期相关课程MATLAB与通信仿真所学知识的理解,增强动手能力和通信系统仿真的技能。在强调基本原理的同时,更突出设计过程的锻炼。强化学生的实践创新能力和独立进行科研工作的能力。 要求学生在熟练掌握MATLAB和simulink仿真使用的基础上,学会通信仿真系统的基本设计与调试。并结合通信原理的知识,对通信仿真系统进行性能分析。 实验环境 PC机、Matlab/Simulink 具体内容及要求 基于MATLAB编程语言和SIMULINK通信模块库,研究如下问题: (1)研究BFSK在加性高斯白噪声信道下(无突发干扰)的误码率性能与信噪比之间的关系; (2)研究BFSK在加性高斯白噪声信道下(有突发干扰)的误码率性能与信噪比之间的关系; 分析突发干扰的持续时间对误码率性能的影响。 (3)研究BFSK+信道编码(取BCH码和汉明码)在加性高斯白噪声信道下(无突发干扰) 的误码率性能与信噪比之间的关系;分析不同码率对误码率性能的影响。比较不同信道编码方式的编码增益性能。 (4)研究BFSK+信道编码(取BCH码和汉明码)在加性高斯白噪声信道下(有突发干扰) 的误码率性能与信噪比之间的关系;分析突发干扰的持续时间对误码率性能的影响。分析不同码率对误码率性能的影响。比较不同信道编码方式的编码增益性能。

相关主题
文本预览
相关文档 最新文档