当前位置:文档之家› 机械故障诊断

机械故障诊断

机械故障诊断
机械故障诊断

第一章

浴盆曲线设备维修工程中根据统计得出一般机械设备劣化进程的规律,由于曲线的形状类似浴盆的剖面线。

取浴盆曲线的一半叫劣化曲线

劣化曲线绿区,浴盆曲线II阶段良好状态。黄区,浴盆曲线III阶段警戒注意状态。红区,浴盆曲线III阶段机器处于严重或危险状态,准备随时停机。

基本方法简易,精密诊断法,直接观察,噪声测定,无损检测,磨损残余物测定,机器性能参数测定法

1、故障诊断的基础是建立在能量耗散的原理上

2、按故障诊断方法的难易程度分:简易,精密诊断法按机械故障诊断的测试手段分为:直接观察,噪声测定,无损检测,磨损残余物测定,机器性能参数测定法

3、机械故障诊断包含那几个方面:运行状态的监测,设备运行状态的趋势预报,故障类型、程度、部位、原因的确定

第二章

低频:主要测量的振幅是位移量,这是因为在低频范围造成破坏的主要原因是应力的强度,位移量是与应力、应变直接相关的参数。中频:速度量,因为振动部件的疲劳进程与振动速度成正比,振动能量与振动速度成正比。高频:加速度,表征振动部件所受冲击力的强度,冲击力的大小与冲击的频率与加速度值成正比。。

2-4振动三要素:振幅,频率,相位

2-1、按动力学特征,机械振动分为:自由振动与固有振动(振动频率与物体的初始情况无关,完全由物体的力学性质决定,是物体本身固有的频率),强迫振动和共振(1、物体在简谐力作用下产生的强迫振动也是简谐振动,其稳态频率与激励力频率相等。2、振幅B的大小与激励力大小成正比、与刚度成反比,还与频率比、阻尼比有关。3、物体位移达到最大值的时间与激振力达到最大值的时间是不同的,两者之间存在一个相位差。),自激振动2-2、机械振动频率与物体的初始情况无关,完全由物体的力学性质决定,是物体本身固有的

2-3 在非线性机械系统内,由非振荡能量转变为振荡激励所产生的振荡称为自激振动。

2-5机械故障诊断技术的应用分为事故前预防和事故后预防

2-8强迫振动的特点:强迫振动过程不仅与激振力的性质(激励频率与振幅)有关。

而且与自身固有的特性有关。

2-10按照频率的高低,振动分为哪三类?在各种类型中主要测量的事什么物理量?为什么/

答:低频:测量的振幅是位移量,因为在低频范围造成破坏的主要因素是立力的强度,位移量是与应变,应力直接相关的参数。

中频:测量的振幅是速度量,因为振动部件的疲劳进程与振动速度成正比,振动能量与振动速度的平方成正比

高频:测量的振幅是加速度,加速度表征振动部件所受冲击力的强度。

第三章

有些物质如石英晶体,在收到外力的作用后,不仅几何尺寸发生变化,而且其内部发生极化,相对的表面出现电荷,形成电场。歪理消失后,又恢复原状,这种现象叫压电效应。将这种物质置于电场中,其几何尺寸也发生变化,叫做电致伸缩效应。

速度传感器:利用电磁感应原理,将传感器的质量块与壳体的相对速度转换成电压输出的装置。分为磁电式绝对/相对速度传感器。

电涡流传感器:利用金属导体在交变磁场中的涡流效应。当被测金属与探头之间距离发生变化时,探头线圈的感抗值发生变化,感抗值的变化引起振动电压幅度的变化,而这个随距离变化的振荡电压经

过检波、滤波、线性补偿、放大归一等处理转化为输出信号电压(电流)变化,最终使机械位移(间隙)转化成电压(电流)

滤波器:低通,高通,带通,带阻

3-1安装加速度传热器时,在安装面上涂一层硅脂的目的是:可增加不平整安装表面的连接可靠性

3-4选择速度传感器是首先要注意传感器的最低工作频率,其次要注意传感器的灵敏度

3-4当采用模/数转换测量时,转换时间宽度决定鉴相脉冲的最低采样频率

3-5常采用隔离放大器有:变压器耦合方式,利用线性光耦合器再加相应补偿的方式

3-6常用的信号转换主要有:电压转换为电流和电流转化为电压

3-7噪声的耦合方式:静电耦合,电磁耦合,共阻抗耦合,漏电流耦合

3-8模/数转换器的最基本性能指标是:转换时间,转换位数和分辨率,通道数,同步采样和伪同步采样

3-12利用电涡流传感器测量物体的位移,试问

1)如果被测物体由塑料制成,位移测量是否可行?为什么?

2)为了能够对该物体进行位移测量应采取什么措施?

答:1)不可行,因为电涡流传感器是电磁传感器的一种形式是利用金属导体在交变磁场中的涡流效应进行工作的,而塑料不是导体不能产生涡流效应故不可行。2)可在该物体表面镀上一层金属,使之在变化的磁场中或者在磁场中运动时,表层产生感应电流,并自行闭合,从而形成涡流。

3-13 电涡流位移传感器测量位移与其他位移传感器比,其主要优点是什么?电涡流传感器能否测量大位移?为什么?

答:1频率响应范围宽,灵敏度高,测量范围大,结构简单,抗干扰能力强,不受污油等介质影响,特别其具有非接触测量等优点。2因为涡流传感器受变换磁场大小的限制,故它不能用于测量大位移。

3-15形成噪声干扰必须具备哪几个要素?抑制噪声干扰的方法有哪些?

答:三要素:噪声源、对噪声敏感的接收电路及噪声源接收电路间的耦合通道。抑制方法三个:降低噪声源的强度、使接收电路对噪声不敏感、抑制或切断噪声源与接收电路间的耦合通道。

3-16常见的干扰耦合方式有哪些?

答:静电耦合,电磁耦合,共阻抗耦合,漏电流耦合

3-20电流信号和电压信号相比有什么优点?

答:1在信号传输线中,电流不受交流感应的影响,干扰问题易于解决。2电流信号不受传输线中的电感、电容等参数变化的影响,使传输接线简单。3直流信号便于A/D转换。

第四章

峰值、峰值指标

峰值指标和脉冲指标用来检测信号中是否存在冲击的统计指标。

4-1峭度指标对信号中冲击特征敏感,正常值3,接近4或超过,机械的运动状态中存在冲击性振动。周期信号频谱特征:离散性,谐波性,收敛性

4-2非常周期信号分为准周期信号和瞬变信号

4-3周期信号频谱的特征:离散性,谐波性,收敛性

4-4信号特征的时域提取方法有:平均值,均方值、有效值,峰值、峰值指标,脉冲指标,裕度指标,歪度指标,峭度指标

4-7什么是泄露?为什么会产生泄露?窗函数为什么能减少泄露?

答:泄露就是频域卷积的结果,将使得在频谱图中出现不属于X(t)信号的谱线,它们是窗函数10(t)的函数。2因为窗函数W(t)在频谱中是连续无限的函数,它与X(t)信号在频域的卷积必然造成X(t)信号的能量分散到窗函数W(t)的谱线上。3因为窗函数W(t)是渐变的,按函数式从0缓慢上升,直到中间点才上升到最大,然后再缓慢下降到终点0。

4-17频率细化的基本思想是什么?

基本思想:利用频移定理,对被分析信号进行复调制,在重新采样作傅里叶变换即可得到更高的频率分辨率

第五章

5-2绝对判断标准:国际、国家、行业、企业集团标准。目前应用较广泛的有ISO2372《机器振动的评价标准基础》、ISO3945《振动烈度的现场测定与评定》、CAD/MS/NVSH107《轴承振动测量的判据》、VDI2056《震动烈度判据》等

点巡检制度:定人员,定时间,定测点参数,定测点部位,定测量仪器的五定作业制度。

故障诊断判定标准中,以速度为判定参数比较适宜

5-1对于大多数的机器设备,最佳参数是速度,这也是为什么有很多诊断标准采用该参数的原因,当然也还有一些标准,根据设备的低,高频工作状态,分别选用振幅和加速度为判定参数

第六章

柔性转子:转动频率高于转子一阶横向固有频率的转子(柔性转子在高于其固有频率的转速下工作,所以在起动,停车过程中,必定通过固有频率这个位置)

刚性转子:转动频率低于转子一阶横向固有频率的转子

临界转速:对应于转子一阶横向固有频率的转速

油膜涡动与油膜振荡的发生条件:1只发生在使用压力油润滑的滑动轴承上在半轴承上不发生2油膜振荡只发生在转速高于临界转速的设备上

油膜涡动与油膜振荡的信号特征:1油膜涡动的振动频率随转速变化,与转动频率的关系为f=(0.43~0.48)Fn。2油膜振荡的振动频率在临界转速所对应的固有频率附近,不随转速变化。3两者的振动随油温变化明显

6-6油膜涡动与油膜震振荡的振动特点:1油膜涡动的轴心轨迹是由基频与半速涡动频率叠加成的双椭圆,较稳定2油膜震振荡是自激振荡,维持振动的能量是转轴在旋转中供应的,具有惯性效应。由于有失稳趋势,导致摩擦与碰撞,由此轴心轨迹不规则,波形幅度不稳定,相位突变。

6-7旋转机械常见故障:转子不平衡,转子与联轴器不对中,转轴弯曲故障,转轴横向裂纹的故障,连接松动故障,碰摸故障,喘振

6-4什么是临界转速?

把对应于转子一阶横向固有频率的转速称为临界转速。

6-5转子的临界转速往往不止一个,它与系统的自由度数目有关

6-8 简述转子的不平衡振动机理

旋转机械的转子由于受材料的质量分布、加工误差、装配因素以及运行中的冲蚀和沉积等因素的影响,致使其质量中心与旋转中心存在一定程度的偏心距。偏心距较大时,静态下,所产生的偏心力矩大于摩擦阻力矩,表现为某一点始终恢复到水平放置的转子下部,其偏心力矩小于摩擦阻力矩的区域内,称之为静不平衡。偏心距较小时,不能表现出静不平衡的特征,但是在转子旋转时,表现为一个与转动频率同步的离心力矢量,离心力从而激发转子的振动。这种现象称之为动不平衡。静不平衡的转子,由于偏心距较大,表现出更为强烈的动不平衡振动。

第七章

7-4滚动轴承的失效形式:滚动轴承的磨损/疲劳/腐蚀/塑变/断裂/胶合失效

几个特征频率:内圈旋转频率,保持架旋转频率,滚动体自转频率,保持架通过内圈频率,滚动体通过内圈频率,滚动体通过外圈频率

轴承故障信号的拾取实际上是传感器及安装部位和感应频率段的选择。传感器的安装部位往往选择轴承座部位,并按信号传动的方向选择垂直,水平,轴向布置。

轴承状况分三区:0~20dB表轴承状况良好。20-35已劣化,属发展中的损伤区。35-60已存在明显的损伤。

7-1滚动轴承的特征频率通常用来作为诊断的依据。

7-2传感器的安装部位通常在轴承座部位,并按信号传动的方向选择垂直、水平、轴向布置。

7-3 采用峰值系数法和峭度指标法进行故障诊断,正常时,滚动轴承的波峰系数约为5,峭度值约为3;但是,当峭度值下降时不表明故障恢复,而可能是轴承故障进入晚期,剥落斑点充满整个滚道

第八章

8-1齿轮的失效形式:轮齿的断裂,齿面磨损(粘着磨损,磨粒磨损与划痕,腐蚀磨损,烧伤),齿面疲劳(点蚀,剥落),齿面塑型变形

8-2故障诊断的方法:功率谱分析法,变频带分析法,倒频谱分析法,齿轮故障信号的频域特征,此外有小波分析,时序分析,时间同步平均法等

第九章

9-1电动机按照工作方式分为发电机、电动机、转换机

9-2直流电动机的故障特征可归纳为1,转动频率的振动明显,则有转子不平衡,轴弯曲等故障2,如果2f振动明显,则有轴不对中等安装异常。3

9-8电动机的主要部件:定子,转子,集电环和转向器,轴承装置

转动机空载时无振动

不同范围的电动机,其测量值的表示方法不同。国家标准规定,对转速为600-3600r/min的电动机,稳态运动时采用振动速度有效值表示,其单位mm/s。转速低于600的,用位移振幅表示,其单位mm。9-5定子电磁振动的主要原因有:1定子三向磁场不对称2定子铁心和定子线圈松动3电动机座的脚螺钉松动

9-4消除电动机异常振动一般采取两个措施:1消除地板和垫板之间间隙拧紧地脚螺栓和轴承座固定螺栓,以增加地板和轴承座的动态刚度。2加强轴承自身结构刚度,提高固有振动频率以避免和定子激振力合拍产生共振。

9-6气隙静态偏心:由于定子、转子不同心产生的气隙静态不均匀,另一种是由于轴弯曲或转子与轴不同心所产生的气隙动态不均匀。

9-9电动机振动测定的目的:一是为了确定电动机振动初始状态时的振动水平,判定这台电动机出厂时或投入运行时振动值是否符合有关标准的规定二是为以后电动机异常振动的诊断提供初始的参照数据。

10-1滑动轴承主要分动压滑动轴承和静压滑动轴承。它们的共同特点:轴颈与轴的工作表面都被润滑油膜隔开,形成润滑轴承,具有吸振能力,运转平稳,无噪声,故能承受较大的冲击载荷。不同点:动压滑动轴承的润滑油膜形成必须在轴颈转动才能形成,而静压滑动轴承是靠外部供给压力油强迫两相对滑动面分开,以建立承压油膜,实现液体润滑一种滑动轴承。

10-2滑动轴承的装配步骤:1轴瓦的清洗与检查2轴承座的固定3轴瓦与轴承座的装配4轴瓦与轴颈的刮研

设备故障诊断的最终目的是使设备的各项性能指标保持完好,保证生产的连续性,高效性。

滑动轴承的工作原理:

机械故障诊断技术课后复习资料

机械故障诊断技术 (第二版张建)课后答案 第一章 1、故障诊断的基础是建立在能量耗散的原理上的。 2、机械故障诊断的基本方法课按不同观点来分类,目前流行的分类方法有两种:一是按机械故障诊断方法的难易程度分类,可分为简易诊断法和精密诊断法;二是按机械故障诊断的测试手段来分类,主要分为直接观察法、振动噪声测定法、无损检测法、磨损残余物测定法、机器性能参数测定法。 3、设备运行过程中的盆浴曲线是指什么? 答:指设备维修工程中根据统计得出一般机械设备劣化进程的规律曲线(曲线的形状类似浴盆的剖面线) 4、机械故障诊断包括哪几个方面内容? 答:(1)运行状态的检测根据机械设备在运行时产生的信息判断设备是否运行正常,其目的是为了早期发现设备故障的苗头。 (2)设备运行状态的趋势预报在状态检测的基础上进一步对设备 运行状态的发展趋势进行预测,其目的是为了预知设备劣化的速度,以便生 产安排和维修计划提前做好准备。 (3)故障类型、程度、部位、原因的确定最重要的是设备类型的确定,它是在状态检测的基础上,确定当机器已经处于异常状态时所需进一步解决的问题,其目的是为了最后诊断决策提供依据。 5、请叙述机械设备的故障诊断技术的意义? 答:设备诊断技术是一种了解和掌握设备在使用过程中的状态,确定其整体或局部是正常或异常,早期发现故障及其原因,并能预报故障发展趋势的技术。机械设备的故障诊断可以保证整个企业的生产系统设备的运行,减少经济损失,还可以减少某些关键机床设备因故障存在而导致加工质量降低,保证整个机器产品质量。 6、劣化曲线沿横、纵轴分别分成的三个区间分别是什么,代表什么意义? 答:横轴包括1、磨合期 2、正常使用期 3、耗损期纵轴包括1、绿区(故障率最低,表示机器处于良好状态)2、黄区(故障率有抬高的趋势,表示机器

机械故障诊断技术的现状及发展趋势

机械故障诊断技术的现状及发展趋势 摘要:随着机械行业的不断发展,机械故障诊断的研究也不断提出新的要求,进20年来,国内外的故障诊断技术得到了突飞猛进的发展,对机械故障诊断的发展现状进行了详细的论述,并对其发展趋势进行了展望。 关键词:故障诊断;现状;发展趋势 引言 机械故障诊断技术作为一门新兴的科学,自二十世纪六七十年代以来已经取得了突飞猛进的发展,尤其是计算机技术的应用,使其达到了智能化阶段,现在,机械故障诊断技术在工业生产中起着越来越重要的作用,生产实践已经证明开展故障诊断与状态预测技术研究其重要的现实意义。 我国的故障诊断技术在理论研究方面,紧跟国外发展的脚步,在实践应用上还是基本锣鼓后语国外的发展。在我国,故障诊断的研究与生产实际联系不是很紧密,研究人员往往缺乏现场故障诊断的经验,研究的系统与实际情况相差甚远,往往是从高等院校或者科研部门开始,在进行到个别企业,而国外的发展则是从现场发现问题进而反应到高等院校或者科研单位,是的研究有的放矢。 记过近二十年的努力,我国自己开发的故障诊断系统已趋于成熟,在工业生产中得到了广泛应用。但一些新的方法和原理的出现,使得故障诊断技术的研究不断向前发展,正逐步走向准确、方便、及时的轨道上来。 1.故障诊断的含义及其现状 故障诊断技术是一门了解和掌握设备运行过程中的状态,进而确定其整体或者局部是否正常,以便早期发现故障、查明原因,并掌握故障发展趋势的技术。其目的是避免故障的发生,最大限度的提高机械地使用效率。 1.1设备诊断技术的研究内容主要包括以下三个环节: (1)特征信号的采集:这一过程属于准备阶段,主要用一些仪器测取被测仪器的有关特征值,如速度、湿度、噪音、压力、流量等。 现在信号的采集主要用传感器,在这一阶段的主要研究基于各种原理的传感技术,目标是能在各种环境中得到高可靠、高稳定的传感测试信号。国内传感器类型:电涡流传感器、速度传感器、加速度传感器和湿度传感器等;最近开发的传感技术有光导纤维、激光、声发射等。(2)信号的提取与处理:从采集到的信号中提取与设备故障有关的特征信息,与正常信息只进行对比,这一步就可以称之为状态检测。目前,小波分析在这方面得到广泛应用,尤其是在旋转机械的轴承故障诊断中。基于相空间重构的GMD数据处理方法也刚刚开始研究,此方法对处理一些复杂机械的非线性振动,从而进一步预测故障的发展趋势非常有效。(3)判断故障种类:从上一步的结果中运用各种经验和知识,对设备的状态进行识别,进而做出维修决策。这一步关键是研究系统参数识别和诊断中相关的实用技术,探讨多传感器优化配置问题,发展信息融合技术、模糊诊断、神经网络、小波变换、专家系统等在设备故障诊断中的应用。 1.2故障诊断及时的发展历程· 故障诊断技术的大致三个阶段: (1)事后维修阶段;(2)预防维修阶段;(3)预知维修阶段。现在基本处于预知维修阶段,预知维修的关键在于对设备运行状态进行连续监测或周期检测,提取特征信号,通过对历史数据的分析来预测设备的发展趋势。 1.3故障诊断的发展现状 目前,国内检测技术的研究主要集中在以下几个方面:

机械设备智能诊断故障的现状及发展趋势

机械设备智能诊断故障的现状及发展趋势 发表时间:2018-09-07T09:52:56.393Z 来源:《河南电力》2018年5期作者:植嘉明 [导读] 随着科技的快速发展,如今的机械设备越来越精密,造价也越来越高 植嘉明 (身份证号码:44068319881228XXXX 广东佛山 528000) 摘要:随着科技的快速发展,如今的机械设备越来越精密,造价也越来越高,而如果机械设备在使用过程中出现故障就会对企业的生产和工作人员的人身安全构成威胁。机械设备故障检测诊断技术是在设备运行状态下能够实时检测并诊断设备是否存在故障隐患的部位,做到及时发现及时解决,从而避免人员伤亡以及经济损失,是当前国内外研究的热点技术。 关键词:机械设备;智能诊断故障;现状;发展趋势 引言 随着时代的发展,工业企业对机器设备的要求也越来越多,机械设备的发展方向多样,诸如大功率、智能化、大型化、复杂化、自动化是现在机械设备发展的几个大的方向。在现在的工业生产中,机械设备的重要性不容忽视,尤其是在自动化和复杂化高度发展的今天,一条流水线上的机械设备如果坏了一个零部件,最终导致的可能是一条产业链的机械设备的瘫痪,可谓牵一发而动全身。这些故障导致的可能不仅仅是经济上的损失,严重的还会造成人员伤亡。因此,机械设备需要定时的、准确的、可靠的故障诊断方法来及时避免不必要的损失。 1.机械设备的诊断技术发展情况 机械设备是对各种工作进行完成的重要工具,机械设备的诊断技术是掌握设备运行过程中的异常状态与故障之间的关系,从而预测未来的技术,当前关于机械设备的诊断技术的研究越来越多,主要是对设备的运行状态进行监测,当机械在正常运行的时候具有一个状态,设备产生故障的时候再进行运行,又会产生另一种状态,针对这两种状态要进行分析和对比,从而找出机械设备的故障所在。机械设备故障诊断技术是利用对机械设备运行过程中的状态信号进行处理,结合诊断对象的历史状态,来识别机械设备及其零部件的实时技术状态的技术形式,根据所得到的结果,还能对未来机械设备的发展趋势进行预测。总体来讲,机械设备的诊断技术的发展经过了四个阶段的发展: 第一,在十九世纪,机械已经出现在工业生产中,发达国家的工业革命使得机械化生产开始普及,当时机械设备诊断技术不高,当机械设备出现问题的时候不能及时发现,等到故障十分明显的时候才能被察觉,一般是采取事后维修的方式对故障进行处理。 第二,从上世纪二十年大到五十年代,机械设备的复杂程度有了很大的提高,因此机械设备出现故障的可能性增大,对此,很多企业在机械设备使用过程中设置了定期维修的模式,在这个时期内,机械故障诊断技术已经开始萌芽。 第三,上世纪六十年代到七十年代时期,计算机技术、数据处理技术、通信技术等先进的技术得到快速发展,这些技术在机械领域的应用,使得机械设备的维修变得更加方便、及时,很多维修人员可以按照科学的方式对机械设备的状态进行掌握,并且及时对故障进行维修。 第四,上世纪八十年代开始,人工智能技术以及专家系统、神经网络技术的研究和应用,使得机械设备的维修又进入都一个全新的时代,在机械设备的使用过程中,诊断技术的智能化水平不断提高,使得机械设备的诊断变得更加智能化、自动化,而且提高了设备故障的诊断效率和维修效率。 2.基于人工神经网络的诊断方法 该方法于20世纪80现代末90年代初才正式投入使用,由于人工神经网络的诊断方法涵盖很多高端的数理逻辑处理方法,拓扑结构的鲁棒性、并行和处理复杂模式的功能等。这些功能和方法可以用于大型机械的庞大多发和并发故障的诊断,还可以用于多故障、多过程和一些突发性的机械故障的诊断。 这种诊断方法现阶段主要应用于以下三个方面:1、将神经网络作为分类器,并从模式识别的角度出发进行机械故障的诊断;2、把神經网络作为动态预测模型,并从预测的角度出发去进行机械故障的诊断;3、以神经网络为基础从知识的角度去建立具有神经网络的专家诊断系统。但是该诊断法具有些许弊端,以至于它不能在诊断时独立使用,而要与其他的方法并用。它的弊端体现在,由于建立神经网络需要大量的训练,如果训练的样本较少,那么构建的系统就会缺乏科学性,这样就要加长它的训练时间的长度就会提高成本。因此国内外很多专家学者都在探究新新方法来改进这一诊断方法来增加它的科学性。 3.机械设备故障智能诊断技术的未来发展趋势 机械设备故障诊断技术在当今社会发展建设中受用程度较大,所以在今后还会被广泛应用,随着技术的发展,人工智能将在机械设备故障检测中以一种新的力量出现,推动其将人工神经网络在机械设备故障诊断技术中的研究,未来该项技术的发展会处于一种上升趋势日益改进。 3.1提高精度,检测接缝处故障 在进行机械设备故障检测时,精度的要求是基础,在处理信号时,高精度化主要是提高检测结果的准确度,高精度化可以通过小波理论对设备进行检测,例如比较复杂的机械设备传达出来的信号往往不能通过人耳识别检测,利用精密的仪器进行检测,小波理论的分析方法会处理此类信号所反映出来的问题,提高信号准确度。除了小波理论,还有分形几何,这种方式打破原来依靠整数维数的传统几何方法,在处理瞬间变化的不平稳信号上具有很强优势。如果想更加全面的获取信号所带来的故障信息,还可以采用全息谱分析方法,这种方法最明显的优势就是处理振动信号带来的故障信息,它将幅、频、相相结合,更加系统地将振动信号处理全面。 发动机的振动会引起接缝处的零件配合故障,可以在发动机内暗藏一处传感器,这个传感器主要是检测发动机的温度及各部件间隙之间的配合,然后将诊断出故障问题出现在哪里。 3.2智能程度加强,增强技术可靠性 机械设备故障诊断技术的智能程度的加强将会提高诊断结果的准确性,智能化的应用就是将建立故障诊断专家系统,对故障设备进行精细的处理研究,然后分析出结果,智能化的投入也能大幅度减少工作量,在工作中不断充实信息库的知识,使得专家系统能够更好的

机械设备故障诊断技术研究

题目:机械设备故障诊断技术研究 学号: 姓名: 专业: 指导教师: 2016 年 8 月 30 日

摘要 故障诊断技术对于机械设备的安全运行有着至关重要作用,一直是工程应用领域的重点和难点, 国内外已经对此问题进行了大量的研究工作。该论文介绍了机械设备故障诊断技术的基本概念,在总结研究各种诊断技术的基础上全面分析了现代故障诊断技术存在的问题, 并针对这些问题提出了故障诊断领域将来的研究方向。故障诊断是一项实用性很强的技术, 对其进行理论上的分析研究具有重要的现实意义。 关键词:机械设备故障;诊断技术;研究

第一章引言 随着现代科学技术在设备上的应用,现代设备的结构越来越复杂,功能越来越齐全,自动化程度也越来越高。由于许多无法避免的因素影响,会导致设备出现各种故障,从而降低或失去预定的功能,甚至会造成严重的以至灾难性的事故。国内外接连发生的由设备故障引起的各种空难、海难、爆炸、断裂、倒塌、毁坏、泄漏等恶性事故,造成了极大的经济损失和人员伤亡。生产过程中经常发生的设备故障事故,也会使生产过程不能正常运行或机器设备遭受损坏而造成巨大的经济损失。因此机械设备故障诊断技术在社会中的重要性越来越高,主要体现在[1]:(1)预防事故,保证人员和设备安全。 (2)推动设备维修制度的改革。维修制度从预防制度向预知制度的转变是必然的,而真正实现预知维修的基础是设备故障诊断技术的发展和成熟。 (3)提高经济效益。设备故障诊断的最终目的是避免故障的发生,使零部件的寿命得到充分发挥,延长检修周期,降低维修费用。 因此,机械设备故障诊断技术日益受到广泛重视,对机械设备故障诊断技术的研究也不断深入。但受于机械设备故障成因的复杂性和诊断技术的局限性,目前机械设备故障诊断仍存在一些问题。

机械故障诊断考试题目

机械故障诊断考试--题库 (部分内容可变为填空题) 第一章: 1、试分析一般机械设备的劣化进程。 答:1)早期故障期 阶段特点:开始故障率高,随着运转时间的增加,故障率很快减小,且恒定。 早期故障率高的原因在于:设计疏忽,制造、安装的缺陷,操作使用差错。 2)偶发故障期 阶段特点:故障率恒定且最低,为产品的最佳工作期。 故障原因:主要是使用不当、操作失误或其它意外原因。 3)耗损故障期 阶段特点:故障率再度快速上升。 故障原因:零件的正常磨损、化学腐蚀、物理性质变化以及材料的疲劳等老化过程。 2、根据机械故障诊断测试手段的不同,机械故障诊断的方法有哪些? 答:1′直接观察法-传统的直接观察法如“听、摸、看、闻”是最早的诊断方法,并一直沿用到现在,在一些情况下仍然十分有效。 2′振动噪声测定法-机械设备在动态下(包括正常和异常状态)都会产生振动和噪声。进一步的研究还表明,振动和噪声的强弱及其包含的主要频率成分和故障的类型、程度、部位和原因等有着密切的联系。 3′无损检验-无损检验是一种从材料和产品的无损检验技术中发展起来的方法 4′磨损残余物测定法(污染诊断法 5′机器性能参数测定法-机器的性能参数主要包括显示机器主要功能的一些数据 3、设备维修制度有哪几种?试对各种制度进行简要说明。 答:1o事后维修 特点是“不坏不修,坏了才修”,现仍用于大批量的非重要设备。 2o预防维修(定期维修) 在规定时间基础上执行的周期性维修 3o预知维修 在状态监测的基础上,根据设备运行实际劣化的程度决定维修时间和规 模。预知维修既避免了“过剩维修”,又防止了“维修不足”;既减少了 材料消耗和维修工作量,又避免了因修理不当而引起的人为故障,从而 保证了设备的可靠性和使用有效性。 第二章: 1、什么是故障机理? 答:机械故障的内因,即导致故障的物理、化学或机械过程,称为故障机理。 2、什么是机械的可靠性?机械可靠性的数量指标有哪两个?他们之间互为什么关系?

机械故障诊断

工件位置检测方法 02010220 苏冠明工件位置的测定分为接触性和非接触性的测量方法两种。老师所要求的是非接触式的检测位置。非接触式传感器电感式传感器中的电涡流式传感器,磁电式传感器中的磁阻式传感器、霍尔式传感器、感应同步器,光电式传感器,特殊传感器中的微波传感器均为非接触式传感器。 各个非接触式传感器具体为 一电涡流式传感器 根据法拉第电磁感应定律,块状金属导体置于变化的磁场中,在磁场中作切割磁力运动时,导体内将产生呈漩涡状的感应电流,此现象叫电涡流效应。根据电涡流效应制成的传感器称为电涡流式传感器。电涡流式传感器最大的特点是能对位移、厚度、表而温度、速度、应力及材料损伤等进行非接触式连续测量,另外还具有体积小、灵敏度高和频率响应宽等特点,应用极其广泛。 如图所示为电涡流式转速传感器工作原理图。在软磁材料制成的输入轴上加工一键槽,在距输入表面4I处设置电涡流传感器,输入轴与被测旋转轴相连。当被测旋转轴转动时,输出轴的距离发生(吨tAd)的变化。由于电涡流效应,这种变化将导致振荡回路的品质因数变化,使传感器线圈电感随AJ的变化也发生变化,它将直接影响振荡器的电压幅值和振荡频率。出此,随着输入轴的旋转,从振荡器输出的信号中包含有与转数成正比的脉冲频率信号。该信号由检波器检出电压幅值的变化量,然后经整形电路输出脉冲频率信号,该信号经电路处理便可得到被测转速。 这种转速传感器可实现非接触式测量,抗污染能力很强,可安装在旋转轴附近长期对被测转速进行监视。最高测量转速可达600 000r/min。 二霍尔式传感器 霍尔式传感器也是一种磁电式传感器,它是利用霍尔元件基于霍尔效府原理而将被测量转换成电动势输出的一种传感器。由于霍尔元件在静止状态下具有感受磁场的独特能力,并且具有结构简单、休积小、噪声小、频率范围宽(从直流到微波)、动态范围大(输出电势变化范围可达1000:1)以及寿命长等特点,因此获得了广泛应用。 金属或半导体薄片置于磁场中,当有电流流过时,在垂直于电流和磁场的方向上将产生电动势,这种物理现象称为霍尔效应。

机械故障诊断作业

机械故障诊断 绪论:机械设备状态监测与故障诊断:是识别机械设备(机器或机组)运行状态的一门综合性应用科学和技术,它主要研究机械设备运行状态的变化在诊断信息中的反映;通过测取设备状态信号,并结合其历史状况对所测信号进行处理分析,特征提取,从而定量诊断(识别)机械设备及其零部件的运行状态(正常、异常、故障),进一步预测将来状态,最终确定需要采取的必要对策的一门技术。主要内容包括监测、诊断(识别)和预测三个方面。机械设备是现代化工业生产的物质技术基础,设备管理则是企业管理中的重要领域,也就是说,企业管理的现代化必然要以设备管理的现代化作为其重要组成部分,机械设备状态监测与故障诊断技术在设备管理与维修现代化中占有重要的地位。 机械设备状态监测与故障诊断技术在满足可靠性、可用性、维修性、经济性、安全性要求中,扮演着越来越重要的角色。机械故障的诊断的意义当然是不可忽略的。第一,有利于提高设备管理水平,“ 管好、用好、修好”设备,不仅是保证简单再生产的必要条件,而且能提高企业经济效益,推动国民经济持续、稳定、协调地发展。机械设备状态监测与故障诊断是提高设备管理水平的一个重要组成部分;第二,避免重大事故发生,减少事故危害性,现代设备的结构越来越复杂,功能越来越完善,自动化程度越来越高。但是,当设备出现故障时所带来的影响程度也明显增大,有时不仅仅是造成巨大的经济损失,往往还会带来灾难性的事故,发展机械设备状态监测与故障诊断技术,并进行有效、合理的实施,可以掌握设备的状态变化规律及发展趋势,

防止事故于未然,将事故消灭在萌芽;第三,宏观上实施故障诊断能带来经济效益。 机械设备的发展也是从最初最原始的方法到至今的高端迈进。第一阶段:19世纪工业革命到20世纪初,低的生产力水平,事后维修方式;第二阶段:20世纪初到20世纪50年代,规模化生产方式—定期维修—设备诊断技术孕育,由听、摸、闻、看到初步的设备诊断仪器;第三阶段:20世纪60—70年代,大规模生产方式—状态维修—设备诊断技术形成;第四阶段:20世纪80—目前,柔性生产方式—风险管理—智能化设备诊断技术,设备诊断相关信息的集成化、智能化、网络化利用。①第二次世界大战中,认识到这种技术的重要性; ②第二次世界大战后,因对应技术未发展而发展不快;③60年代后,电子技术、计算机技术发展、1965年FFT方法和对应的数字信号处理和分析技术的发展为设备诊断技术奠定了技术基础。 机械设备状态监测与故障诊断是一门正在不断完善和发展的交叉型学科,是一项与现代化工业大生产紧密相关的技术,是机械学科领域的研究热点之一。故障诊断学科需解决的重要问题,故障特征信息提取和故障分类、识别的新理论及新方法研究,复杂故障产生机理及模型的深入研究,故障诊断智能系统研究,包括诊断专家系统和网络化远程诊断系统,而机械故障诊断学的学科范畴也是将多数学科融合一起的一个综合学科。他包括了机械工程,建模技术(CAD、CAE、坐标反求、图像处理),分析技术,测量技术,结构强度,参数辨识,信号处理分析,故障诊断应用力学等等学科。

旋转机械故障诊断基本理论讲义

旋转机械故障诊断研究 摘要:对设备的故障诊断,实际上自有工业生产以来就已存在。早期人们依据对设备的触摸,对声音、振动等状态特征的感受,凭借工人的经验,判断某些故障的存在,并提出修复的措施。随着信息处理技术的飞速发展,机械状态的诊断方法也得到了不断丰富,单一参数阈值比较的机器监测方法正开始向全息化、智能化监测方法过渡,监测手段也从依靠人的感官和简单仪器向精密电子仪器以及以计算机为核心的监测系统发展。 关键词:旋转机械转子系统故障机理及诊断信号处理

目录 一、旋转机械故障诊断的基本知识 (3) (一)旋转机械故障诊断的意义及发展概况 (3) 1、旋转机械故障诊断的定义 (3) 2、旋转机械故障诊断的意义 (3) 3、旋转机械故障诊断的发展概况 (3) (二)转子振动的基本概念 (4) 1、机械振动 (4) 2、频率 (4) 3、振幅 (4) 4、振动烈度 (5) 5、相位和相位差 (5) 6、涡动和进动 (6) 7、临界转速 (6) 8、油膜涡动、油膜振荡 (7) 二、转子系统的故障机理及诊断 (7) (一)转子不平衡的故障机理及诊断方法 (7) 1、振动机理 (7) 2、诊断方法 (8) (二)转子不对中的故障机理及诊断方法 (8) 1、振动机理 (9) 2、诊断方法 (9) (三)转子摩擦的故障机理及诊断方法 (10) 1、转子与静止件径向摩擦的振动机理 (10) 2、转子与静止件轴向摩擦的振动机理 (11) 3、诊断方法 (11) (四)转子油膜涡动和油膜振荡的故障机理及诊断方法 (11) 1、振动机理 (11) 2、油膜涡动的诊断方法 (12)

3、油膜振荡的诊断方法 (12) (五)转子弯曲的故障机理及诊断方法 (13) 1、振动机理 (13) 2、诊断方法 (13) (六)转子支承系统联接松动的故障机理及诊断方法 (13) 1、振动机理 (14) 2、诊断方法 (14) (七)转轴具有横向裂纹的故障机理及诊断方法 (14) 1、振动机理 (14) 2、诊断方法 (15)

设备故障诊断技术说明

设备故障诊断技术简介

上海华阳检测仪器有限公司 Shanghai Huayang MeasuringInstruments Co., Ltd 目录 设备故障诊断技术定义

-----------------------------------------------( 3)一.设备维修制度的进展-----------------------------------------------( 4)二.检测参数类型-------------------------------------------------------( 5) 三.振动检测中位移、速度和加速度参数的选择-----------------------------( 5) 四.测点选择原则------------------------------------------------------( 6) 五.测点编号原则------------------------------------------------------( 7) 六.评判标准----------------------------------------------------------( 7) 七.测量方向及代号----------------------------------------------------

(10) 八.搜集和掌握有关的知识和资料----------------------------------------(10) 九.故障分析与诊断----------------------------------------------------(11) 十.常见故障的识不----------------------------------------------------(14) 1.不平衡------------------------------------------------------------(14) 2.不对中------------------------------------------------------------(14) 3.机械松动----------------------------------------------------------(15) 4. 转子或轴裂纹

基于噪声分析的机械故障诊断方法研究

基于噪声分析的机械故障诊断方法研究 摘要 基于噪声分析的机械故障诊断方法可以非接触地获得机械信号,适用于众多不便于使用振动传感器的场合,如某些高温、高腐蚀环境,是一种常用而有效地故障诊断方法。但在实际应用中,由于不相干噪声和环境噪声的影响,我们需要的待测信号往往被淹没在这些混合噪声中,信号的信噪比较低。 盲源分离作为数字信号处理领域的新兴技术,能利用观测信号恢复或提取独立的各个机械信号,在通讯、雷达信号处理、图像处理等众多领域具有重要的实用价值及发展前景,已经成为神经网络学界和信号处理学界的热点研究课题之一。 本文分析总结了盲源分离技术的相关研究现状,对盲源分离的原理、算法、相关应用作了探讨和研究。并就汽轮机噪声问题运用了盲源分离技术进行机械故障诊断,试验表明,该方法能将我们需要的故障信号从混合信号中分离出来,成功实现汽轮机部件的故障诊断。 关键词:声信号,机械故障诊断,独立分量分析 Investigation of Mechanical Fault Diagnosis Based on Noise Analysis Abstract You can obtain a non-contact method of mechanical fault diagnosis based on noise analysis of mechanical signals , not suitable for many occasions to facilitate the use of vibration sensors , such as certain high temperature , highly corrosive environment , is a common and effective fault diagnosis method . However, in practice , the effects of noise and extraneous ambient noise , the signal under test often need to be submerged in the mixed noise , lower signal to noise ratio . Blind source separation as an emerging field of digital signal processing technology to take advantage of the observed signal recovery or extraction of various mechanical signals independently in many communications, radar signal processing , image processing has important practical value and development prospects , has become a neural network one of the hot research topic in academic circles and signal processing . In this paper summarizes the research status of blind source separation techniques , the principles of blind source separation algorithms, related applications and research were discussed . Turbine noise problems and to use the blind source separation techniques for mechanical fault diagnosis, tests showed that the method we need fault signal can be separated from the mixed signal , fault diagnosis of steam turbine components successfully . Key Words:Mechanical Fault Diagnosis,Independent Component Analysis

旋转机械故障相关诊断技术(最新版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 旋转机械故障相关诊断技术(最 新版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

旋转机械故障相关诊断技术(最新版) 一、旋转机械故障的灰色诊断技术 灰色诊断技术就是在故障诊断中应用灰色系统理论,利用信息间存在的关系,充分发挥采集到的振动信息的作用,充分挖掘振动信息的内涵,通过灰色方法加工、分析、处理,使少量的振动信息得到充分的增值和利用,使潜在的故障原因显化。 二、旋转机械故障的模糊诊断技术 模糊诊断技术就是在故障诊断中引入模糊数学方法,将各类故障和征兆视为两类不同的模糊集合,同时用一个模糊关系矩阵来描述二者之间的关系,进而在模糊的环境中对设备故障的原因、部位和程度进行正确、有效地推理、判断。 三、旋转机械故障的神经网络诊断技术 所谓的神经网络就是模仿人类大脑中的神经元与连结方式,以

构成能进行算术和逻辑运算的信息处理系统。神经网络模型由许多类似于神经元的非线性计算单元所组成,这些单元以一种类似于生物神经网络的连结方式彼此相连,以完成所要求的算法。在旋转机械故障的诊断中,引入神经网络技术,以类似于人脑加工信息的方法对收集到的故障信息进行处理,从而对故障的原因、部位和程度进行正确的判断。 云博创意设计 MzYunBo Creative Design Co., Ltd.

设备故障诊断原理技术及应用

设备故障诊断原理技术及应用 机械设备故障诊断技术随着近十多年来国际上电子计算机技术、现代测量技术和信号处理技术的迅速发展而发展起来,是一门了解和掌握机械设备在使用过程中的状态,确定其整体或局部是否正常,早期发现故障及原因,并预报故障发展趋势的技术。 1.机械设备故障诊断的发展过程 设备故障诊断是指在一定工作环境下,根据机械设备运行过程中产生的各种信息判别机械设备是正常运行还是发生了异常现象,并判定产生故障的原因和部位,以及预测、预报设备状态的技术,故障诊断的实质就是状态的识别。 诊断过程主要有3 个步骤: ①检测设备状态的特征信号; ②从所检测的特征信号中提取征兆; ③故障的模式识别。其大致经历以下3 个阶段: ①基于故障事件原故障诊断阶段,主要缺点是事后检查,不能防止故障造成的损失; ②基于故障预防的故障诊断阶段; ③基于故障预测的故障诊断阶段,它是以信号采集与处理为中心,多层次、多角度地利用各种信息对机械设备的状态进行评估,针对不同的设备采取不同的措施。 2.开展故障诊断技术研究的意义 应用故障诊断技术对机械设备进行监测和诊断,可以及时发现机器的故障和预防设备恶性事故的发生,从而避免人员的伤亡、环境的污染和巨大的经济损失。应用

故障诊断技术可以找出生产设备中的事故隐患,从而对机械设备和工艺进行改造以 消除事故隐患。状态监测及故障诊断技术最重要的意义在于改革设备维修制度,现在多数工厂的维修制度是定期检修,造成很大的浪费。由于诊断技术能诊断和预报设备的故障,因此在设备正常运转没有故障时可以不停车,在发现故障前兆时能及时停车。按诊断出故障的性质和部位,可以有目的地进行检修,这就是预知维修—现代化维修 技术。把定期维修改变为预知维修,不但节约了大量的维修费用,而且,由于减少了许多不必要的维修时间,而大大增加了机器设备正常运转时间,大幅度地提高生产率,产生巨大的经济效益。因此,机械状态监测与故障诊断技术对发展国民经济有相当重要的作用。 3.机械故障诊断的研究现状 机械故障诊断作为一门新兴的综合性边缘学科,经过30 多年的发展,己初步形成了比较完整的科学体系。就其技术手段而言,已逐步形成以振动诊断、油样分析、温度监测和无损探伤为主,其他技术或方面为辅的局面。这其中又以振动诊断涉及的领域最广、理论基础最为雄厚、研究得最具生机与活力。目前,对振动信号采集来说, 计算机技术足以胜任各种场合的需要。在振动信号的分析处理方面,除了经典的统计分析、时频域分析、时序模型分析、参数辨识外,近来又发展了频率细化技术、倒谱分析、共振解调分析、三维全息谱分析、轴心轨迹分析以及基于非平稳信号假设的短时傅立叶变换、Wign2er 分布和小波变换等。就诊断方法而言,除了单一参数、 单一故障的技术诊断外,目前多变量、多故障的综合诊断已经兴起。 人工智能的研究成果为机械故障诊断注入了新的活力,故障诊断的专家系统不

机械故障诊断

机械故障诊断 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

工件位置检测方法 02010220 苏冠明工件位置的测定分为接触性和非接触性的测量方法两种。老师所要求的是非接触式的检测位置。非接触式传感器电感式传感器中的电涡流式传感器,磁电式传感器中的磁阻式传感器、霍尔式传感器、感应同步器,光电式传感器,特殊传感器中的微波传感器均为非接触式传感器。 各个非接触式传感器具体为 一电涡流式传感器 根据法拉第电磁感应定律,块状金属导体置于变化的磁场中,在磁场中作切割磁力运动时,导体内将产生呈漩涡状的感应电流,此现象叫电涡流效应。根据电涡流效应制成的传感器称为电涡流式传感器。电涡流式传感器最大的特点是能对位移、厚度、表而温度、速度、应力及材料损伤等进行非接触式连续测量,另外还具有体积小、灵敏度高和频率响应宽等特点,应用极其广泛。 如图所示为电涡流式转速传感器工作原理图。在软磁材料制成的输入轴上加工一键槽,在距输入表面4I处设置电涡流传感器,输入轴与被测旋转轴相连。当被测旋转轴转动时,输出轴的距离发生(吨tAd)的变化。由于电涡流效应,这种变化将导致振荡回路的品质因数变化,使传感器线圈电感随AJ的变化也发生变化,它将直接影响振荡器的电压幅值和振荡频率。出此,随着输入轴的旋转,从振荡器输出的信号中包含有与转数成正比的脉冲频率信号。该信号由检波器检出电压幅值的变化量,然后经整形电路输出脉冲频率信号,该信号经电路处理便可得到被测转速。 这种转速传感器可实现非接触式测量,抗污染能力很强,可安装在旋转轴

附近长期对被测转速进行监视。最高测量转速可达600 000r/min。 二霍尔式传感器 霍尔式传感器也是一种磁电式传感器,它是利用霍尔元件基于霍尔效府原理而将被测量转换成电动势输出的一种传感器。由于霍尔元件在静止状态下具有感受磁场的独特能力,并且具有结构简单、休积小、噪声小、频率范围宽(从直流到微波)、动态范围大(输出电势变化范围可达1000:1)以及寿命长等特点,因此获得了广泛应用。 金属或半导体薄片置于磁场中,当有电流流过时,在垂直于电流和磁场的方向上将产生电动势,这种物理现象称为霍尔效应。 公式 跟据公式,霍尔元件可用于三种测量方法,其中非接触式的为: (1)保持霍尔元件感受的磁感强度不变,利用Uh与I成止比的关系,可用于直接测量电流和能转换为电流的物理量,如电压等。 (2)当霍尔元件的控制电流和磁感比强度均发生变化时,利用uH与IB成正比的关系,可构成乘法器和功率计等,进行乘法运算或功率测量。下面以霍尔单相交流功率计为例进行说明。 通过测量电路测出霍尔元件输出的平均霍尔电压uh,即可求出负载ZL 的有功功率P。 三感应同步器 感应同步器由两个平面印刷电路绕组构成,类似于变压器的初、次级绕组,故又称平面变压器。感应同步器通过位移引起两个绕组间的互感量变化来进行位移测量。按照测量位移对象的不同,感应同步器可分为直线型感应同步

设备的机械故障诊断及排除

机械设备故障诊断及排除 机械设备故障是机械设备应有的工作能力或特性的明显降低,甚至根本不能工作的现象.机械设备的技术状况是随着使用时间的延长而逐渐恶化的,因而机械设备的使用寿命总是有限的,由此可知,机械设备发生故障的可能性总是随着使用时间的延长而增大.虽然机械设备故障的发生具有随机性,即无论哪一类故障,人们都难以预料它的确切地发生时间,但是故障的产生是可以预防,发现和排除的.故障的分类对于预防机械设备故障的发生起到指导作用;故障的诊断方法可以及时准确地确定故障的种类和具体位置,并初步判定故障的严重程度,为排除故障提供有价值的参考信息.确保机械设备的正常工作. 一、机械设备故障分类: (一)临时性故障 临时性故障又称间断故障,多半是由机械设备的外部原因引起的.如操作失误等造成,当这些外部干扰消除后机械设备即可正常运转. (二)永久性故障 1.按故障发生的时间分类: 1)早发性故障:这是由于机械设备在设计,制造,装配,调试等方面存在问题引起的.如新购入 机床液压系统严重漏油或噪声很大. 2)突发性故障:这是由于各种不利因素和偶然的外界因素共同作用的结果.故障发生的特点是 具有偶然性和突发性,事先无任何征兆,一般与使用情况有关,难以预测,但它容易排除,通常对机械设备寿命影响不大. 3)渐进性故障:它是因机械设备技术特性参数的劣化包括腐蚀,疲劳,老化等,逐渐发展而成 的.其特点是故障发生的概率与使用时间有关,只是在机械设备有效寿命的后期才明显的表现出来.故障一经发生,就标志着寿命的终结.通常它可以进行预测,大部分机械设备的故障属于这一类. 4)复合型故障:这类故障包括上述故障的特征,其故障发生的时间不定.机械设备工作能力耗 损过程的速度与其耗损的性能有关.如摩擦副的磨损过程引起的渐进性故障,而外界的磨粒会引起突发性故障. 2.按故障表面形式分类: 1)功能故障:机械设备应有的工作能力或特性明显降低,甚至根本不能工作,即丧失了它应有

机械故障诊断技术 习题参考答案

参考答案 教材:设备故障诊断,沈庆根、郑水英,化学工业出版社,2006.3第1版 2010.6.28 于电子科技大学 1第1章概论 1.1 机械设备故障诊断包括哪几个方面的内容? 答:机械设备故障诊断所包含的内容可分为三部分。 第一部分是利用各种传感器和监测仪表获取设备运行状态的信息,即信号采集。采集到的信号还需要用信号分析系统加以处理,去除无用信息,提取能反映设备状态的有用信息(称为特征信息),从这些信息中发现设备各主要部位和零部件的性能是处于良好状态还是故障状态,这部分内容称为状态监测,它包含了信号采集和信号处理。 第二部分是如果发现设备工作状态不正常或存在故障,则需要对能够反映故障状态的特征参数和信息进行识别,利用专家的知识和经验,像医生诊断疾病那样,诊断出设备存在的故障类型、故障部分、故障程度和产生故障的原因,这部分内容称为故障诊断。 第三部分称为诊断决策,根据诊断结论,采取控制、治理和预防措施。 在故障的预防措施中还包括对设备或关键零部件的可靠性分析和剩余寿命估计。有些机械设备由于结构复杂,影响因素众多,或者对故障形成的机理了解不够,也有从治理措施的有效性来证明诊断结论是否正确。 由此可见,设备诊断技术所包含的内容比较广泛,诸如设备状态参数(力、位移、振动、噪声、裂纹、磨损、腐蚀、温度、压力和流量等)的监测,状态特征参数变化的辨识,机器发生振动和机械损伤时的原因分析,故障的控制与防治,机械零部件的可靠性分析和剩余寿命估计等,都属于设备故障诊断的范畴。 1.2 请简述开展机械设备故障诊断的意义。 答:1、可以带来很大的经济效益。 ①采用故障诊断技术,可以减少突发事故的发生,从而避免突发事故造成的损失,带来可观的经济效益。 ②采用故障诊断技术,可以减少维修费用,降低维修成本。 2、研究故障诊断技术可以带动和促进其他相关学科的发展。故障诊断涉及多方面的科学知识,诊断工作的深入开展,必将推动其他边缘学科的相互交叉、渗透和发展。 2第2章故障诊断的信号处理方法 2.1 信号特征的时域提取方法包括哪些? 答:信号特征的时域提取方法包括平均值、均方根值、有效值、峰值、峰值指标、脉冲指标、裕度指标、偏度指标(或歪度指标、偏斜度指标)、峭度指标。这些指标在故障诊断中不能孤立地看,需要相互印证。同时,还要注意和历史数据进行比较,根据趋势曲线作出判别。 2.2 时域信号统计指标和频谱图在机械故障诊断系统中的作用分别是什么?

机械设备故障诊断专家系统的设计

机械设备故障诊断专家系统的设计 发表时间:2014-08-28T11:08:03.233Z 来源:《科学与技术》2014年第5期下供稿作者:方从旺 [导读] 诊断系统的概述诊断系统是一种完整的技术体系,用以获取机器技术状态信息并加以处理。 安徽盛运环保(集团)股份有限公司方从旺 摘要:随着科技的不断发展,机械设备故障诊断系统也开始向自动化方向发展。本文通过对诊断系统的概述,进一步探讨了机械设备故障诊断专家系统的设计。 关键词:机械设备;故障诊断;设计一、前言对于机械企业来说,机械设备是生产中的重要核心,一旦发生故障,将会造成巨大的损失,严重时将危及工作人员的生命安全。因此,加强对机械设备故障诊断专家系统的设计分析,对于保证人民财产和生命安全有着重要的意义。 二、诊断系统的概述诊断系统是一种完整的技术体系,用以获取机器技术状态信息并加以处理,进而判断和预测机器技术状态。诊断系统一般包括状态监测、故障检测(发现故障)、故障定位(故障隔离)和故障识别。机电设备监测诊断模式经历了从单机监测诊断系统到分布式监测诊断系统,再到基于Internet 的远程监测诊断系统这样一个发展过程。单机监测诊断系统是针对某一机器设计,是一种封闭式的系统,信息的交流限于系统内部。分布式监测诊断系统是针对大型机电设备主机和多辅机功能分布和地域分布的特点设计的,它通过工业局域网把分布的各个局部现场、独立完成特定功能的本地计算机互联起来,成为实现资源共享、协同工作、分散监测和集中操作、管理、诊断的工业计算机网络系统。 三、系统的设计1、数据库设计数据库主要用来存放系统运行过程中所必须的领域内原始特征数据的信息,以及在运行推理过程中所产生的各种静态和动态数据信息,为专家系统推理和解释提供必要的数据。包括从状态检修网络获取的被监测设备的状态参数、结构参数、时域信号以及设备运行和试验的历史数据与设备管理的原始参数。状态参数应包括信号分析的所有关键性特征,特征的提取应能正确反映设备运行的状况,以便下一步分析利用。如实时监测的幅值、频率、相位、波形、相关变化、空间分布、稳定性等特征。数据库还包括分析结果数据库、标准数据库、图谱库、设备档案库、分析条件库,并能根据需要进行数据查询和检索。 由于数据库中的事实是动态变化的,因此选用动态存储方式,即单链表存储结构。 2、知识表示与知识库知识的表示实际就是知识库的建造,是整个专家系统的核心部分。专家系统知识表达有深化表达和表层表达两种典型方式。知识的深化表达是关于实体(如概念、事件、性能等)间结构和功能的表达,它反映支配事物的物理规律、关于动作的功能模型、事物间的因果关系等,知识的使用严格按照演绎式推理的次序。另一种是基于经验对结构与功能理解的编译,知识的前提和结论来源于以往的经验,这种表达为表层表达。深化表达的典型模式有框架和语义网络,表层表达的典型模式是规则。 在此以基于规则的不精确知识表示为例介绍专家系统知识库的建立。其一般表示形式为IFETHEN(CF(H,E)),其中E为前提,它既可以是一个简单条件,也可以是由多个简单条件构成的逻辑组合;日为结论;CF(H,E)为规则可信度称为规则强度,CF(H,E)表示条件E 为真时结论日有CF(H,E)大小的可信度。将收集来的所有知识用上面的规则形式表示并按顺序放在一起即构成知识库。在具体构造规则时可以把规则前提和结论都看成事实,给它们统一编号,这个编号称之为事实键值,这样在推理时可以提高匹配效率和避免严格字符匹配的易出错两个缺点。在设计本系统规则时,我们给每个规则也编上一个规则号,每条规则一般包括前提、结论、对策和可信度等。 3、专家系统推理机设计推理机是专家系统的组织控制结构,用来连接知识库的事实和规则,是专家系统的关键部分。推理机根据机组当前的运行状态激活知识库中的有关规则,刷新动态数据库并保存推理轨迹以期对诊断结果进行解释,实际上就是利用诊断知识库的知识根据设备运行状态的征兆,对设备的历史数据进行比较、推理和诊断以求解策略。推理机包括推理方法和推理方向。 基于正向推理的推理机的实现。根据机组当前运行信息和过去的历史记录,激活知识库中的规则并保存推理轨迹,以期对诊断结果进行解释,它是整个系统的动力源泉,其推理流程见图2。 4、解释机制解释机构中存放着推理过程中匹配成功的规则,用户需要时,系统可将推理过程演示给用户看。本系统的解释机制主要是实现对推理过程和推理结论的解释,在设计时反向跟踪数据库中保存的解释和推理路径,并把它翻译成用户能够接受的自然语言表达方式。 5、人机接口人机接口是专家系统与用户实现交互的一种设施,设计的好坏对系统的可用性有很大的影响。用户接口一般利用窗口、图形、菜单等手段,使用户能够形象、直观地使用系统进行推理诊断。 四、故障诊断系统的技术支持1、软件设计要从软件方面设计一个性能良好的远程监测与故障诊断系统,需要对机器设备的整个应用情况进行全面详细地调查,收集支持系统总的设计目标的基本数据和对这些数据的处理要求,确定用户的需求,迅速准确地反映机械设备的使用性能和工作情况,查找故障之所在,并且能够采取相应的预防措施,以确保设备在良好技术状况下的运行,从而能够延长机械设备的使用寿命,降低生产成本,保证煤矿的安全生产。 2、数据传输现场监测站与现场监测中心之间需要实时数据传输,由于基于CAN 总线的数据通信具有突出的可靠性、实时性和灵活性,因此,系统可使用CAN 总线技术。要实现机械设备的远程故障诊断,必须通过网络为载体,同时要能够使双方通过Internet 查询彼此数据库中的数据。有些机械设备铺设有线网络困难,也可采用无线传感器与GPRS 技术,构建无线网络来实现上述功能。 3、数据库系统系统数据库应该包括设备的管理、用户的管理、监测数据的管理以及历史数据的管理。由于系统要将从现场监测站得到

相关主题
文本预览
相关文档 最新文档