当前位置:文档之家› 递归数列通项公式的求法

递归数列通项公式的求法

递归数列通项公式的求法
递归数列通项公式的求法

递归数列通项公式的求法

确定数列的通项公式,对于研究数列的性质起着至关重要的作用。求递归数列的通项

公式是解决数学竞赛中有关数列问题的关键,本文着重对递归数列通项公式加以研究。 基础知识

定义:对于任意的*

N n ∈,由递推关系),,,(21k n n n n a a a f a ---= 确定的关系称为k 阶递归关系或称为k 阶递归方程,由k 阶递归关系及给定的前k 项k a a a ,,,21 的值(称为初始值)所确定的数列称为k 阶递归数列。若f 是线性的,则称为线性递归数列,否则称为非线性递归数列,在数学竞赛中的数列问题常常是非线性递归数列问题。 求递归数列的常用方法: 一.公式法

(1)设}{n a 是等差数列,首项为1a ,公差为d ,则其通项为d m n a a m n )(-+=; (2)设}{n a 是等比数列,首项为1a ,公比为q ,则其通项为m

n m n q a a -=;

(3)已知数列的前n 项和为n S ,则)

2()

1(11

≥=???

-=-n n S S S a n n n 。

二.迭代法

迭代恒等式:112211)()()(a a a a a a a a n n n n n +-++-+-=--- ; 迭乘恒等式: 11

2211a a a a a a a a n n n n n ????=

--- ,(0≠n a ) 迭代法能够解决以下类型一和类型二所给出的递推数列的通项问题: 类型一:已知)(,11n f a a b a n n +==+,求通项n a ; 类型二:已知n n a n f a b a )(,11==+,求通项n a ; 三.待定系数法

类型三:已知)1(,11≠+==+p q pa a b a n n ,求通项n a ; 四.特征根法

类型四:设二阶常系数线性齐次递推式为n n n qx px x +=++12(0,,1≠≥,q q p n 为常数),其特征方程为q px x +=2

,其根为特征根。

(1)若特征方程有两个不相等的实根βα,,则其通项公式为n

n

n B A x βα+=(1≥n ),其中A 、B 由初始值确定;

(2)若特征方程有两个相等的实根α,则其通项公式为1

)1([--+=n n n B A x αα(1≥n ),

其中A 、B 由初始值确定。

证明:设特征根为βα,,则,p =+βαq -=αβ

所以12++-n n x x α=11++-+n n n x qx px α=n n qx x p +-+1)(α=n n x x αββ-+1=)(1n n x x αβ-+ 即}{1n n x x α-+是以β为公比,首项为)12x x α-的等比数列。 所以1

121)(-+-=-n n n x x x x β

αα,所以2

121)(---+=n n n x x x x β

αα

(1)当βα≠时,则其通项公式为n n n B A x βα+=,其中α

βαβ)(12--=x x A ,ββαα)(12

--=x x B ; (2)当βα=时,则其通项公式为1

)]1([--+=n n n B A x α

α,其中α

αα

1

21

,x x B x A -=

=

五.代换法

代换法主要包括三角代换、分式代换与代换相消等,其中代换相消法可以解决以下

类型五:已知c a b a ==21,,)0(11≠++=-+r r qa pa a n n n ,求通项n a 。 六.不动点法

若αα=)(f ,则称α为)(x f 的不动点,利用不动点法可将非线性递归式化归为等差数列、等比数列或易于求解的递关系的递推关系,从而达到求解的目的。 类型六:(1)已知0(1≠+?+?=

+c d

a c b

a a a n n n ,且)0≠-bc ad ,求通项n a ;

(2)已知c

a a

b a a a n n n +?+?=+22

1

,求通项n a ; 七.数学归纳法 八.构造法

典例分析

例1.数列{a n }中,a 1=1,a n+1>a n ,且)(21112

2

1n n n n n n a a a a a a ++=+++++成立,求n a 。 例2.已知正数数列}{n x 满足:k

k n

n n cx x x 11)

1(+=

+,其中0,,*

≠∈∈c R c N k ,求n x 。

例3.已知数列{a n }满足:1

1

2212,2,1++++=

==n n n n n a a a a a a a ,求n a 。

例4.已知)3(2

,12

21

21≥+===--n a a a a a n n n ,证明:该数列中的一切数都是整数。 例5.已知)(1,1*2

13321N n a a a a a a a n

n n n ∈+=

===+++,求n a 。

6.数列}{},{n n b a 满足)2(1,2

1

1≥-=

=--n a b b b a a n

n n n n n ,q b p a ==11,且

1,0,=+>q p q p ,求}{},{n n b a 的通项公式。

例7.已知q p pa a b a n n +-+==+2

11)1(,,求n a 。

例8.数列}{n a 满足??

?

??

=+++==+ ,2,1),24141(161

111n a a a a n n n ,求n a 。 例9.已知n

n n n n n n n b a b a b b a a a a +=

+==

=++2,2,25

,11121,求}{},{n n b a 的通项公式。 例10.已知数列}{},{n n b a 满足:??

?+=-=----θ

θθ

θcos s in s in cos 1111n n n n n n b a b b a a ,且θtan ,111==b a ,求

}{},{n n b a 的通项公式。

例11.若数列}{n a 的前n 项和为)0(,1>=a a a S n ,且满足2

21n n n S aS a a ++=+,求}

{n a 的通项公式。

拓展:若数列}{n a 的前n 项和为)0(,1>=a a a S n ,且满足

)22(221<<-+-=+t S taS a a n n n ,求}{n a 的通项公式。

(参考答案:1

2

sin sin --=

n n a a θπθ

,其中2cos t =θ) 例12.设数列}{},{n n b a 满足:0,100==b a ,且??

?-+=-+=+4783

671n n n

n n n b a b b a a , 2,1,0=n ,

证明:n a (,2,1=n ……)是完全平方数。

练习题:

1.已知数列{}n a 满足*

12212,3,32()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a 2.已知数列{}n a 满足*

12211,2,44()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a

3.已知数列{}n a 满足1112

2,(2)21

n n n a a a n a --+==

≥+,求数列{}n a 的通项n a

4.已知数列{}n a 满足*1121

2,()46

n n n a a a n N a +-==

∈+,求数列{}n a 的通项n a

练习答案:

1.解:其特征方程为232x x =-,解得121,2x x ==,令1212n n n a c c =?+?,

由1122122243a c c a c c =+=??=+=?,得121

12

c c =???=??, 112n n a -∴=+

2.解:其特征方程为2

441x x =-,解得1212x x ==,令()1212n

n a c nc ??

=+ ???

由1122121()121(2)2

4

a c c a c c ?

=+?=????=+?=??,得1246c c =-??=?, 1322n n n a --∴=

3.解:其特征方程为2

21

x x x +=

+,化简得2220x -=,解得121,1x x ==-,令111111n n n n a a c a a ++--=?++ 由12,a =得245a =,可得13c =-,∴数列11n n a a ??-??+??

是以1111

13a a -=+为首项,以1

3

-为公比的等比数列,1

111133n n n a a --??∴=?- ?+??,3(1)3(1)n n n n n

a --∴=+- 4.解:其特征方程为21

46

x x x -=

+,即24410x x ++=,解得1212x x ==-,令

111

1122

n n c a a +=+++ 由12,a =得2314a =,求得1c =, ∴数列112n a ????????+??是以112

152

a =+

为首项,以1为公差的等差数列,123

(1)11552

n n n a ∴=+-?=-+,135106n n a n -∴=

-

数列通项公式的求法集锦

数列通项公式的求法集锦 非等比、等差数列的通项公式的求法,题型繁杂,方法琐碎,笔者结合近几年的高考情况,对数列求通项公式的方法给以归纳总结。 一、累加法 形如1()n n a a f n --= (n=2、3、4…...) 且(1)(2)...(1)f f f n +++-可求,则用累加法求n a 。有时若不能直接用,可变形成这种形式,然后用这种方法求解。 例1. 在数列{n a }中,1a =1,11n n a a n --=- (n=2、3、4……) ,求{n a }的通项公式。 解:∵111n a ==时, 213243121 23.......1n n n a a a a a a a a n -≥-=??-=??-=???-=-?? 时, 这n-1个等式累加得:112...n a a -=+++(n-1)=(1)2n n - 故21(1)222n n n n n a a --+=+= 且11a =也满足该式 ∴222 n n n a -+= (n N *∈). 例2.在数列{n a }中,1a =1,12n n n a a +-= (n N *∈),求n a 。 解:n=1时, 1a =1212323431122 22.......2n n n n a a a a a a a a --≥-=??-=??-=????-=?时, 以上n-1个等式累加得 21122...2n n a a --=+++=12(12)12 n ---=22n -,故12221n n n a a =-+=- 且11a =也满足该式 ∴21n n a =- (n N *∈)。 二、累乘法 形如1 ()n n a f n a -= (n=2、3、4……),且(1)(2)...(1)f f f n +++-可求,则用累乘法求n a 。有时若不能直接用,可变形成这种形式,然后用这种方法求解。 例3.在数列{n a }中,1a =1,1n n a na +=,求n a 。

数列通项公式的求法(较全)

常见数列通项公式的求法 公式: 1、 定义法 若数列是等差数列或等比数列,求通公式项时,只需求出1a 与d 或1a 与q ,再代入公式()d n a a n 11-+=或 11-=n n q a a 中即可. 例1、成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{}n b 的345,,b b b ,求数列{}n b 的的通项公式. 练习:数列{}n a 是等差数列,数列{}n b 是等比数列,数列{}n c 中对于任何* n N ∈都有 1234127 ,0,,,,6954 n n n c a b c c c c =-====分别求出此三个数列的通项公式.

2、 累加法 形如()n f a a n n =-+1()1a 已知型的的递推公式均可用累加法求通项公式. (1) 当()f n d =为常数时,{}n a 为等差数列,则()11n a a n d =+-; (2) 当()f n 为n 的函数时,用累加法. 方法如下:由()n f a a n n =-+1得 当2n ≥时,() 11n n a a f n --=-, () 122n n a a f n ---=-, ()322a a f -=, () 211a a f -=, 以上()1n -个等式累加得 ()()()()11+221n a a f n f n f f -=--+ ++ 1n a a ∴=+()()()()1+221f n f n f f --+ ++ (3)已知1a ,()n f a a n n =-+1,其中()f n 可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项. ①若()f n 可以是关于n 的一次函数,累加后可转化为等差数列求和; ②若()f n 可以是关于n 的二次函数,累加后可分组求和; ③若()f n 可以是关于n 的指数函数,累加后可转化为等比数列求和; ④若()f n 可以是关于n 的分式函数,累加后可裂项求和求和. 例2、数列{}n a 中已知111,23n n a a a n +=-=-, 求{}n a 的通项公式.

几种常见的数列的通项公式的求法

几种常见的数列的通项公式的求法 一. 观察法 例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,…(2) ,1716 4,1093,542,211 (3) ,5 2 ,21,32 ,1(4) ,5 4 ,43,32,21-- 解:(1)变形为:101-1,102―1,103―1,104―1,…… ∴通项公式为:110-=n n a (2);1 2 2 ++=n n n a n (3);12 += n a n (4)1 )1(1+? -=+n n a n n .点评:关键是找出各项与项数n 的关系。 二、公式法 例2: 已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x ) = (x -1)2,且a 1 = f (d -1),a 3 = f (d +1),b 1 = f (q +1),b 3 = f (q -1),(1)求数列{ a n }和{ b n }的通项公式; 解:(1)∵a 1=f (d -1) = (d -2)2,a 3 = f (d +1)= d 2,∴a 3-a 1=d 2-(d -2)2=2d , ∴d =2,∴a n =a 1+(n -1)d = 2(n -1);又b 1= f (q +1)= q 2,b 3 =f (q -1)=(q -2)2, ∴2 213)2(q q b b -==q 2 ,由q ∈R ,且q ≠1,得q =-2,∴b n =b ·q n -1=4·(-2)n -1 例 3. 等差数列{}n a 是递减数列,且432a a a ??=48,432a a a ++=12,则数列的通项公式是 ( ) (A) 122-=n a n (B) 42+=n a n (C) 122+-=n a n (D) 102+-=n a n 解析:设等差数列的公差位d ,由已知???==+??+12348)()(3 333a d a a d a , 解得 ?? ?±==2 4 3d a ,又 {} n a 是递减数列, ∴ 2 -=d , 8 1=a ,∴ =--+=)2)(1(8n a n 102+-n ,故选(D)。 例 4. 已知等比数列 {}n a 的首项11=a ,公比10<

数列通项的十一种求法

数列通项公式的十一种方法 知识概要 一.利用递推关系式求数列通项的11种方法: 累加法、 累乘法、 待定系数法、 阶差法(逐差法)、 迭代法、 对数变换法、 倒数变换法、 换元法(目的是去递推关系式中出现的根号)、 数学归纳法、 不动点法(递推式是一个数列通项的分式表达式)、 特征根法 二。四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。 三.求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。 四.求数列通项的基本方法是:累加法和累乘法。 五.数列的本质是一个函数,其定义域是自然数集的一个函数。

一、累加法 1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。 2.若1()n n a a f n +-=(2)n ≥, 则 21321(1) (2) () n n a a f a a f a a f n +-=-=- = 两边分别相加得 111 ()n n k a a f n +=-= ∑ 例1 已知数列{}n a 满足1121 1n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1 (1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++?++?++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2 n a n =。 例2 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 解法一:由1231n n n a a +=+?+得1231n n n a a +-=?+则 11232211122112211()()()()(231)(231)(231)(231)3 2(3333)(1)3 3(13)2(1)3 13 331331 n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=?++?+++?++?++=+++++-+-=+-+-=-+-+=+-所以3 1.n n a n =+-

(完整版)常见递推数列通项公式的求法典型例题及习题

常见递推数列通项公式的求法典型例题及习题 【典型例题】 [例1] b ka a n n +=+1型。 (1)1=k 时,}{1n n n a b a a ?=-+是等差数列,)(1b a n b a n -+?= (2)1≠k 时,设)(1m a k m a n n +=++ ∴ m km ka a n n -+=+1 比较系数:b m km =- ∴ 1-= k b m ∴ }1{-+ k b a n 是等比数列,公比为k ,首项为11-+k b a ∴ 11)1(1-?-+=-+ n n k k b a k b a ∴ 1)1(11--?-+=-k b k k b a a n n [例2] )(1n f ka a n n +=+型。 (1)1=k 时,)(1n f a a n n =-+,若)(n f 可求和,则可用累加消项的方法。 例:已知}{n a 满足11=a ,)1(1 1+= -+n n a a n n 求}{n a 的通项公式。 解: ∵ 11 1)1(11+- =+= -+n n n n a a n n ∴ n n a a n n 1111--= -- 112121---=---n n a a n n 21 3132-- -=---n n a a n n …… 312123-= -a a 21112-=-a a 对这(1-n )个式子求和得: n a a n 111- =- ∴ n a n 1 2- =

(2)1≠k 时,当b an n f +=)(则可设)()1(1B An a k B n A a n n ++=++++ ∴ A B k An k ka a n n --+-+=+)1()1(1 ∴ ???=--=-b A B k a A k )1()1( 解得:1-=k a A ,2 )1(1-+-=k a k b B ∴ }{B An a n ++是以B A a ++1为首项,k 为公比的等比数列 ∴ 1 1)(-?++=++n n k B A a B An a ∴ B An k B A a a n n --?++=-11)( 将A 、B 代入即可 (3)n q n f =)((≠q 0,1) 等式两边同时除以1 +n q 得q q a q k q a n n n n 1 11+?=++ 令 n n n q a C = 则q C q k C n n 1 1+ =+ ∴ }{n C 可归为b ka a n n +=+1型 [例3] n n a n f a ?=+)(1型。 (1)若)(n f 是常数时,可归为等比数列。 (2)若)(n f 可求积,可用累积约项的方法化简求通项。 例:已知: 311= a ,1121 2-+-=n n a n n a (2≥n )求数列}{n a 的通项。 解:123537532521232121212233 2211+= ?--?--?+-=???-----n n n n n n n a a a a a a a a a a n n n n n n ΛΛ ∴ 1211231+= +? =n n a a n [例4] 11 --+?? =n n n a m a m k a 型。

高中数学数列通项公式的求法(方法总结)

(1)主题:求数列通项n a 的常用方法总结 一、 形如:特殊情况:当n+11,n n A B C A a a A =*+*+≠,常用累加法。 (n n a a +-,z 构建等比数列()1y n z *++z ; 的通项公式,进而求得n a 。 二、 形n a a * ;

三、 形 ()x f x =) 情形1:1n n A B a a +=*+型。设λ是不动点方程的根,得数列 {}n a λ-是 以公比为A 的等比数列。 情形2:1*n n n A B C D a a a +*+=+型。 设1λ和2λ 是不动点方程 *A x B x C x D *+=+的两个根; (1)当12λλ≠时,数列n 12n a a λλ??-?? ??-????是以12 A C A C λλ -*-*为公比的等比数列; (2)当12 =λλλ =时,数列1n a λ???? ??-???? 是以2*C A D +为公差的等差数列。 【推导过程:递推式为a n+1= d ca b aa n n ++(c ≠0,a,b,c,d 为常数)型的数列 a n+1-λ= d ca b aa n n ++-λ= d ca c a d b a c a n n +--+ -) )((λλλ,令λ=-λ λc a d b --,可得λ=d c b a ++λλ ……(1)。(1)是a n+1=d ca b aa n n ++中的a n ,a n+1都换成λ后的不动点方程。 ○ 1当方程(1)有两个不同根λ1,λ2时,有 a n+1-λ1= d ca a c a n n +--))((11λλ,a n+1-λ2=d ca a c a n n +--) )((22λλ ∴ 2111λλ--++n n a a =21λλc a c a --?21λλ--n n a a ,令b n =21λλ--n n a a 有b n +1= 2 1 λλc a c a --?b n ○ 2当方程(1)出现重根同为λ时, 由a n+1-λ= d ca a c a n n +--))((λλ得λ-+11n a =))((λλ--+n n a c a d ca =λ c a c -+))((λλλ--+n a c a c d ( “分离常数”)。设c n =λ-n a 1 得c n +1= λ λc a c d -+?c n + λ c a c -】

几种常见的数列的通项公式的求法

几种常见的数列的通项公式的求法 一、观察法 1、根据数列的前4项,写出它的一个通项公式: (1) ,5 4,43,32,21-- (2) ,5 2,21,32,1 (3)9,99,999,9999,… 二、叠加法:对于型如)(1n f a a n n +=+类的通项公式 2、已知数列6,9,14,21,30,…求此数列的一个通项。 3、若在数列{}n a 中,31=a ,n a a n n +=+1,求通项n a 。 三、叠乘法:对于型如1+n a =f (n)·n a 类的通项公式 4、在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 的表达式。 5、已知数列{}n a 中,3 11= a ,前n 项和n S 与n a 的关系是 n n a n n S )12(-= ,试求通项公式n a 。 四、S n 法利用1--=n n n S S a (n ≥2) 6、已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式。 (1)13-+=n n S n 。 (2)12-=n s n 五、辅助数列法 7、已知数}{n a 的递推关系为121+=+n n a a ,且11=a 求通项n a 。 六、倒数法 8、已知数列{n a }中11=a 且11+=+n n n a a a (N n ∈),,求数列的通项公式。 1. 已知数列{}n a 的首项11a =,且13(2)n n a a n -=+≥,则n a = 3n-2 .

2.已知数列{}n a 的首项11a =,且123(2)n n a a n -=+≥,则n a 1433n -?-. 3.已知数列{}n a 的11a =,22a =且121()(3)2n n n a a a n --=+≥,则1lim n x n a a →∞+=

常见数列通项公式的求法(超好)

常见数列通项公式的求 法(超好) -CAL-FENGHAI.-(YICAI)-Company One1

常见数列通项公式的求法 1.定义法:①等差数列通项公式;②等比数列通项公式。 例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列, 2 55a S =.求数列{}n a 的通项公式.n a n 53= 2.公式法:已知n S (即12()n a a a f n ++ +=)求n a ,用作差法:{ 11,(1) ,(2) n n n S n a S S n -== -≥。 例2:已知数列}{n a 的前n 项和s n ,12-=n s n 求}{n a 的通项公式。 解:(1)当n=1时,011 ==s a ,当2≥n 时 12]1)1[()1(221-=----=-=-n n n s s a n n n 由于1a 不适合于此等式 。 ∴? ??≥-==)2(12)1(0 n n n a n 练习:数列{a n }满足a n =5S n -3,求a n 。 答案:a n =34 (-14 )n-1 3.累加法: 若1()n n a a f n +-=求n a :11221()()()n n n n n a a a a a a a ---=-+-+ +-1a +(2)n ≥。 例3:(1)数列{a n }满足a 1=1且a n =a n -1+3n -2(n ≥2),求a n 。 (2)数列{a n }满足a 1=1且a n =a n -1+1 2n (n ≥2),求a n 。 解:(1)由a n =a n -1+3n -2知a n -a n -1=3n -2,记f (n )=3n -2= a n -a n -1 则a n = (a n -a n -1)+(a n -1-a n -2)+(a n -2-a n -3)+…(a 2-a 1)+a 1 =f (n )+ f (n -1)+ f (n -2)+…f (2)+ a 1 =(3n -2)+[3(n -1)-2]+ [3(n -2)-2]+ …+(3×2-2)+1 =3[n+(n -1)+(n -2)+…+2]-2(n -1)+1 =3×(n+2)(n -1)2 -2n+3=3n 2-n 2 (2)由a n =a n -1+12n 知a n -a n -1=12n ,记f (n )=1 2n = a n -a n -1 则a n =(a n -a n -1)+(a n -1-a n -2)+(a n -2-a n -3)+…(a 2-a 1)+a 1 =f (n )+ f (n -1)+ f (n -2)+…f (2)+ a 1 =12n +12n -1 +12 n -2 +…+122 +1=12 -12n 练习:已知数列{}n a 满足211=a ,n n a a n n ++=+211 ,求n a 。答案:n a n 1-23= 4.累乘法:已知1()n n a f n a +=求n a ,用累乘法:121121 n n n n n a a a a a a a a ---=????(2)n ≥。 例4:在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 的表达式。 解:由(n+1)·1+n a =n ·n a 得 1 1+=+n n a a n n ,

高中数学数列通项公式的求法详解

数列通项公式的求法及数列求和方法详解 专题一:数列通项公式的求法 关键是找出各项与项数n 的关系.) 例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,…(2) ,17 16 4,1093,542,211(3) ,5 2 ,21,32 , 1(4) ,5 4 ,43,3 2 ,21-- 答案:(1)110-=n n a (2);122++=n n n a n (3);12+=n a n (4)1 )1(1+?-=+n n a n n . 公式法1:特殊数列 例2: 已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x ) = (x -1)2,且a 1 = f (d -1),a 3 = f (d +1),b 1 = f (q +1),b 3 = f (q -1),(1)求数列{ a n }和 { b n }的通项公式; 答案:a n =a 1+(n -1)d = 2(n -1); b n =b ·q n -1=4·(-2)n -1 例3. 等差数列{}n a 是递减数列,且432a a a ??=48,432a a a ++=12,则数列的通项公式是( ) (A) 122-=n a n (B) 42+=n a n (C) 122+-=n a n (D) 102+-=n a n (D) 例4. 已知等比数列{}n a 的首项11=a ,公比10<

九类常见递推数列求通项公式方法

递推数列通项求解方法 类型一:1n n a pa q += +(1p ≠) 思路1(递推法):()123()n n n n a pa q p pa q q p p pa q q q ---??=+=++=+++=?? ......121(1n p a q p p -=++++ (2) 1 1)11n n q q p a p p p --??+=+?+ ? --?? 。 思路2(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1 q p μ= -,数列 {}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1 111n n q q a a p p p -??+ =+ ?--??,即1111n n q q a a p p p -??=++ ? --?? 。 例1 已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式。 解:方法1(递推法): ()123232(23)3222333n n n n a a a a ---??=+=++=+++=?? (1) 22 3(122n -=++++ (2) 11 332 )12232112n n n --+??+=+?+=- ? --? ?。 方法2(构造法):设()12n n a a μμ++=+,即3μ=,∴数列{}3n a +是以134 a +=为首项、2为公比的等比数列,则113422n n n a -++=?=,即1 23n n a +=-。

1n n +思路1(递推法): 123(1)(2)(1)(3)(2)(1)n n n n a a f n a f n f n a f n f n f n ---=+-=+-+-=+-+-+-= …1 11 ()n i a f n -==+∑。 思路2(叠加法):1(1)n n a a f n --=-,依次类推有:12(2)n n a a f n ---=-、 23(3)n n a a f n ---=-、…、21(1)a a f -=,将各式叠加并整理得1 11 ()n n i a a f n -=-= ∑ ,即 1 11 ()n n i a a f n -==+ ∑ 。 例2 已知11a =,1n n a a n -=+,求n a 。 解:方法1(递推法):123(1)(2)(1)n n n n a a n a n n a n n n ---=+=+-+=+-+-+= ......1[23a =+++ (1) (1)(2)(1)]2 n i n n n n n n =++-+-+= = ∑ 。 方法2(叠加法):1n n a a n --=,依次类推有:121n n a a n ---=-、232n n a a n ---=-、…、 212a a -=,将各式叠加并整理得12 n n i a a n =-= ∑ ,12 1 (1)2 n n n i i n n a a n n ==+=+ = = ∑ ∑ 。

专题由递推关系求数列的通项公式(含答案)

专题 由递推关系求数列的通项公式 一、目标要求 通过具体的例题,掌握由递推关系求数列通项的常用方法: 二、知识梳理 求递推数列通项公式是数列知识的一个重点,也是一个难点,高考也往往通过考查递推数列来考查学生对知识的探索能力,求递推数列的通项公式一般是将递推公式变形,推得原数列是一种特殊的数列或原数列的项的某种组合是一种特殊数列,把一些较难处理的数列问题化为熟悉的等差或等比数列。 三、典例精析 1、公式法:利用熟知的公式求通项公式的方法称为公式法。常用的公式有???≥???????-=????????????????=-21 11n S S n S a n n n 及 等差数列和等比数列的通项公式。 例1 已知数列{n a }中12a =,2 +2n s n =,求数列{n a }的通项公式 评注 在运用1n n n a s s -=-时要注意条件2n ≥,对n=1要验证。 2、累加法:利用恒等式()()1211+......+n n n a a a a a a -=+--求通项公式的方法叫累加法。它是求型如 ()1+f n n n a a +=的递推数列的方法(其中数列(){}f n 的前n 项和可求)。 例2 已知数列{n a }中112a =,121 ++32 n n a a n n +=+,求数列{n a }的通项公式 评注 此类问题关键累加可消中间项,而(f n )可求和则易得n a 3、.累乘法:利用恒等式3 21121 n n n a a a a a a a a -=? ???????()0n a ≠求通项公式的方法叫累乘法。它是求型如()1n n a g n a +=的递推数列的方法(){}() g n n 数列可求前项积

史上最全的数列通项公式的求法13种

最全的数列通项公式的求法 数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。本文给出了求数列通项公式的常用方法。 一、直接法 根据数列的特征,使用作差法等直接写出通项公式。 二、公式法 ①利用等差数列或等比数列的定义求通项 ②若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式 ?? ?≥???????-=????????????????=-2 1 11n S S n S a n n n 求解. (注意:求完后一定要考虑合并通项) 例2.①已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式. ②已知数列{}n a 的前n 项和n S 满足2 1n S n n =+-,求数列{}n a 的通项公式. ③ 已知等比数列{}n a 的首项11=a ,公比10<

数列通项公式、前n项和求法总结全

一.数列通项公式求法总结: 1.定义法 —— 直接利用等差或等比数列的定义求通项。 特征:适应于已知数列类型(等差或者等比). 例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,2 55a S =.求数列{}n a 的通项公式. 变式练习: 1.等差数列{}n a 中,71994,2,a a a ==求{}n a 的通项公式 2. 在等比数列{}n a 中,212a a -=,且22a 为13a 和3a 的等差中项,求数列{}n a 的首项、公比及前n 项和. 2.公式法 求数列{}n a 的通项n a 可用公式???≥???????-=????????????????=-21 11n S S n S a n n n 求解。 特征:已知数列的前n 项和n S 与n a 的关系 例2.已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式。 (1)13-+=n n S n 。 (2)12 -=n s n

变式练习: 1. 已知数列{}n a 的前n 项和为n S ,且n S =2n 2 +n ,n ∈N ﹡,数列{b }n 满足n a =4log 2n b +3,n ∈N ﹡.求n a ,n b 。 2. 已知数列{}n a 的前n 项和2 12 n S n kn =-+(*k N ∈),且S n 的最大值为8,试确定常数k 并求n a 。 3. 已知数列{}n a 的前n 项和*∈+=N n n n S n ,2 2.求数列{}n a 的通项公式。 3.由递推式求数列通项法 类型1 特征:递推公式为 ) (1n f a a n n +=+ 对策:把原递推公式转化为)(1n f a a n n =-+,利用累加法求解。 例3. 已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 。

已知数列递推公式求通项公式的几种方法

已知数列递推公式求通项公式的几种方法 Revised on November 25, 2020

求数列通项公式的方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则11 3 222 n n n n a a ++-=,故数列{}2n n a 是以1222 a 1 1==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 11 3 222 n n n n a a ++-=,说明数列{}2 n n a 是等差数列,再直接利用等差数列的通项公式求出3 1(1) 22n n a n =+-,进而求出数列{}n a 的通项公式。 二、累加法 例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 所以数列{}n a 的通项公式为2n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为 121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-+ +-+-+, 即得数列{}n a 的通项公式。 例3 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 解:由1231n n n a a +=+?+得1231n n n a a +-=?+则 所以3 1.n n a n =+-

数列通项公式的几种求法

数列通项公式的几种求法 数列通项公式直接表述了数列的本质,是给出数列的一种重要方法。数列通项公式具备两大功能,第一,可以通过数列通项公式求出数列中任意一项;第二,可以通过数列通项公式判断一个数是否为数列的项以及是第几项等问题;因此,求数列通项公式是高中数学中最为常见的题型之一,它既考察等价转换与化归的数学思想,又能反映学生对数列的理解深度,具有一定的技巧性,是衡量考生数学素质的要素之一,因而经常渗透在高考和数学竞赛中。本文分别介绍几种常见的数列通项的求法,以期能给读者一些启示。 一、常规数列的通项 例1:求下列数列的通项公式 (1)22—12 ,32—13 ,42—14 ,52—15 ,… (2)-11×2 ,12×3 ,-13×4 ,14×5 ,… (3)23 ,1,107 ,179 ,2611 ,… 解:(1)a n =n 2—1n (2)a n = (-1)n n (n+1) (3) a n =n 2+12n +1 评注:认真观察所给数据的结构特征,找出a n 与n 的对应关系,正确写出对应的表达式。 二、等差、等比数列的通项 直接利用通项公式a n =a 1+(n -1)d 和a n =a 1q n -1写通项,但先要根据条件寻求首项、 公差和公比。 三、摆动数列的通项 例2:写出数列1,-1,1,-1,…的一个通项公式。 解:a n =(-1)n -1 变式1:求数列0,2,0,2,0,2,…的一个通项公式。 分析与解答:若每一项均减去1,数列相应变为-1,1,-1,1,… 故数列的通项公式为a n =1+(-1)n 变式2:求数列3,0,3,0,3,0,…的一个通项公式。 分析与解答:若每一项均乘以23 ,数列相应变为2,0,2,0,… 故数列的通项公式为a n =32 [1+(-1)n -1 ] 变式3:求数列5,1,5,1,5,1,…的一个通项公式。 分析与解答1:若每一项均减去1,数列相应变为4,0,4,0,… 故数列的通项公式为a n =1++2×23 [1+(-1)n -1 ]=1+43 [1+(-1)n -1 ] 分析与解答2:若每一项均减去3,数列相应变为2,-2,2,-2,… 故数列的通项公式为a n =3+2(-1)n -1 四、循环数列的通项 例3:写出数列0.1,0.01,0.001,0.0001,…的一个通项公式。

数列通项公式求法大全配练习及答案

数列通项公式的十种求法 一、公式法 * 11(1)()n a a n d dn a d n N =+-=+-∈ 1 *11()n n n a a a q q n N q -== ?∈ 二、累加法 )(1n f a a n n +=+ 例 1 已知数列{}n a 满足1121 1n n a a n a +=++=,,求数列{}n a 的通项公式。 2n a n = 例 2 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 (3 1.n n a n =+-) 三、累乘法 n n a n f a )(1=+ 例3 已知数列{}n a 满足112(1)53n n n a n a a +=+?=,,求数列{}n a 的通项公式。 ((1)1 2 32 5 !.n n n n a n --=???) 评注:本题解题的关键是把递推关系12(1)5n n n a n a +=+?转化为 1 2(1)5n n n a n a +=+,进而求出 1 32 112 21 n n n n a a a a a a a a a ---??? ??,即得数列{}n a 的通项公式。 例4已知数列{}n a 满足112311 23(1)(2)n n a a a a a n a n -==++++-≥,,求{}n a 的通项 公式。(! .2 n n a =)

评注:本题解题的关键是把递推关系式1(1)(2)n n a n a n +=+≥转化为 1 1(2)n n a n n a +=+≥,进而求出 1 3 212 2 n n n n a a a a a a a ---??? ?,从而可得当2n n a ≥时,的表达式,最后再求出数列{}n a 的通项公式。 四、待定系数法 q pa a n n +=+1 ()n f pa a n n +=+1 n n n qa pa a +=++12(其中p ,q 均为常数)。 例5 已知数列{}n a 满足112356n n n a a a +=+?=,,求数列{}n a 的通项公式。 (125n n n a -=+) 评注:本题解题的关键是把递推关系式1235n n n a a +=+?转化为1152(5)n n n n a a ++-=-,从而可知数列{5}n n a -是等比数列,进而求出数列{5}n n a -的通项公式,最后再求出数列 {}n a 的通项公式。 例6 已知数列{}n a 满足1135241n n n a a a +=+?+=,,求数列{}n a 的通项公式。 (1133522n n n a -=?-?-) 评注:本题解题的关键是把递推关系式13524n n n a a +=+?+转化为 1 15223(522)n n n n a a +++?+=+ ?+,从而可知数列{522}n n a +?+是等比数列,进而求出数列{522}n n a +?+的通项公式,最后再求数列{}n a 的通项公式。 例7 已知数列{}n a 满足2 1123451n n a a n n a +=+++=,,求数列{}n a 的通项公式。 (42 231018n n a n n +=---) 评注:本题解题的关键是把递推关系式2 12345n n a a n n +=+++转化为 2213(1)10(1)182(31018)n n a n n a n n ++++++=+++,从而可知数列

备战2020数学高考三大类递推数列通项公式的求法

三大类递推数列通项公式的求法 湖北省竹溪县第一高级中学徐鸿 一、一阶线性递推数列求通项问题 一阶线性递推数列主要有如下几种形式: 1. 这类递推数列可通过累加法而求得其通项公式(数列{f(n)}可求前n项和). 当为常数时,通过累加法可求得等差数列的通项公式.而当为等差数列时, 则为二阶等差数列,其通项公式应当为形式,注意与等差数列求和公式一般形式的区别,后者是,其常数项一定为0. 2. 这类递推数列可通过累乘法而求得其通项公式(数列{g(n)}可求前n项积). 当为常数时,用累乘法可求得等比数列的通项公式. 3.; 这类数列通常可转化为,或消去常数转化为二阶递推式 . 例1已知数列中,,求的通项公式. 解析:解法一:转化为型递推数列. ∵∴又,故数列{}是首项为2,公比为2的等比数列.∴,即. 解法二:转化为型递推数列. ∵=2x n-1+1(n≥2) ①∴=2x n+1 ② ②-①,得(n≥2),故{}是首项为x 2-x 1 =2, 公比为2的等比数列,即,再用累加法得.解法三:用迭代法. 当然,此题也可用归纳猜想法求之,但要用数学归纳法证明.

例2已知函数的反函数为 求数列的通项公式. 解析:由已知得,则. 令=,则.比较系数,得. 即有.∴数列{}是以为首项,为 公比的等比数列,∴,故. 评析:此题亦可采用归纳猜想得出通项公式,而后用数学归纳法证明之. (4) 若取倒数,得,令,从而转化为(1)型而求之. (5); 这类数列可变换成,令,则转化为(1)型一阶线性递推公式. 例3设数列求数列的通项公式.解析:∵,两边同除以,得.令,则有.于是,得,∴数列是以首项为,公比为的等比数列,故,即,从而.例4设求数列的通项公式. 解析:设用代入,可解出.

常见递推数列通项公式的求法

常见递推数列通项公式的求法 教学目标: (1)知识与技能:会根据递推公式求出数列中的项,并能运用累加、累乘、待定系数等方法求数列的通项公式。 (2)过程与方法: ①复习回顾所学过的通项公式的求法,对比递推公式与通项公式区别认识到由递推公式求通项公式的重要性,引出课题。 ②对比等差数列的推导总结出累加法的试用题型。 教学重点:根据数列的递推关系式求通项公式。 教学难点:解题过程中方法的正确选择。 教学过程: (一)复习回顾: 1、通项公式的定义及其重要作用 2、学过的通项公式的几种求法 3、区别递推公式与通项公式,从而引入课题 (二)新知探究: 问题1:已知数列}{n a ,1a =1,1n a +=n a +2,求n a ? 变式: 已知数列}{n a ,1a =1,1n a +=n a +2n ,求n a ? 活动:通过分析发现形式类似等差数列,故想到用累加法去求解。教师引导学生细致讲解整个解题过程。 练习: 已知数列}{n a ,1a =1,n n n a a 2 11=-+,求n a =? 总结:类型1:)(1n f a a n n =-+,利用累加法求解。 问题2: 已知数列{a n }满足)(,2,111*+∈==N n a a a n n ,求{a n }的通项公式。 变式:若条件变为)(,21*+∈=N n a a n n n 练习: 已知数列{}n a 满足321=a ,n n a n n a 1 1+=+,求n a 。 总结:类型2型如 用累乘法求解 问题3: 已知数列{a n }满足)(,12,111*+∈+==N n a a a n n ,求{a n }的通项公式。 变式:)(,64,311*+∈-==N n a a a n n ,求{a n }的通项公式。 ) (1n f a a n n ?=+

相关主题
文本预览
相关文档 最新文档