当前位置:文档之家› 无机材料制备实验溶胶凝胶法合成莫来石

无机材料制备实验溶胶凝胶法合成莫来石

无机材料制备实验溶胶凝胶法合成莫来石
无机材料制备实验溶胶凝胶法合成莫来石

溶胶凝胶法合成莫来石(3Al 2O 3﹒2SiO 2)微粉

莫来石具有优异的高温强度、电绝缘性和化学稳定性,高的抗蠕变性和抗热震稳定性,低的热传导率和热膨胀系数及高温环境中优良的红外透过性等.莫来石陶瓷作为一种高温结构材料也受到越来越多的重视,此外,莫来石陶瓷在光学、电子等方面的应用,也引起人们的极大兴趣。莫来石有天然产物,但其含量和纯度均不能满足工业需要,为了获得高纯超细的莫来石原料,人们研究了一些特殊的合成工艺。如水解沉淀法,溶胶-凝胶法,成核生长法,喷雾热分解法,Al 2O 3和SiO 2超细粉末直接合成等.

溶胶凝胶法制备超细粉,是在液相中进行的,混合比较均匀,初始原料在液相中水解成水解产物的各种聚合体,各种聚合体进一步转化为凝胶.因凝胶比表面积很大,表面能高,与利用粉体之间固相反应的传统工艺相比,凝胶颗粒自身烧结温度低,其工艺上的优势对陶瓷粉体的工业生长具有重要的意义.粉料制备过程中无需机械混合,化学成分较均匀。由于转化温度低,可得超细粉末.

本实验采用溶胶-凝胶法合成莫来石微粉。 一、实验目的

1. 了解溶胶—凝胶法制备莫来石粉末的过程与原理; 2。 掌握溶液中铝含量的测定方法; 3。 掌握溶胶粘度的测定方法;

4. 学会用红外光谱初步测试无机粉末物相;

5. 掌握用激光粒度仪测试无机粉末粒度;

6. 掌握利用差热—热重联用仪研究样品在温度变化过程中所发生的物理化学变化。 二、实验原理

在正硅酸乙酯(TEOS )加入水,TEOS 开始水解反应,H +

取代了TEOS 中的烷基(—C 2H 5),随着水解的进行,发生聚合,小分子不断聚集成大分子,反应在宏观上就是粘度不断增大。由于溶胶中存在大量Al 3+

,且Al 3+

有一定夺氧能力,当溶胶聚合,逐渐形成三维网络时,大部分Al 3+

进入Si —O 网络中,一部分Al 3+

参与结构,形成复杂的—Si-O —Al —O 三维无轨网络。其水解缩聚机理如下:

2|

|

33253

253

||H O

OR

OR

RO S i OC H Al

NO RO S i OH C H OH Al NO OR OR

++

-

+---++???→--+++

-

+

+-

+++----??→

?++--+--3

52|

|3|

|3352||

||

22NO OH H C OH OR

i S OR

Al O

OR i S OR

RO NO Al H OC OR

i S OR

RO OH OR i S OR

RO O H

2||

33|||

|

|

|

||||33|

|

|

|

||||

/

/

H O OR OR S i O Al O Si Al NO OR OR OR OR

OR

OR Si

O Si

O Al

O Si O Al O

OR

O Al O Si

O Al

O Si

O Si OR OR

OR OR

OR ++-

++??

????-----++???→

??

????

?

?

????--------????

??????-----

--

-????????

为加快凝胶化的速度,加入酸或碱作为催化剂,形成复杂的-Si —O —Al —O 三维无轨网络凝胶经过干燥与烧结过程,得到莫来石粉末。 三、实验原料与仪器

(1)硝酸铝的溶解:硝酸铝、电子天平、恒温磁力搅拌机、磁子、去离子水、100 ml 容量瓶、250 ml 烧杯、250 ml 细口试剂瓶

(2)硝酸铝溶液中铝含量的测定:PAN 指示剂(0。2 g PAN 溶于100ml 乙醇中)、pH=4。2的HAc-NaAc 缓冲溶液、0。1 mol/L 硫酸铜溶液、250 ml 锥形瓶、0.1 mol/L 硫酸铜溶液、0.01 mol/L 的EDTA 标液、250 ml 容量瓶、电炉、量筒、酸式滴定管、铁架台、1 ml 吸量管、250 ml 细口试剂瓶、吸耳球、蝴蝶夹

(3)制备硅铝溶胶及莫来石粉末:正硅酸乙酯(TEOS )、盐酸(0.1 mol/L )、去离子水、无水乙醇、电子天平、恒温磁力搅拌机、磁子、烧杯、吸量管、量筒、温度计、恒温水浴、干燥箱、快速升温箱式炉、粘土坩埚、研钵、保鲜膜、铁架台、十字夹、万能夹

(4)硅铝溶胶粘度测量:乌氏粘度计、精密温度计、秒表、恒温水浴、10 ml 移液管、止水夹、乳胶管、十字夹、烧瓶夹、50 ml 烧杯 (5)粒度测量:激光粒度仪,蒸馏水 (6)红外光谱:红外光谱分析仪 (7)差热-热重分析:差热—热重联用仪 四、实验内容

1。硝酸铝Al(NO 3)3﹒9H 2O 的溶解

用电子天平称量30.0 g 结晶硝酸铝Al(NO 3)3·9H 2O ,放入200 ml 的小烧杯中,加入适

量的去离子水,用磁力搅拌机不停搅拌,直至硝酸铝完全溶解。将硝酸铝溶液移入100 ml 的容量瓶中,得到浓度约为0。8 mol/L的硝酸铝溶液。

2.硝酸铝溶液中铝含量的测定

A。硫酸铜标液的配制及标定

配制:移取实验室提供的0.1 mol/L的硫酸铜溶液25 mL配制250 mL,则所得溶液的浓度约0。01 mol/L。

标定:(1)从滴定管放出20 mL(准确读下体积)的EDTA标液置于锥形瓶中.

(2)加入pH=4.2 HAc-NaAc缓冲液15 mL,加入5~6滴2 g/L的PAN指示剂。

(3)以代标的硫酸铜溶液滴定至溶液的颜色为紫红色为终点,准确记下消耗的硫酸铜标液体积。

(4)计算硫酸铜溶液的浓度。

B。铝含量的测定

配制:取配制的约为0。8 mol/L的硝酸铝溶液2。50 ml配制成250ml,则所得溶液的浓度约为0.008 mol/L。

标定:(1)移取经过稀释浓度约为0.008 mol/L硝酸铝溶液50 ml置于250 ml锥形瓶中。

(2)加入一定量的EDTA(0.01)标液50 mL,加热至70 ℃左右。

(3)加入15 mL pH=4.2 HAc-NaAc缓冲液,煮沸2分钟,取下冷却至约80 ℃。

(4)补加上述缓冲液10 mL,加PAN指示剂5~6滴(此时溶液颜色为黄色)。

(5)用0。01 mol/L硫酸铜标液返滴定至溶液呈紫红色为终点,记录硫酸铜用量。

(6)计算硝酸铝溶液的浓度(经过稀释的与原先配制的)。

3。正硅酸乙酯(TEOS)的预水解

溶胶配比对溶胶-凝胶过程的影响非常重要,当TEOS:EtOH:H2O=1:2:4时制得清亮稳定溶胶的粘度较低,表明形成胶粒较小,容易凝胶成粉末状,有利于超细粉末的形成.

在100 ml的小烧杯中,盛入40 ml去离子水与20 ml无水乙醇,得到溶液A,移液管移取10.00ml正硅酸乙酯放入小烧杯中,然后用滴管吸取正硅酸乙酯滴至溶液A中,滴定速度50-60 d /min,同时用磁力搅拌机不停的搅拌,得到正硅酸乙酯(TEOS)的预水解溶液。

4.硅铝溶胶(酸催化剂)的制备

移取上述配置的浓度约为0.8 mol/L(根据上述滴定计算得到精确值、体积为75 ml的硝酸铝溶液转移到烧杯中,同时往硝酸铝溶液加入1 ml浓度为0.05 mol/L HCl.量取相应体积的正硅酸乙酯(TEOS)的预水解溶液(根据莫来石的组成3Al2O3·2SiO2);然后以50—60 d /min的速度滴入预先水解的TEOS溶液,边滴边搅拌,同时在50 ℃-70 ℃(分组),滴完

以后继续搅拌1 h,得到硅铝溶胶,烧杯口上用保鲜膜包上,然后放在50 ℃—70 ℃(分组)水浴中.

5.硅铝溶胶粘度的测量

(1)硅铝溶胶流出时间t1的测定

溶胶经过50 ℃-70 ℃经2 h水解聚合后,开启恒温水浴。并将粘度计垂直安装在恒温水浴中(G球下部位均浸在水中),用移液管吸10 ml硅铝溶胶,从A管注入粘度计F球内,在C管和B管干燥清洁橡皮管,并用夹子夹住C管上的橡皮管下端,使其不通大气。在B 管的橡皮管口用吸耳球将水从F球经D球、毛细管、E球抽至G球中部,

取下吸耳球,同时松开C管夹子,使其通大气.此时溶液顺毛细管里路下,

当液面流经a线处时,立刻按下秒表开始计时,至b处则停止记时。记

下液体流经a、b之间所需要的时间。重复测定三次,偏差小于0.2 S,

取其平均值,即为t1值。

(2)毛细管粘度计常数C的确定:

用移液管吸取已经预先恒温好的(25 ℃)蒸馏水10 ml,其粘度为

动力粘度(η),注入粘度计内,同(1)法,安装粘度计,测定流出时

间。重复测定三次,偏差小于0。2 s,取其平均值,即为t0值。得到毛

细管粘度计常数:

C=η/t0

其中 C-粘度计常数,MPa ;

η-蒸馏水的粘度,M Pa ·s;

-时间,s。

t

(3)自己查阅50 ℃,60 ℃,70 ℃,80 ℃(物理化学实验书)时蒸

馏水的粘度η0,根据测定的t0与t1,计算

t1时候溶胶粘度η1

η0 (50℃)=0.5468×10—6 Mpa·s η0 (60℃)=0。4665×10—6 Mpa·s

η0(70℃)= 0.4042 ×10—6 Mpa·s η0(80℃)=0.3547×10—6 Mpa·s

6。取制备的硅铝溶胶放入100℃左右干燥箱保温24小时,得到硅铝凝胶。

7。莫来石粉末的烧结

把硅铝凝胶粉末转移至粘土坩锅中,并置于快速升温箱式炉中,经过1250 ℃热处理温度,再保温2小时,设置升温速率为10 ℃/min。

8。硅铝凝胶的DSC—TGA分析

图1 硅铝凝胶的DSC—TGA图

干凝胶的DSC—TGA如图1所示,由TGA图可知,在400 ℃以前失重很快,在400 ℃以后,试样质量基本不发生变化,这说明在400 ℃以前湿凝胶已完成脱水、有机质分解挥发等过程,整个煅烧过程试样失重大约在50 %左右。干凝胶的DSC 在164、250℃有吸热峰,这主要是脱去残留在网络间隙中的吸附水、结构水、有机质乙醇及产生NO2所致;在998 ℃和1158 ℃处有放热峰,998 ℃的放热峰被认为是析出硅铝尖晶石晶相时产生的热效应,而1158 ℃的放热峰被认为是析出莫来石时产生的热效应。

9.莫来石粉末的物相组成分析

图2 莫来石粉末的红外光谱图

经过1250 ℃热处理的莫来石粉末经过研磨,用红外光谱进行物相分析。图2为所制得的莫来石粉末的红外光谱图。从图中可以看到,谱图中有多个吸收峰,其中560 cm —1

吸收带是由Al 6

-O 振动所致,740 cm —1

和830 cm -1

吸收带是由Al 4

-O 振动所致,Al 6

和Al 4代表6配位和4配位的铝离子。Si -O 吸收带位于450、900和1000~1200 cm -1

. 10.硅铝凝胶的粒度分析

用激光粒度仪对制备的莫来石粉末进行粒度测试。

图3 莫来石粉末的粒径分布图

图3为所制备的莫来石粉末的粒径分布图。从图中可以看到,所制备的莫来石粉末呈正态分布,粒径分布较宽,分布在0.7-27 μm 之间,但大部分分布在1-10 μm 之间,具有较好的分布形态.

微分%

μm

题目无机材料(大)实验

院(系)医药化工学院

班级 09 高分子材料与工程 2 班学号0932240058

姓名李晓明

指导教师闫瑞强陈桂华黄薇雅

溶胶凝胶法合成莫来石(3Al2O3﹒2SiO2)微粉姓名:李晓明学院:医药化工学院专业:高分子材料与工程指导教师:闫瑞强陈桂华黄薇雅

摘要:莫来石具有优异的高温强度、电绝缘性和化学稳定性,高的抗蠕变性和抗热震稳定性,低的热传导率和热膨胀系数及高温环境中优良的红外透过性等.莫来石陶瓷作为一种高温结构材料受到越来越多的重视,此外,它在光学、电子等方面的应用,也引起人们的极大兴趣。溶胶凝胶法制备超细粉,是在液相中进行的,混合比较均匀,初始原料在液相中水解成水解产物的各种聚合体,各种聚合体进一步转化为凝胶。

关键词:

1. 了解溶胶-凝胶法制备莫来石粉末的过程与原理;

2。掌握溶液中铝含量的测定方法;

3。掌握溶胶粘度的测定方法;

4. 学会用红外光谱初步测试无机粉末物相;

5. 掌握用激光粒度仪测试无机粉末粒度;

6. 掌握利用差热-热重联用仪研究样品在温度变化过程中所发生的物理化学变化。

1 前言

莫来石具有优异的高温强度、电绝缘性和化学稳定性,高的抗蠕变性和抗热震稳定性,低的热传导率和热膨胀系数及高温环境中优良的红外透过性等。莫来石陶瓷作为一种高温结构材料也受到越来越多的重视,此外,莫来石陶瓷在光学、电子等方面的应用,也引起人们的极大兴趣。莫来石有天然产物,但其含量和纯度均不能满足工业需要,为了获得高纯超细的莫来石原料,人们研究了一些特殊的合成工艺。如水解沉淀法,溶胶-凝胶法,成核生长法,喷雾热分解法,Al2O3和SiO2超细粉末直接合成等。

溶胶凝胶法制备超细粉,是在液相中进行的,混合比较均匀,初始原料在液相中水解成水解产物的各种聚合体,各种聚合体进一步转化为凝胶。因凝胶比表面积很大,表面能高,与利用粉体之间固相反应的传统工艺相比,凝胶颗粒自身烧结温度低,其工艺上的优势对陶瓷粉体的工业生长具有重要的意义。粉料制备过程中无需机械混合,化学成分较均匀.由于转化温度低,可得超细粉末。

本实验采用溶胶-凝胶法合成莫来石微粉.

2 实验部分

2.1 主要仪器及试剂

2。1。1主要仪器

仪器:电子天平、恒温磁力搅拌机、容量瓶、电炉、量筒、酸式滴定管、铁架台、吸量管、细口试剂瓶、蝴蝶夹、干燥箱、快速升温箱式炉、粘土坩埚、研钵、保鲜膜、秒表、移液管、烧瓶夹、烧杯、激光粒度仪、红外光谱分析仪、差热-热重联用仪

2。1.2主要试剂

试剂:硝酸铝、去离子水、PAN 指示剂(0.2 g PAN 溶于100ml 乙醇中)、pH=4。2的HAc —NaAc

缓冲溶液、0。1 mol/L 硫酸铜溶液、0.1 mol/L 硫酸铜溶液、0.01 mol/L 的EDTA 标液、正硅酸乙酯(TEOS )、盐酸(0。1 mol/L )、无水乙醇、蒸馏水

2。2 实验原理

在正硅酸乙酯(TEOS )加入水,TEOS 开始水解反应,H +

取代了TEOS 中的烷基(—C 2H 5),随着水解的进行,发生聚合,小分子不断聚集成大分子,反应在宏观上就是粘度不断增大.由于溶胶中存在大量Al 3+

,且Al 3+

有一定夺氧能力,当溶胶聚合,逐渐形成三维网络时,大部分Al 3+

进入Si —O 网络中,一部分Al 3+

参与结构,形成复杂的-Si-O —Al —O 三维无轨网络。其水解缩聚机理如下:

2|

|

33253

253

||H O

OR

OR

RO S i OC H Al

NO RO S i OH C H OH Al NO OR

OR

++

-

+---++???→--+++ -

+

+-

+++----??→

?++--+--3

52|

|3|

|

3352||

||

22NO OH H C OH OR

i S OR

Al

O

OR i S OR

RO NO Al H OC OR

i S OR

RO OH OR i S OR

RO O H

2||

33|||

|

|

|

||||33|

|

|

|

||||

/

/

H O OR OR S i O Al O Si Al NO OR OR OR OR

OR

OR Si

O Si

O Al

O Si O Al O

OR

O Al O Si

O Al

O Si

O Si OR OR

OR OR

OR ++-

++??

????-----++???→

??

????

?

?

????--------????

??????-----

--

-????????

为加快凝胶化的速度,加入酸或碱作为催化剂,形成复杂的—Si —O-Al-O 三维无轨网络凝胶经过干燥与烧结过程,得到莫来石粉末。

2.3 样品制备

2.3。1 硝酸铝的溶解

用电子天平称量30。0 g结晶硝酸铝Al(NO3)3·9H2O,放入200 ml的小烧杯中,加入适量的去离子水,用磁力搅拌机不停搅拌,直至硝酸铝完全溶解。将硝酸铝溶液移入100 ml 的容量瓶中,得到浓度约为0。8 mol/L的硝酸铝溶液。

2。3.2硝酸铝溶液中铝含量的测定

A.硫酸铜标液的配制及标定

配制:移取实验室提供的0。1 mol/L的硫酸铜溶液25 mL配制250 mL,则所得溶液的浓度约0。01 mol/L。

标定:(1)从滴定管放出20 mL(准确读下体积)的EDTA标液置于锥形瓶中。

(2)加入pH=4.2 HAc-NaAc缓冲液15 mL,加入5~6滴2 g/L的PAN指示剂.

(3)以代标的硫酸铜溶液滴定至溶液的颜色为紫红色为终点,准确记下消耗的硫酸铜标液体积.

(4)计算硫酸铜溶液的浓度。

B.铝含量的测定

配制:取配制的约为0。8 mol/L的硝酸铝溶液2.50 ml配制成250ml,则所得溶液的浓度约为0。008 mol/L。

标定:(1)移取经过稀释浓度约为0。008 mol/L硝酸铝溶液50 ml置于250 ml锥形瓶中.

(2)加入一定量的EDTA(0。01)标液50 mL,加热至70 ℃左右.

(3)加入15 mL pH=4。2 HAc—NaAc缓冲液,煮沸2分钟,取下冷却至约80 ℃.

(4)10 mL,加PAN指示剂5~6滴(此时溶液颜色为黄色)。

(5)用0.01 mol/L硫酸铜标液返滴定至溶液呈紫红色为终点,记录硫酸铜用量.

(6)计算硝酸铝溶液的浓度(经过稀释的与原先配制的)。

2.3.3正硅酸乙酯的预水解

溶胶配比对溶胶—凝胶过程的影响非常重要,当TEOS:EtOH:H2O=1:2:4时制得清亮稳定溶胶的粘度较低,表明形成胶粒较小,容易凝胶成粉末状,有利于超细粉末的形成。

在100 ml的小烧杯中,盛入40 ml去离子水与20 ml无水乙醇,得到溶液A,移液管移取10.00ml正硅酸乙酯放入小烧杯中,然后用滴管吸取正硅酸乙酯滴至溶液A中,滴定速度50—60 d /min,同时用磁力搅拌机不停的搅拌,得到正硅酸乙酯(TEOS)的预水解溶液。

2.3。4硅铝溶胶的制备

移取上述配置的浓度约为0。8 mol/L(根据上述滴定计算得到精确值、体积为75 ml的硝酸铝溶液转移到烧杯中,同时往硝酸铝溶液加入1 ml浓度为0.05 mol/L HCl.量取相应体积的正硅酸乙酯(TEOS)的预水解溶液(根据莫来石的组成3Al2O3·2SiO2);然后以50-60 d /min的速度滴入预先水解的TEOS溶液,边滴边搅拌,同时在50 ℃—70 ℃(分组),滴

完以后继续搅拌1 h,得到硅铝溶胶,烧杯口上用保鲜膜包上,然后放在50 ℃-70 ℃(分组)水浴中。

2。3.5硅铝溶胶粘度的测量

(1)硅铝溶胶流出时间t1的测定

溶胶经过50 ℃—70 ℃经2 h水解聚合后,开启恒温水浴。并将粘度计垂直安装在恒温水浴中(G球下部位均浸在水中),用移液管吸10 ml硅铝溶胶,从A管注入粘度计F球内,在C管和B管干燥清洁橡皮管,并用夹子夹住C管上的橡皮管下端,使其不通大气。在B管的橡皮管口用吸耳球将水从F球经D球、毛细管、E球抽至G球中部,

取下吸耳球,同时松开C管夹子,使其通大气.此时溶液顺毛细管里路

下,当液面流经a线处时,立刻按下秒表开始计时,至b处则停止记时。

记下液体流经a、b之间所需要的时间。重复测定三次,偏差小于0.2 S,

取其平均值,即为t1值。

(2)毛细管粘度计常数C的确定:

用移液管吸取已经预先恒温好的(25 ℃)蒸馏水10 ml,其粘度为

动力粘度(η),注入粘度计内,同(1)法,安装粘度计,测定流出时

间.重复测定三次,偏差小于0.2 s,取其平均值,即为t0值。得到毛

细管粘度计常数:

C=η/t0

其中 C-粘度计常数,MPa ;

η-蒸馏水的粘度,M Pa ·s;

-时间,s。

t

(3)自己查阅50 ℃,60℃,70℃,80℃(物理化学实验书)时蒸馏水的

粘度η0,根据测定的t0与t1,计算

t1时候溶胶粘度η1

η0 (50℃)=0。5468×10-6 Mpa·s η0 (60℃)=0.4665×10-6 Mpa·s

η0(70℃)= 0.4042 ×10-6 Mpa·s η0(80℃)=0.3547×10-6 Mpa·s

2。3.6 硅铝凝胶制备

取制备的硅铝溶胶放入100℃左右干燥箱保温24小时,得到硅铝凝胶。

2。3。7莫来石粉末的烧结

把硅铝凝胶粉末转移至粘土坩锅中,并置于快速升温箱式炉中,经过1250 ℃热处理温度,再保温2小时,设置升温速率为10 ℃/min。

2。4 样品表征

溶胶凝胶法制备纳米材料

利用溶胶凝胶法制备纳米材料的基本原理学院:材料学院班号:1109102 学号:1110910209 姓名:袁皓 摘要:本文介绍了纳米材料的性能用途以及制备方法,主要是新兴的制备纳米材料低温工艺——溶胶凝胶法,在文中详细说明了溶胶凝胶法的类型和特征,重点描述了利用溶胶凝胶法制备纳米材料的类型,基本原理以及简略的操作流程。 关键词:纳米材料溶胶凝胶基本原理 一溶胶凝胶法的基本原理 溶胶凝胶(sol-gel)法是一种制备超细粉末的一种湿化学法,它是以液体的化学试剂配制成金属有机或无机化合物或者是金属醇盐前驱物,前驱物溶于溶剂中形成均匀的溶液,溶质与溶剂产生水解或是醇解反应,反应生成物在液相下均匀混合,均匀反应,生成稳定且无沉淀的溶胶体系,放置一段时间后或是干燥处理溶胶之后转变为凝胶,在凝胶中通常含有大量的液相物质,需要利用萃取或蒸发除去液体介质,并在远低于传统的烧结温度下热处理,最后形成相应物质化合物粉体,利用溶胶凝胶法还可以制备其他形态的材料包括单晶、纤维、图层、薄膜材料等。 表2-1 对于制备纳米材料的溶胶凝胶法类型和特征 1.1 溶剂化 能电离的前驱物-金属盐的金属阳离子M z+吸引水分子形成溶剂单元(M(H2O)n)z+(z 为M 离子的价数),为保持它的配位数而具有强烈的释放H+的趋势。 (M(H2O)n)z+==(M(H2O)n-1(OH))(z-1)++H+ 1.2 水解反应 非电离式分子前驱物,如金属醇盐M(OR)n(n 为金属M 的原子价,R 代表烷基),与水反应,反应可延续进行,直至生成M(OH)n。 M(OR)n+xH2O→M(OH)x(OR)n-x+xROH 1.3 缩聚反应 可分为失水缩聚:-M-OH+HO-M→M-O-M-+H2O 失醇缩聚:-M-OR+HO-M→-M-O-M+ROH

《材料合成与制备方法》教学大纲

《无机材料合成》实验教学大纲 课程名称:无机材料合成 课程编号:0 总学时:36 适用对象:材料化学本科专业 一、教学目的和任务: 《无机材料合成》是材料化学专业的一门必修课。本课程的任务是通过各种教学环节,使学生掌握单晶材料的制备、薄膜的制备、非晶态材料制备、复合材料的制备、功能陶瓷的合成与制备、结构陶瓷的制备、功能高分子的制备、催化材料制备、低维材料制备等,使学生获得先进材料合成与制备的基础知识,毕业后可适应化工材料的科学研究与技术开发工作。 二、教学基本要求: 在全部教学过程中,应始终坚持对学生进行实验室安全和爱护公物的教育;简单介绍有效数字和误差理论;介绍正确书写实验记录和实验报告的方法以及基本操作和常规仪器的使用方法。无机材料的制备方法、薄膜制备的溶胶-凝胶法、纳米晶的水热合成法、纳米管的气相沉积法的原理和基本操作方法,材料结构表征和性能测试的结果的正确分析,并在此基础上研究材料结构和性能的关系。培养学生的实际动手操作能力;深刻领会课本所学的理论知识,具有将理论知识应用于实践中的能力。 三、教学内容及要求 实验一无机材料合成(制备)方法与途径 实验仪器:计算机 实验内容:认识无机材料合成中的各种元素、化学反应;相关中外文摘、期刊的查阅方法。 实验要求:了解无机材料合成的基本方法、途径与制约条件 实验二晶体合成 实验仪器:磁力搅拌器、烧杯 实验内容:晶体的生长 实验要求:了解晶体的基本分类与应用;熟悉晶体生长的基本原理;重点掌握晶体合成的技术与方法。 实验三薄膜制备 实验仪器:压电驱动器、磁力搅拌器、烧杯 实验内容:薄膜材料的制备 实验要求:掌握薄膜材料的分类与应用;薄膜与基材的复合方法、途径以及制约条件; 实验四胶凝材料的制备

(完整word版)材料合成与制备_复习资料(有答案)

第一章溶胶-凝胶法 名词解释 1. 胶体(Colloid):胶体是一种分散相粒径很小的分散体系,分散相粒子的质量可以忽略不计,粒子之间的相互作用主要是短程作用力。 2. 溶胶:溶胶是具有液体特征的胶体体系,是指微小的固体颗粒悬浮分散在液相中,不停地进行布朗运动的体系。分散粒子是固体或者大分子颗粒,分散粒子的尺寸为1nm-100nm,这些固体颗粒一般由10^3个-10^9个原子组成。 3. 凝胶(Gel):凝胶是具有固体特征的胶体体系,被分散的物质形成连续的网络骨架,骨架孔隙中充满液体或气体,凝胶中分散相含量很低,一般为1%-3%。 4. 多孔材料:是由形成材料本身基本构架的连续固相和形成孔隙的流体所组成。 一、填空题 1.溶胶通常分为亲液型和憎液型型两类。 2.材料制备方法主要有物理方法和化学方法。 3.化学方法制备材料的优点是可以从分子尺度控制材料的合成。 4.由于界面原子的自由能比内部原子高,因此溶胶是热力学不稳定 体系,若无其它条件限制,胶粒倾向于自发凝聚,达到低比表面状 态。 5.溶胶稳定机制中增加粒子间能垒通常用的三个基本途径是使胶粒带表面电荷、利用空间位阻效应、利用溶剂化效应。

6.溶胶的凝胶化过程包括脱水凝胶化和碱性凝胶化两类。 7.溶胶-凝胶制备材料工艺的机制大体可分为三种类型传统胶体型、无机聚合物型、络合物型。 8.搅拌器的种类有电力搅拌器和磁力搅拌器。 9.溶胶凝胶法中固化处理分为干燥和热处理。 10.对于金属无机盐的水溶液,前驱体的水解行为还会受到金属离子半径的大小、电负性和配位数等多种因素的影响。 二、简答题 溶胶-凝胶制备陶瓷粉体材料的优点? 制备工艺简单,无需昂贵的设备;对多元组分体系,溶胶-凝胶法可大大增加其化学均匀性;反应过程易控制,可以调控凝胶的微观结构;材料可掺杂的范围较宽(包括掺杂量及种类),化学计量准确,易于改性;产物纯度高,烧结温度低等。 第二章水热溶剂热法 名词解释 1、水热法:是指在特制的密闭反应器(高压釜)中,采用水溶液作为反应体系,通过将反应体系加热至临界温度(或接近临界温度),在反应体系中产生高压环境而进行无机合成与材料制备的一种有效方法。 2、溶剂热法:将水热法中的水换成有机溶剂或非水溶媒(如有机胺、醇、氨、四氯化碳或苯等),采用类似于水热法的原理,以制备在水溶液中无法长成、易氧化、易水解或对水敏感的材料。 3、超临界流体:是指温度及压力都处于临界温度或临界压力之上的流

溶胶-凝胶法在制备纳米材料方面的应用资料讲解

溶胶-凝胶法在制备纳米材料方面的应用

溶胶-凝胶法在制备纳米材料方面的应用 前言 纳米科技是一个跨学科的研究与开发领域,涉及纳米电子学、纳米材料学、纳米物理学、纳米化学、纳米生物学、纳米加工及表征等。纳米材料的合成与制备一直是纳米科学领域内一个重要的研究课题,新材料制备工艺过程的研究与控制对纳米材料的微观结构和性能具有重要的影响。最早是采用金属蒸发凝聚"原位冷压成型法制备纳米晶体,相继又发展了各种物理、化学方法,如机械球磨法、非晶晶化法、水热法、溶胶-凝胶法等 溶胶-凝胶法是上个世纪6、70年代发展起来的一种制备无机材料的新工艺,近年来多被用于制备纳米微粒和薄膜。溶胶-凝胶法具有反应条件温和通常不需要高温高压,对设备技术要求不高,体系化学均匀性好,可以通过改变溶胶-凝胶过程的参数裁剪控制纳米材料的显微结构等诸多优点。不仅可用于制备超微粉末和薄膜,而且成功应用于颗粒表面包覆,成为目前合成无机纳米材料的主要技术,引起了材料科学技术界的广泛关注,是一个具有挑战性和应用前景非常广阔的领域。 1.溶胶-凝胶法的工艺原理: 溶胶凝胶法的工艺原理是:以液体化学试剂配制成金属无机盐或金属醇盐的前驱体,前驱体溶于溶剂中形成均匀的溶液(有时加入少量分散剂)加入适量的凝固剂使盐水解、醇解或发生聚合反应生成均匀、稳定的溶胶体系,再经过长时间放置(陈化)或干燥处理使溶质聚合凝胶化,再将凝胶干燥、焙烧去除有机成分、最后得到无机纳米材料。因此,也有人把溶胶凝胶法归类为前驱化合物法。

根据原料的不同,溶胶凝胶法一般可分为两类,即无机盐溶胶凝胶法和金属醇盐水解法。 (1)在无机盐溶胶凝胶法中,溶胶的制备是通过对无机盐沉淀过程的控制,使生成的颗粒不团聚成大颗粒而生成沉淀,直接得到溶胶;或先将部分或全部组分用适当的沉淀剂沉淀出来,经解凝,使原来团聚的沉淀颗粒分散成胶体颗粒溶胶的形成主要是通过无机盐的水解来完成。反应式如下 (2)金属醇盐水解法通常是以金属有机醇盐为原料 ! 通过水解与缩聚反应而制得溶胶’首先将金属醇盐溶入有机溶剂 ! 加水则会发生如下反应: 式中M为金属R为有机基团,如烷基。经加热去除有机溶液得到金属氧化物材料。 2.溶胶-凝胶法的工艺过程: 溶胶凝胶法制备无机纳米材料过程主要包括5个步骤 (1)均相溶液的制备:溶胶凝胶法的第一步是制取包含醇盐和水均相溶液,以确保醇盐的水解反应在分子级水平上进行。在此过程中,溶剂的选择和加入量是关键。 (2)溶胶的制备:在溶胶凝胶法中,最终产品的结构在溶胶形成过程中即已初步形成,后续工艺均与溶胶的性质直接相关,因此溶胶制备的质量是十分重要的。有两种方法制备溶胶,一是先将部分或全部组分用适当沉淀剂先沉淀出来,经解凝,使原来团聚的沉淀颗粒分散成原始颗粒。这种颗粒的大小一般在

实验溶胶凝胶法制备纳米二氧化钛实验

实验八溶胶-凝胶法制备纳米二氧化钛实验 一、实验目的 1、掌握溶胶-凝胶法制备纳米粒子的原理。 2、了解TiO 2 纳米粒子光催化机理。 二、实验原理 溶胶-凝胶法(Sol-Gel法)是指无机物或金属醇盐经过溶液、溶胶、凝胶而固化,再经热处理而成的氧化物或其它化合物固体的方法。 溶胶凝胶法制备TiO 2 纳米粒子是通过钛酸四丁酯的水解和缩聚反应来实现的,其分步水解方程式为: Ti(OR)n+H 2O Ti(OH)(OR) n-1 +ROH Ti(OH)(OR)n-1+H 2O Ti(OH) 2 (OR) n-2 +ROH …… 反应持续进行,直到生成Ti(OH)n. 缩聚反应: —Ti—OH+HO—Ti——Ti—O—Ti+H 2 O —Ti—OR+HO—Ti——Ti—O—Ti+ROH 最后获得氧化物的结构和形态依赖于水解与缩聚反应的相对反应程度,当金属-氧桥-聚合物达到一定宏观尺寸时,形成网状结构从而溶胶失去流动性,即凝胶形成。 三、原料及设备仪器 1、原料:钛酸正四丁脂(分析纯)、无水乙醇(分析纯)、冰醋酸(分析纯)、盐酸(分析纯)、蒸馏水 2、设备仪器:电磁搅拌器、恒温干燥箱、高温炉 四、实验步骤 以钛酸正丁酯[Ti(OC 4H 9 ) 4 ]为前驱物,无水乙醇(C 2 H 5 OH)为溶剂,冰醋酸(CH 3 COOH)为螯合剂, 从而控制钛酸正丁酯均匀水解,减小水解产物的团聚,得到颗粒细小且均匀的二氧化钛溶胶。 1、室温下量取10 mL钛酸丁酯,缓慢滴入到35 mL无水乙醇中,用磁力搅拌器强力搅拌10 min,混合均匀,形成黄色澄清溶液A。 2、将2 mL冰醋酸和10 mL蒸馏水加到另35 mL无水乙醇中,剧烈搅拌,得到溶液B,滴入2-3滴盐酸,调节pH值使pH=3。 3、室温水浴下,在剧烈搅拌下将溶液A缓慢滴入溶液B中。 4、滴加完毕后得浅黄色溶液,40℃水浴搅拌加热,约1 h后得到白色凝胶(倾斜烧瓶凝胶不流动)。 5、置于80 ℃下烘干,大约20 h,得黄色晶体,研磨,得到淡黄色粉末。 6、在 600 ℃下热处理2 h,得到二氧化钛(纯白色)粉体。 五、思考题 1、溶胶-凝胶法制备材料有哪些优点? 2、纳米二氧化钛粉体有哪些用途? 六、实验报告要求 实验报告按照学校统一模板书写,包括下列内容: 1、实验名称、目的和实验步骤。 2、解答思考题。

材料合成化学-题

判断题(对填“ T”,错填“ F”) 1. 高温超导体是指能在室温以上温度工作的超导材料。() 2. 制备多元金属氧化物粉体的甘氨酸法比柠檬酸盐燃烧法的化学反应更加剧烈。( ) 3. 火焰辅助的超声喷雾热解工艺(FAUSP也是制备细粉的方法,需要人工点火。( ) 4. 陶瓷粉体的二次粒子尺寸总是大于一次粒子尺寸。() 5. 溶胶-凝胶法制备气凝胶,必须在真空条件下进行。() 6. 透明有机玻璃可以用甲基丙烯酸甲酯为原料通过沉淀聚合反应制备。() 7. 利用乙酰丙酮配位高价金属的醇盐,可以提高醇盐的水解能力。() 8?微波CVD就是利用微波加热衬底的化学气相沉积() 9. 静电喷雾沉积(ESD技术可以被用来生长致密的外延薄膜() 10. 人们可以通过原子操纵技术来大量制备超晶格材料() 11. 高分子聚合反应是一个熵增过程() 12.Schetman获得诺贝尔主要原因是他发现了宏观材料可以有10次对称轴() 13. 溶胶-凝胶法制备气凝胶,必须在真空条件下() 14. 透明有机玻璃可以用甲基丙烯酸甲酯为原料通过沉淀聚合反应制备() 15. 利用乙酰丙酮配位高价金属醇盐,可以提高醇盐的水解能力() 16. MOF就是金属氟氧化物的简称() 17. 乳液聚合的乳化剂通常是表面活性剂() 18. 使用模板试剂(硬模板,软模板,牺牲模板)是制备无机空心球的必要条件()19科学理论是无可争辩的() 20. 制备多元金属氧化物粉体的柠檬酸盐燃烧法需要人工点火引发反应() 21. 人们可以通过原子操纵技术来精细控制反应() 22. 高分子聚合反应是吸热反应() 23. 对于面心立方(fee)晶体,因为晶体形状以立方体能量最低,所以最易生长出立方形状 的单晶体() 24. 透明有机玻璃可以用甲基丙烯酸甲酯为原料通过均相聚合反应制备() 25. 利用螯合剂配位高价金属的醇盐,可以提高醇盐的反应活性() 26. 固相反应常用来制备陶瓷块材,但是不能用来制备陶瓷粉体() 27. 高分子聚合反应总是放热的() 28. 微弧氧化技术主要被用来制备金属氧化物纳米粉体() 29. 制备薄膜材料的溅射技术属于物理制备工艺()

中南大学材料制备技术考试.doc

1 2 超导材料的主要特性有()、()、()和()。 3超塑性的形成机理主要有()、()和()。 4摩擦搅拌焊焊接接头的焊缝组织可分为()、()、()和()。 5稀有金属锻件断面开裂可能的形成原因是()、()和()。 6双丰昆连续铸轧过程的凝固行为是()、()、()和()。 7 有色金属凝固的方式有()、()和()。 8中南大学考试试卷 2007 - 2008学年王学期 时间110分钟 材料制备技术 课程 £1学时3学分 考试形式:开卷 专业年级:材料0501和0502 总分100分,占总评成绩80% 一、名词解释(本题20分,每小题5分) 1、连续铸造 2、钎焊 3、连续铸轧 4、CVD 二、填空题(本题30分,每空1分) 有色金属常见的缺陷主要是()、()、()、()和()。 钛合金中相稳定元素可分为()和(),后者又分为()、()和慢共析型三种。 三、简答题(本题30分,每小题10分) 1、简述连续铸轧与连铸连轧的区别。 2、简述粉末冶金常用的制粉,成形和烧结技术与方法。 3、简述热喷涂的一般原理与基本工艺流程。

四、论述题(本题20分) 试论述摩擦搅拌焊的优缺点及其应用领域和效果。 答案: 一、名词解释(本题20,每小题5分) 1、连续铸造 将熔融金属连续不断地浇注到被成为结晶器的特殊容器中,凝固的铸件不断从结晶器的另一端被引出(3),从而获得任意长度的等横截面铸件的铸造方法⑵。 2、钎焊 钎焊是利用熔点比被焊接金属熔点低的金属作钎料,将钎料与工件一起加热到钎料熔化状态,借助毛细管作用将其吸入到固态间歇内(2),使钎料与固态工件表面发生原子的相互扩散、溶解和化合而连成整体的焊接方法(3)。 3、连续铸轧 指直接将液态金属连续铸轧成板带坯的工艺。在这种工艺中,液态金属在辐式结晶器之间,即两个轧孝昆的孝昆缝间一边凝固一边被轧制。带坯的连续铸轧技术是冶金及材料领域的一项前沿技术,它将合金的熔炼铸造和轧制变形甚至热处理等工序串联为一体,将金属熔体直接“轧制”成带坯或成品带材(2 )。连续铸轧是一个很复杂的过程,其铸造和轧制并非是孤立的单独行为,液体金属在两个轧辐的辐缝之间一边凝固一边被轧制,即一方面连续散热与凝固,另一方面还受到轧制作用,而不是铸造过程和热轧过程的简单混合。在这里轧舞主要起冷凝液体的作用,同时又起到轻量的轧压作用(3)。 4、CVD 化学气相沉积是一种化学的气相生长法,它是指把含有构成薄膜元素的一种或几种化合物、单质气体供给基片,借助气相的作用或在基片上发生的化学反应生成所需要的膜,它具有设备简单、绕射性好、膜组成控制性好等特点,比较适合于制备陶瓷薄膜(3 )。这类方法的实质为利用各种反应,选择适当的温度、气相组成、浓度及压强等参数,可得到不同组分及性质的薄膜,理论上可任意控制薄膜的组成,能够实现以前没有的全新的结构与组成(2 )。 二、填空题(本题30分,每空1分) 1有色金属常见的缺陷主要是(偏析)、(缩孔、缩松)、(裂纹)、(气孔)和(非金属夹杂)o

试验题目材料专业试验—溶胶凝胶法制备陶瓷薄膜

专业实验(2) 一:溶胶凝胶法制备陶瓷薄膜 这是材料系设置的基础实验课。材料专业实验(2)要求针对材料领域的各种制备方法以及热处理方法进行自我设计,自我准备,完成工艺的全过程,并得到预期的实验结果,并结合理论知识,分析实验结果与制备工艺参数之间的关系。通过材料专业实验(2),让学生基本掌握常用的类制备方法或热处理工艺的原理和工艺过程,了解工艺过程对最终的结果的影响规律,进一步强化学生的理论知识,培养学生的实际动手操作能力,为其毕业设计做基础。 一、实验目的 1.了解溶胶-凝胶过程 2.掌握用溶胶-凝胶法制备薄膜的制备工艺与原理 二、实验要求 1、学生应该在讲义的基础上,先查阅相关文献,了解溶胶凝胶法概念及在材料制备方面的基本应用,了解该方法制备材料特别是陶瓷薄膜的一般流程和制备过程中的一些关键问题,以及制备过程中可能的影响因素。 2、学生可以制备讲义中给出的陶瓷薄膜ZnO,也可以自己决定制备的陶瓷薄膜材料(不过需要提前一周报知教师以方便准备实验药品),讲义中给出了ZnO陶瓷薄膜制备的一般流程和参考方案,学生可以自主调整参考方案中的各种参数如溶胶的浓度、粘度、匀胶机的转速、匀胶时间、热处理的温度及时间等,可以选择不同的基片、甚至选择用其他的涂膜方式如浸滞提拉法,最终目的是在基片上得到陶瓷薄膜样品。由于实验条件以及实验时间的限制,实验取消了最后一步热处理的过程,而且测试条件只是采用金相显微镜进行粗略的表面质量观测,另外,实验并不要求每个学生都能得到质量很好的样品,而是不同的同学选取不同的实验方案,相互之间要进行横向比较。 三、实验所需仪器设备 一台匀胶机及吸片用小型真空泵,一台可调温电炉,一台搅拌器,以及化学配备溶胶的一些玻璃器皿; 实验测试采用普通的金相显微镜进行粗略的表面质量观察。 四、实验原理 近代科学和生产发展使薄膜科学与技术成为新材料和新器件研发的重要领域。 薄膜的研究首先是从研究如何制作薄膜这种特殊形态材料开始的。传统上采用得较多的方法是真空蒸发法、溅射法和气相生长法等,但它们都存在一定的局限性。如真空气相沉积设备中的真空腔大小限制着生产元件的尺寸,溅射法由于薄膜材料与基片之间可能发生反应而导致产品污染等,薄膜生产价格昂贵。而溶胶-凝胶法不需要特别昂贵的设备,具有工艺过程简单,薄膜组分化学计量比容易控制,容易形成大面积的均匀膜等优点。因此越来越得到人们的重视和应用. 1、溶胶凝胶法 溶胶-凝胶法是60年代发展起来的一种制备玻璃、陶瓷等无机材料的新工艺,近年来许

材料合成化学 题

一、判断题(对填“T”,错填“F”) 1. 高温超导体是指能在室温以上温度工作的超导材料。() 2. 制备多元金属氧化物粉体的甘氨酸法比柠檬酸盐燃烧法的化学反应更加剧烈。() 3. 火焰辅助的超声喷雾热解工艺(FAUSP)也是制备细粉的方法,需要人工点火。() 4. 陶瓷粉体的二次粒子尺寸总是大于一次粒子尺寸。() 5. 溶胶-凝胶法制备气凝胶,必须在真空条件下进行。() 6. 透明有机玻璃可以用甲基丙烯酸甲酯为原料通过沉淀聚合反应制备。() 7. 利用乙酰丙酮配位高价金属的醇盐,可以提高醇盐的水解能力。() 8. 微波CVD就是利用微波加热衬底的化学气相沉积() 9. 静电喷雾沉积(ESD)技术可以被用来生长致密的外延薄膜() 10.人们可以通过原子操纵技术来大量制备超晶格材料() 11.高分子聚合反应是一个熵增过程() 12.Schetman获得诺贝尔主要原因是他发现了宏观材料可以有10次对称轴() 13.溶胶-凝胶法制备气凝胶,必须在真空条件下() 14.透明有机玻璃可以用甲基丙烯酸甲酯为原料通过沉淀聚合反应制备() 15.利用乙酰丙酮配位高价金属醇盐,可以提高醇盐的水解能力() 16.MOF就是金属氟氧化物的简称() 17.乳液聚合的乳化剂通常是表面活性剂() 18.使用模板试剂(硬模板,软模板,牺牲模板)是制备无机空心球的必要条件()19科学理论是无可争辩的() 20.制备多元金属氧化物粉体的柠檬酸盐燃烧法需要人工点火引发反应() 21.人们可以通过原子操纵技术来精细控制反应() 22.高分子聚合反应是吸热反应() 23.对于面心立方(fcc)晶体,因为晶体形状以立方体能量最低,所以最易生长出立方形状的单晶体() 24.透明有机玻璃可以用甲基丙烯酸甲酯为原料通过均相聚合反应制备() 25.利用螯合剂配位高价金属的醇盐,可以提高醇盐的反应活性() 26.固相反应常用来制备陶瓷块材,但是不能用来制备陶瓷粉体() 27.高分子聚合反应总是放热的() 28.微弧氧化技术主要被用来制备金属氧化物纳米粉体() 29.制备薄膜材料的溅射技术属于物理制备工艺() 30.悬浮聚合法的悬浮剂通常都是表面活性剂() 31.伟大的科学理论都是复杂而奥妙无穷的() 32.制备多元金属氧化物粉体的甘氨酸法本质上是一种放热氧化还原反应,其中甘氨酸是氧化剂,硝酸盐是还原剂()

最新材料制备新技术复习题

第一章 1.实现快速凝固的途径有哪些? 答:a.动力学急冷法 b.热力学深过冷法 c.快速定向凝固法 2.用单辊法制备金属带材的快速凝固工艺特点是什么? 答:答:①单辊需要以2000~10000r∕min的高速度旋转,同时要保证单辊的转速均匀性很高,径向跳动非常小,以控制薄膜的均匀性②为了防止合金溶液的氧化,整个快速凝固过程要在真空或保护性气氛下进行③为了获得较宽并且均匀的非晶合金带材,液流必须在单上均匀成膜,液流出口的设计及流速的控制精度要求很高。 3.常用金属线材的快速凝固方法有哪些?它们的工艺特点是什么? 答:a.玻璃包覆熔融的线法。特点:容易成型、连续等径、表面质量好的线材。但生产效率低,不适合生产大批量工业用线材。 b.合金熔液注入快冷法。特点:装置简单,但液流稳定性差,流速较低、难控制速率,不能连续生产。 c.旋转水纺线法。特点:原理和装置简单、操作方便、可实现连续生产。 d.传送带法。特点:综合了b、c法,可实现连续生产,但装置较复杂,工艺参数调控较难,传送速率不快。 第二章 1喷射成形的基本原理是什么?其基本特点有哪些? 答:原理:在高速惰性气体的作用下,将熔融金属或合金液流雾化成弥散的液态颗粒,并将其喷射到水冷的金属沉积器上,迅速形成高度致密的预成形毛坯。 特点:高度致密,低含氧量,快速凝固的显微组织特征,合金性能高,工艺流程短,成本低,高沉积效率,灵活的柔性制造系统,近终形成形,可制备高性能金属基复合材料。 2.喷射成形关键装置指的是什么?雾化喷嘴系统 3.用喷射成形技术制备复合材料时有什么优势?是否任何复合材料都能用该方法来制备?说明理由。 答:主要优势:在于快速凝固的特性、高温暴露时间短、简化工艺过程。 否;因为有的复合材料容易发生界面反应,且高含氧量、气体含量和夹杂含量,工艺复杂和成本偏高等问题。 4.气体雾化法是利用气体的冲击力作用于熔融液流,使气体的动能转化为熔体的表面,从而形成细小的液滴并凝固成粉末颗粒。 5.喷射成形又称喷射雾化沉积或喷射铸造等是用快速凝固方法制备大块,致密材料的高新技术,它把液态金属的雾化(快速凝固)和雾化熔滴的沉积(熔滴动态致密化)自然结合起来。 6.喷射成型的四个阶段:雾化阶段,喷射阶段,沉积阶段,沉积提凝固阶段。 7.雾化喷射成形工艺一般采用惰性气体。 8.喷射成形装置的技术关键主要包括装置总体布局,雾化喷嘴,沉积器结构,和运动方式。 9.装置结构布局:倾斜布局,垂直布局,水平布局。 10.喷射成形装置应包括:含熔炼部分,金属导流系统,雾化喷嘴,雾化气体控制系统,沉积器及其传动系统,收粉及排气系统。 第三章 1.机械合金化的定义及球磨机理是什么? 答:(MA)是指金属或合金粉末在高能球磨机中通过粉末颗粒与球磨之间长时间激烈地冲击、碰撞,使粉末颗粒反复产生冷焊、断裂,导致粉末颗粒中原子扩散,从而获得合金化粉末的一种粉末制备方法。 球磨机理:取决于粉末组分的力学性能,它们之间的相平衡和在球磨过程中的应力状态。

材料合成与制备

作业习题: 一、名词解释 1. 胶体(Colloid):胶体是一种分散相粒径很小的分散体系,分散相粒子的重量可以忽略不计,粒子之间的相互作用主要是短程作用力。 2. 溶胶:是具有液体特征的胶体体系,是指微小的固体颗粒悬浮分散在液相中,不停地进行布朗运动的体系。分散粒子是固体或者大分子颗粒,分散粒子的尺寸在1~100nm之间,这些固体颗粒一般由103~109个原子组成。 3. 凝胶(Gel):凝胶是具有固体特征的胶体体系,被分散的物质形成连续的网络骨架,骨架孔隙中充满液体或气体,凝胶中分散相含量很低,一般在1%~3%之间。 4. 溶胶-凝胶法(Sol-gel):是采用具有高化学活性的含材料成分的液体化合物为前驱体(通常是金属有机醇盐或无机化合物),在液相下将这些原料均匀混合,并进行一系列的水解、缩聚化学反应,通过抑制各种反应条件,在溶液中形成稳定的透明溶胶体系,溶胶经过陈化,胶粒间缓慢聚合,形成了三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成了凝胶。凝胶再经过低温干燥,脱去其间溶剂而成为一种多孔空间结构的干凝胶或气凝胶,最后,经过烧结固化制备出分子乃至纳米亚结构的材料。 5. 多孔材料:是由形成材料本身基本构架的连续固相和形成孔隙的流体所组成。 6. 水解度R:是水和金属醇盐物质的量比,即溶胶-凝胶反应过程中加水的量的多少。 二、填空题 1.溶胶通常分为亲液型和憎液型两类。 2. 材料制备方法主要有物理方法和化学方法。 3. 化学方法制备材料的优点是可以从分子尺度控制材料的合成。 4. 由于界面原子的自由能比内部原子高,因此溶胶是热力学不稳定体系,若无其它条件限制,胶粒倾向于自发凝聚,达到低比表面状态。 5. 溶胶稳定机制为胶体稳定的DLVO理论。 6. 计算颗粒间范德华力通常用的两种模型为平板粒子模型、球型粒子模型。 7. 溶胶稳定机制中增加粒子间能垒通常用的三个基本途径是使胶粒带表面电荷、利用空间位阻效应、利用溶剂化效应。 8. 溶胶的凝胶化过程包括脱水凝胶化和碱性凝胶化两类。 9. 溶胶-凝胶制备材料工艺的机制大体可分为三种类型传统胶体型、无机聚合物型、络合物型。 10. 搅拌器的种类有电力搅拌器和磁力搅拌器。 11. 溶胶凝胶法中固化处理分为干燥和热处理。 12. 对于金属无机盐的水溶液,前驱体的水解行为还会受到金属离子半径的大小、电负性和配位数等多种因素的影响。 课后习题 一、名词解释 1、水热法:是指在特制的密闭反应器(高压釜)中,采用水溶液作为反应体系,通过对反应体系加热、加压(或自生蒸气压),创造一个相对高温、高压的反应环境,使得通常难溶或不溶的物质溶解,并且重结晶而进行无机合成与材料处理的一种有效方法。 2、溶剂热法:将水热法中的水换成有机溶剂或非水溶媒(例如:有机胺、醇、氨、四氯化碳或苯等),采用类似于水热法的原理,以制备在水溶液中无法长成,易氧化、易水解或对水敏感的材料。 3、超临界流体:是指温度及压力都处于临界温度和临界压力之上的流体。在超临界状态下,物质有近于液体的溶解特性以及气体的传递特性:粘度约为普通液体的0.1~0.01;扩散系

溶胶凝胶法制备纳米薄膜材料

实验名称:溶胶-凝胶法制备TiO2薄膜材料 纳米TiO2具有许多特殊功能,如良好的抗紫外线性能、耐化学腐蚀性能和耐热性、白度好、可见光透射性好以及化学活性高等。TiO2纳米材料还具有净化空气、杀菌、除臭、超亲水性等功能,已广泛应用于抗菌陶瓷,空气净化器、不用擦拭的汽车后视镜等领域,20世纪80年代末纳米发展起来成为主要的纳米材料之一。研究表明,紫外线过量照射人体,会使人的记忆力减退、反应迟钝、视力下降、易失眠等影响。在玻璃上负载TiO2膜可以有效地吸收紫线。本次实验利用溶胶凝胶法制备TiO2纳米薄膜材料,在一定程度上是对TiO2在实际生活中应用的尝试。 一.实验目的 1.了解溶胶-凝胶法制备纳米薄膜材料的应用。 2.掌握溶胶-凝胶法制备纳米薄膜材料的原理以及实际应用。 3.掌握XRD颜射原理以及实际操作技能。 4.掌握根据X-射线衍射图分析晶体的基本方法。 二.实验原理 溶胶.凝胶法(S01.Gel法,简称S.G法)就是以无机物或金属醇盐作前驱体,在液相将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化,胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。溶胶.凝胶法就是将含高化学活性组分的化合物经过溶液、溶胶、凝胶而固化,再经热处理而成的氧化物或其它化合物固体。 其基本反应如下: (l)水解反应:M(OR)n + H2O → M (OH) x (OR) n-x + xROH (2) 聚合反应: -M-OH + HO-M-→ -M-O-M-+H2O -M-OR + HO-M-→ -M-O-M-+ROH 三.实验试剂与实验仪器

材料制备技术试题及答案

1机械合金化:金属或合金粉末在高能球磨机中通过粉末颗粒与魔球之间长时间激烈地冲击、碰撞,使粉末颗粒反复产生冷焊、断裂,导致粉末颗粒中原子扩散,从而获得合金化粉末的一种粉末制备技术。 2 反应球磨:通过一种球磨化学添加物与金属粉末,诱发低温化学反应,生成了分布均匀的弥散粒子。 3 行星球磨机:靠本身强烈的自传和公转,使磨球产生巨大地冲击、球磨作用,使物料粉碎的机器。 4搅拌式球磨机:主要由一个静止的球磨筒体和一个装在筒体中心的球磨搅拌器组成,由球磨介质重力及螺旋回转产生的挤压力对物料产生冲击、摩擦和剪切作用,使物料被粉碎。 5临界速度: 6球磨介质:在机械合金化过程中,工具钢、铬钢、调质钢、不锈钢、轴承钢和WC-Co硬质合金钢是常用的球磨介质材料。 7球料比和填充系数:球料比是球磨过程中的重要参数。球料比越大,球磨所需要的时间越短。在高球料比下,磨球个数增加,单位时间内碰撞次数增加,从而转移更多的能量给粉末颗粒,非晶化时间变得更短,同时使粉末温升增加但如果温度升过高,非晶相甚至发生晶化。机械合金化的填充系数一般是0.5,如果填充系数过大,没有足够的空间使磨球运动,那么球的冲击作用会降低;如果填充系数过小,则机械合金化的产率较低。 8工艺控制剂PCA:控制冷焊,可以为固体、液体或气体,多为表面活性剂一类的有机化合物。在球磨时被吸附在粉末表面,降低了冷焊,抑制了结块,并且降低了粉末的表面活性,导致球磨时间缩短或可以球磨得到更细的粉末,但过多的PCA也会影响原子扩散和污染粉末。其用量决定于:1,粉末颗粒的冷焊性能;2,PCA的化学和热稳定性;3,粉末和球磨介质的用量。 9弥散强化合金:按其弥散相的种类可分为氧化物弥散强化合金和碳化物弥散强化合金。10喷射沉积:熔融金属或合金在惰性气氛中借助高压惰性气体或机械离心雾化形成固液两相的颗粒喷射流,并直接喷到较冷基底上,产生碰撞、粘结、凝固而形成沉积物。沉积物可以通过各种致密化加工得到性能优异的材料。222 11喷射共沉积:在喷射沉积过程中,把具有一定动量的颗粒增强相喷到雾化液流中,熔融金属和颗粒增强相共同沉积到较冷基底上,从而制备颗粒增强金属基复合材料的一种办法。12反应喷射沉积:将喷射沉积技术与反应合成制备陶瓷粒子技术结合起来,形成共沉积的一种新型制备颗粒增强金属基复合材料的技术。在喷射沉积过程中,金属液体被充分雾化成细小的液滴,从而具有很大的体表面积,在一定的过热条件下,可以为喷射沉积过程中融滴与外加反应剂接触并发生化学反应提供驱动力。230 13 金属基复合材料:简称MMCs以其优良的强度、刚度、抗蠕变、耐磨损、低密度、可控膨胀性等综合性能而受到世界工业发达国家的极大重视,其应用遍布汽车、电子、高速列车航空航天等领域。分为非连续体(陶瓷颗粒、晶须或短纤维)增强型和纤维增强型两大类。 14 自蔓延高温合成:利用外部提供必要的能量诱发放热化学反应(点燃),这种高放热反应所产生的能量使两种或两种以上物质的化学反应以燃烧波的形式自动蔓延下去,从而合成所需要的材料(粉体或固结体)。 15 自蔓延燃烧方式SHS:点燃式,待反应的原料混合物物块的一端点燃反应,反应放出的巨大能量又使邻近材料发生反应。热爆式,将原料混合物块在一定气氛下进行整体加热,使其燃烧反应,反应一旦发生,即停止加热,使物料外部燃烧放出的热量向内部传播使反应进行下去。微播式是从物料内部开始加热并使热量往外扩散从而发生反应,这种办法反应更彻底。16 稳态燃烧:指燃烧过程中火焰以稳定的恒速传播的燃烧模式。 17 非稳态燃烧:燃烧过程中火焰的传播速率不为常数的燃烧模式,又可进一步分为振荡燃

无机材料合成与制备复习纲要

材料合成与制备复习纲要 我们不是抄答案,我们只做知识的搬运工。 ——无机复习提纲编辑协会宣言试卷构成:填空:15 分 选择:7*2=14 分(共7 题,一题2 分) 名词解释:5*3=15 分(共5 题,一题3分) 问答题:8+12*4=56(第一题8 分,其余四道题每题12 分)注:划线知识点为李老师审阅后所加,疑为重点,望各位复习时多加注意第1 章:经典合成方法 1实验室常用的加热炉为:高温电阻炉 2电炉分为:电阻炉,感应炉,电弧炉,电子束炉 3电阻发热材料的最高工作温度:硅碳棒1400C、硅化钼棒1700C、钨丝1700C 真空、 5氧化物发热体:在氧化气氛中,氧化物发热体是最为理想的加热材料。 6影响固相反应的因素: (1)反应物化学组成与结构,反应物结构状态(2)反应物颗粒尺寸及分布影响。 7化学转移反应:把所需要的沉积物质作为反应源物质,用适当的气体介质与之反应,形成一种气态化合物,这种气态化合物通过载气输运到与源区温度不同的沉积区,再发生逆反应,使反应源物质重新沉积出来,这样的反应过程称为化学转移反应。 8化学转移反应条件源区温度为T2,沉积区温度为T1:如果反应是吸热反应,则 r H m为正,当T2>T1时,温度越高,平衡常数越大,即从左往右反应的平衡常数增大,反应容易进行,物质由热端向冷端转移,即源区温度应大于沉积区温度,物质由源区转移至沉积区。如果反应为放热反应,r H m为负,则应控制源区温度T2 小于沉积区温度T1,这样才能实现物质由源区向沉积区得转移。如果r H m近似为0, 则不能用改变温度的方法来进行化学转移。 9低温合成中,低温的控制主要有两种方法:①恒温冷浴②低温恒温器 10高压合成:就是利用外加的高压力,使物质产生多型相转变或发生不同物质间的化合,从而得到新相,新化合物或新材料。 种类:①静态高温高压合成方法②动态高温高压合成方法 第2 章:软化学合成方法 1软化学合成方法: 通过化学反应克服固相反应过程中的反应势垒,在温和的反应条件下和缓慢的反应进程中,以可控制的步骤逐步地进行化学反应,实现制备新材料的方法。2软化学法分类:溶胶——凝胶法,前驱物法,水热/ 非水溶剂热合成法,沉淀法,支撑接枝工艺法,微乳液法,微波辐射法,超声波法,淬火法,自组装技术,电化 3绿色化学:主要特点是“原子经济性” ,即在获取新物质的转换过程中充分利用原料中的每个原子,实现化学反应中废物的“零排放” 。因此,既可充分利用资源又不污染环境。 4软化学与绿色化学的关系:两者关系密切,但又有区别。软化学强调的是反应条件的温

溶胶凝胶法制备材料

溶胶-凝胶法制备材料 摘 要:溶胶-凝胶法广泛应用于制备薄膜材料和粉体材料,其主要原理是将金属醇盐或无机盐经水解直接形成溶胶或经解凝形成溶胶,然后使溶质聚合凝胶化,再将凝胶干燥、焙烧去除有机成分,最后得到无机材料。本文主要介绍了一些溶胶-凝胶法制备材料的发展历史,原理以及一些溶胶-凝胶法实际应用案例。 关键词:溶胶-凝胶法;纳米材料;陶瓷薄膜材料;掺杂;锂电池;包覆材料 溶胶-凝胶法发展过程:1846年法国化学家J.J.Ebelmen 用SiCl 4与乙醇混合后,发现在湿空气中发生水解并形成了凝胶。20世纪30年代W.Geffcken 证实用金属醇盐的水解和凝胶化可以制备氧化物薄膜。1971年德国H.Dislich 报道了通过金属醇盐水解制备了SiO 2-B 2O-Al 2O 3-Na 2O-K 2O 多组分玻璃。1975年 B.E.Yoldas 和M.Yamane 制得整块陶瓷材料及多孔透明氧化铝薄膜。80年代以来,在玻璃、氧化物涂层、功能陶瓷粉料以及传统方法难以制得的复合氧化物材料得到成功应用。 分类:溶胶-凝胶法按产生溶胶凝胶过程机制主要分成三种类型: (1)传统胶体型:通过控制溶液中金属离子的沉淀过程,使形成的颗粒不团聚成大颗粒而沉淀得到稳定均匀的溶胶,再经过蒸发得到凝胶。 (2)无机聚合物型:通过可溶性聚合物在水中或有机相中的溶胶过程,使金属离子均匀分散到其凝胶中。常用的聚合物有聚乙烯醇、硬脂酸等。(3)络合物型:通过络合剂将金属离子形成络合物,再经过溶胶,凝胶过程成络合物凝胶。 制备方法及原理:溶胶一凝胶科学技术是以金属醇盐为原料制作玻璃、玻璃陶瓷、陶瓷以及其它功能无机材料的一种新工艺方法。溶胶-凝胶法制备材料的方法属于化学制备方法,溶胶-凝胶体的制备有3种途径:(1)溶胶溶液的凝胶化; (2)醇盐或硝酸盐前驱体的水解聚合,继之超临界干燥凝胶;(3)醇盐前驱体的水解聚合。 溶胶-凝胶法的化学过程首先是将原料分散在溶剂中,然后经水解反应生成活性单体,活性单体进行聚合,开始成为溶胶,进而生成具有一定空间结构的凝胶,经过干燥和热处理制备出纳米粒子和所需材料。其基本反应式为: ;)()()(424nHOR OH OR M O nH OR M n n +→+-水解: ;])()([)(22214-4O H O OH OR M OH OR M n n n n +→--)(缩聚:

溶胶-凝胶法在制备纳米材料方面的应用

溶胶-凝胶法在制备纳米材料方面的应用 前言 纳米科技是一个跨学科的研究与开发领域,涉及纳米电子学、纳米材料学、纳米物理学、纳米化学、纳米生物学、纳米加工及表征等。纳米材料的合成与制备一直是纳米科学领域内 一个重要的研究课题,新材料制备工艺过程的研究与控制对纳米材料的微观结构和性能具有 重要的影响。最早是采用金属蒸发凝聚"原位冷压成型法制备纳米晶体,相继又发展了各种 物理、化学方法,如机械球磨法、非晶晶化法、水热法、溶胶-凝胶法等 溶胶-凝胶法是上个世纪6、70年代发展起来的一种制备无机材料的新工艺,近年来多 被用于制备纳米微粒和薄膜。溶胶-凝胶法具有反应条件温和通常不需要高温高压,对设备 技术要求不高,体系化学均匀性好,可以通过改变溶胶-凝胶过程的参数裁剪控制纳米材料 的显微结构等诸多优点。不仅可用于制备超微粉末和薄膜,而且成功应用于颗粒表面包覆, 成为目前合成无机纳米材料的主要技术,引起了材料科学技术界的广泛关注,是一个具有挑战性和应用前景非常广阔的领域。 1.溶胶-凝胶法的工艺原理: 溶胶凝胶法的工艺原理是:以液体化学试剂配制成金属无机盐或金属醇盐的前驱体,前驱体溶于溶剂中形成均匀的溶液(有时加入少量分散剂)加入适量的凝固剂使盐水解、 醇解或发生聚合反应生成均匀、稳定的溶胶体系,再经过长时间放置(陈化)或干燥处理使 溶质聚合凝胶化,再将凝胶干燥、焙烧去除有机成分、最后得到无机纳米材料。因此,也有 人把溶胶凝胶法归类为前驱化合物法。 根据原料的不同,溶胶凝胶法一般可分为两类,即无机盐溶胶凝胶法和金属醇盐水解法。(1)在无机盐溶胶凝胶法中,溶胶的制备是通过对无机盐沉淀过程的控制,使生成的颗粒 不团聚成大颗粒而生成沉淀,直接得到溶胶;或先将部分或全部组分用适当的沉淀剂沉淀出 来,经解凝,使原来团聚的沉淀颗粒分散成胶体颗粒溶胶的形成主要是通过无机盐的水解来 完成。反应式如下 (2)金属醇盐水解法通常是以金属有机醇盐为原料! 通过水解与缩聚反应而制得溶胶’首先将金属醇盐溶入有机溶剂! 加水则会发生如下反应: 式中M为金属R为有机基团,如烷基。经加热去除有机溶液得到金属氧化物材料。 2.溶胶-凝胶法的工艺过程: 溶胶凝胶法制备无机纳米材料过程主要包括5个步骤 (1)均相溶液的制备:溶胶凝胶法的第一步是制取包含醇盐和水均相溶液,以确保醇盐的 水解反应在分子级水平上进行。在此过程中,溶剂的选择和加入量是关键。 (2)溶胶的制备:在溶胶凝胶法中,最终产品的结构在溶胶形成过程中即已初步形成,后 续工艺均与溶胶的性质直接相关,因此溶胶制备的质量是十分重要的。有两种方法制备溶胶,一是先将部分或全部组分用适当沉淀剂先沉淀出来,经解凝,使原来团聚的沉淀颗粒分散成 原始颗粒。这种颗粒的大小一般在溶胶体系中胶核大小的范围内,因而可制得溶胶;另一种方法是由同样的盐溶液,通过对沉淀过程的严格控制,使首先形成的颗粒不致团聚为大颗粒 而沉淀,从而直接得到胶体溶液。 (3)凝胶化过程:缩聚反应形成的聚合物或粒子聚集体长大为小粒子簇,后者逐渐相互连 接成为一个横跨整体的三维粒子簇连续固体网络。在陈化过程中,胶体粒子聚集形成凝胶, 由于液相被包裹于固相骨架中,整个体系失去活动性,随着胶体粒子逐渐形成网络结构, 溶胶也从Newton体向Bingham体转变,并带有明显的触变性。在许多实际应用中,制品的成型就是在此期间完成的。

材料合成与制备

材料合成与制备 《材料合成与制备》课程教学大纲一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:材料的合成与制备 所属专业:材料化学 课程性质:专业必修课 学分:2学分(36学时) (二)课程简介、目标与任务、先修课与后续相关课程; 课程简介: 材料的合成与制备课程是介绍现代材料制备技术的原理、方法与技能的课程,是材料化学专业一门重要的专业必修课程。 目标与任务:通过本课程的学习,使学生掌握材料制备过程中涉及的材料显微组织演化的基本概念和基本规律;掌握材料合成与制备的基本途径、方法和技能;掌握目前几种常见新材料制备方法的发展、原理、及制备工艺;培养学生树立以获取特定材料组成与结构为目的材料科学研究核心思想,培养学生发现、分析和解决问题的基本能力,培养创新意识,为今后的材料科学相关生产实践和科学研究打下坚实的基础。 先修相关课程: 无机化学、有机化学、物理化学、材料科学基础 (三)教材与主要参考书 教材:自编讲义 主要参考书: 1. 朱世富,材料制备科学与技术,高等教育出版社,2006

2. 许春香,材料制备新技术,化学工业出版社,2010 3. 李爱东,先进材料合成与制备技术,科学出版社,2013 1 二、课程内容与安排 第一章引言 1.1 材料科学的内涵 1.2 材料科学各组元的关系 (一)教学方法与学时分配 讲授,2学时。 (二)内容及基本要求 主要内容:材料科学学科的产生、发展、内涵;材料科学与工程学科的四个基本组元:材料的合成与制备、材料的组成与结构、材料的性质与性能、材料的使用效能;材料科学四组元的相互关系。 【掌握】:材料科学学科的内涵、材料科学学科的四组元、四组元间的相互关系。 【了解】:几个材料合成与制备导致不同组成与结构并最终决定性质与性能的科研实例。 【难点】:树立以获取特定材料组成与结构为核心的学科思想。第二章材料合成与制备主要途径概述 2.1 基于液相-固相转变的材料制备 2.3 基于固相-固相转变的材料制备 2.4 基于气相-固相转变的材料制备 (一)教学方法与学时分配 讲授,2学时。

相关主题
文本预览
相关文档 最新文档