当前位置:文档之家› 旋挖钻机施工工艺及控制

旋挖钻机施工工艺及控制

旋挖钻机施工工艺及控制

2009-03-03 14:33一前言

随着高速公路的迅速发展,钻孔灌注桩运用在公路桥梁基础工程中日益增加,在大中桥梁中的运用显得愈来愈重要,同时也促进了桥梁钻孔灌注桩施工技术的快速发展。近几年来,旋挖钻机是钻孔灌注桩施工中一种较先进的施工方法,该施工方法主要特点是施工效率高,适用于工期要求紧的工程项目。在成章互通主线跨省道239桥桩基施工中发挥了充分的作用,同时使现场技术人员掌握了新技术,加块了施工进度,确保了工程质量。

二工程概况

成章互通主线跨省道239桥位于常州市武进区嘉泽镇成章南,桥梁角度90°,桥梁全长692.85m。基础采用钻孔灌注桩,桩径分别为1.4m、1.5m,桩长45m、47m、50m、不等,数量为124根。地基岩土主要以可塑或硬塑状中偏低压缩性粘土、亚粘土、中间夹有中密-密实状态的粉砂层及中密-密实状态的亚砂土层为主。

三设备特点

用于桩基施工的旋挖钻机是东明TRM140型,其最大扭矩140KN.m,最大旋挖速度6-23rpm,发动机功率192KW,最大桩径1500mm。适用于粘性土、粉质土、砂土等土层施工,该钻机通过钻斗的旋转、削土、提升、卸土,反复循环而成孔,并具有功率大、钻孔速度快、移位方便、定位准确、工作效率高、噪音小、环保的特点。

四工程施工

(一)施工方案确定

根据该桥址处地质情况、施工工期要求紧、施工场地受到限制、环保等因素,易选用旋挖钻机成孔。

(二)施工准备

施工图纸的会审,测量放样,施工场地平整,机械设备、材料的进场。组织施工人员对施工现场进行深入的调查和研究,收集与施工相关资料,采用合理的施工组织方法,使桩基施工保持连续、均衡、有节奏地进行。

机械设备投入旋挖钻机2台(东明TRM140型),配备泥浆泵,16~25T汽车吊2台等设备。

(三)施工工艺

1. 机械就位、护筒埋设

施工场地平整处理,保证旋挖钻机底座场地应平整、夯实,避免在钻进过程中钻机产生沉陷。

桩位确定后,利用十字线放出四个控制桩位,并以四个控制桩为基准进行埋设护筒。

护筒埋设:护筒由厚度4-6mm钢板制成,护筒直径比桩基孔径大100-150mm,每节护筒长度1.5-3.0m,护筒至少高出地面30cm。以防止杂物、泥水流入孔内。

旋挖钻机在埋设护筒时,应由人工进行辅助配合,护筒埋设利用旋挖机的钻斗挤压作用做相应的调整。

2. 泥浆调制

因钻机施工中泥浆可以防止孔壁坍塌、抑制地下水、悬浮钻渣等作用,为此泥浆是保证孔壁稳定的重要因素。由于地基岩土中又夹有粉砂土层、亚砂层,地

面水位较高的特点,调制出良好泥浆的各项性能指标尤为重要。

泥浆相对密度:1.02-1.10,粘度:18-22s,砂率≤4%,泥皮厚度:<2mm,PH值:大于7。

施工过程中随时检测清孔后灌注砼时泥浆的各项性能指标,确保泥浆对孔壁的撑护作用,避免发生施工事故。

3. 钻孔施工

旋挖钻机采用筒式钻斗。钻机就位后,调整钻杆垂直度,注入调制好的泥浆,然后进行钻孔。当钻头下降到预定深度后,旋转钻斗并施加压力,将土挤入钻斗内,仪表自动显示筒满时,钻斗底部关闭,提升钻斗将土卸于堆放地点。钻机施工过程中保证泥浆面始终不得低于护筒底部,保证孔壁稳定性。通过钻斗的旋转、削土、提升、卸土和泥浆撑护孔壁,反复循环直至成孔。如下图所示。

4. 改善钻斗护壁能力

旋挖钻机施工初期,提升料筒时,发现提升力显著增大,有孔壁颈缩现象。经过详细分析,由于筒式钻斗完全无护壁作用,在提升钻斗时,其下部产生较大负压力作用,致使产生“吸钻”现象,从而造成孔壁颈缩现象。因此,必须对筒式钻斗进行改进。在筒壁上加焊4块双曲面护壁钢板(或增设导流槽),两两对称布置,为防止升降时碰怀孔壁,钻头旋转时双曲面护壁钢板直径小于孔径2cm。由施工现场实践得知,改善后的钻斗在提升过程中液压系统压力显著减小,钻孔颈缩现象得到改善。

5. 控制钻斗钻进、提升速度

(1) 旋挖钻机钻机过程中应严格控制钻进速度,避免钻进尺度较大,造成埋钻事故。

(2) 若钻机升降钻斗时速度过快,钻斗外壁和孔壁之间的泥浆冲刷孔壁,再加上钻斗下部产生较大负压作用,造成孔壁颈缩、坍塌现象。所以钻斗提升时应严格控制其速度,经现场实践得知,钻斗升降速度保持在0.75-0.80m/s。当钻斗粉砂层或亚砂土层时,其升降速度应更加缓慢。

五钻进施工时出现卡埋钻的控制措施

卡埋钻是旋挖钻机最易发生的施工事故,因此,施工过程中应采取积极主动的措施加以预防。当钻机施工时出现卡埋钻现象时,采取切实可行的措施及时进行处理施工事故。

处理卡埋钻的方法如下:

(1) 直接起吊法:采用吊车直接向上起吊即可。

(2) 钻斗周围疏通法:即用水下切割或反循环等方法,清理钻筒周围沉渣,然后起吊即可。

六施工注意事项

(1) 由于钻机设备较重,施工场地必须平整、宽敞,并有一定硬度,避免钻机发生沉陷。

(2) 钻机施工中检查钻斗,发现侧齿磨怀,钻斗封闭不严时必须及时整修。

(3) 泥浆初次注入时,垂直向桩孔中间进行入浆,避免泥浆沿着护筒壁冲刷其底部,致使护筒底部土质松散。

(4) 因粘土层中钻进过深易造成颈缩现象,在钻机施工时应严格一次钻进深度。

(5) 钢筋笼或探孔器向孔内放置时,应由吊车吊起,将其垂直、稳定放入孔内,避免碰坏孔壁,使孔壁坍塌,在砼浇筑时出现废桩事故。

(6) 根据不同地质情况,必须检测清孔后灌注砼时泥浆性能指标,确保泥浆对孔壁的撑护作用。

(7) 其他施工工艺事项,应严格按照桥涵施工技术规范和标准进行施工。

七旋挖钻机TRM140型成孔优点

(1) 因该钻机操作由全液压系统控制,能保证桩基垂直度、孔位、孔深、沉淀厚度等各项指标全部达到施工规范要求。

(2) 该钻机适用不同地质情况,成孔效率高,约6h左右即可成孔,1天成孔3-4个,是该桥回旋钻机成孔的5-6倍,因此使用于工期要求紧的工程项目。

(3) 孔壁稳定性好,成孔后清孔彻底,施工进度快。

(4) 施工噪音低,不污染环境,使用于环境保护要求高的施工地区。

八结束语

通过本次施工,旋挖钻机施工方法具有施工质量可靠、成孔速度快、成孔效率高、适应性强、环保的优点。由于旋挖钻机所形成的孔壁较粗糙,增加了桩侧摩阻力,克服了回旋钻机桩侧摩阻力低,以及孔底沉渣多,泥浆管理差的缺点。尽管旋挖钻机投资较高,但适应性强,最终的经济效益综合指标还是远大于回旋钻机,可见旋挖钻机是一种理想的施工工艺。

旋挖钻机施工工艺探讨

近年来,随着国家重点工程对桩孔质量、成孔速度及施工环保等要求的不断提高,一些中小型旋挖钻机已悄然兴起,越来越受到施工者的关注。旋挖钻机成桩亦称回转斗成桩、取土成桩,英文称“EarthDrill”,在覆盖层施工具有成孔质量好、速度快,无噪音、无污染或小污染等优势,对于干硬性粘土,可不用静态泥浆稳定液护壁,一般覆盖层,采用泥浆护壁。由于中国地域广阔,地质条件较为复杂,旋挖钻机施工中成孔工艺的制定要有针对性,以防止发生埋钻、坍塌等施工事故,避免造成损失。本文结合呼和浩特市金山开发区金山电厂烟囱桩基工程成孔的施工案例,就旋挖钻机成孔过程中如何避免坍塌、埋钻等事故谈谈施工经验,以供广大施工者参考借鉴。

一、工程概况

金山电厂位于呼市金山开发区,总桩量2180根,桩型灌注桩,桩径φ800毫米,桩深36米。沼泽地区,2米左右为少量建筑垃圾回填层,2~5米为粘土层,5~13米为亚粘土层,13~15米为沙层,15~29米为亚粘土层,29~34米为沙层,34~36米为粘土层。二、成孔工艺

采用旋挖钻机取土成孔,成桩工艺:定桩位→埋护筒→注泥浆→钻进取土→一次清孔→放钢筋笼→插入导管→二次清孔→砼灌注→拔出护筒。施工中最大的难题:钻孔作业至5~13米为亚粘土层时,桩孔缩径现象严重及成桩过程中孔的坍塌,湖北某基础公司钻进10根桩,竟有6根坍塌,损失巨大。经研究发现除操作手在控制钻进尺度及回转斗提升速度等方面显得经验不足外,最大的影响在于静态泥浆的配比、钻具的结构及护筒的埋护不合理,易造成护壁泥皮过薄、钻具下方负压过高及孔口渗透,从而引起坍塌事故。

三、静态泥浆的配比

旋挖取土成孔中,静态泥浆作为成孔过程的稳定液,主要作用是护壁,可在孔壁处形成一薄层泥皮,使水无法从内向外或从外向内渗透。针对金山电厂的地质情况,加强泥浆技术,重新调整泥浆配比,控制泥浆比重,提高泥粉质量,增加粘性及润滑感,适当添加处理剂,增强絮凝能力,确保护壁泥皮的厚度及强度。泥浆的配比成份具体如下:

静态泥浆主要材料配比表

材料名称成分配比主要使用上手

水100﹪静态泥浆的主体

膨润土以蒙特土为主

的粘土矿物6~8﹪静态泥浆的主要材料,

便于形成泥皮,增强润滑感

纯碱5% 处理剂,提高泥粉质量,增加相对密度

C.M.C羟甲基纤维素钠盐0.3﹪处理剂,提高泥粉

量,增加粘性,增加泥皮强度

渗水防止剂纸浆、棉子、锯屑适量防止渗水

初次注入泥浆,尽量竖直向下冲击在桩孔中间,避免泥浆沿护筒侧壁下流冲塌护筒根部,造成护筒根部基土的松软,正式钻进前,再倒入2~3袋膨润土,启动钻机的高速甩土功能,进行充分搅拌,提高膨润土的含量,增大护筒底部同基土结合处护壁泥皮的厚度,防止钻进过程孔口渗漏坍塌。在成孔过程中,确保泥浆高于地下水位2m,以有利于孔壁的稳定。四、护筒的埋护

针对现场地质情况,专门定制高4米、厚10毫米、直径φ1.2米的护筒。护筒内径尺寸

较大,能贮存足够的泥浆,在钻杆提出桩孔时,可确保护筒内的水压,维护孔壁泥皮的稳定。同时单边铡隙达到200毫米,可有效避免回转斗升降过程碰撞、刮拉护筒,保护孔口的稳固。钻进过程,操作手凭经验目测对孔定位,工作强度加大,易于疲劳,且精度低,容易造成孔的偏差及砼的超方。东明公司的钻机具有快速回转自动定位功能,每个工作循环均能精确对孔定位,即降低了操作手的劳动强度,同时能保证成孔质量,有效解决了大护筒带来的负面影响。

特制4米超高护筒,可以埋至粘土层以下500毫米,能有效防止孔口渗漏坍塌及周围环境振动、冲击对桩孔的影响。护筒埋设的传统方法:先用φ800毫米的回转斗钻至护筒深度,侧壁安装边刀扩至护筒外径尺寸,副卷吊起,放入护筒,校正,层层填埋夯实。因本次选用的护筒较长,且单边侧隙较大,采用传统方法,劳动强度大,效率低,耗时长,埋设护筒通常需要3~4小时,几乎占到总成孔时间的一半。东明公司根据现场施工情况,有针对性的研发一种超长护筒专用驱动器,固定在动力头下端的承撞体上,通过销轴,将护筒直接安装在驱动器上,利用动力头边旋转边加压的功能,将护筒压至规定的埋设位置,再取土成孔。采用该方法,可有效提高护筒跟土壤的结合度,增强抗外界振动、冲击的能力,在注浆或提升回转斗时有效防止渗水、漏浆现象的发生,降低孔口坍塌的概率。同时节约了时间,提高了效率,降低了强度,经现场测试表明,采用驱动器方式,埋设护筒仅耗时0.5~1小时。护筒离地应控制在150~300毫米,除保护孔口防止坍塌外,还用以防止表面水或地面漏浆、杂物等滑落孔中。

五、回转斗的结构

施工初期,有的设备租赁公司采用自制的双门底开式回转斗,圆柱型盛料桶,侧壁无泥浆导流槽,底盘无侧齿,使用中发现液压系统压力偏高,回转斗提升力明显增大,且桩径缩孔现象较为严重。经东明公司技术人员分析,主要原因在于回转斗的结构不合理,提升回转斗时下方产生较大负压,从而导致提升阻力增大及孔壁收缩、坍塌。通过改进,将回转斗盛料桶改为圆锥式,侧壁加焊导流槽,以有利于在桩孔内的导向及泥浆的导流,减小桩孔内的负压。同时底盘加焊侧齿,适当控制回转斗与刀尖间的距离,防止回转斗升降旋转时碰坏孔壁。现场表明,改进后的回转斗在提升过程,液压系统压力明显降低,桩身的缩孔、坍塌现象有所缓减,具有良好的使用效果。

六、钻机的钻进控制

钻进过程,回转斗的底盘斗门必须保证处于关闭状态,以防止回转斗内砂土或粘土落入护壁泥浆中,破坏泥浆的配比;每个工作循环严格控制钻进尺度,避免埋钻事故;同时应适当控制回转斗的提升速度,施工实践表明,φ800毫米的桩径,升降速度宜保持在0.75~0.85m/s,提升速度过快,泥浆在回转斗与孔壁之间高速流过,冲刷孔壁,破坏泥皮,对孔壁的稳定不利,容易引起坍塌。

七、影响坍塌的其它因素

桩孔完成以后,清孔、下放钢筋笼、砼的灌注等工序中均应规范操作,避免成孔的坍塌。如钢筋笼下放过程,应吊车吊起、坚直、稳步放入孔内,避免碰撞孔壁,以造成泥皮或孔壁的破坏,从而引起灌注过程,桩孔的坍塌及出现断桩、废桩等事故。

八、施工总结

施工中影响桩孔坍塌的因素很多,最重要的一点,就是如何因地制宜,有效针对不同的地质情况,制定相应的施工工艺,以确保钻进成孔的顺利进行,避免施工事故的发生。

近二十多年来,国家实行改革开放政策,快速地推动了经济发展和社会进步,发展基础设施是社会生产和强国富民的基本物质条件,也是众多发达国家必行之路,由此可见基础设施对国家的发展,经济,民众的生活起着举足轻重的作用。

在众多基础工程中,旋挖钻机以其优越的性能、方便安全.节能环保等特点,在基础设施领域广泛应用。在国外旋挖钻机已有半个多世纪的发展历程,而我国近年来才得以研发及生产。由于旋挖钻机扭矩大,轴向压力大,适合我国众多地区施工,为祖国的基础建设做出不可磨灭的丰功伟绩。但是钻机施工于隐蔽工程,施工工艺又随地质情况而变化,正确地使用钻机并能提高施工效率及质量,降低消耗和杜绝隐患,下面将从旋挖钻机施工工艺入手,详细分析。

旋挖工艺分为四部分组成∶地质、钻斗、泥浆和操作。

一〔地质〕

由于钻机施工与地质变化密切相关,所以了解并认识地质尤为重要。地质的种类繁多,对于钻机施工而言不必分得过于详细,旋挖钻机扭矩大,轴向压力大,地质的细微变化是可以忽略不计,针对钻机施工可把地质分为以下几部分∶

〔1〕泥层∶泥层还有软泥和硬胶泥区分等等…一般分布在湖、塘、沟、谷、河漫滩等…,由于软泥含水量较高,细腻柔滑,具有高压缩性和低承载力,钻进时阻力小负荷轻,钻进平稳等特点;但由于软泥较软,孔内十迷以上的泥浆压力较轻,钻进时会出现缩孔现象,以及钻进时负荷轻等原因,钻进时注意钻进深度!

硬胶泥的密度适中,钻进时钻机会有一定的负荷,硬胶泥对泥浆的质量要求不高,是一种比较常见较好钻进的地质,钻进时注意钻进深度即可,多钻会导致钻斗斗底不能关闭,掉下的渣土会引起打滑现象。

〔2〕土层∶土层有黄土和粉质土等等…

黄土是最常见地质之一,也是最受施工欢迎的地质之一,如无地下水位可干钻,也可用清水钻进,钻进平稳,进尺快,无塌方无沉渣是它的特点。

粉质土是由土和沙组成,对泥浆要求一般,稳定性较好,钻进时侧阻力较高,钻进时加水或泥浆会起到一定润滑效果,从而减少阻力。

〔3〕沙层∶可分为中沙.粗沙和细沙,沙层对泥浆要求较高,由于沙层摩擦系数高,所以在钻进沙层时阻力较大。

〔4〕卵石层∶石头被河水冲刷以及相互磨擦、碰撞,便形成了卵石。卵石的形态与饿蛋相似,俗称鹅卵石。卵石层以它的直径.密度及卵石层的厚度来区分,其中直径较大的卵石,钻进时需用特殊钻具钻进;卵石层中的卵石密度决定其硬度,密度越高的卵石层越较难钻入!卵石层的厚度也很关键,当然厚度越薄越好。由于卵石层中的卵石排列无规则,大小不一,造成断面凹凸不平,钻进时斗齿受力不均匀,震动大,反作用力强容易断齿及憋住等特点。〔5〕岩层∶沙岩,中风化等…沙岩属沉积岩,具有抗蚀性,承载能力强,,呈棕红色,另一方面,由于它具有坚硬的物质特性,所以较难钻进;在太阳辐射、气温、水、植物等对岩石的破坏作用叫做风化岩。由于沙岩和中风化岩层具有较强的胶结性,对泥浆的质量要求不高,成孔后无塌方迹象,钻进负荷重等特点!如果钻具有缺陷或操作不当较难钻进。

〔6〕特殊地质

施工过程中会遇见较为特殊的地质,给施工带来困难,特殊地质包括∶水位承压桩和瞬间漏浆桩。水位承压桩是地下水位与地势较高的水位相连,水位高低落差而形成的压强。漏水桩长见于卵石层,又无其它物质搀杂的卵石层内会形成大小不一的间隙,在钻到该地层时,由于间隙过大泥浆无法及时护壁,在泥浆压力的作用下会出现快速漏浆现象。

钻头是旋挖钻机所用的钻具,钻具有缺陷,即使具有优越性能的钻机也发挥不出作用,直接影响效益,增加部件磨损及各项消耗,从而提高生产成本。

〔1〕钻具的作用

在施工过程中,由于地质多样化,满足钻机施工要求,所配带的钻具也是多样性的,钻具作用可分为概括∶旋挖切削并把渣土取出的容器。我国的旋挖行业使用的钻具比较特殊,80%的钻机都使用一种钻具∶捞沙斗,下面分析钻斗。

〔2〕钻斗的阻力

钻斗主要的作用是旋挖钻进,所以钻进时钻斗所受到的阻力倍受关注,直接影响整体的效益及钻机负荷,如何减少各种阻力,成为钻斗的核心技术!旋挖钻进时负荷主要来源于三处既∶旋挖切削地质的斗齿∶正阻力,钻斗的钻筒与外侧地质摩擦∶侧阻力,钻斗的筒体钻进的渣土自重,以及渣土与钻斗筒壁内侧摩擦∶内阻力。

〔3〕正阻力

正阻力是旋挖切削地质时斗齿所受到的阻力,也是主要的负荷来源,减少正阻力可使用以下办法,1∶改变斗齿的长度。把斗齿的长短有序分开,钻进时内齿最长首先接触到地质,由于内齿力臂最短,因此所受阻力最小,很容易切削破碎,随着加压钻进齿尖逐渐延长,较长的斗齿随之跟进钻进,这样就把钻进的阻力分开钻进,达到阻力小,进尺快的目的。2∶齿座的位置很重要,齿座与齿座之间都保留了一定间隙,目的是左右两组斗齿间隙互补,所谓的犬牙交错,钻进时钻斗360度回转一周,把所有的地质都能切削钻入。所以确保斗齿之间的的间隙,也就直接保证最小化使用斗齿的数量和未被切削遗留下地质所产的托底现象。3钻斗斗底中心三角尖的长度不能超出内齿齿的长度,宽度保持十五公分以内。

〔4〕侧阻力

侧阻力主要来源于钻斗的钻筒与外侧摩擦产生的阻力。减少钻筒外侧的摩擦,第一注意的是钻斗两侧边齿的直径要大于钻斗的直径十公分左右,2旋挖钻进时,钻斗两侧会遗留下渣土与筒壁摩擦,解决这一现象可把钻筒下部开启半扇形的泄荷槽,在泄荷槽边侧加上边刀,这样就可把遗留下的渣土在边刀的作用下,通过泄荷槽进入钻斗,达到减少侧阻力的目的。〔5〕内阻力

内阻力主要来源于∶钻入钻斗内的渣土与钻筒内壁产生的摩擦,以及渣土自身的重力,这两种力直接影响斗底进渣口处的阻力,随着钻斗内的渣土增多,斗底进渣口的阻力也随之升高,所以进渣口开启的越大其推力就越大。

〔6〕桩径与阻力的关系

1阻力臂:驱动钻斗回转的扭矩是由中心输出,而随钻斗作业半径增加,阻力臂也随之增长,因此钻斗半径越小,阻力就越小,也就越容易钻进。接触面积:随钻斗半径的增长,接触面积就越大加压阻力大

〔7〕卡钻

卡钻顾名思义就是把钻斗卡住的现象。卡钻现象分于两种原因∶第一种原因是钻斗的形状导致的。首先没有按照地质的需求制作出相对的泥浆,孔内出现掉土或塌方的现象,钻斗的形状呈锥型,掉下石块渣土进入钻筒外侧后越夹越紧,最后被卡住。第二种原因是∶由于钻斗老化没有及时的维修,或者钻入震动较大的地质时,钻斗的斗底被震开而卡钻,无论那种原因卡钻都有办法解决,不要硬钻硬提!

三〔泥浆〕

泥浆的作用是满足施工的需求。泥浆的质量取决于地质情况,如果地质情况较好可干成孔,那就无须制作泥浆。如果地质较为复杂,需泥浆的的作用协助施工,泥浆的作用大致可概括成四点∶压强.护壁.悬浮和润滑

〔1〕压强

泥浆或水都具有重量,因此在内部就存在由本身的重量而引起的压强,这种压强对孔壁及孔底都会起到压力作用,压强与泥浆的比重也有关。桩基础越深则压强也越大,由此可见桩底部的压力最强,它与桩径的大小,容积以及底面积的大小无关。通过定律验证:深度每增加十米,压力增加98千帕。通过上述论点可指出∶在钻进中简单地质水位较低时,孔内十米以下压强基本建立,一般不会出现塌方现象,这既是压强的作用。

〔2〕护壁

由于钻机施工时遇到的地质多样化,孔内十米以上泥浆的压力较轻,特别是护筒部分压强极小,为了保护孔壁不致坍塌及施工的质量.这时泥浆护壁及其重要。泥浆护壁原理是∶当泥浆达到一定粘度时,泥浆具有一定粘滞性,在泥浆压力的作用下,泥浆粘贴在孔壁并不至脱落,护壁层的厚度取决泥浆的粘度。

〔3〕悬浮

旋挖切削过程中及提钻会在泥浆中产生悬浮物,停钻或成孔后泥悬浮的杂质会漫漫沉落至孔底,影响施工质量。一般制作泥浆所用的原材料是膨润土,如果泥浆达到一定粘度时,膨润土在水中呈胶体悬浮状,这时的泥浆液具有一定的粘滞性和润滑性,可以把细小的物质掺合并粘结,起到悬浮或降低沉落速度的作用。

〔4〕润滑

前面已讲到,泥浆具有润滑性,这种润滑对旋挖钻进极其重要,特别是减少侧阻力和内阻力有及其显著的效果,无论任何地质,钻进时泥浆都具有减阻的作用。

(5)浮力

液体比重越大浮力越大,因此泥浆可以降低主卷提钻阻力。

(6)降温

选用凯式钻杆入岩时,钻斗截齿与岩石摩擦会产生高温,泥浆能起到降温保护截齿的作用〔5〕钻孔液

特点∶经济方便,对PH值有要求,比重与水相同。作用是∶通过在水中加入其产品,能快速地把调制出一定粘度液体。钻孔液没有护壁层,主要是利用粘度和压强来保护支撑孔壁。缺点是因没有护壁层,易出现渗浆.漏浆现象。

四〕操作

旋挖钻机施工于隐蔽工程,与地质变化密切相关,所以操作钻机需一定的技术经验。司机的经验和技能,决策着钻机生产效益及安全,前面所讲的方面最后都是为操作而准备,所以操作部分非常重要!操作可注意以下几部分∶操作基本要素.操作与地质.操作方法等…

基本要素分四个部分组成即∶望闻切

〔1〕基本要素

望∶观察。操作时近70%的信息来源于视觉,通过仔细的观察可以提高效益并预防隐患。通过目测可以检查各个部位,旋挖钻进时除了观察仪表显示的参数,特别需要关注旋挖钻进时承受负荷较重的部位∶如主卷钢丝绳,钻杆,危险部位包括∶钻斗销.钻斗斗底挂钩和护筒周围的等…也可观察取出的渣土来分析地质情况及变化趋势,以及泥浆的质量,观察钻杆回转受阻及振动判断地质情况等等…

闻∶仔细地挺。首先通过听可辨别出是否有异常运转发出的声音,通过听动力头受阻后所发出的声音来辨别地质情况,以及主卷提升或下放时,随着负载变化,减速机发出的声音也

随之变化,下钻或提钻时,听每节钻杆放完或收回所发出钻杆撞击的声响,可以预防带杆等等…

切;凭振动。地质情况变化钻机产生的震动和阻力也不同,机手可通过身体来感觉震动的大小阻力情况得知地质情况,而及时改变加压方式和输出扭矩,钻进深度等

〔2〕操作与地质

操作与地质有着密切关系,第一时间得知地质的变化情况,这与钻机效率有直接关系,每种地质的钻入方法存在一定的差异如∶钻杆转数.钻进时间.加压行程.输出扭矩.钻进深度等等…如果任何地质的操作方法都是一个套路,不但影响生产效益,事故的发生概率也随之增高,地质与操作关系如下∶阻力较小的地质如泥层“以刚克柔”,利用钻机大扭矩,重加压力快速钻进;磨阻力较强的地质如沙层“刚柔并进”,沙层阻力较高,钻机需大扭矩输出钻进,但不能蛮钻,钻机负荷升高时提升加压油缸来轻阻力;反作用较强的地质如卵石层“以柔克刚”,由于卵石层的特殊性,钻输出的加压力和扭矩与所受到的震动和反作用力成正比,所以不能硬钻以免部件受损并影响生产;坚硬密实的地质如∶沙岩“以刚克刚”由于地质坚硬,密度较高!在保证钻斗和操作无缺陷下,只能以钻机输出的大扭矩和重压力来钻入地质,克服旋挖切削的阻力。

〔3〕操作总结

在操作钻机时避免出现巨大惯性,学习泄力技巧,通过控制流量,压力输出,结合不同地质更换不同操作方式,实现保护机械并高效率地施工生产。

三一企业标准:旋挖钻机施工工法通用规程

2008/5/13/10:55 来源:中国桩工机械网

2007-01-18发布 -----------------------2007-02-28实施

北京市三一重机有限公司发布

目录

前言 (Ⅱ)

序言 (Ⅲ)

1范围 (1)

2规范性引用文件 (1)

3背景 (1)

4施工资料准备 (1)

5研究工程地质情况 (1)

6施工机械与设备 (2)

7场地布置、桩孔位置的确定 (3)

8泥浆制备 (4)

9钻头的类型及应用 (5)

10旋挖钻机钻杆结构及正确应用 (6)

11旋挖钻进成孔工艺 (9)

12旋挖钻机气举反循环全断面破岩成孔 (10)

13附则 (12)

前言

本标准是为了合理规范旋挖钻机的施工工艺而制订的标准。

本标准的附页一和附页二、三是资料性附录。

本标准由北京市三一重机有限公司提出并归口。

本标准由北京市三一重机有限公司负责解释。

本标准由北京市三一重机有限公司、中国地质大学(北京)负责起草。

本标准是第1次制订。

本标准的版权属于北京市三一重机有限公司所有,其他单位不经允许不得翻印或复制。

本标准主要起草人:黎中银[1][2]夏柏如[1]邵良清[2]王宏伟[2]。

[1]中国地质大学(北京),[2]北京市三一重机有限公司。

《旋挖钻机施工工法通用规程》序言

近年来,随着旋挖钻机在各类工程应用中的不断普及,旋挖钻机的数量及生产厂家也呈快速递增趋势,这对促进基础工程机械行业的技术进步、缓解工程需求和装备供给之间的矛盾,无疑是件令人欣慰的事。但是,在我国,无论是旋挖钻机的制造者还是使用者,其实践的时间仍然很短,经验及其积累仍然有限。

同时,随着用户群的逐步扩大,新入者也不断增加,这就迫切需要制定和出台相应的专门施工规程,来指导和规范旋挖钻机施工的各个环节。而制订国家或行业标准,需要大量工程数据作为支撑,也就需要较长时间的考证。这在客观上造成了施工规范上的滞后现象。

可喜的是,北京市三一重机有限公司作为一家旋挖钻机的制造企业,却始终将施工工法等工程方面的研究和实践放在企业业务的重要位置,并因此而取得了良好的业绩。这本《旋挖钻机施工工法通用规程》比起专业的标准规范,也许还存在这样或那样的不足和缺陷,但是它肯定能够帮助旋挖钻机的广大用户,尤其是新进入者,在施工方法上找到比较正确和有效的途径。

这也是一个良好的开端,希望在旋挖钻机等基础工程机械领域,加强工程设计、施工及设备等行业之间及企业间的交流与互动,共同促进基础工程及其装备的技术进步。

中国工程机械工业协会副秘书长

陆学文

2007年1月

旋挖钻机施工工法通用规程

1范围

本标准规定了旋挖钻机的施工工艺规范。

本标准适用于北京市三一重机生产的旋挖钻机。其他公司生产的同类机器可参照执行本标准。

2规范性引用文件

下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。

GB/T1.1-2000标准化工作导则第1部分:标准的结构和编写规则

GB/T5005-2001钻井液材料规范

3背景

旋挖钻机作为基础工程机械中的新型机种,经过几年的推广应用,目前已被大量应用于公路及铁路、桥梁、水利工程、城市建筑工程等桩基工程之中。由于其高效、节能、低噪声、低污染、地层适应性较广等优点、受到越来越多的施工单位的青睐。但是由于至今尚未颁布国家或行业的旋挖钻机施工工艺规范,对于新进入该施工行业的业主,在工程实践中往往遭遇很多困扰。北京市三一重机有限公司作为国内旋挖钻机的龙头企业,在开发制造和销售大量产品的同时,致力于走产学研相结合的道路,与国内外地质施工专家进行旋挖钻工法及施工工艺的研究和实践。本通用规程就是这些探索的总结,希望能对施工界带来一

些有益的帮助。

4施工资料准备

4.1开工前应有相关部门提供的该工程的地质勘察报告、水文地质资料、桩基工程施工图及图纸会审

资料。

4.2施工现场环境和邻近区域内的地下管线(管道、电缆)、地下构筑物、危险建筑物、精密仪器车

间等的调查资料。

4.3主要施工机械及其配套设备的技术性能资料,所需材料的检验和配合比试验,对所需的材料必需

作材料的物理性能试验,并委托有资质的试验室根据所用的原材料作好混凝土的配合比试验。

4.4有效的桩基工程的施工组织设计或施工方案,有关载荷、施工工艺的试验参考资料。

5研究工程地质情况

5.1必要性

做好全面的施工准备,施工前对工程的地质、水文情况进行研究是必需的。这对以后施工组织安排和

效益预测等有相当帮助。

5.2对工程地质的可钻性分析

工程地质可钻性分为土壤可钻性分析及入岩可钻性分析两个方面。

5.2.1土壤可钻性分析,包括地质硬度小于5MPa以下的工程地质情况,其分析时应了解的相关参数一般为水文地质结构参数等土性指标。此时土壤的可钻性主要表现为土壤颗粒脆性断裂可切削能力,所使用

的斗齿必须是具有锋快楔入能力的线式刃口刀具。

5.2.2入岩可钻性分析,应考虑岩石的成因和种类,岩石颗粒的大小和形状、岩石的构造及裂隙发育情况,胶结的性质及胶结形式等等。一般应了解岩石的压入硬度、研磨性、弹塑性三个方面的指标。此时,岩石的可钻性主要表现为岩石颗粒的可剪切断裂破碎能力。

5.2.2.1岩石破碎的典型方式有两种:脆性剪切碎岩和动载冲击碎岩。

5.2.2.2脆性剪切碎岩广泛使用于岩石裂隙发育充分的地质情况,其机理是在岩石颗粒边界处利用两向力即加压力和扭矩或多维应力共同作用产生搓碾剪切从而导致岩石破碎的一种准静载破岩方式。常用的碎岩工具应具有点式或圆球形切削刃面。例如装有子弹头的短螺旋钻头,嵌岩筒钻等等都是较常用的有效

工具。

5.2.2.3动载冲击碎岩是利用冲击器的冲击能来加速岩石颗粒边界处裂隙的发育和增大岩石脆性从而实现快速断裂碎岩的一种方式。相对其它碎岩方式来说,具有单位体积比能耗小,破岩效率高的优势。常用的方式有振动锤、振动镐、冲击锤,落锤、牙轮钻头、爆破器、射流冲击器等。

例如,气举反循环全断面破岩成孔工法兼具脆性剪切破岩和动载冲击碎岩的一些基本特征,详情见后

述章节。

5.3编制施工作业指导书

5.3.1目的

编制施工作业指导书的目的是为了制订施工时护壁稳定、提高作业效率及降低工程成本的最优方案,

一般应从硬件配置和参数设计两个方面来考虑。

5.3.2硬件配置

针对不同的地质情况,应该对钻杆、钻具、斗齿、护筒、泥浆、清孔工具、监理检测等施工机械与设备进行选择和优化。一般来说,一台钻机至少要配置机锁钻杆和摩擦钻杆各一只且配备若干数量的钻具、

斗齿、护筒等等。

5.3.3参数设计

针对不同的地质情况和施工设备,优化考虑施工的方式、钻进参数、质量控制措施等等。如是否采用接力钻削,土壤切削、岩石钻削时加压方式,钻进扭矩,钻头转速,进尺速度,监理检测质量控制指标等

等。详情见后述章节。

6施工机械与设备

6.1特殊要求

旋挖钻机、起重机、电焊机、泥浆泵、测量仪器(如全站仪、水准仪)等机械设备须有出厂合格证。

6.2中小型等机具的要求

6.2.1起重机:机体安装坚实平稳,各类离合器、制动器、钢丝绳、防护罩必须安全、可靠有效;操

作手应持证上岗。

6.2.2手持电动工具:必须单独安装漏电保护器;防护罩安全有效;外壳必须有接地或接零;橡皮线

不准破损。

6.2.3电焊机:有可靠的防雨措施;有良好的接地或接零保护;一、二次线接线处应有齐全的防护罩;

二次线应使用线鼻子;配线不许乱搭、乱拉,焊把绝缘良好;焊工持证上岗。

6.2.4气瓶:各类气瓶有明显的色标和防震圈,不准在露天曝晒;乙炔气和氧气瓶距离应大于5m;乙

炔气瓶在使用时必须装回火防止器;皮管应用夹头紧固;操作人员必须持证上岗。

6.2.5泥浆泵三台:3千瓦一台,也可选用潜水泵;

7.5千瓦一台;12.5千瓦一台。水管与泥浆管根据

现场所需购置,管径根据每台泵出水口配置。

7场地布置、桩孔位置的确定

7.1基本原则

根据设计要求合理布置施工场地,必须落实四通一平,即路、水、电和通信通;先平整场地、清除杂物、换除软土、夯打密实。在进行场地整平后,组织有资格的测量放样人员,将所有桩位放出,钉好十字保护桩,做好测量复核,并记录放样数据备案;规划行车路线时,使便道与钻孔位置保持一定的距离;以免影响孔壁稳定;施工场地为旱地而且在施工期间地下水位在原地面以下时,将场地平整夯实,清除杂物;场地位于浅水时,采用筑岛后在顶面安置钻机,筑岛顶面高出施工水位1.0m左右;钻机底盘不宜直接置于不坚实的填土上,以免产生不均匀沉陷;钻机的安置应考虑钻孔施工中孔口出土清运的方便。

7.2桩位放样

按“从整体到局部的原则”进行桩基的位置放样,进行钻孔的标高放样时,应及时对放样的标高进行复核。采用全站仪准确放样各桩点的位置,使其误差在规范要求内。

7.3钻机就位

钻机就位时,要事先检查钻机的性能状态是否良好。保证钻机工作正常。保证桩位附近平整,把钻机

开到桩位旁,螺旋钻头的尖端正对桩位标注点。

钻机停位回转中心距孔位在3~4.5m之间。在允许的情况下,变幅油缸尽可能将桅杆缩回,这样可以减小钻机自重和提升下降脉动压力对孔的影响。检查在回转半径是否有障碍物影响回转。

7.4埋设钢护筒

7.4.1基本要求

在准确放样的前提下埋设护筒,应符合埋设护筒的方法和要求,如果钻孔是在陆地上进行的,则一般

采用挖坑法,比较简单易行。

钢护筒埋设工作是旋挖钻机施工的开端,钢护筒平面位置与垂直度应准确,钢护筒周围和护筒底脚应

紧密,不透水。

埋设钢护筒时应通过定位的控制桩放样,把钻机钻孔的位置标于孔底。再把钢护筒吊放进孔内,找出钢护筒的圆心位置,用十字线在钢护筒顶部或底部,然后移动钢护筒,使钢护筒中心与钻机钻孔中心位置重合。同时用水平尺或垂球检查,使钢护筒垂直。此后即在钢护筒周围对称地、均匀地回填最佳含水量的粘土,要分层夯实,达到最佳密实度。以保证其垂直度及防止泥浆流失及位移、掉落,如果护筒底土层不是粘性土,应挖深或换土,在孔底回填夯实300-500mm厚度的粘土后,再安放护筒,以免护筒底口处渗漏塌方,夯填时要防止钢护筒偏斜。护筒上口应绑扎木方对称吊紧,防止下窜。

7.4.2特殊要求

在易缩径的淤泥质粘土和易垮孔的松散杂填土地层和沙层以及严重透水地层必须使用长护筒或全护筒护壁,下护筒的方式有两种:振动锤下护筒和动力头驱动器下护筒。

7.4.2.1振动锤下护筒:用汽车吊或履带吊吊挂电动或液压振动锤夹持护筒,通过高频振动使护筒周边沙土液化,在护筒重力作用下使护筒插入土层。该方法的优点是下放和起拔护筒速度快,在成孔时可用干式成孔法或天然水,降低造浆成本。但在埋设开始时需注意调整护筒的垂直度。

7.4.2.2动力头驱动器下护筒:利用动力头反正转搓动和加压油缸加压使护筒切入土中。操作方便,

并能确保护筒埋置夯实性,缩短挖坑埋置时间,提高成孔效率。

8泥浆制备

8.1旋挖钻机特点

8.1.1优点

与传统的正反循环钻机相比,旋挖钻机具有成孔速度快的特点,其工艺优点为:

(1)孔壁不易产生泥皮。因为在成孔过程中孔壁一直都受钻斗的刮擦。

(2)在孔壁上形成较明显的螺旋线。

这两点有助于增加桩的摩阻力,提高桩的质量。

8.1.2缺点

因为不易形成泥皮,护壁性相对较差,容易缩径、塌孔。

8.2泥浆护壁特点

在钻孔灌注桩的施工过程中,为了防止坍孔,稳定孔内水位及便于挟带钻碴,通常采用澎润土制备成泥浆进行护壁。泥浆护壁是利用泥浆与地下水之间的压力差来控制水压力,以确保孔壁的稳定,所以泥浆的比重在起到保持这种压力差方面具有关键作用。如果钻孔中的泥浆比重过小,泥浆护壁就容易失去了阻挡土体坍塌的作用;如果泥浆的比重过大,则容易使泥浆泵产生堵塞甚至使混凝土的置换产生困难,使成桩质量难以得到保证。要充分发挥泥浆的作用,其指标的选取是非常重要的。就要求在实际工程的施工中,根据工程

地质具体情况,合理地控制不同土层中泥浆的指标。

8.2.1稳定液的原材料

稳定液应具有良好的物理性能、流变性能和稳定性能。主要指标为密度、粘度、PH值、含砂量等。其中膨润土的质量标准参见《钻井液材料规范》GB/T5005-2001。泥浆用粘土应选择粘粒含量大于50%,塑性指标大于20,含砂量小于5%,二氧化硅与三氧化二铝含量的比值为3-4倍的粘土为宜。稳定液的主要材料

见表1。

表1 稳定液的主要材料表

8.2.2稳定液的配合比

应按地基土的性状、钻机和工程条件来定。一般100L 的水需加8kg 的膨润土,对于粘性土层,膨润土可降低到3~4kg 。由于情况各异,稳定液的性能指标和配合比,必须根据地层特性、造孔方法、泥浆用途

而有所变化(表2

)。

表2 稳定液的主要性能指标

8.2.3稳定液粘度的选取

钻斗钻成孔法为了防止孔壁坍塌,所用稳定液的必要粘度参考值如表3。

表3 钻斗钻成孔法稳定液的必要粘度参考值

9钻头的类型及应用

9.1钻头的类型

旋挖钻头实际上就是一个盛土的筒式容器,只是在斗的下侧焊接切削土壤的刀片或刃口。随着旋挖钻进工艺的推广应用,在遇到沙层、硬岩基层、卵砾石层等各种复杂地层时,不采取特别的措施,旋挖钻机的应用也受到了一定限制。因此,在施工中应根据不同地质情况,选用合适的钻头和施工工法,这样即可以提高施工效率,节约生产成本,而且在环保、能源消耗、孔内事故等等方面能收到异想不到的效果。

钻头的类型很多,常用的分为两大类:

(1)回转钻头:a单底土斗b双底捞砂斗

(2)嵌岩钻头:a短螺旋钻头b嵌岩筒钻c牙轮钻头

9.2钻头的应用

9.2.1一般要求

钻具应有一定的刚度,在钻进中或其他操作时,不产生移动和摇晃,钻具的安装应符合生产厂家的标准。施工前,了解施工地质情况选用合理的钻具。在一般地层情况下可选用摩擦钻杆和回转钻头。在岩层施工时可配用短螺旋钻头、回转斗,嵌岩钻头等各种规格的钻头。

回转钻头,适用于地下水位以上的粘性土、粉土、填土、中等密实以上的砂土、风化岩层。嵌岩螺旋钻头,适用于碎石土、中等硬度的岩石及风化岩层。岩心回转斗,适用于风化岩层及有裂纹的岩石。钻头

规格由用户据实际工程的情况选购选配。

9.2.2钻斗的斗齿前角选取

旋挖钻机工作时的压力、扭矩传递为:

压力:动力头油缸—动力头—钻杆—钻头—切削刃;

扭矩:动力头马达—动力头转盘—钻杆—钻头—切削岩土。

从整个旋挖钻机工作过程来看,钻机的动力能多少转变为施工所需的压力和扭矩的输出效率问题,对每台钻机来说,出厂时就已经确定下来,而钻机工作过程中的压力和扭矩的输出效率则取决与钻杆和钻头,

钻斗的关键参数是斗齿刃前角。

对于相同的地层使用同一钻进扭矩,不同的斗齿刃前角度,钻进效率不同。因此,只有选择合适的刃前角,才能提高进尺效率。经过大量的试验:对于硬度较小的第四地层、强风化层和少冰冻土层,比钻较松软的地层时斗齿刃前角应稍大些,选取45°~65°为宜;钻比较硬的地层时斗齿刃前角应稍小些,选取

25°~45°为宜。

10旋挖钻机钻杆结构及正确应用

10.1地质硬度分类

选用钻杆时,首先要考虑的因素是地质情况(地层硬度),一般进行松软地层钻进时,依靠钻杆和钻具的自重即可满足进尺加压力的要求,此时选用摩擦式钻杆即可。对于入岩钻进则应考虑具有强行加压功

能的机锁式钻杆。地层硬度由软到硬排列如下:

1.淤泥层;

2.泥土、(泥)砂层;

3.卵(漂)石层;

4.强风化岩层;

5.中风化岩层;

6.弱风化岩层;

7.微风化岩层;8.基岩层。

10.2钻杆的类型

根据钻孔时采用的钻进加压方式不同,钻杆分为三种类型:摩擦加压式钻杆(简称:摩擦杆)、机锁加压式钻杆(简称:机锁杆,又称:凯式钻杆)和组合加压式钻杆(简称:组合杆)。

摩擦式钻杆(见图1)一般用于较软地层的钻孔施工,可钻进淤泥层、泥土、(泥)砂层、卵(漂)石层。摩擦式钻杆一般制成5节,1~4节杆每节钢管长13米。钻孔深度可达60米左右。

图1 摩擦式钻杆

点击此处查看全部新闻图片

1、扁头

2、一杆挡环

3、第一节钻杆

4、第二节钻杆

5、第三节钻杆

6、第四节钻杆

7、第五节钻杆 8、减振器总成 9、一杆外键 10、一杆内键 11、弹簧座(托盘)

12、钻杆弹簧 13、方头 14、销轴

机锁式钻杆(见图2和图3)不但可用于软地层,也可用于较硬地层施工。机锁式钻杆可钻进淤泥层、泥土、(泥)砂层、卵(漂)石层和强风化岩层。机锁式钻杆一般制成4节,1~3节杆每节钢管长13米。钻孔深度可达50米左右。

图2 固定点分段加压式机锁式钻杆

1、扁头

2、一杆挡环

3、第一节钻杆

4、第二节钻杆

5、第三节钻杆

6、第四节钻杆

7、减振器总成 8、一杆外键 9、一杆内键 10、弹簧座(托盘) 11、钻杆弹簧

12、方头 13、销轴

图3 多点连续加压式机锁式钻杆

1、扁头

2、一杆挡环

3、第一节钻杆

4、第二节钻杆

5、第三节钻杆

6、第四节钻杆

7、减振器总成 8、一杆外键 9、一杆内键 10、弹簧座(托盘) 11、钻杆弹簧

12、方头 13、销轴

点击此处查看全部新闻图片

组合式钻杆(见图4)是近年来出现的一种机锁杆(如1、2、3节杆)和摩擦杆(如4、5节杆)组合在一起的钻杆。该钻杆在孔深0~30米范围可钻较硬地层,在孔深30~60米范围可用于软地层钻孔施工。该钻杆特别适用于上硬下软较深桩孔的钻孔施工。

图4 组合式钻杆

1、扁头

2、一杆挡环

3、减振器总成

4、第一节钻杆(机锁)

5、一杆外键

6、第二节钻杆(机锁)

7、二杆外键

8、第三节钻杆(机锁)

9、三杆外键 10、第四节钻杆(摩擦) 11、四杆外键 12、五杆外键13、第五节钻杆(摩擦) 14、弹簧座(托盘) 15、钻杆弹簧 16、方头 17、销轴

点击此处查看全部新闻图片

10.3钻杆的提升和伸放

钻杆在完全缩进状态被安装到旋挖钻机上,整根钻杆的重量通过最内一节杆的扁头和提引器相连接作用在主卷扬钢丝绳上。最内一节杆通过焊接(或安装)在其上的圆盘和弹簧、弹簧座(托盘)将其它各节

杆托起(弹簧座的外径与一杆钢管外径相同)。

钻杆下放(伸出):钢丝绳下放,钻杆由于自重整体下降,1杆在动力头内键套内滑动下降。当1杆上的减振环碰到动力头上平面时,1杆被动力头托住,停止下降;钢丝绳继续下放,其余各节杆在重力作用下一起继续下降。当第2节杆的挡环碰到1杆下管内键上端面时,2杆被1杆挡住,停止下降;钢丝绳继续下放,其余各节杆在重力作用下一起继续下降。当第3节杆的挡环碰到2杆下管内键上端面时,3杆

被2杆挡住,停止下降。如此继续,直到各节杆全部伸出,将安装在最里边一节杆方头上的钻具下放到孔底。由此可见,各节钻杆的伸出(下放)是由外向里进行的。

钻杆提升(缩进):(以5节杆为例)每次钻进结束后,钢丝绳提升,5杆带着钻具一起向上提升,同时5杆向4杆内缩进。当5杆完全进入4杆内时,安装在5杆上的弹簧座(托盘)将4杆托起,带着4杆一起上升,同时4杆、5杆一起向3杆内缩进。如此继续,直到5、4、3、2各节杆全部缩进1杆内,并且1杆也被弹簧座托起在动力头内键套内滑动上升,直至钻杆和钻具全部提出地面。由此可见,各节钻

杆的提升(缩进)是由内向外进行的。

10.4钻杆扭矩传递和加压原理

钻机在钻孔作业时,钻杆要将动力头的两个作用力传递给钻具,一个是圆周方向的旋挖扭矩M(圆周力F);另一个是轴向的加压力N。把这两个作用力从第1节钻杆传递给第2节钻杆;第2节钻杆传递给第3节钻杆…最末一节钻杆传递给钻具。这两个作用力的传递是靠外面一节杆下部的内键和其里面一节杆的外键相互作用完成的。摩擦杆和机锁杆加压力传递的作用原理不同:

摩擦杆各节杆上的外键是焊在钢管上圆周120°均布的3条(或6条)通长钢条,无台阶(无加压点)。

机锁杆各节杆上的外键是焊在各节杆钢管上圆周120°均布的3条(或6条)带有加压端面(有台阶)

或齿面的钢条。

下面均以第1、2节钻杆为例论述各节钻杆传递旋挖扭矩和加压力的原理。假设:

(1)钻杆、钻具承受孔底土石料的负载反扭矩为:Mf=22tm;

(2)1、2杆扭矩传递作用半径为:R=195㎜=0.195m;

(3)钢-钢摩擦系数为:k=0.11(在有泥浆润滑条件时);

则:F圆周力=M/R=22/0.195=112.82(t),

F正压力=F圆周力=112.82(t);

f摩擦力=k×F正压力=0.11×112.82=12.41(t);

N=f摩擦力=12.41(t)

以上是以SR220C旋挖钻机为例,并且假定负载反扭矩与其最大输出扭矩相等,即Mf=M=22tm计算的加压力。实际上负载反扭矩比机器的最大输出扭矩要小得多,因为较松软的泥砂地层不会对钻具形成多大的负载反扭矩;较硬实的风化岩层钻具截齿在上边打滑,不易进尺,也不能形成多大的负载反扭矩。负载反扭矩小→F圆周力小→F正压力小→f摩擦力小→N加压力小,所以摩擦式钻杆传递的加压力很小。摩擦式钻杆的进尺加压力主要来自于最末一节钻杆和钻具的自身重量(φ440-5×13m摩擦杆的第5节杆重量为:1.8t左右,一个φ1.5m的捞砂钻斗的重量为:2t左右,加起来共3.8t左右)。加压油缸提供给动力头的加压力虽然很大(20t),但经过动力头内键套键齿侧与1杆外键侧的摩擦传递和各杆内外键侧的摩擦传递提供给钻具的进尺加压力却很小,所以使用摩擦杆不能在较硬地层施工作业。

相关主题
文本预览
相关文档 最新文档